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We study the compact monotone Fukaya category of T ∗Sn, 
for n ≥ 2, and show that it is split-generated by two 
classes of objects: the zero-section Sn (equipped with suitable 
bounding cochains) and a 1-parameter family of monotone 
Lagrangian tori (S1 × Sn−1)τ , with monotonicity constants 
τ > 0 (equipped with rank 1 unitary local systems). As a 
consequence, any closed orientable spin monotone Lagrangian 
(possibly equipped with auxiliary data) with non-trivial Floer 
cohomology is non-displaceable from either Sn or one of the 
(S1×Sn−1)τ . In the case of T ∗S3, the monotone Lagrangians 
(S1 × S2)τ can be replaced by a family of monotone tori T 3

τ .
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1. Introduction

An embedded Lagrangian L in a cotangent bundle (T ∗Q, d(pdq)), is exact if pdq|L = df

for some function f : L → R. Arnold’s nearby Lagrangian conjecture predicts that if 
Q and L are closed, then L is Hamiltonian-isotopic to the zero-section Q ⊂ T ∗Q. This 
result is currently known to hold only for a limited list of examples, including Q = S2

[20] and T 2 [12]. The work of many authors has also led to a proof that the composition 
L → T ∗Q → Q (where the first map is the embedding and the second is projection to 
the zero-section) is a simple homotopy equivalence [4].

Very little is known if one drops the requirement of L being exact. We will consider 
the case of L monotone, by which we mean that there is a constant τ ≥ 0 such that, for 
every smooth map u : (D2, ∂D2) → (T ∗Q, L),

∫
D2

u∗ω = τ · μ(u)

where μ(u) is the Maslov index of u. Note that we allow the case τ = 0, which happens, 
for instance when L is exact. For some results about monotone Lagrangians in cotangent 
bundles, see for instance [17].

Remark 1.1. Under suitable conditions, τ = 0 implies that L is exact. This is the case, 
for example, if the following conditions are both satisfied:

(1) the map h∗ : Hom(H2(T ∗Q, L), R) → Hom(π2(T ∗Q, L), R) is injective (h∗ is the dual 
of the relative Hurewicz homomorphism, see for example [11, Section 6.17]);

(2) the map H1(T ∗Q; R) → H1(L; R) induced by inclusion is trivial.
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Recall that there is an isomorphism U : H2(T ∗Q, L; R) → Hom(H2(T ∗Q, L), R) given by 
the universal coefficients theorem. Note that if (1) holds, then h∗ ◦U : H2(T ∗Q, L; R) →
Hom(π2(T ∗Q, L), R) is also injective. This is useful when showing that L is exact.

Condition (2) above holds if Q = Sn with n ≥ 2. The fact that R is an injective 
Z-module implies that condition (1) holds if Q = Sn with n ≥ 1, using the five-lemma 
(see for example [19, page 129]). Hence, if Q = Sn with n ≥ 2, a monotone Lagrangian 
L ⊂ T ∗Sn is exact iff τ = 0.

The focus of this paper is on closed monotone Lagrangians in cotangent bundles 
of spheres Sn (with the standard smooth structure), from the point of view of Floer 
theory, more specifically using wrapped Floer cohomology. Unless otherwise specified, 
we will always assume that n ≥ 2. Given closed Lagrangians L, L′ (possibly equipped 
with additional data like bounding cochains or local systems) in a symplectic mani-
fold, one can sometimes define their Floer cohomology HF ∗(L, L′), which is invariant 
under Hamiltonian perturbations of either L or L′. If HF ∗(L, L′) �= 0, then L is not 
Hamiltonian-displaceable from L′ (which means that ϕ(L) ∩ L′ �= ∅ for every Hamilto-
nian diffeomorphism ϕ) [13]. Unless we say otherwise, we will take Floer cohomology 
with coefficients in the Novikov field over C, which is denoted by K and defined in 
Section 3.1.

There is a 1-parameter family of disjoint monotone Lagrangians (S1×Sn−1)τ ⊂ T ∗Sn, 
of different monotonicity constants τ > 0, whose construction will be reviewed below. 
These Lagrangians can be equipped with local systems such that their Floer cohomologies 
are non-trivial. In T ∗S3, the same holds for a 1-parameter family of disjoint monotone 
Lagrangian tori T 3

τ , see [10]. We will review the construction of these tori below as well. 
We will prove the following result.

Theorem 1.2. Take n ≥ 2 and let L ⊂ T ∗Sn be a closed orientable spin monotone 
Lagrangian with a unitary local system of rank 1 for which HF ∗(L, L; K) �= 0. Then, 
either HF ∗(L, Sn; K) �= 0 (where the zero-section Sn is equipped with a suitable bounding 
cochain) or there is a τ > 0 for which HF ∗(L, (S1 × Sn−1)τ ; K) �= 0 (where (S1 ×
Sn−1)τ is equipped with a suitable unitary local system of rank 1). In particular, L is not 
Hamiltonian-displaceable from either Sn or from (S1 × Sn−1)τ , for some τ > 0.

Furthermore, in T ∗S3 we can replace the (S1 × S2)τ with the tori T 3
τ .

Our work towards the proof of Theorem 1.2 will also imply the following.

Theorem 1.3. Let τ, τ ′ > 0. Then τ = τ ′ iff the Lagrangians (S1 × S2)τ and T 3
τ ′

can be equipped with unitary local systems of rank 1 with respect to which HF ∗((S1 ×
S2)τ , T 3

τ ′ ; K) �= 0. In particular, (S1 × S2)τ is not Hamiltonian-displaceable from T 3
τ .

We now describe the structure of the proof of Theorem 1.2. The Lagrangians L in 
the statement give objects in a monotone wrapped Fukaya category of T ∗Sn, which 
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also includes a cotangent fiber F = T ∗
q S

n (for some q ∈ Sn). This is an A∞-category 
(with only a Z/2Z-grading, since we allow monotone Lagrangians), which we denote 
temporarily by W (and will refer to it as WZ/2Z

mon (Y ; K) in Section 3.4).
The category W is split-generated by the cotangent fiber F , as can be proven by 

adapting a result in [2] (which in its original form was for the wrapped Fukaya category of 
exact Lagrangians). Let us consider some algebraic consequences of this split-generation 
result. Let AK := HW ∗(F, F ; K) be the wrapped Floer cohomology algebra of F . The 
graded algebra AK is isomorphic to H−∗(ΩqS

n; K), where q ∈ Sn is a basepoint and 
Ωq denotes the based loop space, see [3]. Hence, since n ≥ 2, AK is isomorphic to a 
polynomial algebra K[u], where deg(u) = 1 − n. There is a Yoneda functor

Y : W → mod(AK)

L 
→ HF ∗(F,L;K)

where mod(AK) is the category of Z/2Z-graded right AK-modules., with the morphism 
space between two objects M, M ′ in mod(AK) being Ext∗AK

(M, M ′).
The split-generation result mentioned above, together with formality results for A∞-

modules over AK that we prove in Section 5, imply that Y is a cohomologically full and 
faithful functor, which means that it induces isomorphisms on cohomology

HW ∗(L,L′;K) ∼= Ext∗AK
(Y (L), Y (L′))

for any pair of objects L, L′. See Proposition 3.8 below for more details. Take the sub-
category F ⊂ W (denoted as FZ/2Z

mon (Y ; K) in Section 3.4) that does not include the 
object F , but only compact monotone Lagrangians. Given an object L of this subcat-
egory (where we suppress the additional data of local systems or bounding cochains), 
HW ∗(F, L; K) = HF ∗(F, L; K) is a finite dimensional K-vector space, so Y restricts to 
a cohomologically full and faithful embedding

Yc : F → modpr(AK) (1.1)

into the subcategory modpr(AK) ⊂ mod(AK) of proper AK-modules M (those which are 
finite dimensional over AK). The approach of this paper will be to study the category F
by analyzing the algebraic category modpr(AK).

Corollaries 6.5 and 6.8 below give generators for modpr(AK), and imply the following 
result (which will appear below as Corollaries 4.16 and 4.20).

Theorem 1.4. Given n ≥ 2, the functor Yc in (1.1), when extended to the split-closure of 
F (which is the monotone Fukaya category of T ∗Sn), is a quasi-equivalence of categories. 
The category F is split-generated by the uncountable collection of objects consisting of Sn

(equipped with suitable bounding cochains) and the (S1 × Sn−1)τ (equipped with unitary 
local systems of rank 1). In the case of T ∗S3, we can replace the (S1×S2)τ with the tori 
T 3
τ .



M. Abouzaid, L. Diogo / Advances in Mathematics 427 (2023) 109114 5
Proof of Theorem 1.2. Given L such that HF ∗(L, L; K) �= 0, L is a non-trivial object 
in F . Theorem 1.4 then implies that HF ∗(L, L′; K) �= 0, where L′ is one of the split-
generators. �
Remark 1.5 (Relation to mirror symmetry). As mentioned, the tori T 3

τ were studied in 
[10]. They are fibers of an SYZ fibration in the complement of an anticanonical divisor 
H in T ∗S3 (H is anticanonical in the sense that the Lagrangian tori in the SYZ fibra-
tion have vanishing Maslov class in the complement of H). In this setting, the authors 
compute the disk potentials associated to SYZ-fibers by studying wall-crossing for pseu-
doholomorphic disks. This information is used to construct a Landau–Ginzburg model 
that is mirror to T ∗S3. The critical locus of the Landau–Ginzburg potential is an affine 
line. If the mirror is constructed over the Novikov field, then the points in this critical line 
with negative valuation correspond to (split summands of) the monotone Lagrangians 
T 3
τ , equipped with suitable unitary local systems of rank 1. The points with non-negative 

valuation correspond to bounding cochains on the zero section S3.

Remark 1.6 (Relation to abstract flux).
The monotone Lagrangians (S1 × Sn−1)τ can be obtained geometrically as follows. 

Let f : Sn → R be a Morse function with exactly two critical points. The graph of 
df intersects the zero section of T ∗Sn transversely in the two critical points, and one 
can perform surgery on this transverse intersection to produce the family (S1 ×Sn−1)τ . 
Similarly, the tori T 3

τ can be obtained by taking a Morse–Bott function g : S3 → R whose 
critical locus is a Hopf link, and performing surgery in T ∗S3 on the clean intersection of 
the zero section and the graph of dg.

Recall that given a compact manifold Q and a class α ∈ H1(Q; R), one can take the 
flux deformation of the zero-section of T ∗Q in the direction of α, by flowing Q along a 
symplectic vector field X such that [ω(., X)] = i∗α (where i : Q → T ∗Q is the inclusion). 
Using the Weinstein tubular neighborhood theorem, one can similarly deform a compact 
Lagrangian L in a symplectic manifold (M, ω) along a class α ∈ H1(L; R). Motivated by 
[33], one can think of the family of Lagrangians (S1 × Sn−1)τ (respectively, T 3

τ ) as an 
abstract flux deformation of two copies of the zero section Sn (respectively, S3) in the 
direction of a class β ∈ Hn(Sn; R) (respectively, H3(S3; R)), if n is odd. The case of n
even is more subtle, as we will see.

This paper is organized as follows. In Section 2, we present the construction of the 
monotone Lagrangians (S1 × Sn−1)τ in T ∗Sn and T 3

τ in T ∗S3. In Section 3, we recall 
the definitions of several versions of Fukaya categories of T ∗Sn, including a monotone 
wrapped Fukaya category where Lagrangians are allowed to intersect cleanly. In Sec-
tion 4, we perform several Floer cohomology computations, with a view towards proving 
Theorem 1.4. The remaining sections have a more algebraic nature, and are about A∞-
algebras and A∞-modules. In Section 5, we establish formality results for a category of 
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modules associated to a cotangent fiber in T ∗Sn. In Section 6, we obtain generators for 
that category of modules.
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2. Monotone Lagrangians in T ∗Sn

2.1. Lagrangians in T ∗Sn

Recall that T ∗Sn is symplectomorphic to the complex affine quadric

Xn = {(z0, . . . , zn) ∈ Cn+1 | z2
0 + . . . + z2

n = 1},

equipped with the Kähler form ω obtained from the restriction of i
2
∑n

j=0 dzj ∧ dzj on 
Cn+1 [25, Exercise 6.20]. Assume that n ≥ 2. The projection to the first coordinate 
defines a Lefschetz fibration

πn : Xn → C

(z0, . . . , zn) 
→ z0

with critical values ±1. For every regular value p �= ±1, the fiber π−1
n (p) is symplecto-

morphic to T ∗Sn−1, and contains the Lagrangian sphere

Vp := {(p,
√

1 − p2 x1, . . . ,
√

1 − p2 xn) ∈ Xn | (x1, . . . , xn) ∈ Sn−1},

where Sn−1 ⊂ Rn is the unit sphere and 
√

1 − p2 is one of the two square roots of 1 −p2. 
Write also V±1 = {(±1, 0, . . . , 0)}.

We will be interested in the following types of Lagrangians that project to curves 
under πn. See Fig. 1 for relevant examples of such curves.

Definition 2.1. Given a curve C ⊂ C \ {−1, 1} that is the image of an embedding of S1, 
let

LC :=
⋃
z∈C

Vz.

Given an embedding η : [0, ∞) → C such that
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Fig. 1. Some curves in C \ {±1}.

• η(0) ∈ {−1, 1},
• η

(
(0, ∞)

)
⊂ C \ {−1, 1} and

• η(t) = at + b for some a ∈ C∗, b ∈ C and t large enough, let

Fη :=
⋃
t≥0

Vη(t).

Lemma 2.2. The subsets LC and Fη of Xn in Definition 2.1 are Lagrangian submani-
folds. If C encloses both points ±1, then LC is diffeomorphic to S1 × Sn−1, while Fη is 
Hamiltonian-isotopic to a cotangent fiber in T ∗Sn.

Proof. The LC and Fη are Lagrangians because parallel transport with respect to the 
connection induced by the symplectic fibration πn preserves the spheres Vp (they are 
vanishing cycles for arbitrary vanishing paths in the base), see [32, Lemma 16.3].

Since there are only two types of Sn−1-bundles over S1, and the closed curve C
encircles two critical values which have the same monodromy (a Dehn twist), it follows 
that LC is the trivial bundle.

We now consider the Lagrangians Fη. Take η± such that η±(t) = ±(t + 1) for all 
t ≥ 0. Then, Fη± is mapped to T ∗

±1S
n by the symplectomorphism Xn → T ∗Sn in [25, 

Exercise 6.20]. For any other η, one can construct an isotopy to one of the η± that lifts 
to a Hamiltonian isotopy by applying Moser’s trick. �
Remark 2.3. The Floer cohomology of the Lagrangian submanifolds LC

∼= S1 × Sn−1

in T ∗Sn in the previous lemma was studied in [7]. These are a particular case of the 
generalized Polterovich Lagrangians in [26].

Remark 2.4. In this Lefschetz fibration description πn : Xn → C of T ∗Sn, the zero 
section Sn is the Lagrangian lift of the interval [−1, 1] ⊂ C.
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Let us continue with our study of the Lagrangians LC, where C encloses {±1}. Much of 
what follows in this section is an adaptation of results in [24, Section 2.2]. The homology 
long exact sequence of the pair (T ∗Sn, LC) implies that

H2(T ∗Sn, L;Z) ∼= H2(T ∗Sn;Z) ⊕H1(LC ;Z)

if n ≥ 2. The group H2(T ∗Sn; Z) vanishes unless n = 2, in which case both ω and 
c1(T ∗S2) vanish on H2(T ∗S2; Z). For n ≥ 3, the group H1(LC ; Z) has rank 1 and 
H2(T ∗Sn, LC ; Z) ∼= Z is generated by a class β such that πn◦β covers C once. For n = 2, 
H1(LC ; Z) has rank 2 and we can pick α, β ∈ H2(T ∗S2, LC ; Z) such that their boundaries 
give a basis for H1(LC ; Z) ∼= Z2, with the following properties: α is a Lefschetz thimble 
for some vanishing cycle Vp (hence it has vanishing Maslov index and symplectic area), 
while the boundary of π2 ◦ β covers C once. We will now study the ω-area and Maslov 
index of the disks β.

We need some auxiliary notation. Denote by σstd := i
2dz∧dz = rdr∧dθ the standard 

area form in C. Define, on the set C \ {±1} of regular values of the Lefschetz fibration 
πn, the 2-form

σ := i

2dz0 ∧ dz0 + f∗σstd,

where f : C\{±1} → C\{0} is given by f(z) = 1−z2√
2|1−z2| . The function f can be thought 

of as the composition of the two maps

C \ {±1} → C \ {0} C \ {0} → C \ {0}

z 
→ 1 − z2 reiθ 
→
√

r

2e
iθ

The first map is holomorphic and the second is smooth and orientation-preserving, so 
σ defines a positive measure on C \ {±1}. It extends to all of C, as a measure that is 
absolutely continuous with respect to the Lebesgue measure.

Lemma 2.5. Given a disk β : (D2, ∂D2) → (Xn, LC) such that πn ◦ β covers C once, we 
have ∫

β

ω =
∫

πn(β)

σ.

Proof. Take β as in the lemma. We can assume the boundary of β to be given by 
c(t) =

(
γ(t),

√
1 − γ(t)2 s(t)

)
, where γ : [0, 1] → C \ {±1} is a degree 1 parametrization 

of C and s(t) = (s1(t), . . . , sn+1(t)) ∈ Sn−1. Here, √. is the analytic continuation of a 
branch of the square root along the path 1 − γ2. Write g(t) :=

√
1 − γ(t)2. We have
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∫
β

ω − i

2dz0 ∧ dz0 =
∫
c

n∑
j=1

i

4(zj dzj − zj dzj) = i

4

1∫
0

gg′ − gg′dt, (2.1)

using on the first identity Stokes’ theorem and the fact that i
4 (zj dzj − zj dzj) is a 

primitive of i
2dzj ∧ dzj . A calculation shows that the right side of (2.1) can be written 

as

1∫
0

g∗
(

1
2r

2dθ

)
=

∫
C

f∗
(

1
2r

2dθ

)
,

where f is the function defined before the lemma. Identifying C with the boundary of 
πn(β) and using Stokes’ theorem, the integral on the right equals∫

πn(β)

f∗σstd,

which finishes the proof. �
Remark 2.6. The previous argument also goes through if C is a piecewise smooth curve. 
This will be helpful in Section 4, when computing operations μk involving several La-
grangians that fiber over paths in C.

Corollary 2.7. Suppose that the simple curves C and C ′ in C \ {−1, 1} both enclose 
{−1, 1}. Then, they bound the same σ-area if and only if LC and LC′ are Hamiltonian-
isotopic.

Proof. The proof is similar to that of [24, Corollary 2.5]. �
Lemma 2.8. The Maslov index of an oriented disk in Xn with boundary in LC , whose 
boundary projects to a degree 1 cover of C, is 2(n −1). The Lagrangians LC are monotone 

with monotonicity constant τC =
∫
ΩC

σ

2(n−1) , where ΩC ⊂ C is the region bounded by C in 
the plane.

Proof. We begin by considering the Lagrangian lift L0 of the unit circle in the model 
Lefschetz fibration π : Cn → C, where π(z1, . . . , zn) = z2

1 + . . .+ z2
n. The vanishing cycle 

over p ∈ C \ {0} of a vanishing path through p is

V ′
p := {√p(x1, . . . , xn) | (x1, . . . , xn) ∈ Sn−1},

see [32, Example 16.5]. We can use the holomorphic volume form

Ω = dz1 ∧ . . . ∧ dzn (2.2)
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on Cn to compute the Maslov index of a disk with boundary in L0. Let u be such a disk, 
of positive symplectic area and with boundary projecting to a simple cover of the unit 
circle. Let γ : S1 → L be a parametrization of this boundary loop such that π(γ(t)) = eit. 
The imaginary part of 

(
e−i(nt+π)/2 Ω

)
|L0 vanishes, hence the Maslov index of u is n (see 

[35] for similar computations).
To compute the Maslov class of LC in the statement of the lemma, we observe that 

C is Lagrangian-isotopic to a connected sum C−1#C1, where C±1 is a small simple 
loop around ±1 (this argument is inspired by [31]). By picking a local trivialization 
of the Lefschetz fibration πn near ±1, we see that the Maslov class of LC±1 can be 
identified with that of L0 above. This implies that one can think of a disk in Xn with 
positive symplectic area, and with boundary in LC projecting to a simple cover of C, as 
a connected sum of two disks as in the previous paragraph. Hence, the Maslov index of 
the disk with boundary in LC is 2n − 2, as wanted.

The monotonicity of LC and the value of τC now follow from Lemma 2.5. �
Recall that, given a monotone Lagrangian L in a symplectic manifold (M, ω) and a 

choice of basis h1, . . . , hm for the free part of H1(L; Z), we can define the disk potential
WL : (C∗)m → C as

WL(x1, . . . , xm) =
∑
u∈M

±x∂u, (2.3)

where M is the moduli space of J-holomorphic maps u : (D2, ∂D2) → (M, L) of Maslov 
index 2, such that u(1) = p, for a generic choice of point p ∈ L and compatible almost 
complex structure J on (M, ω). The sign associated to u depends on the spin structure 
of L. If we write 〈∂u, hi〉 for the hi-component of [∂u] in the free part of H1(L; Z), then 
x∂u stands for the product x〈∂u,h1〉

1 . . . x
〈∂u,hm〉
m . The disk potential does not depend on 

the choices of generic p and J .

Lemma 2.9. For n = 2, the disk potential of LC is WLC
= x1(1 + x2)2, in a basis 

h1, h2 ∈ H1(LC ; Z) ∼= Z2 where h1 is a loop projecting to C in degree 1 and h2 is a fiber 
of the projection π2|LC

. The disk potential is zero if n > 2.

Proof. For n = 2, the disk potential is computed in [24, Lemma 2.19], using a degenera-
tion argument from [31]. In the proof of [8, Corollary 5.13], the relevant Maslov index 2 
disks are also computed explicitly, using the integrable complex structure in the target. 
The case n > 2 follows from Lemma 2.8. �

Fix τ > 0 and a smooth embedded loop Cτ ⊂ C \ {−1, 1} that winds once around −1
and 1 and bounds σ-area 2(n − 1)τ . Denote by Lτ , or (S1 × Sn−1)τ , the corresponding 
Lagrangian LCτ

. By Lemma 2.8, Lτ is monotone with monotonicity constant τ . Observe 
that we can exhaust C \ [−1, 1] by a collection of disjoint simple curves C, such that the 
corresponding monotonicity constants τC cover R>0 without repetitions. The matching 
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sphere over the interval [−1, 1] ⊂ C is the zero section Sn ⊂ T ∗Sn. Assume that Cτ

is the curve C in Fig. 1, and denote by Fi the lifts of the paths ηi in the same figure. 
Similarly, denote by F ′ the lift of the path η′.

Recall that two Lagrangian submanifolds L, L′ ⊂ (X, ω) intersect cleanly if K := L ∩L′

is a manifold and for every x ∈ K we have TxK = TxL ∩ TxL
′ ⊂ TxX.

Lemma 2.10. For every i ≥ 0, Fi and Lτ intersect cleanly. For every i, j ≥ 0, Fi and Fj

intersect cleanly. Also, all these Lagrangians intersect F ′ cleanly.

Proof. This follows from the fact that the Lagrangians project under the map πn : Xn →
C to curves that intersect transversely. �
2.2. More Lagrangians in T ∗S3

It will be useful to also consider an alternative description of the complex affine quadric 
3-fold, which is symplectomorphic to T ∗S3. We borrow some notation from [10]. Write

X = {(z, u1, v1, u2, v2) ∈ C5 |u1v1 = z + 1, u2v2 = z − 1}.

Consider the Lefschetz fibrations

πi : C2 → C

(ui, vi) 
→ uivi + (−1)i,

where i ∈ {1, 2}. The map πi has a unique critical value at (−1)i and, given p ∈ C \
{(−1)i}, the vanishing circle in (πi)−1(p) of a vanishing path through p is

Vi,p := {(ui, vi) ∈ C2 |πi(ui, vi) = p, |ui| = |vi|}.

Write also Vi,(−1)i = {(0, 0)}. For more details, see [10] and [32, Example 16.5]. The 
affine quadric X is the fiber product of these two fibrations:

X
f1 f2

zC2

π1

C2

π2

C

The map z : X → C is not a Lefschetz fibration, but it can be thought of as a Morse–
Bott analogue, with critical values ±1 and such that the critical locus over ±1 is a copy 
of C∗. We will consider the following analogues of the Lagrangians LC and Fη from the 
previous section. It will again be useful to have Fig. 1 in mind.
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Definition 2.11. Given a curve C ⊂ C \ {±1} that is the image of an embedding of S1, 
let

TC :=
⋃
z∈C

V1,z × V2,z.

Given an embedding η : [0, ∞) → C such that

• η(0) = 1,
• η

(
(0, ∞)

)
⊂ C \ {±1} and

• η(t) = at + b for some a ∈ C∗, b ∈ C and t large enough,

let

Nη :=
⋃
t≥0

V1,η(t) × V2,η(t).

Several arguments in the previous section can be adapted to this setting. This time, 
if C encloses {−1, 1}, then TC is diffeomorphic to a torus T 3 and we have

H2(T ∗S3, TC ;Z) ∼= H1(TC ;Z) ∼= Z3.

We can pick a basis α1, α2, β for this relative homology group, such that α1 is a fiber 
product of a Lefschetz thimble for π1 by a point, and α2 is a fiber product of a point 
by a Lefschetz thimble for π2. We choose β so that its boundary projects to a degree 1 
cover of C. The fact that the αi come from Lefschetz thimbles for the πi implies that 
they have vanishing area and Maslov index. We are left with determining the area and 
index of β.

As before, there is a positive measure σ′ on C, absolutely continuous with respect to 
the Lebesgue measure and smooth in C \ {±1}, such that the following result holds.

Lemma 2.12. TC and Nη are Lagrangian submanifolds of X. The Lagrangian TC is dif-
feomorphic to T 3. Given β as above, its ω-area is 

∫
ΩC

σ′, where ΩC ⊂ C is the region 
bounded by C, and its Maslov index is 2. Therefore, TC is monotone with monotonicity 
constant τC =

∫
ΩC

σ′/2. The Nη are Hamiltonian-isotopic to the conormal Lagrangian 
of the unknot in S3. In particular, they are diffeomorphic to S1 ×R2 and are exact.

Proof. The proof uses arguments similar to the ones in the previous section, so we omit 
them. See [10] for the proofs of some of these statements. �

We can also write the disk potential of TC .

Lemma 2.13. The disk potential of TC is

WTC
= x1(1 + x2)(1 + x3),
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in a basis h1, h2, h3 ∈ H1(TC ; Z) ∼= Z3 such that h1 is a loop projecting to C in degree 
1, h2 = V1,z × {p2} for some z ∈ C and p2 ∈ V2,z, and h3 = {p1} × V2,z for some z ∈ C

and p1 ∈ V1,z.

Proof. This is computed in [10]. �
We can again exhaust C \ [−1, 1] by disjoint simple closed curves C, such that the 

collection of monotonicity constants τC of the TC covers R>0 injectively. Fix τ > 0 and 
denote by T 3

τ the Lagrangian torus with monotonicity τ in this family. Assume that T 3
τ

is the lift of the curve C in Fig. 1. Denote also by Ni, resp. N ′ the lifts of the paths ηi, 
resp. η′, in Fig. 1.

Lemma 2.14. For every i ≥ 0, Ni and T 3
τ intersect cleanly. For every i, j ≥ 0, Ni and 

Nj intersect cleanly. All these Lagrangians intersect N ′ cleanly.

Proof. As in Lemma 2.10, this result follows from the fact that the Lagrangians project 
to curves in the plane that intersect transversely. �
3. Wrapped Fukaya categories

The wrapped Fukaya category of a Liouville domain M was introduced in [5]. In the 
original definition, its objects are exact Lagrangians in the completed Liouville manifold 
M̂ . The Lagrangians are either compact or agree outside of a compact set with the prod-
uct of R with a Legendrian submanifold of the contact manifold ∂M . We will consider 
various versions of the wrapped Fukaya category, possibly allowing for closed monotone 
Lagrangians, as in [29]. For Lagrangians intersecting cleanly, we will use a Morse–Bott 
formalism similar to that of [33] to compute the associated A∞-maps μk.

Remark 3.1. The monotone wrapped Fukaya category is defined in [29], for a non-
compact monotone symplectic manifold (E, ω) that is convex at infinity. In that reference, 
the monotonicity constant of E is assumed to be strictly positive. Since the first Chern 
class of T ∗Sn vanishes, we are interested in the case of vanishing monotonicity constant. 
The main results in [29] still hold in this case, in particular Theorem 1.1 and equation 
(9.1), which we will make use of in this article.

3.1. Coefficients

Some of the Floer cohomology groups we will study are defined over Z, and some over 
a Novikov field. Given a commutative ring R, which for us will always be either Z or C, 
write

KR :=
{ ∞∑

aiT
λi | ai ∈ R, λi ∈ R, λi < λi+1, lim

i→∞
λi = ∞

}
.

i=0
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We will be mostly interested in KC , which will be denoted simply by K. We could replace 
C with any algebraically closed field of characteristic zero, so that the Novikov field is 
algebraically closed. See Section 6 for more on this point.

There is a valuation map

val : KR → (−∞,∞]
∞∑
i=0

aiT
λi 
→ min{λi | ai �= 0}

where val(0) = ∞. Say that α ∈ KR is unitary if val(α) = 0. Denote by U∗
KR

:=
{α ∈ KR | val(α) = 0 and α is invertible} the group of invertible unitary elements in KR

(if R is a field, val(α) = 0 implies that α is invertible), by KR,0 := {α ∈ KR | val(α) ≥ 0}
the Novikov ring and by KR,+ := {α ∈ KR | val(α) > 0} the maximal ideal in KR,0.

3.2. Morse–Bott Floer cohomology for clean intersections

We will use a Morse–Bott version of the Fukaya category, where Lagrangians are al-
lowed to intersect cleanly, as in [33, Section 3.2]. For more details on a construction of 
the Fukaya category with a Morse–Bott definition of the A∞-algebra of endomorphisms 
of a Lagrangian submanifold, see [36, Section 4]. These references assume that the La-
grangians are exact, which precludes disk bubbling. Lemma 3.6 below guarantees that 
if (L, ξ) is a Lagrangian with a rank 1 unitary local system giving a non-trivial object 
in the Fukaya category, then ξ corresponds to a zero of the disk potential of L. This 
is useful when considering 2-parameter families of pearly trees of holomorphic disks (to 
prove the A∞-relations, for instance), since the vanishing of the disk potentials implies 
the cancellation of configurations with disk bubbles. Therefore, we can assume for many 
purposes that the relevant Lagrangians bound no holomorphic disks. For more on the 
Floer cohomology of cleanly intersecting Lagrangians, see for example [28], [14], [15], [9], 
and [30].

Let us briefly define the relevant Floer complexes. Let L0, L1 be two Lagrangians such 
that each Li is equipped with:

• an orientation and a spin structure;
• a local system ξ on a trivial KR-bundle Ei = ⊕kEi,k, where the direct sum is finite 

and the summand Ei,k of grading k is a finite rank trivial vector bundle over Li, in 
degree k. If the rank of Ei is 1, then the local system can be unitary (with holonomy 
taking values in U∗

KR
). If the rank of Ei is bigger than 1, then the local system has 

trivial holonomy.

Remark 3.2. In this article, the zero section in T ∗Sn, with n > 1 even, is the only class 
of Lagrangians that we will equip with local systems of rank greater than 1.
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Remark 3.3. The choices of spin structures on the Lagrangians are necessary to orient 
moduli spaces of holomorphic curves. Nevertheless, in our computations we will not 
be very careful in specifying spin structures on the Lagrangians. This is because the 
effect of changing the spin structure on a Lagrangian is a change in signs associated to 
holomorphic curves, and this change can be compensated by the choice of a different 
local system ξ on the Lagrangian.

The categories of exact Lagrangians we will consider are Z-graded, so we will need 
additional choices of gradings for their objects (as in [32, Section 12a]). The categories of 
monotone Lagrangians will only be Z/2Z-graded, so we will not need to choose gradings 
in that case.

Let L0, L1 be Lagrangians as above, with local systems ξi on KR-bundles Ei over Li. 
Write Li := (Li, ξi). Assume that the Lagrangians intersect cleanly and let f : L0∩L1 →
R be a Morse function. In accordance with [33, Equation (3.9)], we define the cochain 
complex

CF ∗(L0,L1) :=
⊕

C⊂L0∩L1

⊕
p∈Crit(f |C)

(
HomKR

((E0)p, (E1)p) ⊗Z oC
)
[− deg(p)]

where the C ⊂ L0∩L1 are connected components of the intersection, oC is the orientation 
line of C (a rank 1 local system over Z depending on the spin structures of the Li), and 
HomKR

denotes KR-linear maps. The Floer degree associated to the critical point p is 
deg(p) = dim(C) − ind(p) + deg(C), where ind(p) is the Morse index of p as a critical 
point of f |C and deg(C) is an absolute Maslov index, which depends on the gradings of 
the Li.1 Recall that according to the cohomological convention that we use, [−k] adds k
to the degree.

The operations μk are defined on tensor products of these chain complexes, via counts 
of pearly trees. We give a very brief description of these, referring the reader to [33, Section 
3.2] for more details. Given a collection L0, . . . , Lk of Lagrangians with local systems, a 
pearly tree contributing to

μk : CF ∗(Lk−1,Lk) ⊗ . . .⊗ CF ∗(L0,L1) → CF ∗(L0,Lk)

is a collection of perturbed pseudoholomorphic disks (with respect to auxiliary almost 
complex structures and perturbing 1-forms) with boundary punctures and Lagrangian 
boundary conditions, connected by gradient flow lines of auxiliary Morse functions and 
metrics on the clean intersections of the Li. This collection of disks and flow lines can be 
concatenated into a continuous map from a disk with n + 1 boundary punctures to the 
symplectic manifold, with boundary components of the disk mapping to the Lagrangians 
L0, . . . , Lk, see Fig. 2. The contribution of a rigid configuration of disks and flow lines 

1 With this choice of grading, the graded vector space CF ∗(L0, L1) can be identified with CF ∗(ϕ(L0), L1), 
for a Hamiltonian isotopy ϕ supported near L0 ∩ L1 and constructed from f .
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Fig. 2. A pearly tree contributing to μ4.

to μk is determined by the areas of the pseudoholomorphic disks (which are encoded 
in the exponents of the variable T in the Novikov field), by signs specified by the spin 
structures on the Li, and by parallel transport with respect to the local systems ξi on the 
Ei along the boundary components of the concatenated disk (with the input elements of 
HomKR

(Ei, Ei+1) applied at the boundary punctures). The μk satisfy the A∞-relations, 
which can be written in abbreviated form as μ ◦ μ = 0.

We will also consider Fukaya categories containing additional objects. A bounding 
cochain on an object L in a Z/2Z-graded Fukaya category is b ∈ CF odd(L, L) satisfying 
the Maurer–Cartan equation

∞∑
k=1

μk(b, . . . , b) = 0, (3.1)

see [15] (to ensure that all the A∞-operations converge, we assume that b has strictly 
positive valuation). We can enlarge our category by allowing objects of the form (L, b), for 
such b. The object L can be identified with (L, 0). Given objects L̂0 = (L0, b0), . . . , L̂k =
(Lk, bk) in the enlarged category, the A∞-maps

μ̂k : CF ∗(L̂k−1, L̂k) ⊗ . . .⊗ CF ∗(L̂0, L̂1) → CF ∗(L̂0, L̂k)

are given by

μ̂k(xk, . . . , x1) :=
∑

l0,...,lk≥0

μ(k+
∑

i li)(bk, . . . , bk︸ ︷︷ ︸
lk

, xk, bk−1, . . . , b1, x1, b0, . . . , b0︸ ︷︷ ︸
l1

).

The fact that the bi satisfy the Maurer–Cartan equation (3.1) implies the A∞-equations 
μ̂ ◦ μ̂ = 0. Since μ̂k agrees with μk when all bi = 0, we will continue to write μk instead 
of μ̂k.

3.3. Wrapped Floer cohomology

We will use a model for wrapped Floer cohomology from [6], presented in [18] and 
[38]. Let L0 be a non-compact Lagrangian, which in this paper will be either a cotangent 
fiber F or a conormal Lagrangian of the unknot N ⊂ T ∗S3. We pick a family Li of 
Lagrangians that are lifts of paths ηi in the base of the Lefschetz fibration πn from 
Section 2.1 (in the case of F ), or in the base of the fiber product of Lefschetz fibrations 
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πi from Section 2.2 (in the case of N), where the path ηi wraps i times around the two 
critical values, see Fig. 1. Then, given another Lagrangian L′, we have

HW ∗(L0, L
′) := lim

i→∞
HF ∗(Li, L

′),

with the limit taken with respect to the continuation maps relating Li and Li+1. For the 
equivalence of this model with the usual definitions involving fast growing Hamiltonians, 
see [18, Lemma 3.37] and [38, Proposition 2.6]. In these references, the wrapped Fukaya 
category is defined by localizing the Fukaya category on the continuation maps that 
were just mentioned. We will combine this approach to wrapped Floer cohomology with 
the definition of Morse–Bott Floer cohomology above, where the Lagrangians intersect 
cleanly and are possibly equipped with local systems and bounding cochains.

3.4. Wrapped Fukaya categories

We will consider several versions of the Fukaya A∞-category of T ∗Sn. Recall that R
is either Z or C.

• WZ(T ∗Sn; Z) is a category whose objects are either the Fη from Definition 2.1 or 
compact oriented exact Lagrangians. When n = 3, we also include the objects Nη

from Definition 2.11. Objects are equipped with Z-gradings and spin structures. 
Morphism spaces are wrapped Floer cochain complexes with coefficients in Z. The 
differential and higher A∞-operations count rigid pearly trees, without keeping track 
of areas (which can be thought of as setting T = 1 in the Novikov field KZ).

• WZ(T ∗Sn; KR) has the same objects as WZ(T ∗Sn; Z). The difference is that the 
morphism spaces are now wrapped Floer cochain complexes with coefficients in KR, 
to keep track of the symplectic areas of the disks in the pearly trees that contribute 
to the A∞ operations.

• WZ/2Z(T ∗Sn; KR) is obtained from WZ(T ∗Sn; KR) by collapsing the Z-gradings 
to Z/2Z-gradings. If n is odd, allow also objects of the form (Sn, bα), where Sn is 
the zero section and bα = α[pt] is a bounding cochain with α ∈ KR,0 and [pt] ∈
Hn(Sn; KR). See Remark 3.4 below for why we impose α ∈ KR,0. We have implicitly 
chosen a perfect Morse function on Sn, and [pt] is given by the minimum of that 
function (the maximum yields the unit in the A∞-algebra of Sn). Since Sn bounds 
no disks, it is clear that all the summands in (3.1) vanish for b = bα. If n is even, 
we want to allow instead objects corresponding to bounding cochains in Sn ⊕ Sn[1]
(summing and shifting objects are allowed in the additive enlargement of the Fukaya 
category). We implement this by equipping Sn with the trivial graded KR-bundle 
E := KR ⊕KR[1], and bounding cochains bα,β ∈ Hodd(Sn; End(E)) of the form

bα,β :=
(

0 β
α 0

)
,

[pt]
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where α, β ∈ KR,0 and the matrix represents an endomorphism of the fiber of E at 
the minimum of the auxiliary perfect Morse function on Sn.

• WZ/2Z
mon (T ∗Sn; KR) is an extension of WZ/2Z(T ∗Sn; KR), including closed monotone 

Lagrangians. The objects are equipped with orientations and spin structures, and 
are Z/2Z-graded. We also equip monotone Lagrangians with unitary rank 1 local 
systems over KR. The construction of the monotone wrapped Fukaya category is 
given in [29]. See also [37] for a definition of the monotone Fukaya category in a 
closed setting.

• FZ/2Z
mon (T ∗Sn; KR) is the full subcategory of WZ/2Z

mon (T ∗Sn; KR) containing only those 
objects whose underlying Lagrangians are closed.

It is an important fact that in all these categories the isomorphism class of objects 
is preserved by Hamiltonian isotopies; in the presence of bounding cochains, this means 
that if b is a bounding cochain on L, and L′ is Hamiltonian-isotopic to L, then there is a 
bounding cochain b′ on L′ so that the two corresponding objects of the Fukaya category 
are isomorphic.

Remark 3.4. If we equip Lagrangians with bounding cochains valued in the maximal ideal 
KR,+ of KR,0, then we are guaranteed convergence of all the A∞-operations deformed 
by such bounding cochains. In our case, since the degree of [pt] ∈ H∗(Sn; Z) is n > 1, 
we could in fact allow bounding cochains α[pt] for arbitrary α ∈ KR in the category 
of exact Lagrangians WZ/2Z(T ∗Sn; KR). Nevertheless, for bounding cochains α[pt] with 
val(α) < 0, we could run into convergence issues when taking morphisms with monotone 
Lagrangians in WZ/2Z

mon (T ∗Sn; KR), which is why we restrict to bounding cochains with 
coefficients in KR,0. With minor modifications to our arguments, we could also have 
equipped all objects in WZ/2Z

mon (T ∗Sn; KR) with finite rank unitary local systems and 
suitable bounding cochains.

Observe that we can define several functors between these categories:

• G1 : WZ(T ∗Sn; Z) → WZ(T ∗Sn; KR) is the identity on objects. Fix a primitive fL
for every exact Lagrangian L. Given exact Lagrangians L0, L1 in WZ(T ∗Sn; Z), map 
x ∈ CW ∗(L0, L1; Z) to T f1(x)−f0(x)x ∈ CW ∗(L0, L1; KR), where fi := fLi

. If u is 
a pearly tree contributing to μk in WZ(T ∗Sn; Z), then the contribution of u to μk

in WZ(T ∗Sn; KR) is weighted by the factor T
∫
D2 u∗ω, where the integral is over all 

the holomorphic disks in the pearly tree. The functor G1 depends on the choices 
of primitives fL, but different choices yield isomorphic functors (we could eliminate 
this choice by incorporating the primitives in the definition of objects of the exact 
Fukaya category).

• G2 : WZ(T ∗Sn; KR) → WZ/2Z(T ∗Sn; KR) is given by collapsing the Z-grading to a 
Z/2Z-grading, followed by inclusion of objects.
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• G3 : WZ/2Z(T ∗Sn; KR) → WZ/2Z
mon (T ∗Sn; KR) is given by inclusion of objects, 

as are G4 : WZ/2Z
mon (T ∗Sn; KZ) → WZ/2Z

mon (T ∗Sn; K) (recall that K = KC) and 
G5 : FZ/2Z

mon (T ∗Sn; KZ) → WZ/2Z
mon (T ∗Sn; K).

Remark 3.5. Let L be a monotone Lagrangian. A unitary rank 1 local system ξ on the 
trivial KR-bundle over L can be specified by a homomorphism (the holonomy)

holξ : H1(L;Z) → U∗
KR

.

If, in the definition (2.3) of the disk potential WL, we replace x∂u with holξ(∂u), then 
we get an element of KR that we denote by WL(ξ).

When defining the monotone category WZ/2Z
mon (T ∗Sn; KR), one can only take mor-

phisms between objects (L1, ξ1) and (L2, ξ2) if WL1(ξ1) = WL2(ξ2), see [27]. This does 
not impose an additional constraint in our case, due to the following result. It can be 
interpreted as saying that the monotone Fukaya category of T ∗Sn is unobstructed.

Lemma 3.6. Let L ⊂ T ∗Sn be a compact monotone Lagrangian with a unitary local system 
ξ on a trivial line bundle. Write L = (L, ξ). If HF ∗(L, L; KR) �= 0, then WL(ξ) = 0.

Proof. This follows from [29, equation (9.1)] (see [29, Section 3.17] for a discussion of 
Lagrangians with local systems). According to that equation, if HF ∗(L, L; KR) �= 0 then 
m0(L) = WL(ξ) can be computed by applying the open-closed map to the first Chern 
class of the total space of T ∗Sn. The lemma follows from the vanishing of this class. �
Remark 3.7. Let Ln be a monotone Lagrangian torus with disk potential WL. The crit-
ical points of WL in (U∗

KR
)n correspond to the rank 1 unitary local systems ξ on the 

trivial KR-line bundle over L for which HF ∗(L, L; KR) �= 0, where L = (L, ξ), see [37, 
Proposition 4.2]. Recall that HF ∗(L, L; KR) �= 0 is equivalent to the non-triviality of 
L in FZ/2Z

mon (T ∗Sn; KR). By Lemma 2.9, the Lagrangian tori LC ⊂ T ∗S2 have disk po-
tential W1 = x1(1 + x2)2. The critical locus of this potential is given by the condition 
x2 = −1. Recall also that Lemma 2.13 says that the disk potential of a Lagrangian torus 
TC ⊂ T ∗S3 is W2 = x1(1 + x2)(1 + x3), whose critical locus is given by x2 = x3 = −1. 
Observe that, for both tori LC ⊂ T ∗S2 and TC ⊂ T ∗S3, the disk potentials vanish on 
their critical points, which is compatible with Lemma 3.6.

3.5. Yoneda functors

In this section we will be working over the field KC = K, since we will use some formal-
ity results from Section 5. Let AK := CW ∗(F, F ; K) be the A∞-algebra of a cotangent 
fiber in T ∗Sn, with n ≥ 2, and let modA∞(AK) be the differential Z/2Z-graded cate-
gory of right A∞-modules over AK. Given two objects M and M′ in modA∞(AK), the 
morphism space hommodA∞ (AK)(M, M′) is a chain complex computing Ext∗AK

(M, M′), 
see [32, Remark 2.15].
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There is a Yoneda functor

Y : WZ/2Z
mon (T ∗Sn;K) → modA∞(AK)

L 
→ CW ∗(F,L)

which restricts to a functor

Yc : FZ/2Z
mon (T ∗Sn;K) → modA∞

pr (AK),

where modA∞
pr (AK) ⊂ modA∞(AK) is the subcategory of proper modules M, such that 

H∗(M) is finite dimensional over K (the subscript in Yc stands for ‘compact’).
Now, let AK := H∗(AK) be the cohomology algebra of AK. Let mod(AK) be the Z/2Z-

graded category of right AK-modules, such that morphism spaces are Ext∗AK
groups 

(respecting the Z/2Z-gradings). There is a functor

H : modA∞(AK) → mod(AK)

M 
→ H∗(M)

which restricts to

Hc : modA∞
pr (AK) → modpr(AK)

where modpr(AK) ⊂ mod(AK) is the subcategory of finite dimensional Z/2Z-graded 
modules over AK.

Proposition 4.1 below implies that the functor Y (hence also Yc) is cohomologically full 
and faithful. According to Corollary 5.5 below, H (hence also Hc) is a quasi-equivalence 
of categories. We conclude the following.

Proposition 3.8. The composition

Y := H ◦ Y : WZ/2Z
mon (T ∗Sn;K) → mod(AK)

L 
→ HW ∗(F,L)

and its restriction

Yc := Hc ◦ Yc : FZ/2Z
mon (T ∗Sn;K) → modpr(AK)

are cohomologically full and faithful embeddings. �
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4. Floer cohomology computations

4.1. The Lagrangians F and N

Recall from Section 2 that the Lagrangian lifts Fη ⊂ T ∗Sn and Nη ⊂ T ∗S3 are 
Hamiltonian-isotopic to, respectively, a cotangent fiber (which we denote by F ) and the 
conormal Lagrangian of an unknot in S3 (which we denote by N).

Proposition 4.1. The cotangent fiber F generates WZ(T ∗Sn; Z) and WZ(T ∗Sn; KR), 
and it split-generates WZ/2Z

mon (T ∗Sn; KR). When n = 3, the Lagrangian N split-generates 
WZ(T ∗S3; Z), WZ(T ∗S3; KR) and WZ/2Z

mon (T ∗S3; KR).

Proof. The fact that a cotangent fiber generates WZ(T ∗Sn; Z) is proven in [2], and the 
result follows for WZ(T ∗Sn; KR). Let us recall the argument: it is first shown that a 
cotangent fiber split-generates, and this is then extended to a proof of generation. The 
fact that a cotangent fiber split-generates follows from combining the split-generation 
criterion of [1] with results about cotangent bundles and loop spaces in [3]. The split-
generation criterion of [1] is extended to the monotone wrapped Fukaya category in [29, 
Theorem 1.1], and can again be combined with results in [3] to conclude that a cotangent 
fiber split-generates WZ/2Z

mon (T ∗Sn; KR).
The previous paragraph and Lemma 4.6 below imply the result for N . �

Remark 4.2. It would be interesting to determine if a cotangent fiber generates 
WZ/2Z

mon (T ∗Sn; KR), but this is not necessary to prove the results in this article about 
compact monotone Lagrangians.

Recall that under our assumption that n ≥ 2 we have HW ∗(F, F ; Z) ∼= Z[u], where 
deg(u) = 1 −n, as follows from [3]. Denote this ring by AZ. Also denote by F0 a cotangent 
fiber corresponding to a lift of a path η0 through the critical value 1 of πn, and by F ′ one 
that is a lift of a path η′ through −1, see Fig. 1. Since F0 and F ′ are Hamiltonian-isotopic, 
we have

HW ∗(F0, F
′;Z) ∼= AZ. (4.1)

On the other hand,

HW ∗(F0, F
′;Z) ∼= lim

i→∞
HF ∗(Fi, F

′;Z),

where the Fi are lifts of the paths ηi illustrated in Fig. 1. In our Morse–Bott model, the 
cochain complex for CF ∗(Fi, F ′; Z) is described, as a graded abelian group, as

i⊕
H∗+(n−1)(1+2k)(Sn−1;Z).
k=0
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Lemma 4.3. The chain level continuation maps

CF ∗(Fi, F
′;Z) → CF ∗(Fi+1, F

′;Z)

are inclusions, and the differentials vanish on these chain complexes.

Proof. There is a compactly supported isotopy of C \ {±1} taking the path ηi+1 to a 
path η̃i+1 such that:

• η̃i+1 intersects η′ transversely at precisely i + 1 points (just like ηi+1) and
• η̃i+1 coincides with ηi in a connected portion of the path starting at 1 ∈ C and 

containing all the intersections of ηi with η′.

This isotopy of the base can be lifted to a compactly-supported Hamiltonian isotopy of 
T ∗Sn, taking Fi+1 to a Lagrangian lift F̃i+1 of the path η̃i+1. The continuation map

CF ∗(Fi, F
′;Z) → CF ∗(F̃i+1, F

′;Z)

is clearly an inclusion, and so must be the map in the statement.
As for the vanishing of the differentials, notice that for degree reasons this is only a 

non-trivial statement when n = 2. The fact that

AZ
∼= lim

i→∞
HF ∗(Fi, F

′;Z)

and that the continuation maps are inclusions implies that there can be no non-trivial 
differentials in the chain complexes CF ∗(Fi, F ′; Z). This is because the direct limit would 
not have the correct rank in the degrees related by a non-trivial contribution to the 
differential. �

The previous result implies the following.

Lemma 4.4. Up to a factor ±1, the unit e, resp. the generator u, in AZ is represented 
by the minimum, resp. maximum, of the auxiliary Morse function on F0 ∩ F ′ ∼= Sn−1, 
thought of as a class in HF 0(F0, F ′; Z), resp. HF 1−n(F0, F ′; Z).

We now consider the Lagrangian N .

Remark 4.5. In the following, we use the cohomological degree shift notation, where [k]
corresponds to a shift by −k.

Proposition 4.6. The Lagrangian N ∈ T ∗S3 is quasi-isomorphic to F ⊕ F [1] in 
WZ(T ∗S3; Z). In particular, HW ∗(N, N ; Z) is isomorphic to the graded matrix alge-
bra
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BZ :=
(

AZ AZ[1]
AZ[−1] AZ

)
.

Hence, HW ∗(N, N ; KR) is isomorphic to BZ ⊗Z KR for any commutative ring R.

Proof. Recall the construction, in [3], of a cohomologically fully faithful A∞-functor

F : WZ(T ∗Q;Z) → Tw(P(Q)),

where the target is a category of twisted complexes on a Pontryagin category P(Q) of 
a closed spin manifold Q. Objects in P(Q) are points in Q, with homP(Q)(q1, q2) =
C−∗(Ωq1,q2(Q); Z) (cubical chains) and composition defined via concatenation of paths. 
Here, Ωq1,q2(Q) is the space of Moore paths in Q that start at q1 and end at q1. Write also 
Ωq for Ωq,q. Given an object in WZ(T ∗Q; Z), which is a Z-graded exact spin Lagrangian L
in T ∗Q, we can assume (up to a Hamiltonian isotopy) that L intersects the zero-section 
transversely at the points q1, . . . , qm. The image of L under F is a twisted complex 
supported on a direct sum of grading shifts of the qi. The differential in the twisted 
complex is constructed from moduli spaces of Floer strips between Q and L.

Let us use this functor in our setting. The Lagrangian N intersects S3 cleanly along 
a copy of S1. One can deform N by a Hamiltonian isotopy so that it intersects S3

transversely at exactly two points q1 and q2, with consecutive indices. Hence, F(N) is 
a twisted complex supported on the sum of shifts of q1 and of q2. The differential on 
this twisted complex is given by a cycle in C0(Ωq1,q2(S3); Z). Homologous cycles yield 
quasi-isomorphic twisted complexes, so the differential on F(N) is determined by an 
element x ∈ H0(Ωq1,q2(S3); Z) ∼= Z.

Given q ∈ S3 and identifying H−∗(Ωq(S3); Z) with HW ∗(Fq, Fq; Z), we can say 
that N is quasi-isomorphic to Cone(Fq

x→ Fq) in a category of twisted complexes over 
WZ(T ∗Q; Z), where x is now thought of as a class in HW 0(Fq, Fq; Z) ∼= Z. In particular, 
up to a degree shift,

HF ∗(N,S3;Z) ∼= H∗
(
Cone(HF ∗(Fq, S

3;Z) x→ HF ∗(Fq, S
3;Z))

)
∼=

∼= H∗
(
Cone(Z x→ Z)

)
∼=

{
Z[1] ⊕ Z if x = 0
(Z/xZ) otherwise

.

On the other hand, one can adapt [28, Proposition 3.4.6] to Floer cohomology with 
Z-coefficients (instead of Z/2Z), and conclude that

HF ∗(N,S3;Z) ∼= H∗(S1;Z),

up to a degree shift. Therefore, we conclude that x = 0, the differential in the twisted 
complex F(N) is trivial, and N is quasi-isomorphic to F ⊕ F [1], as wanted. �
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Remark 4.7. Strictly speaking, the argument above only implies that N = F ⊕ F [1]
up to a global degree shift. However, this will be enough for our purposes, since the 
main application of the previous proposition will be in Lemma 4.17, which is about the 
Z/2Z-graded monotone Fukaya category.

The ring BZ of endomorphisms of F ⊕ F [1] can be represented pictorially as follows:

F F [1]

(
0 ∗
0 0

)

(
0 0
∗ 0

)
(
∗ 0
0 0

) (
0 0
0 ∗

)

Define

e1 :=
(

1 0
0 0

)
, e2 :=

(
0 0
0 1

)
, e21 :=

(
0 0
1 0

)
, e12 :=

(
0 1
0 0

)
.

Note that

|e1| = 0 = |e2|, |e21| = 1, |e12| = −1.

As a graded free abelian group, BZ has generators in low degrees given by

degree 1 0 −1 −2 −3
generator e21 e1, e2 e12, ue21 ue1, ue2 ue12, u

2e21

In a manner similar to what we did above for F , let us give a more explicit description 
of the Morse–Bott wrapped Floer cohomology of N . Denote by N ′ the lift of a path η′

through −1 and by the Ni lift of a path ηi through 1 that winds i times around the 
critical values of the Morse–Bott Lefschetz fibration, see Figs. 1 and 3.

By Proposition 4.6, we know that,

BZ
∼= HW ∗(N0, N

′;Z) ∼= lim
i→∞

HF ∗(Ni, N
′;Z).

The Morse–Bott Floer cochain complex for CF ∗(Ni, N ′; Z) with i ≥ 0 is given, as a 
graded abelian group, by

i⊕
k=0

H∗+2k+1(T 2;Z).

Similarly to what is stated in Lemma 4.3 for F , the continuation maps
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Fig. 3. N0 and N1.

CF ∗(Ni, N
′;Z) → CF ∗(Ni+1, N

′;Z)

are inclusions and the differentials vanish on these chain complexes.
We also have

BZ
∼= HW ∗(N0, N0;Z) ∼= lim

i→∞
HF ∗(Ni, N0;Z).

For i > 0, the Morse–Bott Floer cochain complex for CF ∗(Ni, N0; Z) is

H∗(S1) ⊕
i⊕

k=1

H∗+2k(T 2;Z) (4.2)

and we have again that the continuation maps are inclusions and the differentials vanish.
As we saw after Proposition 4.6, the free abelian group HW ∗(N, N ; Z) has two gen-

erators in degree −2, denoted by ue1 and ue2.

Remark 4.8. At several points in this paper, including the proof of the next result, we will 
explicitly compute certain products μ2 via counts of holomorphic curves. Since we will 
always be in a position where we can compute the product on cohomology, and since 
the relevant holomorphic curves will always project to triangles in C over which the 
Lefschetz fibrations of interest are trivial, it will suffice to make all the calculations using 
a product complex structure, for which the relevant holomorphic curves are regular.

Lemma 4.9.

(1) The fundamental class of S1 in (4.2), with i = 1, represents the class ±e = ±(e1 +
e2) ∈ HW 0(N1, N0, Z), where e is the unit.

(2) The fundamental class of T 2 in (4.2), with i = 1, represents the class ±ue1 ± ue2 ∈
HW−2(N1, N0; Z).
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Proof. The statement in (1) follows from the fact that the canonical map H∗(S1) →
HW ∗(N0, N0; Z) is a ring map, so it preserves units.

For (2), it is convenient to also consider the Lagrangian N ′. The product μ2 gives a 
map

HF 0(N0, N
′;Z) ⊗HF−2(N1, N0,Z) → HF−2(N1, N

′;Z).

Fig. 3 will be useful to understand the map

HF 0(N0, N
′;Z) → HF−2(N1, N

′;Z) (4.3)

given by right multiplication with the fundamental class of T 2 in HF−2(N1, N0, Z), 
which lies over the intersection point y in Fig. 3. Note that HF 0(N0, N ′; Z) ∼=
HW 0(N0, N ′; Z) ∼= Z2 is generated by classes that lie over the point x in the Figure, 
and that HF−2(N1, N ′; Z) ∼= HW−2(N1, N ′; Z) ∼= Z2 is generated by classes that lie 
over the point z. The product can now be computed by lifting the shaded triangle. Since 
the fibration is trivial over this triangle, there is a T 2-family of such lifts. Inserting the 
fundamental class of T 2 over y does not impose any constraint on this family of disks, 
which implies that the map (4.3) is an isomorphism. Since we are working over Z, this 
means that the fundamental class of T 2 represents ±ue1 ± ue2, as wanted. �
Remark 4.10. We are not specifying if the two signs in part (2) above are the same, 
since that is not necessary where this result is applied later in the paper. Nevertheless, 
a surgery argument related to Lemma 4.13 below should imply that the signs are equal, 
hence ±ue1 ± ue2 = ±ue.

4.2. Computations in T ∗Sn

We begin by assuming that n is odd. The wrapped Fukaya category WZ/2Z(T ∗Sn; KR)
contains objects of the form (Sn, α[pt]), were α ∈ KR,0 and [pt] ∈ Hn(Sn; KR) is the 
class of a point. We want to understand how a cotangent fiber F acts on such an object.

Let Fi and F ′ be as in the previous section. Given a ∈ HF ∗(Fi, F ′; KR) and X ∈
WZ/2Z(T ∗Sn; KR), define a map

ψX
a : HF ∗(F ′, X;KR) → HF ∗+deg(a)(Fi, X;KR)

x 
→ μ2(x, a)

Lemma 4.11.

(1) There is an isomorphism

HF ∗(F, (Sn, α[pt]);KR) ∼= KR.
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Fig. 4. The chain complexes CF ∗(F0, (Sn, α[pt])) and CF ∗(F ′, (Sn, α[pt])).

(2) Using the identification in Lemma 4.4 of e ∈ HF 0(F0, F ′; Z) with the class of a point 
in Sn−1, and of u ∈ HF 1−n(F0, F ′; Z) with the fundamental class of Sn−1, we have

ψ(Sn,α[pt])
u = ±αψ(Sn,α[pt])

e .

Proof. As we saw, in the Lefschetz fibration description πn : Xn → C of T ∗Sn the zero 
section Sn is the Lagrangian lift of the interval [−1, 1] ⊂ C.

For part (1), we can replace a cotangent fiber F with its Hamiltonian-isotopic La-
grangians F0 and F ′, as in the previous section. Recall that these are lifts of paths out 
of the critical values that intersect the interval [−1, 1] ⊂ C transversely and only at one 
of the endpoints of the interval. Then, CF ∗(F0, (Sn, α[pt]); KR) has a single generator 
in degree 0, and the result follows. The same is true replacing F0 with F ′.

Let us give an alternative argument, with an eye towards part (2). This time, let F0
and F ′ be lifts of paths that intersect the interior of [−1, 1], as in Fig. 4. We start with 
F0. The chain complex CF ∗(F0, (Sn, α[pt]); KR) now has generators x, y, z in degrees 
−n, 1 − n and 0, respectively (y is the maximum and z the minimum of an auxiliary 
Morse function on the component of Sn ∩ F0 that is diffeomorphic to Sn−1), see Fig. 4. 
The fact that ∂x is of the form ±TAy, where A is the σ-area of the lightly shaded bigon 
(recall the definition of σ in Section 2), follows from the fact that the algebraic count of 
lifts of the shaded strip is ±1. That can be seen using the invariance under compactly 
supported Hamiltonian isotopies in Cn of HF ∗(Rn, iRn), which is of rank 1. It follows 
that the cohomology is of rank 1, generated by z. There is a similar argument for F ′

instead of F0, with z′ now being the maximum of an auxiliary Morse function on Sn−1.
To prove (2), we use again the representation of F0 and F ′ in Fig. 4. The dark triangle 

in Fig. 4 does not contain critical values of πn, so the restriction of the Lefschetz fibration 
to that triangle is trivial. The triangle hence lifts to an Sn−1-family of holomorphic 
triangles with the appropriate Lagrangian boundary conditions. This family can be made 
rigid by using e ∈ CF ∗(F0, F ′; KR) (represented by a minimum) as an input in

ψ(Sn,α[pt])
e (z′) = μ2(z′, e) = ±TBz,

where B is the σ-area of the dark triangle. Similarly, the family of lifted triangles can 
be rigidified by using the bounding cochain α[pt] as an input in
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ψ(Sn,α[pt])
u (z′) = μ3(α[pt], z′, u) = ±TBαz.

The result now follows. �
Consider now the case of even n. Recall that we equip Sn with the trivial rank 2 

vector bundle of mixed degree E = KR⊕KR[1], and with bounding cochains of the form 

bα,β =
(

0 β
α 0

)
[pt]

, such that α, β ∈ KR,0 and [pt] ∈ Hn(Sn; Z) is represented by the 

minimum of a perfect Morse function on Sn. Let F0, F ′ be as before.

Lemma 4.12.

(1) There is an isomorphism

HF ∗(F, (Sn, bα,β);KR) ∼= KR ⊕KR[1].

(2) Using the identification in Lemma 4.4 of e ∈ HF 0(F0, F ′; Z) with the class of a point 
in Sn−1, and of u ∈ HF 1−n(F0, F ′; Z) with the fundamental class of Sn−1, we have

ψ
(Sn,bα,β)
ue = ±

(
0 β
α 0

)
ψ

(Sn,bα,β)
e .

Proof. The proof of (1) is similar to Lemma 4.11. One can again replace F with either F0
or F ′ as in Fig. 4. We obtain a KR-basis v0, v1 for HF ∗(F0, (Sn, bα,β); KR), where v0, v1

is the standard basis for the fiber of E = KR⊕KR[1] at z (the fiber minimum) indicated 
in Fig. 4. Similarly, we denote by v′0, v

′
1 the analogous basis for HF ∗(F ′, (Sn, bα,β); KR), 

with z replaced by z′ (the fiber maximum) in Fig. 4.
The result in (2) follows again from the study of lifts of the dark triangle in Fig. 4. 

Once more, the lifts of the triangle can be rigidified either by taking e as an input in μ2

or by inputing the bounding cochain bα,β in μ3. Taking bases vi and v′i above, we get

ψ
(Sn,bα,β)
e (v′i) = μ2(v′i, e) = ±TBvi,

for i = 0, 1, where B is the σ-area of the dark triangle. We also get

ψ
(Sn,bα,β)
u (v′0) = μ3(bα, v′0, u) = ±TBαv1

and

ψ
(Sn,bα,β)
u (v′1) = μ3(bα,β , v′1, u) = ±TBβv0,

as wanted. �
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Fig. 5. Lτ as a cone on morphisms between F0 and F1.

We now consider the Lagrangians Lτ , which are diffeomorphic to S1 ×Sn−1. Let U ∈
U∗
KR

be an invertible unitary element in the Novikov field and take α := T−2(n−1)τU−1 ∈
KR \ KR,0. If n > 2, write Lα for the Lagrangian Lτ equipped with the unitary local 
system ξ in the trivial rank 1 KR-bundle over Lτ , such that U is the holonomy of ξ along 
a loop that projects in degree 1 to the curve Cτ (recall that we think of Cτ as the curve 
C in Fig. 1). If n = 2, recall that we picked a basis h1, h2 for H1(Lτ ; Z) in Lemma 2.9, to 
write the disk potential of Lτ . The curve h1 projects in degree 1 to Cτ and h2 is a fiber 
of π|Lτ

. In Remark 3.7, we observed that the Floer cohomology of (Lτ , ξ) is non-trivial 
precisely when ξ is a local system with holonomy −1 around h2. Write Lα for (Lτ , ξ), 
such that the holonomy of ξ is U around h1 and −1 around h2.

If the σ-areas of the two shaded regions in Fig. 5 are the same, then the figure suggests 
that Lτ should be equivalent to surgery on morphisms supported on the two connected 
components of the intersection F1 ∩ F0 = {∗} ∪ Sn−1. Recall that surgery on an inter-
section point of two Lagrangians corresponds in the Fukaya category to taking the cone 
on the morphism given by the intersection point, see Chapter 10 of [15]. This motivates 
the following result.

Lemma 4.13. For the appropriate choice of spin structure, Lα is isomorphic in 
WZ/2Z

mon (T ∗Sn; KR) to Cone(u2 − αe), where u2 − αe is thought of as a morphism in 
HW even(F, F ). In particular,

HF ∗(F,Lα;KR) ∼= H∗(Sn−1;KR),

as Z/2Z-graded free KR-modules.

Proof. Given a monic polynomial p(u) = ud + ad−1u
d−1 + . . . + a0 in KR[u] ∼=

HW ∗(F, F ; KR), the object Cone(p(u)) is such that HF ∗(F, Cone(p(u)); KR) is a free 
KR-module of rank d. The right action of u on HF ∗(F, Cone(p(u)); KR) is by the trans-
pose of the companion matrix to p(u):
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Fig. 6. The action of u on Lα.⎛⎜⎜⎝
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

−a0 −a1 −a2 · · · −ad−1

⎞⎟⎟⎠ .

Hence, we want to show that HF ∗(F, Lα; KR) is a free KR-module of rank 2, where u
acts on the right as (

0 1
α 0

)
(4.4)

Let us represent the Hamiltonian isotopy class of F by F0 and by F ′, as before. In 
Fig. 6, we see that F0∩Lτ is diffeomorphic to Sn−1. Choosing an auxiliary perfect Morse 
function on this sphere, we get a chain model for CF ∗(F0, Lα; KR) whose generators 
are the minimum m and the maximum M . We can similarly get generators m′, M ′ for 
CF ∗(F ′, Lα; KR). We will first work with coefficients in KZ, and then argue that the 
case of KC-coefficients follows. In particular, we will begin by assuming that U ∈ U∗

KZ

and then consider the more general case of U ∈ U∗
KC

= U∗
K.

Recall Lemma 4.4. The element e ∈ CF 0(F0, F ′; KZ) (the minimum in its Sn−1 fiber) 
acts on CF ∗(F ′, Lα, KZ) by

ψLα
e (M ′) = μ2(M ′, e) = ±TAm,

by taking lifts of the shaded triangle on the left in Fig. 6. We denote by A the σ-area 
of this triangle. Note that the Lefschetz fibration is trivial over the triangle, so it has an 
Sn−1-family of holomorphic lifts. The remaining contributions to right multiplication by 
e must come from lifts of the shaded triangle on the right in Fig. 6. Since e represents 
a cohomological unit in HW ∗(F, F ; KZ), it acts by an isomorphism over KZ and we 
conclude that the lifts of that triangle contribute to

ψLα
e (m′) = μ2(m′, e) = ±TBUM,

where B is the σ-area of that right triangle in the plane. Note that these lifted triangles 
pick up holonomy U . The same holomorphic triangles determine the action of e over 
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K = KC. We conclude that ψLα
e is given by the same formulas over K as over KZ, even 

when we take U ∈ U∗
K.

The element u ∈ CF 1−n(F0, F ′; KR) is represented by the maximum in the same 
Sn−1 fiber as e, and acts on CF ∗(F ′, Lα; KR) by

ψLα
u (M ′) = μ2(M ′, u) = ±TAM,

and

ψLα
u (m′) = μ2(m′, u) = ±TAm.

In both cases, this corresponds to lifting the triangle on the left in Fig. 6.
Observe that B = A + 2(n − 1)τ , so we can write

ψLα
u =

(
0 1
±α 0

)
ψLα
e . (4.5)

To get a positive sign in α as in (4.4), we note that by changing the spin structure on Lτ

we can change the sign of ψLα
e (m′) (which comes from lifting the shaded triangle on the 

right in Fig. 6). This has the desired has the effect of replacing α by −α in the matrix 
in (4.5).

We still need to show that HF ∗(F, Lα; KR) �= 0. We prove that HF ∗(F ′, Lα; KR) �= 0. 
If n is odd, then this is obvious, since the indices of the generators m′, M ′ have the same 
parity, so the differential is zero. Observe that the case n = 2 is addressed in Remark 3.7. 
For general even n, we write

μ1(m) = κ1M, μ1(M) = κ2m, μ1(m′) = κ′
1M

′, μ1(M ′) = κ′
2m

′,

for some κ1, κ2, κ′
1, κ

′
2 ∈ K. The Leibniz rule (and the fact that μ1(u) = 0) yields

μ1(μ2(m′, u)) = μ2(μ1(m′), u) = κ′
1μ

2(M ′, u) = ±κ′
1T

AM

= ±μ1(TAm) = ±TAκ1M =⇒ κ1 = ±κ′
1

and

μ1(μ2(m′, e)) = μ2(μ1(m′), e) = κ′
1μ

2(M ′, e) = ±κ′
1T

Am

= ±μ1(TBUM) = ±TBUκ2m =⇒ TB−AUκ2 = ±κ′
1 = ±κ1.

Therefore,

μ1 ◦ μ1(M) = κ2μ
1(m) = ±TB−AUκ2

2M.
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But μ1◦μ1 = 0, because F and Lα both have vanishing disk potential. Since TB−AU �= 0, 
we conclude that κ2 = κ1 = κ′

1 = 0. A similar argument shows that κ′
2 = 0, and implies 

that HF ∗(F ′, Lα; KR) �= 0, as wanted. �
As we saw, Lemma 4.13 can be rephrased as saying that HF ∗(F, Lα; KR) is isomorphic 

to K2
R, if n is odd, and to KR⊕KR[1], if n is even, and that the action of u is represented 

by the matrix (4.4). To relate this with the generation results for modules that will 
be discussed below, it is convenient to restrict our attention to K = KC, which is an 
algebraically closed field. Since the eigenvalues of the matrix (4.4) are ±√

α (the two 
square roots of α in K), we conclude the following.

Corollary 4.14. If n is odd, then HF ∗(F ′, Lα; K) and HF ∗(F0, Lα; K) have bases in which 

ψLα
ue =

(√
α 0

0 −√
α

)
ψLα
e .

We are now ready to prove the following result, up to Corollary 6.5 below.

Theorem 4.15. The category modpr(AK) is split-generated by the collection of right AK-
modules

• {HF ∗(F, (Sn, α[pt]); K)}0≤val(α)≤∞ ∪ {HF ∗(F, Lα; K)}val(α)<0, if n is odd;
• {HF ∗(F, Sn; K)} ∪ {HF ∗(F, (Sn, bα,1); K)}0≤val(α)<∞ ∪ {HF ∗(F, Lα; K)}val(α)<0, if 

n is even.

Proof. In the n odd case, if val(α) ≥ 0, then Lemma 4.11 implies that

HF ∗(F0, (Sn, α[pt]);K) ∼= S±α

as right AK-modules, where Sα is the 1-dimensional (over K) right AK-module on which 
u ∈ AK acts as multiplication by α (as in Lemma 6.4 below).

If val(α) < 0, Lemma 4.13 and Corollary 4.14 imply that

HF ∗(F,Lα;K) ∼= S√
α ⊕ S−√

α

as right AK-modules.
Corollary 6.5 below now implies the result when n is odd. The case of n even is anal-

ogous, where this time we apply Lemma 4.12 instead of Lemma 4.11 and Corollary 6.8
instead of Corollary 6.5. �

The following is a version of Theorem 1.4 from the Introduction.

Corollary 4.16. The category FZ/2Z
mon (T ∗Sn; K) is split-generated by the collection of ob-

jects
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Fig. 7. The action of u on T 3
α.

• {(Sn, α[pt])}0≤val(α)≤∞ ∪ {Lα}val(α)<0, when n is odd;
• {Sn} ∪ {(Sn, bα,1)}0≤val(α)<∞ ∪ {Lα}val(α)<0, when n is even.

Proof. This follows from Theorem 4.15 and Proposition 3.8. �
4.3. Computations in T ∗S3

We now want to study how u ∈ HW ∗(F, F ; KR) ∼= KR[u] = AKR
acts on the tori 

T 3
τ . Recall from Lemma 2.13 that the disk potential of T 3

τ can be computed in a basis 
h1, h2, h3 of H1(T 3

τ ; Z), where h1 is a loop projecting bijectively to the curve Cτ ⊂
C \ {±1} (that T 3

τ covers), while h2 and h3 are vanishing circles that project to points 
under the fibration. As observed in Remark 3.7, the critical points of the disk potential 
that belong to (U∗

KR
)3 correspond to unitary local systems on T 3

τ , whose holonomy 
around h1 is arbitrary, and whose holonomy around each of h2 and h3 is −1.

Given U ∈ U∗
KR

, let α := T−2τU−1 ∈ KR \KR,0 and denote by Tα the Lagrangian T 3
τ

equipped with a unitary local system ξ in the trivial rank 1 KR-bundle, whose holonomy 
around h1 is U , and whose holonomies around h2 and h3 are −1.

Given a ∈ HF ∗(N1, N0; KR) and X ∈ WZ/2Z
mon (T ∗S3; KR), define a map

φX
a : HF ∗(N0, L;KR) → HF ∗(N1, L;KR)

x 
→ μ2(x, a)

Lemma 4.17. For the appropriate choice of spin structure on Tα,

(1) there is an isomorphism

HF ∗(N,Tα;K) ∼= H∗(T 2;K),

possibly with a degree shift;
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(2) using the identification in Lemma 4.9 of ±e ∈ HF 0(N1, N0; Z) with the fundamental 
class of S1, and of ±ue1 ± ue2 ∈ HF−2(N1, N0; Z) with the fundamental class of 
T 2, we can pick bases so that

φTα
±ue1±ue2 =

⎛⎜⎝±α
0 ±α
0 0 ±α
∗ 0 0 ±α

⎞⎟⎠ φTα
e

where the 4 × 4 matrix above is lower triangular.

Proof. We begin with (1). By Remark 3.7, Tα corresponds to a critical point of the 
disk potential of the torus T 3

τ . Hence, HF ∗(Tα, Tα; K) ∼= H∗(T 3; K) has rank 8. Observe 
that for the Lagrangian lifts Ni of the paths ηi in Fig. 1, each of the graded K-vector 
spaces CF ∗(Ni, Tα; K) is isomorphic to H∗(T 2; K). This has rank 4, so the rank of 
HF ∗(Ni, Tα; K) can only be 0, 2 or 4.

On the other hand, by Proposition 4.6,

HF ∗(Ni, Tα,K) ∼= HF ∗(F, Tα;K) ⊕HF ∗(F, Tα;K)[1].

Since F split-generates the monotone wrapped Fukaya category and Tα is a non-trivial 
object, we conclude that the rank of HF ∗(F, Tα; K) is 1 or 2. Denote by M this K[u]-
module. The fully faithfulness of the Yoneda embedding implies that

HF ∗(Tα, Tα;K) ∼= Ext∗K[u](M,M)

and the rank of the right side cannot be 8 if M has rank 1, since the space of endomor-
phisms of a skyscraper sheaf in the derived category of a smooth curve has rank 2 (see 
Lemma 6.3 below). We conclude that M has rank 2.2 Hence, HF ∗(Ni, Tα; K) has rank 
4 and the differential on CF ∗(Ni, Tα; K) vanishes. This implies the statement in (1).

To prove (2), we use Fig. 7. First, we need to determine the image of ±e and ±ue1 ±
ue2 under the functor G1 : WZ(T ∗S3; Z) → WZ(T ∗S3; KR) defined in Section 3.4. By 
Lemma 4.9, if we pick a perfect Morse function on N0 ∩N1 ∼= S1 ∪T 2, we know that ±e

is given by the maximum (which we denote by x) on the component S1, and ±ue1 ±ue2
is given by the maximum (which we denote by y) on the component T 2. Pick primitives 
fi for the restriction of the Liouville form λ on T ∗S3 to the Ni, i ∈ {0, 1}. Assume that 
f0 and f1 both vanish at x. Then, G1(±e) = T f1(x)−f0(x)x = x ∈ CF 0(N1, N0; KR). 
Similarly, G1(±ue1±ue2) = T f1(y)−f0(y)y ∈ CF−2(N1, N0; KR). Under our assumptions, 

2 The referee suggested the following alternative argument for calculating that the rank of M =
HF ∗(F, Tα; K) is 2, avoiding the computation of Ext. If one thinks of the Lagrangian T 3

τ as coming from 
surgery on two cleanly intersecting Lagrangian spheres, as explained in Remark 1.6, then it is clear that 
T 3
τ intersects a cotangent fiber T ∗

p S3 transversely in two points, for all p contained in a non-empty open 
subset of S3. Since F is Hamiltonian-isotopic to a cotangent fiber, this implies that the rank of M is 0 or 
2. But since Tα has non-trivial Floer cohomology, the rank of M cannot vanish.
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f1(y) −f0(y) is the negative of the symplectic area of a strip between N1 and N0, obtained 
from lifting the union of the darkly shaded and the white triangles in Fig. 7. We denote 
this area by A + C in the figure. We can conclude that ±ue1 ± ue2 is represented by 
T−A−Cy in CF−2(N1, N0; KR).

The intersections Ni∩T 3
τ are 2-tori, and we can pick perfect Morse functions on these 

2-tori to specify bases for HF ∗(Ni, Tα; K). Denote the basis elements pi0, pi1, pi2, pi3, with 
Morse indices 0, 1, 1 and 2, respectively. Each of the shaded triangles in the figure lifts 
to a T 2-family of holomorphic triangles with suitable boundary conditions. Using the 
fundamental classes of S1 and T 2 as inputs in μ2 does not constrain the T 2-families of 
holomorphic triangles. Therefore, for a suitable labeling of the generators, the contribu-
tion of p1

i to φTα
±ue1±ue2(p

0
i ) is

±T−A−CTA = ±αTBU, (4.6)

since the sum of the σ-areas of the lightly shaded and white triangles in the figure is 
B + C = 2τ . Similarly, the contribution of p1

i to φTα
e (p0

i ) is ±TBU . This justifies the 
diagonal terms in the 4 × 4 matrix in (2). The possibly non-zero off-diagonal term in 
that matrix is given by the lifts of a large triangle in the base, given by the union of the 
white triangle and the two shaded triangles. Such lifts come in 4-dimensional families, 
which is why they contribute to an off-diagonal corner in the matrix. �
Remark 4.18. The fibration is trivial over the darkly shaded triangle in Fig. 7, which 
is why it has a T 2-family of lifts. The fibration is not trivial over the lightly shaded 
triangle, because one of its vertices is a critical value. Nevertheless, this triangle still has 
a T 2-family of lifts. Note that one could also modify N0 slightly, in a manner similar to 
what is done in Fig. 4 for the proof of Lemma 4.11, so that the analogue of the lightly 
shaded triangle now includes no critical points, even at the corners.

We can now prove the following analogue of Theorem 4.15.

Theorem 4.19. The collection of AK-modules

{HF ∗(F, (S3, α[pt]);K)}0≤val(α)≤∞ ∪ {HF ∗(F, Tα;K)}val(α)<0

split-generates the category modpr(AK).

Proof. We just have to show that we can replace the objects supported on the collection 
of Lagrangians {(S1 × S2)τ}τ>0 by the objects supported on the collection {T 3

τ }τ>0.
By Proposition 4.6, N ∼= F ⊕ F [1]. In the proof of Lemma 4.17, it is shown that the 

right AK-module HF ∗(F, Tα; K) is of rank 2. It follows from (2) in Lemma 4.17 that this 
module must be isomorphic (up to degree shifts) to Sα ⊕ Sα, S−α ⊕ S−α, Sα ⊕ S−α or 
M2

±α (in the notation of Section 6.1 below). Lemma 6.3 below implies that only the first 
two options (possibly with degree shifts is each of the summands) are compatible with 
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the fact that HF ∗(Tα, Tα; K) ∼= Ext∗K[u](M, M) has rank 8. The result now follows from 
Corollary 6.5. �
Corollary 4.20. The category FZ/2Z

mon (T ∗S3; K) is split-generated by the collection of ob-
jects {(S3, α[pt])}0≤val(α)≤∞ ∪ {Tα}val(α)<0.

Proof. This follows from Theorem 4.19 and Proposition 3.8. �
Now that we understand the F -modules associated to the Lagrangians (S1×S2)τ and 

T 3
τ in T ∗S3, we can also prove Theorem 1.3.

Proof of Theorem 1.3. We wish to show that, if we fix τ, τ ′ > 0, then τ = τ ′ iff (S1×S2)τ
and T 3

τ ′ can be equipped with local systems such that their Floer cohomology is non-
trivial. Let U ∈ U∗

K and write α = T−4τU−1. Recall that the minimal Maslov number 
of (S1 × S2)τ is 4, and that (S1 × S2)α denotes (S1 × S2)τ equipped with a rank 1 
unitary local system with holonomy specified by U . The proof of Theorem 4.15 implies 
that HF ∗(F, (S1 × S2)α; K) ∼= S√

α ⊕ S−√
α, where 

√
α = T−2τ (

√
U)−1 for some square 

root 
√
U ∈ K of U . Write also α′ = T−4τ ′

U−1 and 
√
α′ = T−2τ ′(

√
U)−1. The minimal 

Maslov number of T 3
τ ′ is 2, and T√

α′ denotes T 3
τ ′ with a rank 1 unitary local system of 

holonomy specified by 
√
U . The proof of Theorem 4.19 implies that HF ∗(F, T√

α′ ; K) is 
isomorphic either to S√

α′ ⊕ S√
α′ or to S−

√
α′ ⊕ S−

√
α′ (possibly with degree shifts in 

the summands).
The result now follows from Proposition 3.8 and Lemma 6.3 below. �

5. Intrinsic formality of algebras and modules

Recall that AK = HW ∗(F, F ; K) is isomorphic to the polynomial algebra K[u], where 
deg(u) = 1 − n and n ≥ 2. From this point on, we will always work over K, and write 
A instead of AK to make the notation lighter. We want to show that A is intrinsically 
formal, and will later prove an analogous result for certain types of A-modules. Intrin-
sic formality of A means that if B is any A∞-algebra such that the algebra H∗(B) is 
isomorphic to A, then B is quasi-isomorphic to A as A∞-algebras.

Denoting by |A| the algebra A where we forget the grading, we can define the 
Hochschild cohomology HHr(|A|, |A|) as the homology of CCr(|A|, |A|) :=
HomK(|A|⊗r, |A|), for r ≥ 0, with respect to the Hochschild differential, see for instance 
[39].

To keep track of the grading on A, one can define

CCr(A,A[s]) := Homs
K(A⊗r, A),

which consists of graded homomorphisms that increase the degree by s ∈ Z (we continue 
to use the cohomological convention under which A[s] is obtained by subtracting s from 
all degrees in A), see [35, Section 4b]. The Hochschild differential preserves s, so the 
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CCr(A, A[s]) are subcomplexes of CCr(|A|, |A|). For each s we have a direct sum of 
chain complexes

CC∗(|A|, |A|) = CC∗(A,A[s]) ⊕Q∗,s

where Qr,s ⊂ CC∗(|A|, |A|) consists of those homomorphisms that have no term of degree 
s. One can identify Qr,s with the quotient CCr(|A|, |A|)/CCr(A, A[s]). We can conclude 
that there are inclusions on cohomology

HHr(A,A[s]) ⊂ HHr(|A|, |A|).

Remark 5.1. Since A is supported in infinitely many degrees, none of the inclusions⊕
s∈Z

CCr(A,A[s]) ⊂ CCr(|A|, |A|) ⊂
∏
s∈Z

CCr(A,A[s])

is the identity.

By [39, Corollary 9.1.5], HH∗(|A|, |A|) ∼= Ext∗|A|e(|A|, |A|), where |A|e = |A| ⊗K |A|op
(this is isomorphic to |A| ⊗K |A|, since |A| is commutative). Note that Ext|A|e(|A|, |A|)
can be computed using any projective resolution of |A| as an |A|e-module. We use the 
Koszul resolution

0 → |A|e f→ |A|e g→ |A| → 0, (5.1)

where f(a(u) ⊗ b(u)) = a(u)u ⊗ b(u) − a(u) ⊗ ub(u) and g(p(u), q(u)) = p(u)q(u).
The existence of this 2-step resolution implies that HHr(|A|, |A|) = 0 if r ≥ 2. Since 

HHr(A, A[s]) ⊂ HHr(|A|, |A|), this implies that HHr(A, A[s]) = 0 for all s and for all 
r ≥ 2.

It is known that A is intrinsically formal if HHr(A, A[2 − r]) = 0 for all r ≥ 3, see 
[21, Corollary 4], [34, Section 3] and [35, Theorem 4.7]. We can thus conclude that the 
Z-graded algebra A is intrinsically formal. The vanishing for r = 2 means that it is also 
not possible to deform the product structure on A.

The previous argument can be adapted to show that, if we collapse the Z-grading of A
to a Z/2Z-grading, A is still intrinsically formal. More specifically, let CCr(A, A[even]) ⊂
CCr(|A|, |A|) be the subcomplex of homomorphisms with no odd degree components, 
and let CCr(A, A[odd]) ⊂ CCr(|A|, |A|) be the subcomplex of homomorphisms with no 
even degree components. We get a decomposition

HHr(|A|, |A|) ∼= HHr(A,A[even]) ⊕HHr(A,A[odd]).

In the Z/2Z-graded case, intrinsic formality of A follows from the simultaneous vanishing
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{
HHr(A,A[even]) = 0, for all r ≥ 3 even
HHr(A,A[odd]) = 0, for all r ≥ 3 odd

which is again a consequence of the fact that HHr(|A|, |A|) = 0 if r /∈ {0, 1}.
We can conclude the following.

Proposition 5.2. A = K[u] is intrinsically formal as a Z-graded algebra and as a Z/2Z-
graded algebra.

We now discuss right modules over the graded algebra A. In a manner similar to the 
previous discussion, let |A|, |M | and |N | be the result of forgetting the Z-gradings of the 
algebra A and of right A-modules M and N . Then, HomK(|M |, |N |) is an A-bimodule 
and its Hochschild cochain complex is, for r ≥ 0,

CCr(|A|,HomK(|M |, |N |)) := HomK(|A|⊗r,HomK(|M |, |N |))
∼= HomK(|M | ⊗K |A|⊗r, |N |).

Remembering the Z-gradings, we can denote as before the homomorphisms of degree 
s ∈ Z by

CCr(A,HomK(M,N)[s]) := Homs
K(A⊗r,HomK(M,N)) ∼= Homs

K(M ⊗K A⊗r, N).

The Hochschild differential preserves s and we get inclusions on cohomology

HHr(A,HomK(M,N)[s]) ⊂ HHr(|A|,HomK(|M |, |N |)).

Using again [39, Corollary 9.1.5], we get that HH∗(|A|, HomK(|M |, |N |)) ∼=
Ext∗|A|e(|A|, HomK(|M |, |N |)). The 2-step Koszul resolution (5.1) can be used to show 
that HHr(|A|, HomK(|M |, |N |)) = 0 for r ≥ 2 and for every M, N . Consequently, we get 
HHr(A, HomK(M, N)[s]) = 0 for r ≥ 2 and for all s ∈ Z.

Remark 5.3. It is worth pointing out that HH∗(|A|, HomK(|M |, |N |)) is also isomorphic 
to Ext∗|A|/K(|M |, |N |), the relative Ext, see [39, Lemma 9.1.9].

Say that a Z-graded right A-module M is intrinsically formal if, for every Z-graded 
right A∞-module M over A such that the A-module H∗M is isomorphic to M , we have 
that M is quasi-isomorphic to M (as A∞-modules over A). In an analogous manner to 
the Hochschild cohomology criterion for intrinsic formality of graded algebras discussed 
earlier, it can be shown that if

HHr(A,HomK(M,M)[1 − r]) = 0

for all r ≥ 2, then M is intrinsically formal, see [23, Theorem 3.2]. What we saw above 
implies that every Z-graded right A-module is intrinsically formal.
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The same argument could again be adapted to the case of Z/2Z-graded modules over 
A (with the grading of A collapsed to Z/2Z). If M and N are Z/2Z-graded right A-
modules, we can define cohomology groups HHr(A, HomK(M, N)[s]) with s ∈ {0, 1}. 
This time, we have a decomposition

HHr(|A|,HomK(|M |, |N |)) ∼= HHr(A,HomK(M,N)) ⊕HHr(A,HomK(M,N)[1]).

The sufficient condition for intrinsic formality of M is now given by the simultaneous 
vanishing

{
HHr(A,HomK(M,N)[1]) = 0, for all r ≥ 2 even
HHr(A,HomK(M,N)) = 0, for all r ≥ 2 odd

and this criterion is again met by the discussion above. We can conclude the following.

Proposition 5.4. All Z-graded and all Z/2Z-graded right A-modules are intrinsically for-
mal.

As in Section 3.5, denote by mod(A) a category whose objects are right A-modules 
(we do not mean A∞-modules). These modules are Z- or Z/2Z-graded, depending on 
the context. Given two modules M, N , define their morphism space to be

hom∗
mod(A)(M,N) = Ext∗A(M,N)

(instead of usual A-module homomorphisms). The following is a consequence of the 
results of this section. To make the notation more uniform, we denote the A∞-algebra 
AK = CW ∗(F, F ; K) by A.

Corollary 5.5. Passing to cohomology gives a functor

H : modA∞(A) → mod(A)

M 
→ H∗(M)

which is a quasi-equivalence (meaning that it induces an equivalence of categories on co-
homology). The category mod(A) is equivalent to the cohomology category of modA∞(A).

Proof. The fact that morphisms on the cohomology category of modA∞(A) are given by 
Ext groups is explained in [32, Remark 2.15]. There is a composition of quasi-equivalences 
of dg-categories

mod(A) → modA∞(A) → modA∞(A).
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The fact that A is formal (by Proposition 5.2) implies that the functor on the right is a 
quasi-equivalence, see [32, Section 2f]. The functor on the left is given by inclusion (think-
ing of mod(A) as a dg-category with trivial differentials), and it is a quasi-equivalence 
by Proposition 5.4. The functor H in the statement is a quasi-inverse for this composi-
tion. �
6. Generation of categories of modules

Definition 6.1. Let modpr(A) be the subcategory of mod(A), whose objets are finite 
dimensional right A-modules (the subscript stands for proper).

The fact that C is algebraically closed of characteristic zero implies that K is also 
algebraically closed, see [16, Appendix A].3 This will enable us to study the category 
modpr(A) using Jordan normal forms.

Remark 6.2. One should be able to work over the Novikov field KR for a general commu-
tative ring R, by allowing as objects monotone Lagrangians equipped with higher rank 
local systems. In that setting, one would expect to be able to prove analogues of Corol-
laries 4.16 and 4.20, showing that every compact Lagrangian object is split-generated by 
objects supported on Sn and (S1 × Sn−1)τ (with the latter being replaceable by T 3

τ , if 
n = 3), without appealing to the Jordan normal form.

Recall that A = K[u], where deg(u) = 1 − n. Since the monotone Fukaya category is 
Z/2Z-graded, we will consider two cases, depending on the parity of n.

6.1. When n is odd

Take an object M ⊕ N of modpr(A), where M is in degree 0 and N is in degree 1. 
Since K is algebraically closed, if M �= 0 then it has a splitting

M ∼=
m⊕
i=1

Mki
αi

where αi ∈ K, ki ∈ Z+ and Mk
α is the vector space Kk with a right action of u by the 

k × k transposed Jordan block

(Jk
α)T =

⎛⎜⎜⎜⎜⎝
α
1 α

. . . . . .
1 α

1 α

⎞⎟⎟⎟⎟⎠ (6.1)

3 In characteristic p > 0, the polynomial xp − x − T−1 does not have roots in the Novikov field. See [22]
for a discussion of the algebraic closure of the power series field in positive characteristic.
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If the module N is non-trivial, then it also has a splitting

N ∼=
n⊕

j=1
M

lj
βj

[1]

for certain βj ∈ K and lj ∈ Z+.
Denote the 1-dimensional module M1

α by Sα. The following result was used above in 
study of the Lagrangian tori T 3

τ ⊂ T ∗S3. For the calculation with Sα, one can use the 
resolution

K[u] u−α→ K[u] → K,

and a similar argument works for M2
α.

Lemma 6.3. Given α, α′ ∈ K, we have

Ext∗AK
(Sα, Sα′) ∼=

{
K⊕K[1] if α = α′

0 otherwise

and

Ext∗AK
(M2

α,M
2
α′) ∼=

{
K2 ⊕K2[1] if α = α′

0 otherwise
.

Lemma 6.4. For every k ∈ Z+, Mk
α is in the triangulated closure of Sα.

Proof. Observe that there are A-module homomorphisms

ϕk
α : Mk

α → Sα

obtained by projecting onto the last coordinate. We can think of an A-module homo-
morphism as a homomorphism of A∞-modules, and take its cone. Recall that Cone(ϕk

α)
is the right A∞-module over A given by the chain complex

(Mk
α[1] ⊕ Sα, μ

1 = ϕk
α),

with μ2 = (μ2
Mk

α[1], μ
2
Sα

) and trivial higher A∞-maps, see [32, Section (3e)]. We have that 
H∗ Cone(ϕk

α) ∼= Mk−1
α [1] and so Cone(ϕk

α) is quasi-isomorphic to Mk−1
α [1].

We can now argue by induction on k to prove the statement in the lemma. In detail, 
since there is a distinguished triangle

Mk
α → Sα → Mk−1

α [1] → Mk
α[1],
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axiom TR2 for triangulated categories (see for instance [39, Definition 10.2.1]) implies 
that there is also a distinguished triangle

Sα → Mk−1
α [1] → Mk

α[1] → Sα[1],

and by induction on k we get that Mk
α is in the triangulated closure of Sα for all k ≥ 1. �

We can now conclude the following.

Corollary 6.5. The category modpr(A) is generated by the collection of modules {Sα}α∈K.

6.2. When n is even

This case is more subtle, because now u acts on A-modules as an operator of odd 
degree. Take again an object M ⊕N in modpr(A), where M is a finite dimensional K-
vector space in degree 0 and N is finite dimensional in degree 1. We begin by defining 
some relevant examples. Given α ∈ K and k ≥ 1, let M̃k

α be the right A-module consisting 
of the K-vector space Kk ⊕Kk[1], with u acting on the right on row vectors by the block 

matrix 
(

0 Ik
(Jk

α)T 0

)
, where (Jk

α)T is as in (6.1) and Ik is the identity. Denote by S̃α

the module M̃1
α. This consists of the K-vector space K ⊕K[1], with a right u-action by 

the matrix 
(

0 1
α 0

)
.

For α = 0, we need to consider another type of right A-module, where the dimensions 
of the even and odd summands are different. Given k ≥ 1, let Ñk

0 be the right A-
module consisting of the K-vector space Kk ⊕Kk−1[1], on which u acts by the following 
(2k − 1) × (2k − 1)-matrix, where all the empty blocks are understood to be filled with 
zeros: ⎛⎜⎜⎜⎝ Ik

Ik

⎞⎟⎟⎟⎠ .

Denote by S0 the module Ñ1
0 . This is the K-vector space K, on which u acts as multi-

plication by zero. Note that in the previous section (when n was assumed odd), S0 was 
also defined as a 1-dimensional module in even degree with trivial u-action.

Let us now go back to the general case of a right A-module M ⊕N , where M and N
are finite dimensional, M is in degree 0 and N is in degree 1. Since we will be interested 
in split-generation of modpr(A), we can assume that dimKM = dimKN , by taking a 
direct sum of M or N with a K-vector space with trivial u-action, if necessary. Since 
u has odd degree, by picking bases for M and N , the u-action is given by a matrix of 

the form 
(

0 R
S 0

)
, where R and S are square matrices. Since u2 has even degree, it 
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acts by endomorphisms of both M and N . As we saw in the case of n odd, we can pick 
bases for M and N so that the right action of u2 is represented by the transpose of a 
Jordan matrix. This means that we can assume that RS and SR consist of finitely many 
transposed Jordan blocks along the diagonal.

Lemma 6.6. A suitable choice of bases for M and N induces and isomorphism between 
M ⊕N and a direct sum of modules of the form M̃k

α, M̃k
0 [1], Ñk

0 or Ñk
0 [1].

Proof. If α ∈ K is a non-zero eigenvalue of the action of u2 on M , and if v1, . . . , vk is 
a Jordan basis for a Jordan block associated to this u2-action, then Span(v1, . . . , vk, v1 ·
u, . . . , vk · u) is a u-invariant subspace of M ⊕N , and it is isomorphic to M̃k

α as a right 
A-module. The Jordan blocks associated to α = 0 are not invertible matrices, which is 
why we need to also allow summands of the form M̃k

0 [1], Ñk
0 or Ñk

0 [1]. �
Lemma 6.7. For every k ∈ Z+ and every α ∈ K, M̃k

α is in the triangulated closure of S̃α. 
Also, M̃k

0 and Ñk
0 are in the triangulated closure of S0.

Proof. The fact that the M̃k
α can be generated by S̃α follows inductively from the short 

exact sequences

0 → M̃k−1
α → M̃k

α → S̃α → 0,

in a manner analogous to the proof of Lemma 6.4. The short exact sequences

0 → Ñk−1
0 → Ñk

0 → S̃0 → 0

can be used to show that the Ñk
0 can be generated by S0 and S̃0. Finally, the short exact 

sequence

0 → S0 → S̃0 → S0[1] → 0

implies that S̃0 is in the triangulated closure of S0. �
We can now conclude the following.

Corollary 6.8. The category modpr(A) is split-generated by the collection of modules 
{S0} ∪ {S̃α}α∈K\0.
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