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Abstract

Fluorescence staining techniques, such as Cell Painting, together with fluorescence micros-

copy have proven invaluable for visualizing and quantifying the effects that drugs and other

perturbations have on cultured cells. However, fluorescence microscopy is expensive, time-

consuming, labor-intensive, and the stains applied can be cytotoxic, interfering with the

activity under study. The simplest form of microscopy, brightfield microscopy, lacks these

downsides, but the images produced have low contrast and the cellular compartments are

difficult to discern. Nevertheless, by harnessing deep learning, these brightfield images may

still be sufficient for various predictive purposes. In this study, we compared the predictive

performance of models trained on fluorescence images to those trained on brightfield

images for predicting the mechanism of action (MoA) of different drugs. We also extracted

CellProfiler features from the fluorescence images and used them to benchmark the perfor-

mance. Overall, we found comparable and largely correlated predictive performance for the

two imaging modalities. This is promising for future studies of MoAs in time-lapse experi-

ments for which using fluorescence images is problematic. Explorations based on explain-

able AI techniques also provided valuable insights regarding compounds that were better

predicted by one modality over the other.

Author summary

In our work we provide a thorough comparison of deep learning models trained on fluo-

rescence images versus those trained on brightfield images for the purpose of mechanism

of action prediction. Fluorescence microscopy, which uses fluorescent dyes to stain spe-

cific cellular compartments, is an invaluable method in image cytometry but it is time-

consuming, expensive, labour intensive, and the dyes used can be toxic to the cells. Bright-

field microscopy, the simplest form of light microscopy, lacks these downsides but the

images produced do not have the clear contrast of the cellular compartments. We show
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that with brightfield images it is possible to obtain very similar predictive performance,

and in some cases superior performance, due to the brightfield images containing addi-

tional information not available in the fluorescence images. We validate these claims

using explainable AI techniques. This competitive performance of the models based on

brightfield is very promising for live cell time-lapse experiments for which using fluores-

cence microscopy is problematic especially due to the toxicity of some of the dyes.

Introduction

Mechanism of action (MoA) describes the biological process by which a compound exhibits a

pharmacological effect, such as the proteins targeted or the pathways modulated. Establishing

a compound’s MoA provides particularly useful information for lead compounds prior to clin-

ical trials and for identifying potentially adverse or toxic effects [1]. Various assays can be used

to provide information on a compound’s MoA, including transcriptomics, proteomics and

metabolomics assays [1]. Recently, morphology-based high-content imaging assays have

proven beneficial for this task [2] and are also significantly easier and less expensive to scale to

high-throughput than other assay types [3].

The simplest, cheapest, and least invasive form of light microscopy is brightfield (BF)

microscopy. Due to the thinness and transparency of most cells, BF images typically have low

contrast, making it difficult to detect internal cell structures. To overcome this limitation fluo-

rescent dyes can be used. Fluorescence (FL) microscopy uses fluorescent dyes to stain specific

targets (e.g. cell compartments) within the sample [4]. A noteworthy FL-based protocol is the

Cell Painting assay [5] which combines six different stains to highlight eight different sub-cel-

lular compartments. However, FL imaging is much more labor-intensive and expensive than

BF imaging and is often not suitable for staining living cells. Live-cell compatible stains or fluo-

rescently tagged proteins can be used for live cell staining, however the dyes required for imag-

ing some of the cellular components can be toxic to the cells, and this toxicity becomes

amplified with multiple imaging exposures [6]. Another more pervasive phototoxic effect in

FL microscopy is photobleaching which not only decreases the fluorescent signal but also

releases free-radicals [7].

Traditional analysis pipelines in image cytometry follow the path of identifying, segmenting,

and extracting handcrafted quantitative features from the cells, often using the CellProfiler

(CP) [8] software package. Common features include those related to size, shape, pixel inten-

sity, and texture. For fluorescent images, these features can be extracted at the level of the vari-

ous cellular compartments. These features can then be used as input to machine learning

models. This approach has been successfully applied to MoA prediction for cells perturbed by

small molecules [2, 9, 10] and to group genes based on functional similarity [11]. As an alterna-

tive approach, one can use deep learning methods [12], specifically convolutional neural net-

works (CNNs), to perform the predictive task directly from the raw pixel intensity data in an

end-to-end data-driven fashion, circumventing the need for cell segmentation and determining

which features to extract [13]. This approach has proven successful for MoA prediction [14].

In this study, we compared the performance of CNNs trained on Cell Painting fluorescence

images (five channels) to those trained on brightfield images (six z-planes) for predicting ten

MoA classes for U2OS cells treated with various compounds. As a reference/benchmark, we

also trained neural networks on CellProfiler-derived features from the fluorescence images.

Example Cell Painting images and their BF counterparts for the ten MoA classes and the

DMSO are shown in Fig 1.
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Materials and methods

Dataset

We used image data for compounds belonging to ten MoA classes (MoAs that we believed

would be reasonably separable and that had a sufficient number of compounds (n) associated

with them in our assay). The assay from which out data was taken included 865 compounds

belonging to 225 MoA classes, however, for the majority of cases there were less than five com-

pounds per MoA class. The 10 MoAs selected, with n = 231 compounds in total, were: ATPase

inhibitors (ATPase-i, n = 18); Aurora kinase inhibitors (AuroraK-i, n = 20); HDAC inhibitors

(HDAC-i, n = 33); HSP inhibitors (HSP-i, n = 24); JAK inhibitors (JAK-i, n = 21); PARP

inhibitors (PARP-i, n = 21); protein synthesis inhibitors (Prot.Synth.-i, n = 23); retinoid recep-

tor agonists (Ret.Rec.Ag, n = 19); topoisomerase inhibitors (Topo.-i, n = 32); and tubulin poly-

merization inhibitors (Tub.Pol.-i, n = 20). The compounds were administered at a dose of

10μM to U2OS cells, and exposed for 48h, in 384 well plates. Each compound-level experiment

was replicated six times with three technical replicates, i.e. compound treatments on the same

Fig 1. Examples of the image data used. Example BF and FL images for the ten MoA classes and the DMSO solvent control. The panel titles give the

compound names for the selected images with the MoA abbreviation in parenthesis, where -i stands for inhibitor and Ag. for agonist. The top images in

each case show an overlay of the six BF z-planes, and those below show merged images for the FL channels. The scale bars in the images represent 20

μm.

https://doi.org/10.1371/journal.pcbi.1011323.g001
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plate, and two biological replicates, i.e. treatments on different plates. The compounds were

distributed across eighteen microplates using PLAID (Plate Layouts using Artificial Intelli-

gence Design, [15]), a constraint-programming-based method that aims to limit unwanted

bias and batch effects, whereby the replicate compound treatments were placed at different

well locations in the two biological replicate plates. Images (16-bit, 2160x2160 pixels) were cap-

tured with a 20X objective at five sites/fields-of-view in each well, with five fluorescence chan-

nels for the FL data and six evenly spaced z-planes for the BF data. See S1 Text for more

details.

Quality control

A common preprocessing strategy when working with FL data is to use automated methods to

remove corrupted images, such as those with a high level of blurring or suffering from satura-

tion artefacts [9]. These quality control (QC) metrics have been developed and implemented

in CP for FL images [16]. In our study, we chose not to remove images based on this QC so as

not to give the FL models an unfair advantage in our comparison. We note, however, that

based on this QC, none of the FL images we used was flagged for saturation issues, although

some blurred images were present. Given that a common data augmentation strategy when

training CNNs is to purposefully blur the images, we do not expect their presence to have had

an overly detrimental effect on the model predictions.

Data splitting

We performed five splits of the data, at the compound level, into training, validation, and test

sets. The splitting was performed in a stratified manner based on the proportion of com-

pounds for each MoA. Each of the five test sets contained approximately 20% of the data, with

no overlap of compounds. For each split, the remaining non-test data was shuffled at the com-

pound level, and assigned to training or validation in a stratified manner, with 80% to training

and 20% to validation. DMSO data was added to the sets with five, one, and two wells per plate

for training, validation, and testing, respectively. These sets of DMSO wells were the same for

each of the five splits. Overall, this corresponded for each split to ca. 4900 images for training,

1200 for validation and 1500 for testing, of which 400, 60 and 60, respectively, were DMSO.

Normalization & background correction

For FL image data, a common normalization strategy is to use the mean and standard devia-

tion of the pixel intensities of the control DMSO wells in each plate, to mitigate plate-level

effects [9]. This normalization is performed separately for each imaging channel. For BF, there

is no well-established normalization protocol. We, therefore, compared, for both imaging

modalities, the effect of performing either DMSO plate-level normalization or site-level nor-

malization (normalizing each image separately based on the mean and standard deviation of

its pixel intensities). For the BF data, but not the FL data, the illumination across the images

was very inhomogeneous, this background effect was corrected by first smoothing the images

with a Gaussian filter of size 101x101 pixels to get the average background illumination in the

image. This background image was then subtracted from the original image to remove the

uneven illumination effects.

Model training

For all the comparisons made we used a standard ResNet-50 [17] model with consistent

hyper-parameters and training strategies. These multi-class classification models (predicting
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the class labels for 11 classes, i.e. the 10 MoAs and the DMSO control class) had 5 channel

input images for the Cell Painting data, corresponding to the 5 FL channels, and 6 channel

input images for the BF data, corresponding to the 6 z-planes. See S2 Text for more details.

CellProfiler features

To benchmark the performance, we extracted CellProfiler (CP) features from the FL data on

which we trained a fully-connected neural network with one hidden layer of 512 neurons fol-

lowed by a RELU activation and batch normalization. We extracted 2009 features from the

five-channel FL images, including those related to (in CP parlance) ‘AreaShape’, ‘Correlation’,

‘Granularity’, ‘Intensity’, ‘Neighbors’, and ‘RadialDistribution’. See S1 Text for more details on

the CP feature extraction. The features were then mean aggregated to get a site-level profile of

the features. The site-level features were then normalized at the plate level with the mean and

standard deviation of the DMSO sites in the plate.

Results

We first compared the impact of the different normalization techniques in the modalities with

the CP baseline performance. Table 1(a) shows comparative test set macro-F1 scores for the

five data splits for the models trained on BF and FL data. We report the macro-F1 score as this

gives equal weight to each of the individual F1 scores and is thus not influenced by the imbal-

ance in the amount of data for each MoA class. Table 1(b) shows the combined F1 scores

(across all five tests sets, i.e. for all the compounds in our dataset) with respect to the ten MoA

classes and the DMSO. The BF models perform competitively with respect to the FL models

and the CP baseline when plate-level DMSO normalization was applied to the input images.

Table 1. Comparison of the results for the models trained on BF and FL images and CP features. The subscript dmso is for the cases where DMSO plate-level normali-

zation was applied to the data and the subscript site is for when the data was normalized at the imaging site level.

(a) Macro-F1 scores on the test sets for the five data splits.

BFdmso FLdmso BFsite FLsite CP

Split 1 0.738 0.777 0.662 0.661 0.771

Split 2 0.821 0.799 0.770 0.762 0.801

Split 3 0.724 0.793 0.654 0.677 0.718

Split 4 0.710 0.738 0.676 0.645 0.739

Split 5 0.728 0.716 0.708 0.688 0.736

(b) F1 scores per MoA across all five test sets.

BFdmso FLdmso BFsite FLsite CP

ATPase-i 0.605 0.701 0.650 0.683 0.779

AuroraK-i 0.683 0.675 0.713 0.671 0.746

HDAC-i 0.756 0.773 0.766 0.785 0.740

HSP-i 0.738 0.730 0.756 0.682 0.676

JAK-i 0.675 0.653 0.405 0.429 0.607

PARP-i 0.895 0.886 0.789 0.748 0.912

Prot.Synth.-i 0.711 0.793 0.520 0.646 0.711

Ret.Rec.Ag 0.740 0.769 0.767 0.796 0.786

Topo.-i 0.780 0.728 0.702 0.651 0.742

Tub.Pol.-i 0.887 0.854 0.850 0.865 0.845

DMSO 0.790 0.866 0.836 0.691 0.809

Macro average 0.751 0.766 0.705 0.695 0.759

https://doi.org/10.1371/journal.pcbi.1011323.t001
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When imaging site normalization was applied to the input data, the overall performance was

lower, although comparable, for the two modalities. The difference in performance between

the normalization techniques is similar in both modalities, however, the decline is slightly

larger in FL models. S1 Fig show the confusion matrices for the BF and FL models.

Compound-level accuracy analysis

To further explore the performance differences between the models, we compared the com-

pound-level accuracies, as shown in Fig 2, for the models based on plate-wise DMSO normali-

zation. The Pearson correlation coefficient between BF and FL was 0.744, whereas between BF

and CP it was 0.798 which indicates that prediction errors made by the BF models are more

correlated with the CP benchmark than with the FL. The correlation between FL and CP mod-

els was the highest, at 0.828, as expected since they are both based on FL images. Bottom-right

and top-left sections of the plots (shown by the dashed boxes in Fig 2) are interesting regions

as they highlight the compounds where the BF performance was better, or worse than the

counterparts, respectively. We identified four compounds where the BF performance was con-

sistently better and one compound where it was consistently worse than both the FL and CP

models. The results overall indicate that there are multiple compounds in the dataset that

exhibit morphological changes which can be picked up by the deep learning models applied to

BF images. The compound in these interesting regions were different, although with some

overlap, for the analyses based on imaging site normalisation (see S2 Fig). In this case there

was one compound in the consistently better region, a compound also selected when using

DMSO normalization, and seven compounds in the consistently worse region, one of which

was also selected based on DMSO normalization.

Biological relevance of activation maps

To further explore the compounds where the BF models performed significantly better or sig-

nificantly worse than the FL and CP models, we used guided backpropagation [18] to deter-

mine which areas in the images were most activated by the models when making their class

predictions. Fig 3 shows examples of the activation heatmaps for the four compounds better

Fig 2. Compound-level accuracy for DMSO normalized input. Comparison of the accuracy at the compound level,

across all five test sets, for the BF models with respect to FL models, and CP feature-based models. The input data was

normalized based on the DMSO on each plate for all three cases. Each dark dot represents a compound. Brighter dots

represent multiple compounds with the same accuracy score. A. BF against FL; B. BF against CP. In the boxes at the

bottom right and top left, thresholded at accuracy values of 0.6 and 0.4, the compounds shown with blue crosses were

consistently better for BF than both FL and CP or consistently worse, respectively.

https://doi.org/10.1371/journal.pcbi.1011323.g002
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predicted by BF and one compound worse for the models based on DMSO normalization of

the input images. The compound 4SC-202 (BF accuracy = 0.892, FL accuracy = 0.036, CP

accuracy = 0.286) exhibits distinct activation patterns for the two modalities. In the FL heat-

map, the focus is on the full cell body, whereas in the BF heatmap, there is a strong activation

for the small vesicles that are visible in the BF images but that are not stained for in the Cell

Painting protocol. In fact, many compounds, including HDAC inhibitors, affect lipid metabo-

lism [19, 20]. For GSK1070916 (BF acc. = 0.859, FL acc. = 0.150, CP acc. = 0.250), there is an

overlap in the areas activated for BF and FL. However, for the FL image, there is oversaturation

Fig 3. Explainable AI plots. Radar plots, BF and FL images and their corresponding activation heatmaps for four compounds that were

considerably better predicted by BF than both FL and CP (first four rows), and one compound for which the opposite was true (last row),

for the models based on DMSO normalization of the input images. The radar plots show the affected morphological features according to

the CP data. A full description of the labels in the radar plots can be found in the CP feature extraction section of the supplementary

material. The BF images show an RGB composite of the first 3 z-planes after illumination correction. The FL images show a merge of the

five fluorescence channels with nuclei in blue, mitochondria in red, Golgi/F-actin in green, nucleoli and RNA in grey and ER in cyan. The

scale bars in the images represent 20 μm. In the heatmaps, the nuclei and cell boundaries, based on CellPose segmentation, are shown. The

scale bar in the top right shows the relative importance of the areas highlighted in the heatmaps.

https://doi.org/10.1371/journal.pcbi.1011323.g003
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in the signal (for the Golgi, ER and mitochondria), which could be hampering the predictive

performance of the FL model. For Amrubicin (BF acc. = 0.833, FL acc. = 0.133, CP acc. =

0.267), the BF heatmap appears to focus on the nuclear areas and nucleoli, whereas the FL

heatmap is more activated for perinuclear regions. Amrubicin is a topoisomerase inhibitor

that affects the transcription of ribosomal DNA, which might result in nucleoli alterations. We

hypothesise that changes in the nucleoli are highly specific for the MoA of this compound and

can contribute to the high accuracy of the BF model [21]. For the compound JAK3-inhibitor-

V (BF acc. = 0.767, FL acc. = 0.200, CP acc. = 0.400), we can observe undissolved compound,

especially in the background of the image. The radar plot and grit score (0.886, see below) indi-

cate that there is almost no morphological change induced by this compound, which is likely

due to its low bioavailability. The FL model is particularly affected by the compound aggre-

gates in the image, visible by the strong signal in the background areas. The BF heatmap seems

to pick up the droplets specifically and thus may have an advantage over the FL model. A qual-

ity control step would have removed images that are corrupted by these types of artefacts, how-

ever, such removal was not used in this study so as not to give the FL models an advantage.

Finally, for the compound Digitoxigenin (BF acc. = 0.348, FL acc. = 1.000, CP acc. = 0.608),

where the BF model performed significantly worse than the FL and CP models, the heatmaps

appear relatively similar. The FL model picks up on small aggregates in the mitochondria

channel, a technical artifact that might have contributed to its good performance. The observa-

tions highlighted above are common across the other imaging sites and wells for these five

compounds.

Grit score analysis

The grit score [22] (See S1 Text for more details) indicates the phenotypical strength of the sig-

nals captured by the FL images, i.e. more compound-specific signals will be present in images

with higher grit scores. Hence, to test if the learned models capture the phenotypic effects, one

can compare the performance of the learned models with the grit score. If the learned features

encode the phenotypical effects of the MoAs, the performance of the models should increase

with the grit score. Furthermore, the behaviour of the models trained on different modalities

and normalization can be compared against perturbation strengths to assess the difference in

the learned features. For this comparison, all the images in the test sets were sorted by grit

scores and binned into ten bins with an equal number of samples. The accuracy was calculated

and reported with each bin’s mean grit score.

Fig 4 shows the accuracy vs the grit score of the BF and FL models with different normali-

zation techniques compared to the models applied to the CP features. All the learned models

show an upward trend in performance with increasing grit scores, indicating that the mod-

els do capture the phenotypical effects associated with the MoAs. However, the learned

models perform worse than CP at a lower grit score, except for the FL DMSO normalized

model. Models with site-level normalization perform worse than the DMSO-level normali-

zation at a lower grit score for both modalities. This can be explained by the lack of relative

intensity information in the site-normalized data as compared to the DMSO normalized

data, where the relative intensity within a plate is preserved. When the phenotypical signal

is low, the DMSO normalized models seem to utilise this information for the prediction

task. As the signal strength increases, the difference in the performance of different normali-

zation techniques decreases, indicating the capture of the phenotypical signal. The BF mod-

els seem to struggle at lower grit scores but catch up with the FL models at higher grit scores

indicating that BF models perform comparable to the FL when a high phenotypical signal is

present.
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Influence of technical variations

Our experimental design and image pre-processing aimed to eliminate unwanted technical

variations, specifically through the use of PLAID and plate-based DMSO or site-based normal-

ization, however, given that we only used a subset of the assay data for our analysis the com-

pounds and MoAs were unevenly distributed across the 18 microwell plates (ranging from 1–4

for the latter and 1–67 for the former, see S3 Fig). The DMSO class was the only class present

in all 18 plates. Unwanted/nuisance technical variations can arise from differences in lab con-

ditions, microscope calibration, and day-to-day fluctuations in humidity and temperature [9,

23, 24]. While these “batch effects” tend to be larger when data from multiple laboratories is

combined, they can still occur between the imaging plates collected in a single lab. Although

subtle to the eye, if these batch effects are correlated with the biological signal, then neural net-

works may leverage them and overfit to the data [25].

We used features extracted from the trained models for the test data to investigate if any

unwanted technical variations were present. The BF and FL features were extracted from the

penultimate layer of the ResNet50 model, the vector of length 2048, i.e. the 2D adaptive aver-

age pooling layer prior to the final fully connected output prediction layer. From Fig 5 it can

be seen that these extracted features for both BF and FL can clearly distinguish each MoA class

from the others, for both of the normalization strategies, and with a larger separation than that

obtained from the CP features. However, based on the extracted features from the test set

DMSO data, there is evidence of plate effects (Fig 6). In an ideal case there should be a reason-

able amount of correlation between all the plates and no systematic patterns for this control

data. This was the case for the CP features and to some extent for the features extracted from

the BF models with site normalization applied to the input data. For the other cases, however,

there was more variability in the correlation between the plates. For the features extracted

Fig 4. Grit score vs accuracy. Comparison of accuracy at different grit scores for BF (blue), FL (orange), and CP

feature-based (green) models across all five test sets using either plate-based DMSO normalization or normalization at

the imaging site level.

https://doi.org/10.1371/journal.pcbi.1011323.g004
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Fig 5. Cosine similarity within and across the MoA classes. Cosine similarity within (blue) and across (orange) the MoA classes for the test set CP

features and for features extracted from the test data for the BF and FL models based on the two different normalization (norm) strategies.

https://doi.org/10.1371/journal.pcbi.1011323.g005

Fig 6. Pearson correlations for the features between the imaging plates. Pearson correlations for the features extracted from the test set

DMSO wells (averaged across the five splits) between the 18 imaging plates used. Note that there were two DMSO test wells for each plate.

https://doi.org/10.1371/journal.pcbi.1011323.g006
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from the FL models with site normalization of the input data, in contrast to the case for BF,

there were more pronounced plate effects than when DMSO normalization was applied.

Fig 7 shows the UMAP [26] projections for the extracted test set features fitted on the train

set features with respect to the MoAs and the plates for the DMSO normalized models. A simi-

lar plot for the site-level normalization is shown in S4 Fig. No obvious biases could be observed

from these plots. However, S5 Fig, showing UMAP projections colour coded by compounds

and shape coded by plate, revealed cases where the bias was present at the MoA level. For

HDAC-i, no plate bias was observed for BF and FL. For BF, the plate bias can be observed in

the PARP-i where the same compounds (CBK278031, CBK309255) in different plates are clus-

tered separately. Similar bias can be observed in FL, however, to a lesser extent. For Topo-i, the

two clusters can be observed in BF with different compounds in each indicating no plate-level

bias. For FL, slight plate bias can be observed for CBK201030 and CBK289760 where the

points from different plates are farther apart than the points within the plate for the com-

pounds. From the UMAP plots for CP (column C.), there was no evidence of plate-level bias.

This is perhaps due to the fact that the features were extracted from the segmented cells, as

opposed to from the entire images, as they were for the BF and FL models. S6 Fig shows similar

plots for site-level normalization for the three MoAs.

Fig 7. UMAP projections (DMSO normalization). UMAP plots of features learned by the BF and FL models (based on DMSO normalization of the input

images), and the raw CP features of the test set for the best-performing split (split 2), colour-coded by MoA (top-row) and by plate (bottom-row). The UMAP

was fitted on the training data of the split and the test set features were transformed. A. BF features; B. FL features; C. CP cell-based features.

https://doi.org/10.1371/journal.pcbi.1011323.g007
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Downstream analysis

Moshkov et al. [23], using a weakly supervised deep learning approach for extracting features

from Cell Painting image data, also found that their learned representations encoded both phe-

notypically relevant features and confounding factors. To further analyse the feature represen-

tation and the utility of the features with respect to new data, we used the features to perform a

downstream biological matching task similar to [23]. We used our trained models to extract

features for a new set of MoAs (those with at least ten compounds) from the plates remaining

in the original imaging assay, i.e. those not used in the original dataset. This gave us six new

MoAs distributed over four plates: CC Chemokine Receptor Antagonist (CCR.Ag); DNA Poly-

merase Inhibitor (DNAP-i); DNA Synthesis Inhibitor (DNAS-i); EGFR Inhibitor (EGFR-i);

Cyclooxygenase Inhibitor (COX-i); and Glucocorticoid Receptor Agonist (GR.Ag). See S7 Fig

for the number of compounds per MoA across the new plates. The features for all the sites

were extracted and aggregated by mean to form well-level profiles. The performance on a bio-

logical matching task was evaluated by computing mean average precision (mAP) over all the

wells. For each reference well, the cosine similarity of all the other query wells is calculated and

sorted in decreasing order into a list. A query well in the list is considered a hit if the MoA of

the query well matches the reference. The precision and recall at each query in the list are com-

puted until all the wells in the MoA are found. The average precision is calculated for every

well in the dataset with the rest of the wells as the query, and the mAP is reported.

Under the assumption that a large variation found in control DMSO samples between

plates/batches is associated with these confounding factors, [23] proposed a linear sphering

transformation to reduce the variation of the confounding factors and amplify the phenotypi-

cally relevant features. This transformation aims to reduce the features of the control wells to a

white noise distribution and to correct the treated wells accordingly. The amount of sphering

to apply is controlled by a regularization parameter, with smaller values corresponding to a

higher degree of sphering. As we saw the evidence of the plate effect in the previous section,

we opted to use the transformation for the biological matching task and report the results.

Fig 8A shows the mAP of the different models under increasing regularization. FL models

outperform BF models and the CP baseline at every regularization strength. This indicates that

features the FL models learn are better than BF features for the downstream task. Surprisingly,

the site-normalized models in FL performed better than the DMSO-normalized models. The

performance of the BF models is close to that of the CP baseline and higher than the random

performance. This would suggest that the BF models are encoding biologically relevant fea-

tures, and the generalization performance of the models matches the untrained features

extracted from the CellProfiler pipeline. Fig 8B shows the mAP performance with the grit

score at the regularization parameter of 0.1. This was chosen as the BF model performed best

at this value, however, a similar trend was observed for other parameter values. Here, we

observe a similar trend as seen in Fig 4 with performance increasing with the grit score, sug-

gesting that CNN models can even distinguish different strong phenotypical signals not pres-

ent in the training set.

Reproducibility and alternative architectures

To confirm the reproducibility of our results, we trained our models three times with different

seeds (see S1 and S2 Tables for the results with DMSO-level and site-level normalization,

respectively). For the five splits of the test data and for the ten MOAs and the DMSO class,

there was low variability for the differently seeded runs of the models, further corroborating

our results given above. To assess the impact of the neural network choice on our analysis, we

compared the results obtained using the ResNet-50 architecture to those obtained using two
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alternative architectures (DenseNet-169 [27] and EfficientNet-B3 [28]). From S3 and S4

Tables, showing the results based on DMSO and site normalization respectively, the best over-

all results for BF were achived with ResNet-50 and for FL with EfficientNet-B3. Note that for

the BF DMSO normalization EfficientNet-B3 models three of the splits failed to converge,

hence the relatively poor performance in this case.

Discussion

In our work, we found comparable predictive performance for models based on BF images to

those based on both FL images and CP features derived from them. We found that the BF

models made similar prediction errors to both the FL and CP models. This shows that the fea-

tures required to delineate the MoAs are present in the BF images and can be extracted by

deep learning models.

Other studies prior to ours have demonstrated the potential utility of BF image data. For

instance, [29] were able to discriminate single-gene mutant cells from wild-type cells and fur-

ther found that functionally close genes shared similar BF-based feature profiles. For flow

cytometry, [30] successfully discriminated multiple cell lines and [31] achieved high accuracy

for distinguishing between drug-treated and -untreated cells, an accuracy that increased with

dosage and treatment time. For 3D cancer sphere cultures, using CNNs trained on BF data,

[32] reliably estimated drug efficacy for three chemotherapy drugs. For BF time-lapse data,

[33] developed a method for exploring variations in cell behaviour in response to drug treat-

ments, which they exemplified using drugs that modify cytoskeletal protein dynamics.

In our work, the models trained on the CP features had lower predictive performance than

CNNs trained on the FL images, when using ResNet-50 and DMSO-based normalization of

the input images. A previous study by [34] found this also to be the case for predicting drug

Fig 8. Downstream task. A. The influence of applying different levels of the sphering transformation on the mean average precision (mAP) for the

biological matching downstream task. B. Comparison of the mAP at different grit scores with the sphering regularization parameter of 0.1. The panels

show BF (blue), FL (orange), and CP feature-based (green) using either plate-based DMSO normalization or normalization at the imaging site level.

https://doi.org/10.1371/journal.pcbi.1011323.g008
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activity across multiple Cell Painting image assays. We emphasize here, however, that our pur-

pose was not to train the best possible predictive model for either the BF or FL image data or

the CP feature data, but rather to use a well-established CNN network, ResNet-50, to compare

the BF and FL modalities and to use the CP model as a benchmark. In our final investigation,

comparing three alternative CNN architectures, we found that ResNet-50 gave the best perfor-

mance for BF and EfficientNet-B3 gave the best performance for FL.

In our analysis we uncovered some plate level bias in our results, in spite of the fact that we

used PLAID and plate based DMSO normalization or imaging site normalization. Performing

normalization of the input data at the image level removed some of this bias for the BF models

but not for the FL models. This somewhat extreme form of normalization likely hampered the

overall predictive performance of the models as it will have removed much of the relative

intensity differences between the compound treatments. However, as a means of eliminating

some of the unwanted technical biases, image based normalization was also used by [23] in

their weakly supervised deep learning approach for extracting features from Cell Painting

image data. The primary reason that our models were able to exploit plate information is that

the data used was taken from an assay not specifically designed for our study and unfortu-

nately the compounds and MoAs were very unevenly distributed among the plates. An experi-

mental design with a more even distribution of the compounds and MoAs across the plates

would eliminate such plate level biases and allow retaining more of the relative intensity

information.

We attempted to remove this plate-level bias by applying a linear sphering transformation

to the features extracted from the images for a downstream biological matching task. Contrary

to Moshkov et al. [23], however, we only found slight improvements in this biological match-

ing for the BF data and drops in performance for both the FL and CP data. It is possible that

nonlinear transformations would perform better. In spite of potential biasing effect of these

confounding factors, methods for batch correction are somewhat under developed for micros-

copy imaging based analyses relative to other data modalities, e.g. gene expression data [23]. In

our study these confounding factors were likely similar for both BF and FL as the images for

both were taken from the same plates, and although we could not entirely eliminate these fac-

tors, the overall predictive performance was very comparable between the two imaging modal-

ities. Our grit based analyses and explainable AI explorations also highlight that the models are

learning important biological information, despite these confounding factors. A recently pro-

posed method named “batch effects normalization” [25], provides knowledge of the batches or

plates to the CNNs during training to potentially remove these confounding factors. Due to

time limitations we did not explore this approach, but leave it as an avenue for future work.

Had the predictive performance been significantly poorer for the BF models than the FL

models one avenue for exploration would have been to perform virtual staining [35–37] to

generate virtually stained images from which to subsequently base the MoA prediction. How-

ever, going via this route would lose any morphological information that is only present in the

BF images. We had several cases of compounds that were considerably better predicted by the

BF model, relative to the FL models, suggesting that there are cellular compartments/organ-

elles potentially picked up in the BF images that are not stained for in the Cell Painting proto-

col (such as lysosomes, endosomes and peroxisomes). For cases where the opposite was true

(i.e. where the FL models performed well but the BF models did not) we hypothesize that this

may be a result of cellular compartments stained for in the Cell Painting protocol, which were

useful for prediction, but which are barely visible or not accessible in the BF images (such as

the f-actin cytoskeleton).

The fact that deep learning can be used on BF images for MoA prediction holds great prom-

ise for live cell time-lapse studies, for which using FL data is problematic. With trained BF

PLOS COMPUTATIONAL BIOLOGY Brightfield-based MoA prediction

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011323 July 25, 2023 14 / 19

https://doi.org/10.1371/journal.pcbi.1011323


models we can track the cell populations over time to explore how the features evolve towards

the MoAs after drug administration and how quick the process is. A wealth of interesting

information will likely come from simply visualizing these temporal dynamics.

Supporting information

S1 Text. Data acquisition. Includes information on the cell culture, compounds, cell painting,

image acquisition, CellProfiler feature extraction and the grit scores.

(PDF)

S2 Text. Model training. Additional information on the model training strategy (optimizers,

learning rate and augmentations applied).

(PDF)

S1 Fig. Confusion matrices. Normalized confusion matrices, across all five test sets, when

DMSO plate-level normalization was applied to the data (A. BF models; B. FL models) and

when the data was normalized at the imaging site level (C. BF models; D. FL models). Labels

are 0:ATPase-i, 1:AuroraK-i, 2:HDAC-i, 3:HSP-i, 4:JAK-i, 5:PARP-i, 6:Prot.Synth.-i, 7:Ret.

Rec.Ag, 8:Topo.-i, 9:Tub.Pol.-i, 10:DMSO.

(PNG)

S2 Fig. Compound-level accuracy for site normalized input. Comparison of the accuracy at

the compound level, across all five test sets, for the BF models with respect to FL models, and

CP feature-based models. The input data was normalized separately for each imaging site for

BF and FL and was normalized based on the DMSO on each plate for CP. Each dark dot repre-

sents a compound. Brighter dots represent multiple compounds with the same accuracy score.

A. BF against FL; B. BF against CP. In the boxes at the bottom right and top left, thresholded

at accuracy values of 0.6 and 0.4, the compounds shown with blue crosses were consistently

better for BF than both FL and CP or consistently worse, respectively.

(PNG)

S3 Fig. Distribution of compounds per MoA across the imaging plates. The number of

compounds per MoA across each of the imaging plates used in our study. Note that there are

pairs of plates, biological replicates, with the same compound treatments, but the treatments

were located in different wells within each of the replicate plates.

(PNG)

S4 Fig. UMAP projections (site-level normalization). UMAP plots of features learned by the

BF and FL models (based on site-level normalization of the input images), and the raw CP fea-

tures of the test set for the best-performing split (split 2), colour-coded by MoA (top-row) and

by plate (bottom-row). The UMAP was fitted on the training data of the split and the test set

features were transformed. A. BF features; B. FL features; C. CP cell-based features.

(PNG)

S5 Fig. UMAP projections (DMSO normalisation, 3 MoAs). UMAP plots of features learned

by the BF and FL models (based on DMSO normalization of the input images), and the raw CP

features of the test set for the best-performing split (split 2) for three of the MoAs, color coded

by compound and shape coded by plate. A. BF features; B. FL features; C. CP cell-based features.

(PNG)

S6 Fig. UMAP projections (site-level normalisation, 3 MoAs). UMAP plots of features

learned by the BF and FL models (based on site-level normalization of the input images), and

the raw CP features of the test set for the best-performing split (split 2) for three of the MoAs,
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color coded by compound and shape coded by plate. A. BF features; B. FL features; C. CP cell-

based features.

(PNG)

S7 Fig. Distribution of compounds per MoA across the imaging plates for the downstream

task. The number of compounds per MoA across each of the imaging plates used in our down-

stream analysis. Note that there are pairs of plates, biological replicates, with the same com-

pound treatments, but the treatments were located in different wells within each of the

replicate plates.

(PNG)

S1 Table. Reproducibility (DMSO normalization). Comparison of the results for three

model runs with different seeds when DMSO plate-level normalization was applied to the data.

(PDF)

S2 Table. Reproducibility (site normalization). Comparison of the results for three model

runs with different seeds when site-level normalization was applied to the data.

(PDF)

S3 Table. Alternative architectures (DMSO normalization). Comparison of the test set F1

scores for three different architectures trained on BF and FL when DMSO plate-level normali-

zation was applied to the data.

(PDF)

S4 Table. Alternative architectures (site normalization). Comparison of the test set F1 scores

for three different architectures trained on BF and FL when site-level normalization was

applied to the data.

(PDF)
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