
Cytokine 169 (2023) 156296

Available online 17 July 2023
1043-4666/© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Predicting cytokine kinetics during sepsis; a modelling framework from a 
porcine sepsis model with live Escherichia coli 

Salma M. Bahnasawy a, Paul Skorup b, Katja Hanslin c, Miklós Lipcsey d, Lena E. Friberg a, 
Elisabet I. Nielsen a,* 

a Department of Pharmacy, Uppsala University, Uppsala, Sweden 
b Section of Infectious Diseases, Department of Medical Sciences, Uppsala University, Uppsala, Sweden 
c Anesthesiology and Intensive Care, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden 
d Hedenstierna laboratory, Anesthesiology & Intensive Care, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden   

A R T I C L E  I N F O   

Keywords: 
Sepsis 
IL-6 
TNF 
Non-linear mixed effect modelling 

A B S T R A C T   

Background: Describing the kinetics of cytokines involved as biomarkers of sepsis progression could help to 
optimise interventions in septic patients. This work aimed to quantitively characterise the cytokine kinetics upon 
exposure to live E. coli by developing an in silico model, and to explore predicted cytokine kinetics at different 
bacterial exposure scenarios. 
Methods: Data from published in vivo studies using a porcine sepsis model were analysed. A model describing the 
time courses of bacterial dynamics, endotoxin (ETX) release, and the kinetics of TNF and IL-6 was developed. The 
model structure was extended from a published model that quantifies the ETX-cytokines relationship. An external 
model evaluation was conducted by applying the model to literature data. Model simulations were performed to 
explore the sensitivity of the host response towards differences in the input rate of bacteria, while keeping the 
total bacterial burden constant. 
Results: The analysis included 645 observations from 30 animals. The blood bacterial count was well described by 
a one-compartment model with linear elimination. A scaling factor was estimated to quantify the ETX release by 
bacteria. The model successfully described the profiles of TNF, and IL-6 without a need to modify the ETX- 
cytokines model structure. The kinetics of TNF, and IL-6 in the external datasets were well predicted. Accord-
ing to the simulations, the ETX tolerance development results in that low initial input rates of bacteria trigger the 
lowest cytokine release. 
Conclusion: The model quantitively described and predicted the cytokine kinetics triggered by E. coli exposure. 
The host response was found to be sensitive to the bacterial exposure rate given the same total bacterial burden.   

1. Introduction 

Bacterial infections trigger a potent host immune response, that 
needs to be well-regulated to be sufficient for infection eradication 
without causing self-harm [1]. Sepsis, a life-threatening condition, oc-
curs when a dysregulated host immune response to infection develops. 
This triggers a generalised systemic immune response exceeding the 
response required for a local infection clearance ultimately leading to 
multiple organ dysfunction [2]. A key feature of sepsis is the imbalance 
between the pro-inflammatory and anti-inflammatory components of 
the typical immune response [3]. The latest estimate points to that 
almost 20% of total deaths worldwide every year are attributed to sepsis 

[4]. In 2017, the World health organisation (WHO) recognised sepsis as 
a global health priority by adopting a resolution to improve, prevent, 
diagnose, and manage sepsis [5]. 

The innate immune response activation plays a fundamental part in 
the pathogenesis of sepsis. This is mediated by the recognition of unique 
pathogen-associated molecular patterns (PAMPs) like endotoxin (ETX), 
a Gram-negative bacteria outer membrane component. When ETX is 
recognised by Toll-like receptor-4 (TLR-4), a downstream molecular 
cascade is provoked leading to the release of cytokines, and other in-
flammatory regulators [2]. Cytokines are inflammatory mediators that 
play a crucial role in the pathophysiology of sepsis. Under normal 
physiologic condition, they regulate the activation and migration of 
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immune cells to the site of infection, helping to clear the infection. In 
sepsis, a malfunctional cytokine network with tremendous release of 
cytokines (referred to as a cytokine storm) provokes a systemic response 
leading to endothelial dysfunction, coagulopathy, and tissue damage 
[6]. Examples of prominent cytokines that markedly signify sepsis pro-
gression include proinflammatory cytokines like tumour necrosis factor 
(TNF), and interleukin-6 (IL-6) [3,7]. The intricate interplay between 
the inflammatory and immunosuppressive phases of sepsis is highly 
dynamic, and they are usually overlapping without a clear temporal 
margin separating them [8]. 

Selecting appropriate therapy in sepsis is challenging. The profound 
pathophysiologic alterations occurring in sepsis result in high variability 
in the pharmacokinetics of administered medications [9]. Further, at-
tempts to use immunomodulators in sepsis are hampered by the need to 
identify the type of intervention (i.e. immunostimulatory/immunosup-
pressive) required by each patient at a given point in the disease course 
[10]. Hence, describing the kinetics of different cytokines involved as 
potential biomarkers of sepsis progression could help to optimise med-
ical interventions in septic patients [11]. 

Large animal models, like the porcine model, provides potential for 
translational research in sepsis. In a recent review on the challenges of 
translational research in sepsis, Cavaillon et al. identified an inappro-
priate animal model (e.g. mice) as one factor contributing to trans-
lational research failure [12]. Dissimilarities in the immune system and 
physiology, along with ETX resistance may explain the poor proxy of 
mice models for the human responses in sepsis. The immune system in 
pigs closely resembles humans with about 80% shared immune ma-
chinery, unlike the mice which shows less than 10% similarity [13]. 
Moreover, unlike mice, pigs have greater sensitivity to infection and 
their large size allows close monitoring of vital signs. Furthermore, 
several recent examples highlights the potential of applying mathe-
matical modelling to increase the understanding of the complex and 
dynamic host-pathogen interaction in translational immunology 
research [14–16]. 

Mathematical modelling is a potential tool to evaluate the interplay 
of the host-pathogen interaction [14]. It provides a deeper insight into 
the time courses of the different components of this interaction. 
Recently, a non-linear mixed effect model was developed based on data 
on porcine endotoxemia in anesthetised piglets receiving ETX infusion 
[16]. This modelling approach allows data from different studies to be 
analysed simultaneously, while capturing the population mean param-
eters, and different sources of variabilities [17]. The model characterises 
the pro-inflammatory component of the host immune response by 
quantifying the kinetics of TNF and IL-6, as well as the temporal aspects 
of ETX tolerance development. 

Although ETX plays a crucial role in sepsis pathogenesis, the clinical 
relevance of using experimental endotoxemia as a model for sepsis is 
debated [18–19]. It has been argued that the use of ETX as the only 
PAMP ignores the possible contribution of other bacterial components in 
the study of the host-pathogen interaction [20]. However, there is still 
limited knowledge whether the immune response would be different if 
triggered by exposure to the intact live bacteria rather than ETX only 
[1,21]. 

The overarching goal of the current work was to quantitively char-
acterise the cytokine kinetics triggered by exposure to intact live Gram- 
negative bacteria during sepsis. The specific aims were to; (i) expand the 
previous model to describe the dynamics of Escherichia coli (E. coli)in 
vivo and the associated release of ETX, (ii) link the bacterial kinetics to 
the previously developed ETX-cytokines model and evaluate the need to 
refine the model, (iii) evaluate the model performance by applying the 
model to external data from the literature, and (iv) use the model to 
explore the cytokine kinetics at different bacterial exposure scenarios. 

2. Methods 

2.1. Data and study design 

The current analysis included data from three previously published 
in vivo studies using a porcine sepsis model [22–24]. In each study, 
Swedish landrace pigs (22.4–33.1 kg) received a three-hour continuous 
infusion of live E. coli strain B09-11822 (serotype O rough:K1:H7; 
Statens Seruminstitut, Copenhagen, Denmark) succeeded by a follow-up 
period of three hours. Blood samples were collected for measurements at 
1, 2, 3 h from the start of infusion for blood bacterial count, 0, 2, 4, 6 h 
for ETX, and 0, 1, 2, 3, 4, 5, 6 h for both TNF and IL-6. The total 
administered dose of bacteria was 5 × 108 CFU, with accepted range 
3.5–7.1 × 108 CFU. A fresh bacterial infusate was prepared hourly to 
ensure the bacteria being in the logarithmic phase of growth. The piglets 
received the bacteria through a central vein catheter, except for one 
study [22] where they received the infusions through the portal vein 
preceded by a 24-hour saline infusion. The data obtained from the 
different studies were treated similarly given the lack of significant 
discrepancies in the time courses of the measured samples. Exploratory 
plots for the data from the different studies is provided in Fig. 1s in the 
supporting information file. Anaesthesia and ventilation protocols were 
the same across studies and have been described previously [22–24]. 
The animals included in the current analysis did not receive any anti-
biotic treatment throughout the study. 

2.2. Model development 

A model describing the time courses of bacterial dynamics, ETX 
release, and the induced changes of the two cytokines TNF and IL-6 was 
developed. The model structure from Thorsted et al. [16] was extended 
to include additional compartments describing the kinetics of E. coli and 
the associated release of ETX and linked to the previously developed 
ETX-cytokines model. 

The four dependent variables (DVs); bacterial count, ETX, TNF and 
IL-6, were sequentially considered for model fitting. Different structural 
models were tested for describing bacterial dynamics and the associated 
ETX release (e.g. a 1 or 2-compartment model, with or without bacterial 
multiplication, with linear or non-linear elimination). Thorsted’s 
structural model was applied to the cytokines data while first fixing the 
model parameters. Thereafter, the parameters from Thorsted’s model 
were allowed to be re-estimated for the new data by using informed 
priors. Linear stimulatory effect of bacteria was tested on TNF produc-
tion with and without exponential time decay function to explore the 
possible contribution of bacteria on stimulating TNF production. 

Priors were implemented by using NONMEM PRIOR functionality 
with NWPRI subroutine. This approach of using frequentist priors help 
to stabilise the estimation of model parameters and reduce the bias given 
the possibility of parameter differences in the current study population. 
In this context, a penalty function for the priors derived from a normal- 
inverse Wishart distribution is considered during objective function 
estimation. The informativeness (i.e. weight) of prior parameters to the 
model would depend on parameter uncertainty for fixed-effect param-
eters and on the degree of freedom for random-effect parameters (ω) 
[25]. The variance–covariance matrix of the parameter estimates in 
Thorsted’s model was used to define the uncertainty and the degree of 
freedom was calculated based on the formula; 

df = 2⋅
(

ω2

SE(ω2)

)2

+ 1 (1)  

where ω2 is the variance estimate of the previous analysis, and SE
(
ω2) is 

the reported standard error. 
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2.3. Modelling framework and software 

Model estimation was performed using a nonlinear mixed-effects 
model framework in NONMEM version 7.5 (ICON Development Solu-
tions, Ellicott City, MD, United States). Model runs were executed using 
Perl-Speaks-NONMEM 5.2.6 (PsN), Pirana 2.9.9. Data handling and post 
processing of estimation runs including model diagnostics were per-
formed in R using and xpose4, and tidyverse packages. 

Model selection was based on the reduction in the objective functions 
value (OFV) using the likelihood ratio test for nested models at a pre-
defined P-value less than 0.05. The precision of parameter estimates, 
and goodness of fit plots were also considered for model selection. For 
the parameters that were informed by priors, the ratio of relative stan-
dard error (RSE) of the updated estimates of the final model and prior 
estimate from previous population was calculated to evaluate informa-
tiveness of priors. Model performance was evaluated based on the visual 
inspection of individual plots, and prediction corrected visual predictive 
checks (pcVPCs) [26]. 

For each variable, both the observed data and model predictions 
were log transformed and additive residual error models on the log-scale 
were used (equivalent to proportional error models on untransformed 
data). Exponential models were adopted to describe the between-subject 
variability. Importance sampling (IMP) with interaction was used for 
model fitting. Observations below the limit of quantification (BLOQ) 
were treated as censored data, with maximization of the likelihood of 
these data being BLOQ [27]. For TNF, only one observation (0.5% of the 
data) was BLOQ, and hence, this observation was omitted. 

2.4. Model external evaluation 

External model evaluation was performed using data extracted from 
the literature where a similar porcine sepsis model had been used. The 
data arose from three studies [28–30] (n = 12;8;8) where piglets 
received a four-hour continuous intravenous infusion of live E. coli 
(strain LE392-ATCC 33572) with dose up-titration. Measurements of 

TNF, and IL-6 were reported as mean observations at 0, 0.5, 1, 2, 3, 4 
hours. A summary of the main differences in the study design of the 
external data and the current analysis data is provided in Table 1. 

The data points were digitised using WebPlotDigitizer [31]. The 
model simulations were performed in R using RxODE package. TNF, IL-6 
profiles were predicted over four hours at the reported escalated infu-
sion rate. The model predictions were overlaid on the digitised observed 
data (reported as means ± SEM or 95% confidence interval). For the 
data points where SEM was reported, 95% CI was derived assuming 
normal distribution. 

2.5. Model simulations for different bacterial exposure scenarios 

The model was used to simulate the cytokine kinetics that could 
develop at different exposure scenarios to the bacteria. The aim of these 
simulations was to explore the sensitivity of the host response to the 
bacterial exposure profile (e.g. increasing, decreasing, or constant pro-
longed bacterial exposure) given the same total bacterial burden. In 

Fig. 1. Model schematic. Yellow coloured circles indicate observed variables, dotted lines indicate stimulatory functions, and dashed lines indicate transit 
compartment delays. Coloured text is used to highlight the variables that drive downstream equations. Parameter descriptions are supplied in Table 2. 

Table 1 
Study design aspects for the present [19–21] and external data [25–27].   

Present data External data 

Study 
population 

Swedish landrace pigs (25–35 
kg) (n = 30) 

Norwegian landrace pigs 
(13–17 kg) (n = 12, 8, 8) 

Bactetrial strain Live E. coli (strain B09-11822) Live E. coli (strain LE392-ATCC 
33572) 

Infusion rate 3- hour infusion, constant 
infusion rate (fresh infusate 
replaced hourly) 
1.67 × 108 CFU/h 

4- hour infusion, with dose up- 
titration 
3.75 × 107 CFU/h (0 → 1 h) 
1.5 × 108 CFU/h (1 → 1.5 h)  
6.0 × 108 CFU/h (1.5 → 4 h) 

Total bacterial 
challenge 
dose 

Total dose 5 × 108 CFU Total dose 1.075 × 108 CFU/kg 
≈ 16 × 108 CFU 

Analysis kit for 
cytokines 

DuoSet® porcine 
immunoassay kits from R&D 
Systems (Minneapolis, MN). 

Quantikine® porcine 
immunoassay kits from R&D 
Systems (Minneapolis, MN).  
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these simulations, the total bacterial burden was fixed to 5 × 108 CFU 
received as continuous infusion, with different infusion scenarios;  

(i) Three-hour infusion with constant infusion rate of 1.67 CFU ×
108h− 1  

(ii) Six-hour infusion with constant infusion rate of 0.83 CFU ×
108h− 1  

(iii) Three-hour infusion with dose up-titration every hour for two 
scenarios;  
(a) 0.25, 0.75, then 4.0 CFU × 108h− 1; corresponding to 5%, 

15%, 80% of total dose  
(b) 1.0, 1.5, then 2.5 CFU × 108h− 1; corresponding to 20%, 30%, 

50% of total dose  
(iv) Three-hour infusion with dose down-titration every hour for two 

scenarios;  
(a) 2.5, 1.5, then 1.0 CFU × 108h− 1; corresponding to 50%, 30%, 

20% of total dose  
(b) 4.0, 0.75, then 0.25 CFU × 108h− 1; corresponding to 80%, 

15%, 5% of total dose 

3. Results 

3.1. Model structure 

A schematic of the final model structure is depicted in Fig. 1. The 
model described the time courses of bacterial count, ETX, TNF and IL-6 
(code provided in the supporting information file). The analysis 
included data from 30 animals with a total of 645 observations (bacte-
rial count (n = 133), ETX (n = 79), TNF (n = 214) and IL-6 (n = 219)). A 
summary of the number of samples and the lower limit of quantification 
(LLOQ) of measured variables from the different studies is supplied in 
Table 1s in the supporting information file. 

3.1.1. Bacterial dynamics and ETX release 
The blood bacterial count was well-described by a one-compartment 

distribution model with linear elimination according to; 

d(B)
dt

= −
CL
V1

⋅B ; B0 = 0 (2) 

where B is the blood bacterial count in CFU, CL is bacterial clear-
ance, V1 is the bacteria volume of distribution, and B0 the initial blood 
bacterial burden. 

Adding a bacterial growth rate constant did not improve the model 
fit as reflected by the lack of statistically significant drop in the objective 
functions value (Δ OFV = − 0.145 vs. model without bacterial growth). 
Further, a two-compartment model for bacterial distribution failed to 
show a statistically significant improvement (ΔOFV = − 0.041 vs. one- 
compartment model), and an estimation of non-linear elimination was 
not supported by the current data (did not converge successfully). 

Allometric scaling by body weight was implemented on CL and V1 to 
account for the differences in the body size within the study population, 
as the following; [32] 

CLi = TVCL⋅
(

Wti

Wtmedian

)0.75

(3)  

Vi = TVV⋅
(

Wti

Wtmedian

)

(4) 

where CLi and Vi are the individual values of CL and V1 for indi-
vidual i with body weight of Wti, Wtmedian is the median body weight of 
the study population, TVCL and TVV are the typical values of CL and V1 

in the study population (i.e. 152 L/h and 6.3 L, respectively, Table 2). 
Bacterial ETX release was linked to the bacterial elimination where a 

scaling factor (SF) was used to quantify the ETX release per bacterial 
CFU. ETX elimination was assumed to be nonlinear as reported previ-

ously by Thorsted et al. [16] according to; 

d(ETX)

dt
=

CL
V1

⋅SF⋅B −
Vmax

km + CETX
⋅CETX

; ETX0 = 0
(5) 

where ETX is the ETX level in endotoxin unit (EU), SF is the ETX 
bacterial release scaling factor, Vmax is the maximum ETX elimination 
rate, CETX is ETX concentration, km is ETX concentration at half of Vmax, 
and ETX0 is the baseline ETX. 

3.1.2. Host response 
The previously developed ETX-cytokines model by Thorsted et al. 

was linked to the here established E. coli-ETX model, using the param-
eters from Thorsted’s model as informative priors. In the proposed 
model, the triggered release of pro-inflammatory cytokines by bacterial 
exposure is mediated by ETX. Testing a function for a stimulatory effect 
of bacteria on TNF production (on top of the ETX effect), did not 

Table 2 
Final model parameter estimates.  

Parameter 
(unit) 

Description Estimate 
(RSE%) 

BSV in CV% (RSE 
%) [Shrinkage%]

E. coli-related parameters 
CL (L h-1) bacterial clearance 152 (13%) 70 (14%) [9%] 
V1 (L) volume of distribution for 

bacteria 
6.3 (7%) – 

SF (EU 
CFU− 1) 

ETX bacterial release scaling 
factor 

0.00008 
(6%) 

– 

ETX - related parameters 
Vmax (EU 

h− 1) 
the maximum ETX elimination 
rate 

439,000 
(1%) 

– 

km (EU L-1) ETX concentration at half of 
Vmax 

13,400 
(11%) 

106 (19%) [28%] 

V2 (L) volume of distribution for ETX 30.4 
(11%) 

140 (13%) [2%] 

TNF -related parameters 
MTTTNF (h) mean transit time for TNF in 

plasma 
1.31 (7%) 56 (12%) [51%] 

Emax1 (-) the maximum stimulatory effect 
of ETX on TNF production rate 

2680 (2%) – 

C50(EU L-1) initial ETX concentration 
producing half of the maximum 
effect on TNF 

279 (2%) – 

Emax2 (-) the maximum stimulatory effect 
of ETX on C50 production rate 

45,300 
(1%) 

– 

TC50(EU L- 

1) 
the ETX concentration 
producing half of the maximum 
effect on C50 inducing tolerance 

29,800 
(1%) 

– 

γ(-) sigmoidicity coefficient for 
Emax relationship 

2.92 (3%) – 

MTTC50 (h) Mean transit time for C50 6.32 (2%) – 
S0TNF (ng L- 

1)* 
TNF concentration at baseline 180 67 (26%) [26%] 

IL-6 - related parameters 
MTTIL-6 (h) mean transit time for IL-6 in 

plasma 
1.46 (6%) 79 (28%) [13%] 

Eslp,TNF(-) the slope for TNF increase of IL- 
6 production rate 

1.04 (2%) – 

Eslp,ETX(L EU
-1
) the slope for ETX increase of IL- 

6 production rate 
0.011 
(8%) 

– 

S0 IL− 6(ng L- 

1) 
IL-6 concentration at baseline 44.5 

(18%) 
111 (12%) [7%] 

Residual unexplained variability in CV% 
σE. coli proportional residual error of 

bacteria 
66.5 (5%) [11%] 

σETX proportional residual error of 
ETX 

96 (9%) [16%] 

σTNF proportional residual error of 
TNF 

70 (4%) [14%] 

σIL− 6 proportional residual error of 
IL-6 

30 (0.1%) [15%] 

BSV: between subject variability. 
RSE: relative standard error. 

* the value was fixed from the previous run for model stability issue. 
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improve the model fit significantly (Δ OFV = − 0.403). The section 
below describes the ETX-cytokines relationships adapted from Thor-
sted’s model. 

TNF changes were driven by the ETX levels using a stimulatory 
sigmoidal Emax model; 

d(TNF)
dt

= Rin,TNF⋅
(

1 +
Emax1⋅Cγ

ETX

Cγ
50 + Cγ

ETX

)

− kTNF⋅TNF

; TNF0 = S0TNF

(6)  

where TNF is the TNF concentration, Rin,TNF is the zero-order produc-
tion rate of TNF, Emax1 is the maximum stimulatory effect of ETX on TNF 
production rate, C50 is the ETX concentration producing half of the 
maximum effect on TNF, γ is the sigmoidicity factor, kTNF is the first- 
order elimination rate constant of TNF, and S0TNF is TNF concentra-
tion at baseline. 

Rin,TNF and kTNF were derived as the following; 

Rin,TNF = S0TNF⋅ kTNF (7)  

kTNF =
1

MTTTNF
(8)  

where MTTTNF is the mean transit time for TNF in plasma. 
The host develops tolerance to ETX as a result of a decay in the po-

tency of ETX to stimulate TNF. This was implemented in the model by 
allowing C50 to increase over time as a function of ETX levels using a 
stimulatory Emax model. This implementation was originally developed 
based on a wide range of ETX exposure profiles, which increases the 
likelihood of adequate predictions. A delay in tolerance development 
was captured by having two transit compartments; 

d(C50(1))

dt
= Rin,C50 ⋅

(

1 +
Emax2⋅CETX

TC50 + CETX

)

− kC50 ⋅C50(1)

; C50(1)0
= C500

(9)  

d(C50(2)
)

dt
= kC50 ⋅C50(1) − kC50 ⋅C50(2)

; C50(2)0
= C500

(10)  

d(C50)

dt
= kC50 ⋅C50(2) − kC50 ⋅C50

; C50(3)0
= C500

(11)  

where C50(n) is the nth transit compartment to describe the increase of 
C50 due to tolerance, Rin,C50 is the zero-order input rate constant of C50,

Emax2 the maximum stimulatory effect of ETX on C50 input rate, TC50 is 
the ETX concentration resulting in half of the maximum increase rate of 
C50, kC50 is the first-order rate constant of transiting between the C50 
compartments , C500 is the baseline C50. 

Rin,C50 , kC50 were derived as the following; 

Rin,C50 = C500 ⋅kC50 (12)  

kC50 =
3

MTTC50

(13) 

where MTTC50 is the mean transit time for C50. 
For IL-6, both TNF and ETX were proposed to stimulate its produc-

tion using a linear effect model through effect functions (EFFTNF,

EFFETX), as the following; 

EFFTNF = Eslp,TNF ⋅
(

TNF
S0, TNF

− 1
)

(14)  

EFFETX = Eslp,ETX⋅CETX (15)  

where Eslp,TNF, Eslp,ETX are the slopes for TNF and ETX increase of IL-6 
production rate. 

The delayed increase in IL-6 levels was described by four transit 

compartments; 

d
(
IL -6(1)

)

dt
= Rin,IL -6⋅ (1 + EFFTNF + EFFETX) − kIL -6⋅IL -6(1)

; IL -6(1)0
= S0IL -6

(16)  

d
(
IL -6(2)

)

dt
= kIL− 6⋅IL -6 (1) − kIL− 6⋅IL -6(2)

; IL -6(2)0 = S0IL -6
(17)  

d
(
IL-6(3)

)

dt
= kIL-6⋅IL-6(2) − kIL− 6⋅IL-6(3)

; IL-6(3)0
= S0IL-6

(18)  

d
(
IL-6(4)

)

dt
= kIL− 6⋅IL-6(3) − kIL− 6⋅IL-6(4)

; IL-6(4)0
= S0IL− 6

(19)  

d(IL-6)
dt

= kIL-6⋅IL-6(4) − kIL-6⋅IL -6

; IL-6(5)0
= S0IL-6

(20)  

where IL-6 is the concentration of IL-6, Rin,IL− 6 is the zero-order pro-
duction rate of IL-6, kIL− 6 is the first-order rate constant for transiting 
between the different IL-6 transit compartments, S0IL− 6 is the baseline 
concentration of IL-6. 

Rin,IL− 6, and kIL− 6 were derived as the following; 

Rin,IL-6 = S0IL-6⋅kIL-6 (21)  

kIL− 6 =
5

MTTIL− 6
(22)  

where MTTIL-6 is the mean transit time for IL-6. 

3.2. Modelling results and diagnostics 

The final estimates of model parameters and the attached un-
certainties are reported in Table 2. pcVPCs, and individual plots of 
model fits (Figs. 2, 3, and 2s) for the different DVs showed an overall 
good capacity of the model to describe the data. The peak levels of TNF 
and the terminal concentrations of ETX were somewhat less well pre-
dicted (being slightly underpredicted and overpredicted, respectively). 

3.3. Model external evaluation 

The TNF, and IL-6 profiles were simulated over four hours imple-
menting the reported dose up-titration for the external data (Table 1). To 
account for the lower body size of the external data study population, 
allometric scaling based on the body weight was implemented using the 
following equation; 

θnewpop, scaled = θref ⋅
(

Wtnewpop,scaled

Wtref

)a

(23) 

where θnewpop,scaled is the scaled parameter for the new population, θref 

is the typical parameter estimate in the reference population used for the 
current model development, Wtnewpop,scaled is the median body weight in 
the external data (fixed to the median of 15 kg due to lack of individual 
data), Wtref is the median body weight in the reference population, a is 
the allometric exponent which was set to 0.25 for physiological times, 
0.75 for clearance processes, or 1 for body size parameters as reported in 
the literature [32–34]. Table 3 summarises the scaled parameters with 
the corresponding scaling exponent. 

The simulations results are presented in Fig. 4 as overlay plots of the 
simulated model profiles and the literature data for TNF and IL-6. The 
plots showed an overall good description of the data which reflects the 
model’s ability to capture the kinetics of cytokines under different 
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bacterial exposure scenarios. 

3.4. Model simulations for different bacterial exposure scenarios 

Model simulations revealed different cytokine profiles for the 
different exposure scenarios given the same total bacterial burden 
(Fig. 5). Exposure to the lowest initial bacterial load of 0.25 CFU ×
108h− 1 (i.e. 5%, 15%, then 80% of the total bacterial dose per h) 

triggered the lowest cytokine release (in terms of Cmax and AUC). The 
highest cytokine release was observed with exposure to the highest 
initial bacterial burden of 4 CFU × 108h− 1 (80%, 15%, then 5% of the 
total bacterial dose per h). 

4. Discussion 

In the current analysis, we present a mathematical modelling 

Fig. 2. Prediction corrected visual predictive checks of the different observed variables; panel (A); blood bacterial count, (B) Endotoxin, (C) TNF, (D) IL-6. The grey 
solid lines represent the median of the observed concentrations, and the blue dashed lines represent the median of simulated concentrations. The grey horizontal solid 
lines represent the lower limit of quantification. The shaded blue areas correspond to the 95% confidence interval for the simulated median. Panels (A), (C), and (D) 
have two subplots; 1 for data from studies (2, 3), and subplot 2 for study 1 with different time scales to account for observations preceded by a 24-h saline infusion 
(Table 1s). BLOQ; below the limit of quantification. 
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framework that characterises the cytokine kinetics triggered by expo-
sure to intact live E. coli as observed in a porcine model of sepsis. The 
model quantitively captures the time courses of E. coli and the bacterial 

release of ETX, and predicts the kinetics of TNF, and IL-6. The model was 
applied to external literature data [28–30] from piglets receiving live E. 
coli infusions using a different experimental set-up. The model provided 
a good prediction of the cytokine kinetics for the external data. More-
over, the model was applied in simulations to explore cytokine kinetics 
at different bacterial exposure scenarios, exemplifying that it is not only 
the total bacterial burden that drives the host response, but also the rate 
of exposure. The similarity between pigs, and humans in terms of 
physiology and the components of innate immune response allows 
better chances for the translation of these results to clinical research 
[19,35]. 

The bacterial dynamics were characterised by a one-compartment 
model with linear elimination (Fig. 1). The current data did not sup-
port the estimation of any bacterial multiplication in the bloodstream. 
This is in line with the lack of detectable bacteria in the blood for most of 
the animals within 30 min after stopping the bacterial infusion (most of 
the observations were BLOQ). This result also aligns with a recent re-
view [36] on the pathways of bacterial elimination from the blood-
stream, that elaborated that free bacteria cannot proliferate in the 

Fig. 3. Individual model fit for a sample of the study population (ID 34:37). The grey dots represent the observations, solid dark blue lines represent the individual 
model prediction (IPRED), dashed light blue lines represent the population model prediction (PRED), the dotted horizontal dotted black line represents the lower 
limit of quantification (LLOQ), while the blue bands used to highlight data below the limit of quantification (BLOQ). For ETX subplots, the observations, and model 
predictions at time point zero were BLOQ and were set to half of LLOQ for visualisation. 

Table 3 
Parameter scaling for external model evaluation.  

Parameter Description Unit Exponent Scaled 
parameter 

CL bacterial clearance L h− 1 0.75 101.8 
V1 volume of distribution for 

bacteria 
L 1 3.7 

Vmax,ETX the maximum ETX 
elimination rate 

EU 
h− 1 

0.75 294,004 

V2 volume of distribution for 
ETX 

L 1 17.8 

MTTC50 ,TNF mean transit time for 
C50,TNF 

h 0.25 5.6 

MTTTNF mean transit time for TNF h 0.25 1.14 
MTTIL-6 mean transit time for IL-6 in 

plasma 
h 0.25 1.28  

Fig. 4. Overlay plots of model predictions and external literature data. Solid black lines represent model predictions for a typical individual, and blue, green and 
violet lines with different point and line shapes represent the observed means from the different studies. The attached bands represent the published 95% confidence 
interval for the means. 
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bloodstream. Upon friction with the blood cells and vessel walls, the 
bacterial surface gains triboelectric charge which hinders the bacterial 
metabolic exchange needed for proliferation. The rapid bacterial elim-
ination from the bloodstream may be attributed to bacterial killing at the 
erythrocyte surface by oxidation. The dead bacteria are then decom-
posed and digested in the liver and spleen [36]. In septic patients, the 
infection usually has a local infectious focus where the bacteria might 
have the capacity to replicate before they disseminate into the blood 
stream. Although the experimental design used here does not allow for 
such a replication rate to be estimated, the prediction of blood bacterial 
kinetics may be performed according to assumed input rates (Fig. 2 (A1, 
A2), 3). 

The bacterial release of ETX is linked to the disruption of outer 
membrane of intact bacteria due to death, which could be mediated by 
the immune system [37]. This represents a crucial step in the activation 
of TLR-4 which in turn provokes a downstream cascade that ultimately 
leads to the release of inflammatory cytokines [38]. The bacterial 
elimination was here linked to ETX release by an estimated scaling 
factor (Fig. 1), which indicates the ETX release per bacterial CFU. ETX is 
considered a potent immunostimulant heavily involved in the patho-
genesis and virulence of Gram-negative bacteria. Different experimental 
studies in rodents indicated the liver as the principal reticuloendothelial 
clearance site of ETX with less contributions from spleen, and kidneys 
[39–40]. The kinetics of ETX was described by a one-compartment 
model with saturable (non-linear) elimination. The wide sampling 
time interval (every 2 h) for ETX in the present data limited the possi-
bility of capturing any early rapid phase of distribution. 

Although endotoxemia is an often used experimental model, its 
ability to adequately reflect the complex and heterogenic condition of 
sepsis has been questioned [18–19]. Moreover, several adjunctive 
treatment agents (e.g. immunomodulators) that worked efficiently in 
the endotoxemia model, failed to show clinical efficacy when tested in 
septic patients [41–42]. This could be due to the use of ETX as the only 
PAMP triggering the host response, and lack of clear staging of sepsis 
severity in animal models [43]. However, also other factors might 

contribute to the failure of these clinical trials, for instance overlooking 
the variable ETX-liberating effect of the different antibiotics used and 
the timing of the antibiotic administrations [44–45]. To contribute to 
the understanding of the use of endotoxemia as a model for sepsis, we 
here explored whether the cytokine response would be different when 
triggered by intact bacteria rather than ETX exposure. 

The model successfully described the cytokine kinetics without a 
need to update the ETX-cytokines model structure, and without major 
changes in parameter estimates. This aligns with the accumulating ev-
idence that ETX is the main virulent factor driving the inflammatory 
response to Gram-negative bacteria [1,38,46–47]. It is worth to note 
that the potency of ETX as the primary driver of the inflammatory 
response, does not negate the inflammatory properties of other bacterial 
components. However, it has been shown previously that ETX produces 
similar haemodynamic and clinical changes as live E. coli in conscious 
pigs [48]. 

In the present model, the change in TNF production rate was driven 
by the ETX concentration–time course (Fig. 1). For most of the animals a 
peak concentration of TNF was observed one hour after starting the 
three-hour bacterial infusion (Fig. 2 (C1, C2), and 3). This was followed 
by a gradual decline towards the baseline regardless of the continuation 
of the bacterial infusion, indicating the predominance of the anti- 
inflammatory response. This declining pro-inflammatory component 
was characterised in the model as development of tolerance to ETX, 
implemented by allowing the ETX potency to decay with ETX exposure. 
For IL-6, the delay in the peak plasma concentration was described in the 
model by using a set of transit compartments with a mean delay time of 
1.46 h (Fig. 2 (D1, D2), and 3). The stimulation of IL-6 production was 
driven by the time course of both ETX, and TNF with a higher stimu-
latory effect from TNF. Previously, results of human and animal studies 
demonstrated that TNF is an important stimulus to the induction of 
circulating IL-6 during sepsis [49–50]. The ETX contribution to the 
stimulation of IL-6 in the present model could be a surrogate to the 
impact other unmeasured mediators. 

The role of ETX in invoking the pro-inflammatory cytokines, and 

Fig. 5. Model predictions for the time course of blood bacterial count, endotoxin, tolerance (C50), ETX/C50 ratio, TNF, and IL-6 under different simulated bacterial 
exposure scenarios with a total administered dose of 5 × 108 CFU. Red lines represent the constant bacterial infusion scenario for 3 h (solid red line) or 6 h (dashed 
dark red). Blue lines represent the 3-hour bacterial infusion changed every hour. Blue colour ranged from the darkest blue indicating the highest initial bacterial 
exposure to the lightest blue indicating the lowest initial bacterial exposure. The legend depicts the changing infusion dose as a percentage of the total dose. 
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thus in the pathogenesis of sepsis, is supported by several studies on 
antibiotic-induced release of ETX [20,41,44–45]. In these studies, 
administration of antibiotics acting on the cell wall of Gram-negative 
bacteria, particularly penicillin-binding protein 3 inhibitors, led to a 
substantial increase of plasma ETX concentration and a profound in-
flammatory response [51]. In contrary, adding an anti-ETX agent in 
endotoxemia models, like polymyxin B which binds to ETX, has been 
linked to lower TNF levels and reduced mortality compared to untreated 
controls [41,52]. Several factors impact the antibiotic-induced release of 
ETX including the mechanism of action, the drug exposure profile, and 
the timing of receiving the antibiotic relative to sepsis progression. This 
highlights the importance of considering the impact of antibiotic- 
induced ETX release when testing the efficacy of new therapeutic 
agents [41]. 

The model described the cytokine kinetics in bacterial exposure 
scenarios beyond the one used for model development, as demonstrated 
when applied to external data (Fig. 4). The literature data were obtained 
in piglets receiving bacterial infusions of increasing amounts with a total 
dose of 16 × 108 CFU. This dose is about three times higher than the 
average bacterial dose in the data used for model development. Despite 
the discrepancies in the study designs, bacterial strains, and animal body 
sizes (summarised in Table 1), the model had the ability to adequately 
predict the cytokine kinetics. This shows the model to be able to predict 
cytokine kinetics in other experimental settings than those the original 
model was developed from, increasing its potential to translate to other 
scenarios. 

Previous studies have experimentally explored different modes of 
bacteria or ETX administration, e.g. according to constant [53], 
increasing [54], or decreasing [55] infusion rates. This raised the in-
terest to explore the sensitivity of the host response towards differences 
in the bacterial input rate given the same total bacterial load (here set to 
5 × 108 CFU, i.e. same total dose used in the current data). Similar 
cytokine peak times were predicted across the different scenarios except 
for one scenario (i.e. 5%, 15%, then 80% scenario; the lightest blue) 
(Fig. 5). This discrepancy is related to the development of ETX tolerance. 
In cases with a high initial ETX-exposure, the tolerance is predicted to 
kick-in already before the ETX peak is obtained. The C50 then highly 
exceeds the ETX exposure by the end of bacterial infusion, and thus the 
stimulatory effect of the ETX on the TNF production is close to 0 by the 
time of 3 h (ETX/C50 ratio close to zero). On the contrary, with a low 
initial dose (the 5%, 15%, 80% scenario), the tolerance is less pro-
nounced in the start, and the ETX exposure is still sufficiently high (ETX/ 
C50 ratio) by the end of 3 h to stimulate the TNF production. However, 
the total TNF production will also be the lowest in this case, as the 
tolerance has already been initiated when the highest ETX exposure is 
reached. These results elaborate that it is not only the total bacterial 
burden that drives the host response, but also the bacterial exposure 
profile (i.e. the bacterial time course). The application of the model to 
this unobserved scenario highlights how the model could be used to 
explore “what-if” scenarios beyond the data used for model 
development. 

In the present analysis, we investigated the kinetics of two pro- 
inflammatory cytokines as part of the host response to exposure to 
intact bacteria. Although no significant difference in the host response to 
E. coli exposure was noticed compared to ETX exposure, the results are 
limited to these two cytokines. The ETX disposition model could be 
updated upon availability of more intense samples of ETX with the po-
tential to describe a two-compartment distribution profile. The model-
ling framework may be further expanded to include also other immune 
response components. In the current model, ETX tolerance was imple-
mented by allowing the potency of ETX to stimulate TNF to be reduced 
as a function of ETX exposure. Anti-inflammatory cytokines may have a 
role in the observed tolerance development by opposing the inflamma-
tory response. 

The present model quantitively described and predicted the cytokine 
kinetics triggered by E. coli exposure using data from a porcine sepsis 

model. The model could be a starting point for future translational 
research on the immune response in sepsis by accounting for parameter 
differences among species using allometric scaling. Furthermore, it 
could layout the basis for potential mechanism-based models predicting 
other experimental scenarios than those the original model was devel-
oped from. Including data on the impact of antibiotics or other types of 
interventions on the model components would be most valuable to 
quantitively characterise the host-pathogen-drug interaction which 
could help optimise therapy in sepsis. The model could also be applied in 
drug development research on immunomodulators use in sepsis. 
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