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A B S T R A C T

Modern decision support systems need to be connected online to equipment so that the large amount of data
available can be used to guide the decisions of shop floor operators, making full use of the potential of industrial
manufacturing systems. This paper investigates a novel optimization and data analytic method to implement
such a decision support system, based on heuristic generation using genetic programming and simulation-based
optimization running on a digital twin. Such a digital-twin-based decision support system allows the proactively
searching of the best attribute combinations to be used in a data-driven composite dispatching rule for the
short-term corrective maintenance task prioritization. Both the job (e.g., bottlenecks) and operator priorities use
multiple criteria, including competence, utilization, operator walking distances on the shop floor, bottlenecks,
work-in-process, and parallel resource availability. The data-driven composite dispatching rules are evaluated
using a digital twin, built for a real-world machining line, which simulates the effects of decisions regarding
disruptions. Experimental results show improved productivity because of using the composite dispatching rules
generated by such heuristic generation method compared to the priority dispatching rules based on similar
attributes and methods. The improvement is more pronounced when the number of operators is reduced. This
paper thus offers new insights about how shop floor data can be transformed into useful knowledge with a
digital-twin-based decision support system to enhance resource efficiency.
. Introduction

Industry 4.0 refers to the much anticipated fourth industrial revolu-
ion where the aim is to create intelligent factories to cope with indi-
idualized products with a short lead time to market and high produc-
ivity. Challenges such as shortened product life cycles, unpredictable
ustomer demands, fluctuating production volumes, and shifting bot-
lenecks make it difficult to achieve high overall equipment efficiency
OEE), which has been noted as rather low in many companies [1].
oor maintenance prioritization may also extend production downtime
ausing lower OEE, reduced productivity, and poor utilization of the
llocated maintenance labor and resources [2]. Consequently, there is
reat potential to improve efficiency if manufacturing companies can
eact more flexibly and swiftly to current conditions, for example, by
rioritizing the correct maintenance action, especially on the bottleneck
tations. Li et al. [3] argue that further research is needed regarding
aintenance scheduling in the short term (e.g., production control),

s well as regarding priority between multiple bottlenecks. Bottlenecks
re one of the main constraints on productivity [4]. In short-term
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maintenance priority, the main focus is on process control [5] and can
be described as the operational period where a distribution fit is not
suitable due to lack of data. As pointed out by Li and Ni [6], both the
planning for maintenance opportunities and bottleneck detection could
influence the decisions relating to short-term maintenance priority. In
short-term maintenance priority regarding corrective maintenance, the
bottleneck priority is of utmost importance as a high priority on the
bottleneck stations will result in higher productivity.

Given that labor costs have increased disproportionately to produc-
tivity and may even constitute as much as 80% of the total maintenance
cost, operator allocation has also gained increasing attention [7,8]. Cur-
rently, operative maintenance decisions are often based largely on the
operator’s experience, in spite of substantial research in this [1]. After
all, humans are flexible, are able to adapt to different situations [9],
and maybe good problem solvers who can grasp large amounts of
data [10]. However, during running production, they are not able to
process large amounts of information immediately and take decisions
from a holistic system point of view. Hence, a decision support system
(DSS) using data directly from the shopfloor is needed to support
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Nomenclature

List of Abbreviations

𝛥𝜎d the percentage difference of shift utilization
delta

𝛥TH(%) the percentage difference of throughput per
hour

AM autonomous maintenance
APBA active period bottleneck attribute
ARIMA auto-regressive integrated moving average
ARWP assumed real-world priority
CDR composite dispatching
CPS cyber–physical systems
DA distance attribute
DES discrete-event simulation
DSS decision support system
DT digital twin
DT-DSS digital-twin-based decision support system
E expert operator
FIFO first in first out
GP genetic programming
GPSO-HGM heuristic generation method using genetic

programming, and simulation-based opti-
mization

HGM heuristic generation method
I intermediate operator
J_ job priority rules
J_FIFO first in first out
J_HPMA highest parallel momentary availability
J_HWA highest work-in-process after machine first
J_HWB highest work-in-process before machine

first
J_LIFO last in first out
J_LAPB least steady state active period bottleneck

first
J_LMB least momentary bottleneck first
J_LPMA lowest parallel momentary availability
J_LWA lowest work-in-process after machine first
J_LWB lowest work-in-process before machine first
J_MAPB most steady state active period bottleneck

first
J_MMB most momentary bottleneck first
J_RAND random
KPI key performance indicator
MBA momentary bottleneck attribute
MES manufacturing execution system
N novice operator
n number of operators
NIST National Institute of Standards and Technol-

ogy
O_ operator priority rules
O_HCOM highest competence first
O_HDIS highest distance first
O_HUT highest utilization first
O_LCOM lowest competence first

the short-term maintenance priority. Methods that detect bottlenecks
by collecting data directly from the manufacturing systems, without
using any analytical or simulation-based method, are referred to as
2

O_LDIS lowest distance first
O_LUT lowest utilization first
O_RAND random
OA order attribute
OEE overall equipment efficiency
PA performance attribute
PDR priority dispatching rule
PM professional maintenance
PMAA parallel momentary availability attribute
SO simulation-based optimization
TH throughput per hour
TPM turning point method
UA utilization attribute
W1 work area 1
W1_2_3_4 work area 1, 2, 3, & 4
W1_4 work area 1 & 4
W2 work area 2
W2_3 work area 2 & 3
W3 work area 3
W4 work area 4
W5 work area 5
W_ALL work area 1–5
WAA work-in-process after machine attribute
WBA work-in-process before machine attribute
WIP work-in-process

data-driven methods [11]. Using data-driven methods for short-term
maintenance priority has been proven efficient [12], but all of these
methods have their prioritizations pre-defined, without using any op-
timization methods, which may limit their efficiency in a dynamically
changing production environment.

Short-term maintenance priority with regard to corrective main-
tenance (bottleneck priority), is also affected by the operators cho-
sen to do the task. Several researchers have noted that the time to
perform a job depends on the ability of the operator, but a rather
common simplification is that any operators may possess the same
competence/performance. However, the competence/performance of
an operator may have a considerable effect on the throughput of a
system [7,13–15]. Operators may also master one or several types of
jobs, in which case they are defined as multi-skilled (cross-trained)
operators. Multi-skilled operators may be one of the most important
factors in allocating operators, including the balancing of their work-
loads; the effect on the productivity of different competence levels has
been investigated by several authors [7,13,15,16]. Furthermore, the
downtime of a machine which in turn consists of the waiting time for
an operator, is dependent on both the time of noticing the machine
failure and the distance to the failed machine.

Hence, based on the above discussions, there are two types of
short-term shopfloor decisions related to corrective maintenance pri-
oritizations: (1) job prioritization, when a single operator is available,
and the right job needs to be prioritized, and (2) operator prioritization,
when a single job requires attention and the right operator needs
to be prioritized. In order to handle both ‘‘job priority’’, ‘‘operator
priority’’ and adapt to a dynamically changing production environ-
ment, a Digital-Twin-based Decision Support System (DT-DSS) can be
developed to address this problem. Hence, the aim of this paper is
to propose such a DT-DSS for conducting short-term corrective main-
tenance task prioritization as well as illuminating how different job
and operator priorities affect the overall productivity of a production
system. A technical novelty embedded in such a DT-DSS is the heuris-

tic generation method (HGM) using genetic programming (GP), and
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simulation-based optimization (SO), denoted as GPSO-HGM hereafter,
to proactively search for the best attribute combinations to be used in
a data-driven composite dispatching rule (CDR) for the short-term cor-
rective maintenance task prioritization. The best attribute combinations
are determined for jobs and operators based on multiple criteria as well
as the attributes and methods identified from the literature, include
competence, utilization, operator walking distances on the shop floor,
bottlenecks, work-in-process (WIP), and parallel resource availability,
as will be described in Section 2. To our best knowledge, the simulta-
neous job and operator priority are not studied in the literature but is
deemed to be important from a practical point of view. Moreover, while
there are many research studies that are based on small or theoretical
production systems, complexities, such as work areas, various operator
tasks and different constraints, are usually not considered. Another
practical gap is that algorithms or rules in the research community do
not adapt to future scenarios since they are pre-defined and may fall
short to be applied when the reality changes.

A real-world application case study has been performed to evaluate
the data-driven CDRs generated by the GPSO-HGM. A discrete-event
simulation model has been built to simulate and evaluate the decisions
made regarding disturbances on this real-world machining line. The
experimental study in Section 6 of this real-world production system
shows that the CDRs outperform the priority dispatching rules (PDRs),
based on similar attributes and methods used in GPSO-HGM identified
from literature in Section 2, for the short-term reactive maintenance
priority. The experimental study produced clear results and also pro-
vided insights into the importance of an optimal prioritization of the
short-term reactive maintenance tasks among machine operators, espe-
cially when the operators are reduced, e.g., due to high labor costs.
Another contribution in Section 6 is the knowledge acquired when
analyzing the attributes selected in the generated heuristics.

The rest of the paper is organized as follows: In Section 2 the
literature of short-term corrective maintenance prioritization, different
bottleneck detection methods, and data-driven methods are reviewed.
Section 3 introduces the DT-DSS. The technique of using GP run on
SO data to generate the data-driven CDRs is described in Section 4.
Section 5 reveals the details of the real-world machining line and its
simulation model used in the application study. Results and analysis
of the experiments conducted with the simulation model are provided
in Section 6. Finally, conclusions and future research are outlined in
Section 7.

2. Literature review

Wedel et al. [17] state that maintenance prioritization uses many of
the short-term and long-term bottleneck detection methods. The term
‘‘bottleneck’’ is a matter of definition, and there are a vast number of
bottleneck detection methods and definitions. Common definitions use
buffer waiting time, starvation/blockage [4], queue length or produc-
tion rate [18,19]. Hopp and Spearman [20] define the bottleneck of a
system as the station with the highest utilization. Shifting bottleneck
detection, based on the theory of constraints [21,22] and a similar
concept in [23], defines the machine with the current longest, unin-
terrupted average active period as the momentary bottleneck and the
shifting bottleneck as the sum of sole and shifting active periods [24].

Steady-state bottleneck methods, such as active period bottleneck
[25] and average shifting bottleneck [24], make use of long-term
historical data about previous events. An example of the use of short-
term data in combination with real-time data is the identification of
momentary bottlenecks [24]. Yang et al. [26] proposed another method
using short-term data (one day) to identify short-term bottlenecks.
Gopalakrishnan et al. [27] demonstrated that productivity increased
by approximately 5% when the momentary bottleneck was identified as
the short-term maintenance priority. Another simulation study of short-
term bottleneck prioritization showed a throughput increase of up to

4.5% compared to a Priority Dispatching Rule (PDR), namely the first

3

Fig. 1. Active periods and WIP.

come first served approach [17]. Li et al. [5] proposed a bottleneck
control strategy that resulted in more efficient reactive maintenance
task prioritization in terms of throughput. They also showed that
initial buffer adjustments (e.g., after each shift) could further improve
productivity. Some authors notice that none of the known bottleneck
detection methods are suitable for complex machining lines character-
ized by parallel machines and presented three new bottleneck detection
methods based on short-term, real-time, and near-future bottlenecks
and showed a potential OEE increase when these are combined for
short-term bottleneck prioritization [28]. The short-term method cal-
culates the possible production loss (number of parts) caused by the
bottleneck machine. The real-time bottleneck is defined as the machine
that generates the highest loss of the sum of the cycle times of the idle
machines. The near-future bottleneck is defined as the machine with
the shortest duration until it either gets an empty downstream buffer
or a full upstream buffer. Yang et al. [2] and Subramaniyan et al. [12]
have pointed out that buffer levels may also be relevant for prioritizing
maintenance on the line. Consider the example presented in Fig. 1,
where the recent states of machines M1, M2, and M3 in a system with
three successive production stages are plotted over time.

At time t, we have to decide which machine to prioritize. Based
on bottleneck information, the priority would be in the order M1, M2,
M3, since both the active period bottleneck and the average shifting
bottleneck methods indicate the same order. However, prioritizing the
failures of either M1 or M2 would not improve the system performance.
Machine M1 does not have any available work orders, for the buffer
upstream is empty and the machine is blocked by the full buffer down-
stream. Machine M2 has many work orders in the buffer upstream,
but it is blocked by the full buffer downstream. Therefore, the optimal
maintenance priority in this situation would be M3, even though it is
not recognized as a bottleneck machine by the bottleneck methods.

Bottleneck analyzes provide information about the previous state
of the machines, while WIP provides information about upcoming
production and is, in a sense, a forecast of possible work orders in the
buffer upstream and space in the buffer downstream. Roser et al. [29]
combined the active period method with data related to WIP and buffer
capacity to predict an upcoming bottleneck. Even though simulation
has been used to test their methods, they aimed for a real-world
implementation that would make the methods data-driven [28].

Methods that detect bottlenecks by collecting data directly from
the manufacturing systems, without using any analytical or simulation-
based method, are referred to as data-driven methods [11]. The Arrow
method [19,30,31] identifies the bottleneck location based on blocking
and starvation probabilities. A similar method that also uses blocking
and starvation is the turning point method (TPM) developed in [4,5].
Their definition of a bottleneck is when the trend changes from the
blockage being larger than starvation to the reverse. The TPM was also
extended in [19] to include systems of decoupling buffers, enabling the
identification of bottlenecks in different segments of a production line.

Subramaniyan et al. [12] implemented a data-driven bottleneck
detection method based on shifting bottleneck detection [24] and

validated this based on real-world manufacturing execution system
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(MES) data. Subramaniyan et al. [32] extend their previous work to
include diagnostic information on the proportion of different active
states of the machines which is particularly important in order to find
out the root causes of the bottlenecks. Later, they also integrated he
data-driven active period technique with the auto-regressive integrated
moving average (ARIMA) method to predict bottlenecks [33].

As commented in [34], ‘‘previous research efforts on addressing
the bottlenecks primarily emphasize on the analysis of data from the
physical job-shop, but with little connection and convergence with
its virtual models and simulated data’’, DT is the technology that
allows the convergence between virtual and physical spaces to be
achieved. Despite DT is often described as one of the most promising
enabling technologies for realizing smart manufacturing and Industry
4.0 [35,36] as well as in supporting digital transformation and decision-
making in multiple industries [37], it has multifarious definitions in
the literature. The National Institute of Standards and Technology
(NIST) defines a DT as the electronic/digital representation of a real-
world entity, concept or notion, either physical or perceived [38].
While DTs and Cyber–Physical Systems (CPS) share the same essential
concepts of intensive cyber–physical connections, real-time interaction,
and organization integration, CPS and DTs are not identical from many
perspectives, including their origin, development, engineering prac-
tices, cyber–physical mapping, and core elements [39]. Some authors
define DT as the cyber part of the CPS — a virtual representation/model
that interacts with the physical system throughout its lifecycle [40].
While both CPS and DT form closed loops between the cyber/digital
and physical worlds based on real-time data analysis, decision-making,
and precise execution, by virtue of its virtual models, a DT provides a
more intuitive and effective means of system improvement [39]. Specif-
ically, DT allows the physical environment to be reconstructed in the
virtual space to allow for simulations, forecasts, optimizations and/or
decision-making which will impact the physical system of interest [37].
In terms of DT-based optimization and decision support, recent related
works include dynamic job-shop scheduling and re-scheduling [34],
iterative decision optimization for highly dynamic production logis-
tics [41] and integrating a DT into a DSS for improving the order
management process of manufacturing systems [42]. A recent review of
implementing DT through Discrete-Event Simulation (DES) and Agent-
Based Simulation for decision support of production processes can be
found in [43].

In summary, the common feature of the reviewed literature shows
that all of them use pre-defined rules or methods to identify and
prioritize the bottlenecks. Different attributes and methods have been
identified as important, e.g., shifting bottleneck detection method, WIP,
buffers, parallel resources, blocking, starvation, cycle times. Many of
these methods may perform well on a certain set of problems but are
not likely to perform well over a range of different production systems
or if the setting changes. In addition, by relying only on analysis
data from the physical shopfloor without using any virtual models for
performing prediction and optimization, these methods also fall short of
performing prescriptive analytics. To overcome these issues, a DT-DSS
for short-term maintenance prioritization is proposed in Section 3 and
its GP and SO components embedded in the GPSO-HGM are described
in Section 4.

3. Digital-twin-based maintenance prioritization

In order to adapt to a dynamically changing reality at the pro-
duction shopfloor the concept of DT [44] may be used to address
short-term maintenance priority. As discussed in Section 2, there are
many definitions of what a DT is. In order not to simply rename
technology that has existed for many years [45], e.g., ‘‘digital model’’
there should be a bi-directional data flow between the physical object
and the digital object [46]. Hence, in the context of the current paper,
a DT is defined as ‘‘a digital representation of an existing physical
object or system where an automatic real-time (or near real-time) bi-
directional data flow is used between the virtual and the physical object
4

or system to enable autonomous decision making or decision support’’.
The virtual entity is of particular importance of a DT and can consist
of one or several simulation models [47]. Discrete event simulation
modeling can represent complex real-world systems in detail, which is
one of its main advantages over other methods. It is also very useful
for communicating details, such as a maintenance priority situation,
because most simulation software includes visual aids. Once a system
has been modeled, simulation allows better predictions of dynamic
behavior [48]. The need for simulation models is increasing in order
to conduct analyzes without disturbing the real-world system and also
allow engineers to analyze and improve future setups of the production
system.

The DT-DSS for short-term maintenance prioritization proposed in
this paper is shown in Fig. 2 where all different parts of the pro-
posed extended five-dimension digital twin [49] exist, i.e., physical
entity, Virtual entity (simulation model), Services (User-interface ap-
plications), data and connections. The simulation model can be used
to capture the real-world status (Digital Shadow) [46] when integrated
with the physical entity, information systems (e.g., manufacturing ex-
ecution system) and other related knowledge. The generative model
(Artificial Intelligence) is used to generate optimal or near-optimal solu-
tions to update the data-driven priority ‘‘on-time’’ which would satisfy
the bi-directional data flow of a DT. The data-driven priority may be a
computer program, dispatching rule, or other types of heuristics.

As a part of the DT-DSS, adaption to a dynamically changing reality
at the production shopfloor is possible. The GPSO-HGM using GP and
SO can address the shortcomings of other data-driven methods, namely
that they usually are pre-defined. The system also supports proactively
exploring and prescribing new optimal or near-optimal prioritizations
based on future scenarios, such as changes in bill of process, layout, or
way of working.

4. Genetic Programming based Simulation-Optimization (GPSO-
HGM)

Instead of deciding which method or priority rule to use for short-
term corrective maintenance priority, as is the case in most of the
reviewed literature, the idea here is to autonomously generate optimal
or near-optimal Composite Dispatching Rule (CDR) using a combina-
tion of genetic programming (GP) [50] and simulation. This approach
is similar in principle to typical simulation-based optimization tasks,
where a simulation model is integrated with metaheuristic methods,
such as a genetic algorithm (GA) [51,52] or Tabu Search [53]. For ex-
ample, GAs have specifically been used to find the optimal combination
of Priority Dispatching Rules (PDRs) [54–56].

4.1. Genetic Algorithms versus Genetic Programming

The basic framework of a GP is very similar to that of a GA, in that
it consists of four steps, namely initialization, selection, reproduction,
and replacement. The initialization step involves generating random
candidate solutions to form the initial population. These solutions are
evaluated with respect to one or more objectives in the selection step to
identify the best solutions, which form the so-called mating pool. The
reproduction step consists of two operations — crossover and mutation.
The purpose of crossover is to recombine the information present in
the ‘‘parents’’ from the mating pool and generate new (and hopefully
better) ‘‘offspring’’ solutions. This is followed by a mutation operation
that introduces possible random alterations in the offspring with the
purpose of preserving/promoting diversity in the population. The new
offspring are evaluated with respect to the objective(s) and form the
next population of solutions in the replacement step. These four steps
are repeated until a termination criterion is met, whether this be the
number of iterations, the algorithmic runtime limit, or the convergence

rate.
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Fig. 2. A DT-DSS for short-term maintenance prioritization.
The main difference between a typical GA and GP is that while
he former only allows search over variable values for a fixed so-
ution structure, GP even allows changes to the structure using a
pecial solution representation that encodes this structure. Thus, GP
s a lot more versatile than GA. One of the most common applica-
ions of GP is symbolic regression. In a typical regression task (such
s polynomial regression), the underlying regression model remains
ixed (say quadratic), and the problem is essential to estimate the
oefficients of this predetermined model. In symbolic regression, the
nderlying model is not assumed but is rather derived from data by
ombining ‘‘symbols’’ from a given function set and terminal set. The
unction set may consist of mathematical operators like ‘+’, ‘-’, ‘*’
nd ‘/’, or functions like ‘sin()’, ‘tanh()’ and ‘exp()’. The terminal set
ay consist of variables, ephemeral random constants, and nullary

unctions/operators. While the typical regression task can be easily
erformed using the statistical method of multiple linear regression,
he symbolic regression problem can only be effectively solved through
P. More generally, GP systems can also be used for automatically
enerating computer programs to perform specified tasks. In that case,
he function set usually includes conditional functions {IF-THEN-ELSE},
oolean functions {AND, OR, NOT}, looping functions {FOR, REPEAT},
hile the terminal set includes external program inputs.

The most common way to represent GP programs is using parse
rees, whose intermediate nodes come from a function set, while all
eaf nodes come from the terminal set. The tree is typically interpreted
rom left to right in depth-first order [57], as shown in the examples
n Fig. 3. Evolving parse tree without constraining GP can sometimes
ead to the problem of bloating, where the tree contains large redundant
arts. Bloating can be avoided by constraining the maximum depth
number of levels), or the maximum length (total number of nodes)
f the generated trees.
5

Fig. 3. Examples of parse trees formed using the function set F = {+, -, *, √} and
the terminal set 𝑇 = {c1, c2, c3, c4}. The parse tree on the left is interpreted as (c1
+ c2) * (c3–c4), and the tree on the right as c1 + √(c3 * c4).

4.2. Solution representation in GPSO-HGM

In the proposed GPSO-HGM approach, the parse trees represent
CDRs for short-term corrective maintenance. They are encoded in the
form of integer strings (genotypes) to simplify the genetic operations
of crossover and mutation. Fig. 4 shows how a given genotype can
be decoded to obtain the parse tree, which is then interpreted as a
CDR (phenotype). In this particular example, the number of levels of
the parse tree is restricted to three levels to avoid the problem of
bloating mentioned above. This is done by constraining the number
of operators that can be used from the function set. As shown in the
figure, the first three bits are reserved for the function set, while the
next four are reserved for the terminal set. The function set consists
of the operators {√, *,/, +, -}, with the constraint that operator ‘√’
cannot be placed in the first bit. The terminal set consists of variables
and constants. Variables can be any of the priority attributes described
later in Section 4.3, but for the purpose of illustration, we assume in
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Fig. 4. Steps in decoding the integer string genotype into a parse tree which is interpreted as a CDR.
Fig. 4 that there are five priority attributes (c1, c2, c3, c4, c5) available.
The terminal ‘const’ is used to symbolically represent a constant value.
Thus, the terminal set is {‘const’, c1, c2, c3, c4, c5}. The number of
possible values that ‘const’ can take needs to be at least the number of
possible terminal nodes. In this instance, there are four constant values,
namely (0.2, 0.4, 0.6, 0.8), since with three levels, the parse tree can
have a maximum of four-terminal nodes. If one or more of the terminals
is ‘const’, the values are taken from the last four bits of the genotype.

Once the genome has been created, it is used to generate a parse
tree by going left to the right in depth-first order using the mapping of
the functions, variables, and constants. The list of functions, variables,
or constants can easily be extended if necessary. The variables need to
be normalized in order to have similar weights when learning begins
and so that the rules can be analyzed more easily afterward. The
constants were pre-specified to between zero and one to match the
variable normalization. When the parse tree has been generated, it is
interpreted into a CDR by going left to right in depth-last order. The
CDR or function (phenotype) is then used as a dispatching rule in the
simulation model when executed. An example of the process of going
from a genotype to a decoded parse tree to finally generate a CDR
(phenotype) is shown in Fig. 4.

Even if an integer representation is used to avoid invalid solutions,
there are still situations where the genome is valid, but the combination
of values in a formula is not. Because some variable values are depen-
dent on the current status of the system, it is possible to end up with
an expression that becomes zero or even negative, which is a problem
when using division or square roots. Therefore, all invalid calculations
need to be returned as invalid solutions. To handle invalid solutions,
all anomalies are logged as performance measures to be minimized. A
value of zero is returned for division by zero; the protected square root

of negative numbers is returned by using absolute values.

6

4.3. Priority attributes for CDRs and PDRs

Some of the most promising data methods identified in the literature
review in Section 2 are the active period bottleneck, momentary bottle-
neck, WIP, buffer capacity, and parallel machines for job prioritization.
Furthermore, the performance of the operators and the time to reach
the machine based on distance and workload balancing (utilization)
are important for the operator prioritization. The GP needs different
variables/attributes in order to generate different CDRs. The list of
attributes could be anything from processing time and capacity to
queue length, but the objective here is to select the vital few attributes
needed for operator and job priority. The list of the priority attributes
proposed to find operator- and job CDRs can be found in Table 1.

All of these attributes were normalized to a value between 0 and
1. The attribute PMAA is used to describe the proportion of parallel
stations currently available, that is, those not setting up or failing.
Stations that are not part of or affecting the main production line are
assumed to have a 100% PMA regardless of status. The dispatching
rules proposed are also based on the criteria identified in Section 2
and, consequently, map well to the CDR attributes proposed. Common
rules, such as ‘‘random’’ and first in first out (FIFO) have also been
added. When applicable, each attribute generates two dispatching rules,
e.g., lowest and highest levels. The following dispatching rules for
prioritizing operators and jobs are proposed in Table 2.

5. Application study on a real-world machining line

In order to evaluate the CDRs generated by the GPSO-HGM, a real-
world case study has been used. A discrete-event simulation model has

been built to simulate and evaluate the decisions made with regard to
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Table 1
List of operator and job priority attributes.

Priority attributes Formula Priority type

Performance (PA) 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑓𝑎𝑐𝑡𝑜𝑟∕𝑁𝑜𝑣𝑖𝑐𝑒 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 Operator
Utilization (UA) (𝑊 𝑜𝑟𝑘𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 +𝑊 𝑎𝑙𝑘𝑖𝑛𝑔 𝑡𝑖𝑚𝑒)∕𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑡𝑖𝑚𝑒 Operator
Distance (DA) 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒∕(𝑋𝑑𝑖𝑚 + 𝑌 𝑑𝑖𝑚) Operator
Order (OA) 𝐹𝐼𝐹𝑂 𝑛𝑢𝑚𝑏𝑒𝑟∕𝑁𝑢𝑚 𝑗𝑜𝑏𝑠 𝑝𝑒𝑛𝑑𝑖𝑛𝑔 Job
Active period bottleneck (APBA) 𝑊 𝑜𝑟𝑘𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 + 𝐹𝑎𝑖𝑙𝑒𝑑 𝑡𝑖𝑚𝑒 + 𝑆𝑒𝑡𝑢𝑝 𝑇 𝑖𝑚𝑒 Job
Momentary bottleneck (MBA) 𝑀𝑜𝑚𝑒𝑛𝑡𝑎𝑟𝑦 𝐵𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘 𝑇 𝑖𝑚𝑒∕𝑃𝑟𝑖𝑚𝑎𝑟𝑦 𝑀𝑜𝑚𝑒𝑛𝑡𝑎𝑟𝑦 𝐵𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘 𝑇 𝑖𝑚𝑒 Job
WIP before machine (WBA) 𝑊 𝐼𝑃 𝑏𝑒𝑓𝑜𝑟𝑒 𝑚𝑎𝑐ℎ𝑖𝑛𝑒∕𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑏𝑒𝑓𝑜𝑟𝑒 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 Job
WIP after machine (WAA) 𝑊 𝐼𝑃 𝑎𝑓𝑡𝑒𝑟 𝑚𝑎𝑐ℎ𝑖𝑛𝑒∕𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑎𝑓𝑡𝑒𝑟 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 Job
Parallel momentary availability (PMAA) 𝑁𝑢𝑚 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑚𝑎𝑐ℎ𝑖𝑛𝑒𝑠∕𝑇 𝑜𝑡𝑎𝑙 𝑛𝑢𝑚 𝑚𝑎𝑐ℎ𝑖𝑛𝑒𝑠 Job
Table 2
List of operator and job priority dispatching rules.

Priority Dispatching Rules (PDRs) Priority type

lowest competence first (O_LCOM) Operator
lowest utilization first (O_LUT) Operator
lowest distance first (O_LDIS) Operator
highest competence first (O_HCOM) Operator
highest utilization first (O_HUT) Operator
highest distance first (O_HDIS) Operator
random (O_RAND) Operator
first in first out (J_FIFO) Job
last in first out (J_LIFO) Job
most steady state active period bottleneck first (J_MAPB) Job
least steady state active period bottleneck first (J_LAPB) Job
most momentary bottleneck first (J_MMB) Job
least momentary bottleneck first (J_LMB) Job
highest WIP before machine first (J_HWB) Job
lowest WIP before machine first (J_LWB) Job
random (J_RAND) Job
lowest WIP after machine first (J_LWA) Job
highest WIP after machine first (J_HWA) Job
lowest parallel momentary availability (J_LPMA) Job
highest parallel momentary availability (J_HPMA) Job

disturbances on this real-world machining line. Additional details of
the real production system and its simulation model are provided in
the next sub-sections.

5.1. The production system

The real-world production system selected is a machining line in
the automotive industry. It has a high production quantity with low
product variety, manufacturing tens of thousands of parts every year
in a two-shift production schedule. There are three different areas in
the production line, namely, rough machining, fine machining, and
inspection. At the start of the line, manual work is involved in packing
and loading parts onto the production line, but the rest of the line is
semi-automated. One cell, consisting of two or more resources from one
or more production stages, uses gantry robots that load and unload the
resources for milling, drilling, grinding, and washing. The machines are
arranged in sequence in the flow shop production line, also referred to
as a product-oriented layout.

Preventive maintenance activities are divided into either profes-
sional maintenance (PM) or autonomous maintenance (AM) proce-
dures. The engineers and technicians of the maintenance department
carry out the PM activities for four hours once a week. The AM
activities occur at regular intervals and are carried out by the shop
floor operators during the workweek. In this sense, the preventive
maintenance tasks are calendar-based while corrective maintenance
tasks in response to such things as tool breakage are handled by the
operators after receiving an alarm on their handheld phones.

Currently, production personnel on the shop floor (operators and
shift leaders) decide which of the operators’ tasks to prioritize (failures,
tool changes, quality controls, and material handling). Given the diffi-
culty of grasping all the information, their decisions are not made with
the overall performance of the line in mind. As can be seen in Fig. 5
7

which depicts production flow and floor areas of the studied system,
the line is currently divided into five work areas with usually seven
operators on duty per shift, covering the eight gantry areas, including
19 production stages and 28 machines. The manufacturer has noted
that current operator utilization is uneven over time, work areas, and
shifts.

In Fig. 5 the different work areas are denoted as W1–W5 and
the number of machines in each area are shown by the dark blue
squares. Due to a higher workload of W1 and W5, these areas normally
have two operators per area. Different work areas may be grouped
together on the basis of proximity and types of competence needed, for
example, W1 and W4 can become W1_4, and W2 and W3 can become
W2_3. Furthermore, the rough machining area can be grouped into one
large work area, namely, W1_2_3_4; is the fine machining area is also
included, the group is named W_ALL. The competence/performance
levels of the operators are defined on three levels, namely, novice (N),
intermediate (I), and expert (E). These three levels of competence are
formulated as time factors multiplied by the length of activities/tasks,
that is, a lower time factor corresponds to a higher level of competence
and less time to execute the task. On the basis of interviews at the
company, the performance/competence factors were set to 1.5 for ‘‘N’’,
1 for ‘‘I’’ and 0.8 for ‘‘E’’.

5.2. The discrete-event simulation model

The discrete-event simulation model, built using Siemens Plant
Simulation software, represents the real-world production line and
generates maintenance events based on real-world data gathered from
the equipment. The simulation model contains the detailed logic of
equipment such as gantry robots and machines, as well as other logic,
such as the different activities carried out by the operators. The fidelity
of the model is high so that events such as failures, frequent tool
changes, quality controls, material handling, and other tasks can be
simulated. The operators work in different work areas, as mentioned
in the previous section. The simulation model allows operators with
different levels of performance to be assigned to different pre-defined
work areas but also allows operators to have individual work areas
and different performance per activity. The walking speed (1.3 m/s)
of the operators was modeled according to the company’s data that
they use according to their rules and regulations. It is well in line
with physiological data studies of what speed that represents a normal
walking pace, i.e., 1.33 m/s [58].

When simulating maintenance activities, it is important to include
the other tasks carried out by the operators since these activities may
affect their availability. Thus, the model needs to include planned
maintenance, corrective maintenance, material handling, tool handling,
and quality control. Other tasks carried out by the operators that do not
affect production directly involve the grinding of tools (i.e., external
setup). It is crucial that the online maintenance priority system get real-
time data from systems such as MES. Online information about WIP,
breakdowns, tool changes, operator position, and momentary (shift)
operator utilization was implemented in the simulation model. Due
to the operative nature of this study, long-term improvements such
as skills development and learning are excluded, but these will be

considered in future work.
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Fig. 5. Work areas and production flow on the snapshot of the simulation model.
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Validation of the simulation model, that is, the comparison of
he results of the simulation model with real-world data, was based
ainly on throughput (TH). It is, however, impossible to know ex-

ctly how the operators prioritize their tasks and how this affects the
ine performance. As previously mentioned, the short-term corrective
aintenance prioritization can be divided into (1) job priority, when

ne operator is available, and the jobs need to be prioritized, and (2)
perator priority, when one job is available, and the right operator
eeds to be prioritized. The job priority is assumed to be first in
irst out (J_FIFO), and the operator priority is assumed to be random
O_RAND). With regard to the operator prioritization in the simulation
odel, the TH output was found to be within 3% of the data collected

or the same three-month period. This deviation is not considered
ignificant. Utilizations of the individual operators were validated as
ell. Additionally, validation using a structured model walkthrough of

he simulation model to approve model assumptions was carried out
ogether with the production engineers. Manhattan distance, that is,
he distance between two points based on the sum of the horizontal
nd vertical distance instead of merely the diagonal distance, was used
o calculate the walking distance for the operators. The raw material
s assumed to be available at the beginning of the line. The simulation
odel supports a library of priority dispatching rules (PDRs) as well as
DRs generated by the GPSO-HGM.

. Experimental results and analysis

The aim of this experimental study is to compare the results of
he generated CDRs with PDRs based on the identified attributes and
ules in Section 5.1. Furthermore, the aim is also to gain knowledge
f how different attributes and levels of operators affect the results. In
he following sub-sections, the experimental settings are summarized,
nd the numerical results of the experimental study are presented and
nalyzed.

.1. Experimental settings

The main objective of the study is to maximize the percentage
ncrease of TH, referred to as TH delta or 𝛥TH(%), compared to the
riginal TH obtained from the real line using the current manual
perator prioritization. In other words, the jobs per hour in the valida-
ion scenario (see Section 6.2) are compared with assumed real-world
riority. In the study, 0 means the same throughput as the validation
cenario, and 1 means 1% higher TH than the validation scenario. An
bjective called shift utilization delta, denoted as 𝛥𝜎d, is introduced into

he optimization to minimize the deviation of the operator utilization. It

8

is calculated by taking the standard deviation of the operator utilization
per shift and then taking the average value of all standard deviations.

The main scenario represents the current real-life situation in which
seven operators are employed in five work areas. However, the initial
simulation experiments found that this scenario is inherently problem-
atic because the work areas are not very large and many operators can
take the jobs, leading to poor utilization of the workforce. Therefore,
experiments were also conducted to assess the impact on the priorities
when the number of operators is reduced and the size of the work area
is altered. The number of work areas and the operator competence level
needed in each scenario were estimated together with the engineers at
the company, for one of the areas generally requires a higher level of
competence. The following work area setups were used for the different
scenarios (N = novice, I = intermediate, and E = expert):

• Seven operators using the work area setup: W1: 1N, 1E; W2: 1E;
W3: 1I; W4: 1I; W5: 1I, 1E.

• Six operators using the work area setup: W1_2_3_4: 1N, 1I; W5:
1I, 1E; W_ALL: 1I, 1E.

• Five operators using the work area setup: W1_2_3_4: 1N, 1I; W5:
1E; W_ALL: 1I, 1E.

• Four operators using the work area setup: W1_2_3_4: 1I; W5: 1E;
W_ALL: 1N, 1E.

• Three operators using the work area setup: W_ALL: 1N, 2E.

wo types of experiments were carried out for each scenario, namely:

• Simulation experiments of full factorial experimental design with
PDRs.

• GPSO-HGM to generate CDRs.

he GPSO-HGM used a training set of five replications and the best
olutions were verified by another 100 replications (validation set).
ach replication is based on 20 production weeks, that is, 100 days (7-
ay warm-up time and 107-day simulation horizon). The t-distribution,
lso known as Student’s t-distribution, is a type of normal distribution
sed to determine whether the results are statistically significant when
he variance in the data is unknown. We want to be 95% confident
hat the average results of two groups (obtained different PDRs) differ,
hich is measured by the resulting ‘‘𝑝-value’’. If the 𝑝-value is less than

or equal to 0.05 (1–0.05 = 0.95 = 95%) when using the t-distribution
we can be confident (i.e., 95% confidence level) that the average results

of two groups, e.g., results of different PDRs, differ.
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Fig. 6. Utilization difference with scenarios having n operators.

Fig. 7. Difference in overall throughput per hour.

.2. Maintenance prioritization

In this sub-section, the results of the scenario with seven operators
re first presented in detail for both full factorial and GPSO-HGM.
fter that, the overall results of all the experiments are presented and
nalyzed.

.2.1. Full factorial experimental design with PDRs
Five scenarios of two-factor full factorial experimental designs with

total of 91 different priority rule combinations in each scenario were
valuated. They had 7 PDRs of operator priority and 13 PDRs of job
riority. A boxplot of the utilization difference (𝛥𝜎d) is shown in Fig. 6.

In Fig. 6, 𝛥𝜎d(%) is the utilization difference with scenarios having
operators. Each one of the boxplots is the summarized result for a full

actorial experiment. The utilization difference is affected by different
ules, but it is mainly the scenario that seems to set the range of
hich the values vary. All scenarios, except the scenario with three
perators, cannot reach a low utilization difference because of the
ifferent workloads of the work areas.

A boxplot of the TH delta (𝛥TH) is shown in Fig. 7.
9

Fig. 8. Optimization results of using seven operators with CDRs.

In the results presented with Fig. 7, 𝛥TH(%) is the jobs per hour
in relation to the validation scenario with assumed real-world priority
(ARWP) representing 100% with 7 operators. The TH is reduced when
the number of available operators is reduced. It is interesting to note the
wide range of results in all the scenarios except the scenario with seven
operators (n7). Consequently, there is a potential for improvement.

Studying the scenario of seven operators in detail, the results vary
from –1.0 to 1.5 in 𝛥TH(%) related to the validation scenario with the
assumed real-world priority (J_FIFO and O_RAND) and from 12.1 to
15.7 in 𝛥𝜎d. The average utilization (work) of operators is approxi-
mately 50%–55% of the available time (excluding breaks and planned
maintenance), which is quite a low utilization level. Table 3 gives an
insight into the overall main effects of the different rules relative to the
whole set of solutions/responses from each scenario.

As presented in Table 3, the main effects show the main percentage
effect that the rules affect TH (higher is better) and 𝛥𝜎d(lower is better)
in each one of the operator scenarios. It seems that the job priority
rules (J_) do not affect the utilization difference to a great extent unless
the operators have high overall utilization, i.e., when operators are
below six. The operator priority rules (O_) have a greater impact on
the utilization difference, but it is possible to see that this impact is
minor when the number of operators is few. The job priority rules have
a much greater impact on TH compared to the operator priority rules,
especially when the operators are few. The main objective 𝛥TH(%) will
be analyzed in further details in the following sub-sections.

6.2.2. Optimizing CDRs using GPSO-HGM
Fig. 8 presents the Pareto-optimal solutions obtained by using

GPSO-HGM to generate CDRs based on the scenario with seven opera-
tors.

It is possible to achieve a 𝛥TH(%) of 2.8 and still retain the 𝛥𝜎d
at 12.8%. The best CDRs (BCDRs), generated by GPSO-HGM, yield
a significantly higher TH compared to the best PDRs (BPDRs) found
(O_LDIS and J_MAPB). Consequently, an analysis of what makes the
CDRs generated by GPSO-HGM better than ordinary PDRs is in order.

The operator PDRs that on average achieve the highest 𝛥TH(%) are
lso part of the CDR generated by GPSO-HGM, namely, performance
ttribute (PA) and distance attribute (DA). The best CDR found from
hat experiment yielded the following equation for operator CDR: ((0.4−
𝑃𝐴) ∗ (𝑃𝐴 ∗ 𝐷𝐴)). The results of the CDRs are sorted in decreasing
order, so a higher value is prioritized. Studying the formula in greater

detail reveals that an operator with a higher level of skill/performance
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Table 3
Main effects of the dispatching rules (an explanation of the abbreviated dispatching rules can be found in Table 2).

PDR 𝑛7 𝑛6 𝑛5 𝑛4 𝑛3
Main
effect
TH

Main
effect
𝜎d

Main
effect
TH

Main
effect
𝜎d

Main
effect
TH

Main
effect
𝜎d

Main
effect
TH

Main
effect
𝜎d

Main
effect
TH

Main
effect
𝜎d

O_LCOM 0,15% 1,83% −0,18% 1,92% −0,07% 1,55% 0,01% 0,47% −0,24% 0,24%
O_LUT −0,10% −1,28% 0,18% −3,88% 0,03% −2,41% −0,08% −0,74% −0,13% −0,33%
O_LDIS 0,45% −0,80% 1,27% −2,98% 0,96% −1,21% 1,16% −0,57% 1,59% 0,02%
O_HCOM −0,21% 0,37% 0,14% 0,65% 0,07% −0,44% −0,13% −0,35% −0,04% −0,06%
O_HUT 0,12% 1,31% −0,30% 3,64% −0,09% 2,12% −0,04% 0,74% −0,18% 0,36%
O_HDIS −0,30% −0,63% −0,97% 1,15% −0,87% 0,53% −0,87% 0,45% −0,95% −0,13%
O_RAND −0,12% −0,80% −0,13% −0,51% −0,04% −0,14% −0,05% 0,02% −0,05% −0,10%
J_FIFO −0,18% 0,01% −0,01% 0,00% −0,08% 0,08% 0,62% −0,83% −1,90% 0,17%
J_LIFO 0,03% −0,02% 0,25% 0,01% 0,37% −0,07% 0,16% 0,65% −4,15% 0,57%
J_MAPB 0,90% 0,12% 2,66% −0,21% 3,69% −0,93% 8,11% −2,60% 0,92% −0,41%
J_LAPB −1,01% −0,14% −3,01% 0,19% −4,36% 0,98% −7,71% 2,33% −3,24% 0,38%
J_MMB 0,56% 0,09% 1,15% 0,01% 1,28% −0,03% 1,95% 0,12% 5,52% −0,74%
J_LMB −0,67% −0,10% −1,81% −0,01% −2,26% 0,11% −5,09% 0,76% −4,67% 0,60%
J_HWB 0,64% 0,11% 1,94% −0,06% 2,33% −0,34% 4,29% −1,33% −1,43% 0,10%
J_LWB −0,52% −0,06% −1,58% 0,04% −1,75% 0,31% −2,85% 1,04% 5,70% −0,39%
J_RAND 0,15% 0,02% 0,07% −0,02% 0,29% −0,13% 0,35% −0,34% −2,07% 0,26%
J_LWA 0,65% 0,01% 0,50% 0,05% 0,46% 0,19% −0,87% 0,75% 5,86% −0,84%
J_HWA −0,57% −0,01% −0,32% −0,01% −0,25% −0,12% 0,23% −0,66% −4,67% 0,59%
J_LPMA 0,41% 0,05% 0,60% −0,05% 0,90% −0,17% 2,41% −0,66% 7,85% −0,74%
J_HPMA −0,39% −0,08% −0,46% 0,06% −0,62% 0,13% −1,58% 0,77% −3,74% 0,43%
Table 4
Results comparison of the best rules found (an explanation of the abbreviated dispatching rules can be found in Table 2).

ARWP BPDRs BCDRs

Rules 𝛥TH(%) BPDRs 𝛥TH(%) 𝛥TH𝒏(%) BCDRs 𝛥TH(%) 𝛥TH𝒏(%)

𝑛 = 7 J_FIFO
O_RAND

0.00 J_MAPB
O_LDIS

1.48 1.48 ((APBA + APBA)+(WBA - OA)) ((0.4-PA)*(PA*DA)) 2.82 2.82

𝑛 = 6 J_FIFO
O_RAND

−0.67 J_MAPB
O_LDIS

3.09 3.79 ((APBA/0.4)+(WBA*0.4)) ((0.7/UA)-(DA*PA)) 3.51 4.21

𝑛 = 5 J_FIFO
O_RAND

−2.29 J_MAPB
O_LDIS

2.11 4.50 ((APBA+APBA)+(WBA+APBA)) ((1-UA)-(DA*0.5)) 2.49 4.89

𝑛 = 4 J_FIFO
O_RAND

−13.15 J_MAPB
O_LDIS

−6.07 8.15 ((APBA*OA)+(WBA+APBA)) ((UA-0.6)-(DA-0.8)) −5.55 8.75

𝑛 = 3 J_FIFO
O_RAND

−31.88 J_LPMA
O_LDIS

−24.14 11.36 ((1+MBA)+(WBA+WBA))((0.1-DA)-(DA*0.9)) −15.79 23.63
is prioritized when operators have the same position, although the
distances of the operators are also considered in the CDR.

The best CDR from that experiment yielded the following equation:
((𝐴𝑃𝐵𝐴 +𝐴𝑃𝐵𝐴) + (𝑊𝐵𝐴 –𝑂𝐴)). One of the main attributes in the job
CDR is thus active period bottlenecks, which were previously identified
as the PDR (J_MAPB) with the highest average 𝛥TH(%). Furthermore,
the WIP before a machine is another important attribute of the job CDR,
which also matches the results of the full factorial experiment in which
WIP before and after are important in order to achieve a higher TH.
FIFO order, that is, the order attribute (OA), is the last ingredient in
the job CDR. A machine/resource with long, average active periods and
(secondary) high WIP before the machine is prioritized, unless many
jobs are pending and the current machine recently required service.

6.2.3. Overall comparison of results
Table 4 shows the overall results of the different operator scenar-

ios for the main objective 𝛥TH(%). The columns show the assumed
real-world priority (ARWP), best PDRs (BPDRs), best CDRs (BCDRs).

In Table 4, 𝛥TH(%) is the jobs per hour in relation to the valida-
tion scenario (7 operators) with ARWP, and 𝛥TH𝑛(%) is the jobs per
our with scenarios having n operators, compared to the real-world
riority with the current number of operators. The best PDRs (BPDRs)
onsequently achieve significantly higher 𝛥TH(%) than the assumed
eal-world priority (ARWP) (confirmed with a t-test), while the best
DRs (BCDRs) have significantly higher 𝛥TH(%) than the BPDRs (con-

irmed with a t-test), especially when the number of operators, n, is
ecreasing. The average results and the confidence intervals of the
RWP, best PDRs, and best CDRs, are plotted in Fig. 9.
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Fig. 9. Real-world priority compared to the best PDRs and CDRs.

Comparing the results of the dispatching rules to the ARWP reveals
that short-term corrective maintenance priority has a major impact
on TH, especially when the operators have higher utilizations. The
differences between the assumed real-world priority and the best rules
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found are substantial. The resemblance, in terms of attributes, between
the best PDRs and best CDRs is generally considerable. However, the
optimization results using GPSO-HGM to generate CDRs consistently
achieve significantly better results than the best PDRs found for each
scenario because GPSO-HGM is able to use an optimal combination
of different attributes. It is interesting to note that the scenario of six
operators (𝑛 = 6) can get a slightly higher throughput compared to
seven operators (𝑛 = 7) due to a minor work area flexibility in 𝑛 = 6
as described in the experimental settings of Section 6.1. Furthermore,
the throughput is only slightly decreased when going from six (𝑛 = 6)
o five (𝑛 = 5) operators. On top of that, by using a better priority
BPDRs or BCDRs) a higher throughput with five (𝑛 = 5) operators
an be attained when compared to seven (𝑛 = 7) operators using
RWP. Hence, it is possible to have a big labor cost reduction whilst
aintaining throughput (or even increasing throughput).

. Conclusions and future work

Maintenance activities on manufacturing shop floors need smart
rioritization approaches to enhance resource efficiency, productivity,
nd indirectly the profitability of companies. Maintenance digitaliza-
ion using sensory data, data analytics, and mobile visualization in the
evelopment of DSSs is important in order to achieve smart mainte-
ance in line with the Industry 4.0 initiative. However, one obstacle to
ully digitalizing the gathering of online manufacturing data using MES
s that companies may not know the full potential of the data or grasp
ow it should be processed and transformed into usable knowledge in
digital twin DSS, even though they may have full access, in principle,

o any data.
This research study has shown that by using online data together

ith SBO and advanced data analysis technologies, a shop floor DSS
s able to adapt to disturbances in a production system and sup-
ort the making of optimal or near-optimal decisions in real-time.
hile Industry 4.0 in general refers to the intelligent networking

f machines and processes for the industry with the state-of-the-art
nformation and communication technologies [59], the full potential
f smart maintenance for improving overall system performance has
ot been clearly demonstrated, especially in a quantified way. This
aper has contributed toward smart, optimized maintenance by proving
hat optimization of the core part of short-term corrective maintenance
rioritization can affect and improve the overall line performance —
n important aspect that has not been addressed explicitly in other
mart maintenance studies. More specifically, this paper successfully
ntroduces and implements a way of prioritizing short-term corrective
aintenance activities (planned and unplanned), based on multiple

riteria, including bottleneck, WIP level, competence and utilization of
perators, and walking distances on the shop floor with a DT-based
O and GP approach. The novel GPSO-HGM employs a combination
f SO and GP to generate data-driven composite dispatching rules has
lso been introduced. The results generated from a simulation model
f a real-world automotive machining line show statistically significant
mprovements of the system throughput when current priorities based
ainly on experience are changed to customized rules generated by
P. The experimental results also clearly show how optimal short-term
orrective maintenance prioritization can have a significant impact
n the production rate, especially when the number of operators is
ecreased. The DT-DSS, especially the simulation model, would also
llow the evaluation of changed work areas over time and greater
ttention to the skills of the operators. As noted in the results presented
n Section 6.2.3, it is possible to have big labor cost reductions whilst
aintaining throughput when the work areas and the priorities are

hanged or optimized.
Future research will study how different levels of operator uti-

ization affect the results. Different ways of generating CDRs using
PSO-HGM could also be studied. Due to the operative nature of this

tudy, skills development and learning, which are related to strate-
ic, long-term improvement, were not considered. Obviously, skills or
11
competence development could be improved over time in order to
maintain high productivity. Therefore, the ways in which learning can
be incorporated into the DT-DSS is another interesting area of future
research.
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