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Abstract 

Background Migraine and depression are two of the most common and debilitating conditions. From a clinical per-
spective, they are mostly prevalent in women and manifest a partial overlapping symptomatology. Despite the high 
level of comorbidity, previous studies hardly investigated possible common patterns in brain volumetric differences 
compared to healthy subjects. Therefore, the current study investigates and compares the volumetric difference pat-
terns in sub-cortical regions between participants with migraine or depression in comparison to healthy controls.

Methods The study included data from 43 930 participants of the large UK Biobank cohort. Using official ICD10 diag-
nosis, we selected 712 participants with migraine, 1 853 with depression and 23 942 healthy controls. We estimated 
mean volumetric difference between the groups for the different sub-cortical brain regions using generalized linear 
regression models, conditioning the model within the levels of BMI, age, sex, ethnical background, diastolic blood 
pressure, current tobacco smoking, alcohol intake frequency, Assessment Centre, Indices of Multiple Deprivation, 
comorbidities and total brain volume.

Results We detected larger overall volume of the caudate (mean difference: 66, 95% CI [-3, 135]) and of the thalamus 
(mean difference: 103  mm3, 95% CI [-2, 208]) in migraineurs than healthy controls. We also observed that individuals 
with depression appear to have also larger overall (mean difference: 47  mm3, 95% CI [-7, 100]) and gray matter (mean 
difference: 49  mm3, 95% CI [2, 95]) putamen volumes than healthy controls, as well as larger amygdala volume (mean 
difference: 17  mm3, 95% CI [-7, 40]).

Conclusion Migraineurs manifested larger overall volumes at the level of the nucleus caudate and of the thalamus, 
which might imply abnormal pain modulation and increased migraine susceptibility. Larger amygdala and putamen 
volumes in participants with depression than controls might be due to increased neuronal activity in these regions.

Keywords Migraine, Depression, Structural brain MRI, UK Biobank

Introduction
Migraine is a debilitating neurological disorder charac-
terized by severe and recurrent headaches, and one of 
the leading causes of disability worldwide [1]. Migraine 
is also characterized by high degree of comorbidity 
with a variety of psychiatric, neurologic, vascular, and 
cardiac conditions [2, 3]. This interconnection is of rel-
evance in the clinical practice, as it might influence the 
efficacy of treatments. Regarding psychiatric conditions, 
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epidemiological studies have shown that migraineurs 
have an increased risk of developing depression, anxi-
ety and suicidal behavior when compared to non-
migraineurs [2]. More specifically, major depressive 
disorder (MDD) has shown to be the most frequent psy-
chiatric diagnosis among patients with migraine, espe-
cially in chronic or with aura subtypes [3–5]. The relation 
between the two disorders is bidirectional, i.e. having one 
disorder significantly increases the risk of manifesting the 
other one as well [6, 7]. This epidemiological evidence of 
a relationship between the two health conditions is not 
yet fully understood but might be the result of a partly 
overlapping pathophysiology that connects pathological 
pathways of migraine and depression.

With regard to clinical presentation, migraine and 
depression affect mostly women and are characterized 
by heterogeneity and partial overlap of symptoms [1, 8]. 
Their symptomatology is also shared with similar dis-
orders, e.g. generalized anxiety disorder, and this may 
complicate the diagnosis and treatment selection [9]. 
The overlapping symptomatology and the high degree 
of comorbidity of migraine and depression supports the 
hypothesis that they might be the results of a common 
pathophysiological pathway. In this sense, increasing 
attention has been devoted in recent years to structural 
and functional brain imaging techniques [10, 11]. In the 
case of MDD, structural magnetic resonance imaging 
(MRI) studies have shown lower brain volumes in regions 
involved in emotional processing including amygdala and 
cingulate cortex, but also in other areas such as frontal 
cortex, orbitofrontal cortex, hippocampus, striatum 
and cerebellum [10, 12–14]. In the case of migraine, the 
structural alterations of the brain are related to regions 
implicated in pain experience and in visual and motion 
processing [11, 15]. Studies have shown that migraineurs 
manifested lower volumes in the bilateral insula, frontal/
prefrontal, temporal, parietal and occipital cortices, as 
well as the anterior cingulate cortex, basal ganglia and 
cerebellum [16, 17]. These studies showed that subjects 
with migraine and depression manifest overall differ-
ent volumetric patterns in the brain regions analyzed 
(with few exceptions, such the anterior cingulate cortex 
and the amygdala). This could be due to the different 
choice of parameters used for the MRI scan. Moreover, 
the aforementioned studies are generally characterized 
by small sample sizes. To overcome these limitations, we 
used large-scale UK Biobank data to perform study with 
a larger sample size. Another important feature of the UK 
Biobank cohort is that for the MRI scans it was adopted 
a unique methodology in all the Assessment Centres. 
The comprehensive dataset of this cohort grants the 

possibility of a more in-depth analysis of the structural 
changes in the various brain regions and to reduce the 
confounding level adjusting our statistical model using 
many important variables.

The purpose of the current study is to provide a more 
comprehensive and in-depth set of measurements of sub-
cortical volumetric changes in gray and white matter in 
subjects with migraine or depression in comparison to 
healthy controls to elucidate common and different mor-
phological features of these two disorders.

Materials and methods
Cohort
Data were provided by the UK Biobank, a biorepository 
based on a large population cohort with approximately 
half a million participants from the United Kingdom. 
This database contains in-depth genetic information as 
well as comprehensive health and lifestyle data acces-
sible to approved research. The UK Biobank study prin-
cipal aim is to promote research on a wide range of 
important health conditions. Ethical approval for the 
UK Biobank study was granted by the North-West Mul-
ticenter Research Ethics Committee (permission UKB 
57519). The Regional Ethics Committee of Uppsala (Swe-
den) approved the use of UK Biobank data for the present 
study (2017/198).

Primary outcome variables
UK Biobank provided several variables to investigate 
subcortical volumes of different brain regions. In par-
ticular, we considered gray matter volumes of thala-
mus, caudate, putamen, pallidum, hippocampus and 
amygdala. The volumes were obtained by means of T1 
structural brain imaging using FAST tool for segmen-
tation/registration [18]. We also considered overall 
volumes (gray and white matter) of thalamus, caudate, 
putamen, pallidum, hippocampus, amygdala and 
nucleus accumbens. These volumes were obtained by 
means of T1 structural brain imaging using FIRST tool 
for segmentation/registration [19]. FAST and FIRST 
segmentation tools differ in several features and work-
ing assumptions and we adopted both of them since 
the UK Biobank researchers performed FIRST-based 
analyses only for the overall subcortical regions and 
the FAST-based analyses only for measuring the gray 
matter volumes of the same areas. All the volumes are 
expressed in  mm3. Brain images have been acquired 
using 3  T Siemens Skyra (software platform VD13), 
with standard Siemens 32-channel RF receive head coil 
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[20]. Complete information regarding the neuroimag-
ing process, from machinery used to protocols, can be 
retrieved here at the following link: https:// bioba nk. 
ctsu. ox. ac. uk/ cryst al/ cryst al/ docs/ brain_ mri. pdf.

Covariates
The main predictors of our analyses are the diagnosis of 
migraine and depression. To identify the cases (migraine 
and depression) and the controls we used the variable 
“Diagnoses – ICD10”, which contains the information 
of every diagnosis from the inpatient hospital registries 
for each participant. We identified the migraine cases 
using all the diagnosis of the category G43 and similarly 
depression cases the diagnosis under the categories F32 
and F33.

To reduce the level of confounding we included in 
our statistical model many comorbidities and health-
conditions. In particular, we considered: viral and 
bacterial infections of the nervous system (A80, A81—
A85, A87, A88, G00, G02—G06), diabetes (E10—
E14), diseases of the nervous system (G10—G13, 
G21, G23—G25, G30—G32, G36, G37), mental and 
behavioral disorders due to psychoactive substances 
(F10—F19), psychiatric, mental and behavioral dis-
orders (F00—F02, F05—F07, F20, F22, F23, F25, F30, 
F31, F34, F38, F40—F45, F48, F50, F53, F54, F62, F63, 
F68, F99), developmental disorders (F70—F73, F78—
F81, F84, F88, F89), epilepsy and sleep disorders (G40, 
G41, G47, F51), muscle disorders (G56, G71—G73, 
G80—G83), headaches other than migraine (G44), 
neuropathies (G50—G55, G57—G63, G70, G90), brain 
and spine malformations/abnormalities (G91, G93 
117 - G97, G99, Q00, Q01, Q03, Q07), cerebrovascu-
lar diseases (I60—I63, I65—I69, G45, G46), head and 
spine injuries and fractures (S001, S007—S010, S01, 
S02, S020—S024, S026—S029, S04, S06—S09), cardio-
vascular diseases (I00—I02, I05—I13, I15, I20—I28, 
I30—I37, I39, I40—I52, I70—I74, I77—I80, I82—I89, 
I95, I97, I98) and brain cancers (C70—C75, D32, D33, 
D43).

We considered also important biological covariates 
such as sex, body mass index (BMI), diastolic blood pres-
sure, age, ethnic background, current tobacco smoking, 
and alcohol intake frequency. Moreover, we included 
sociodemographic variables such as Assessment Center 
and the indices of multiple deprivation (IMD). The 
Assessment Center variable contains information on 
which center was visited by each participant. The IMD 
is a measurement of poverty in small areas, an indicator 
widely used in the United Kingdom. The IMD comprise 
several domains of deprivation such as income, health, 
employment, crime, education barriers to housing and 
services, and living environment.

Statistical methods
We used descriptive statistics to summarize the gen-
eral features of the two study arms. Table 1 displays the 
results. We also calculated mean, median, standard devi-
ation (SD), and interquartile range (IQR) for all the sub-
cortical regions. In Table 2 we reported the results for the 
overall volumes, while in Table 3 we reported the results 
for the gray matter volumes.

The primary aim of this study is to estimate the volu-
metric differences in several subcortical brain regions 
between cases (migraine or depression) and healthy con-
trols. To do this we used multiple linear models, where 
the outcome variable Y is the volume (expressed in  mm3) 
of the target brain region. We conditioned the model 
within the levels of several covariates to reduce the bias 
due to confounding. For the choice of the appropriate 
set of predictors we used causal directed acyclic graphs 
(cDAGs). The cDAG summarizing our model assump-
tions is displayed in Fig. 1. In particular, we considered as 
relevant predictors for our model body mass index (BMI) 
[21–23], age [24–26], sex, ethnical background, diastolic 
blood pressure, current tobacco smoking, alcohol intake 

Table 1 Descriptive statistics of main sociodemographic factors

Migraine
N = 712

Depression
N = 1 853

Controls
N = 43 930

Sex

 Women 527 (74%) 1 180 (64%) 22 881 (52%)

 Men 185 (26%) 673 (36%) 21 049 (48%)

Age (mean ± SD) 63 ± 8 63 ± 8 64 ± 8

BMI (mean ± SD) 27 ± 5 28 ± 5 26 ± 4

Ethnic background

 British 644 (90%) 1 701 (92%) 39 962 (91%)

 Irish 18 (2%) 54 (3%) 1 122 (3%)

 Any other white back-
ground

25 (4%) 54 (3%) 1 364 (3%)

 Others 25 (4%) 44 (2%) 1 482 (3%)

 IMD (median, IQR) 12 [7, 21] 13 [8, 25] 11 [7, 20]

Current tobacco smoking

 Yes, on most or all days 14 (2%) 89 (5%) 828 (2%)

 Only occasionally 10 (1%) 49 (3%) 569 (1%)

 No 682 (97%) 1 696 (92%) 42 223 (97%)

 Prefer not to answer 0 (0%) 0 (0%) 8 (0%)

Alcohol intake frequency

 Daily or almost daily 60 (8%) 295 (16%) 7 389 (17%)

 Three or four times a week 136 (20%) 301 (16%) 12 426 (28%)

 Once or twice a week 174 (25%) 241 (12%) 11 596 (26%)

 One or three 
times a month

97 (13%) 400 (21%) 5 009 (12%)

 Special occasions only 135 (20%) 377 (19%) 4 447 (11%)

 Never 104 (14%) 295 (16%) 2 745 (6%)

 Prefer not to answer 0 (0%) 1 (0%) 16 (0%)

https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf
https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf
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frequency, Assessment Centre, IMD, comorbidities and 
major health-related conditions (i.e. all the health condi-
tions we mentioned in the Covariates sub-section) and 
total brain volume (grey and white matter, normalized for 
head size).

UK Biobank provided two separate values for each 
region, the left and the right part. We summed these two 
values, so Y represents the overall volume of that region. 
 Xdiag is the categorical variable which represents the diag-
nosis (migraine or depression and healthy controls). This 
is the equation we interpolated with our data

Y = α + βdiagXdiag + βsexXsex + βageXage + βBMIXBMI + βAlchXAlch + βSmokXSmok + βDBPXDBP + βIMDXIMD

+ βAssCXAssC + βComorbXComorb + βethnXethn + βbrainXbrain + ε

Table 2 Descriptive statistics for the overall volumes (expressed in  mm3) of the subcortical regions under study displayed for cases 
and controls (FIRST segmentation tool). We calculated mean, median, standard deviation (SD), and interquartile range (IQR)

Brain region Migraine (N = 712) Depression (N = 1 853) Controls (N = 43 930)

Thalamus Mean = 15 064, Median = 15 035
SD = 1 377
IQR = [14 131, 15 990]

Mean = 15 076, Median = 15 026
SD = 1 558
IQR = [14 067, 15 990]

Mean = 15 264, Median = 15 193
SD = 1 496
IQR = [14 238, 16 206]

Caudate Mean = 6 843, Median = 6 768
SD = 841
IQR = [6 262, 7 382]

Mean = 6 891, Median = 6 855
SD = 877
IQR = [6 302, 7 417]

Mean = 6 927, Median = 6 882
SD = 846
IQR = [6 346, 7 454]

Putamen Mean = 9 364, Median = 9 325
SD = 1 083
IQR = [8 600, 10 100]

Mean = 9 471, Median = 9 396
SD = 1 225
IQR = [8 635, 10 244]

Mean = 9 552, Median = 9 499
SD = 1 165
IQR = [8 753, 10 296]

Pallidum Mean = 3 469, Median = 3 420
SD = 438
IQR = [3 171, 3 737]

Mean = 3 490, Median = 3 460
SD = 470
IQR = [3 180, 3 760]

Mean = 3 547, Median = 3 509
SD = 468
IQR = [3 237, 3 812]

Hippocampus Mean = 7 535, Median = 7 546
SD = 847
IQR = [7 012, 8 044]

Mean = 7 551, Median = 7 531
SD = 920
IQR = [6 967, 8 143]

Mean = 7 639, Median = 7 640
SD = 895
IQR = [7 069, 8 207]

Amygdala Mean = 2 400, Median = 2 392
SD = 414
IQR = [2 103, 2 688]

Mean = 2 467, Median = 2 461
SD = 423
IQR = [2 179, 2 735]

Mean = 2 489, Median = 2 478
SD = 438
IQR = [2 192, 2 772]

Nucleus Accumbens Mean = 864, Median = 873
SD = 205
IQR = [734, 991]

Mean = 854, Median = 844
SD = 218
IQR = [710, 996]

Mean = 871, Median = 869
SD = 211
IQR = [727, 1012]

Table 3 Descriptive statistics for the gray matter volumes (expressed in  mm3) of the subcortical regions under study displayed for 
cases and controls (FAST segmentation method). We calculated mean, median, standard deviation (SD), and interquartile range (IQR)

Brain region Migraine (N = 712) Depression (N = 1 853) Controls (N = 43 930)

Thalamus Mean = 5 458, Median = 5 429
SD = 548
IQR = [5 095, 5 833]

Mean = 5 510, Median = 5 487
SD = 567
IQR = [5 120, 5 835]

Mean = 5 526, Median = 5 494
SD = 579
IQR = [5 142, 5 867]

Caudate Mean = 6 279, Median = 5 970
SD = 1 430
IQR = [5 386, 6 737]

Mean = 6 400, Median = 6 062
SD = 1 579
IQR = [5 439, 6 905]

Mean = 6 334, Median = 6 049
SD = 1 461
IQR = [5 417, 6 860]

Putamen Mean = 3 881, Median = 3 815
SD = 866
IQR = [3 306, 4 355]

Mean = 3 908, Median = 3 847
SD = 914
IQR = [3 315, 4 397]

Mean = 3 930, Median = 3 866
SD = 860
IQR = [3 358, 4 427]

Pallidum Mean = 96, Median = 79
SD = 69
IQR = [58, 107]

Mean = 100, Median = 81
SD = 85
IQR = [60, 112]

Mean = 103, Median = 84
SD = 82
IQR = [62, 115]

Hippocampus Mean = 8 374, Median = 8 338
SD = 8 22
IQR = [7 852, 8 917]

Mean = 8 418, Median = 8 367
SD = 862
IQR = [7 847, 8 946]

Mean = 8 535, Median = 8 505
SD = 837
IQR = [7 967, 9 060]

Amygdala Mean = 3 828, Median = 3 808
SD = 482
IQR = [3 526, 4 140]

Mean = 3 811, Median = 3 804
SD = 516
IQR = [3 475, 4 144]

Mean = 3 906, Median = 3 895
SD = 488
IQR = [3 587, 4 222]
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We fitted this model with our data to obtain an esti-
mation of the βdiag parameter and the 95% Confidence 
Interval (95% CI). We did not correct the confidence 
level for the multiplicity problem, as it would decrease 
the precision and increase the type II error rate [27]. 
For each interpolation,  Xdiag was a dichotomous varia-
ble, and the control group was considered the reference 
group (with assigned value zero, while the other group 
was assigned value one). Therefore, the βdiag parameter 
represents the difference between the mean volumes in 
the two groups.

We focus on point and interval estimation. Statisti-
cal inference is therefore based on estimation, which is 
better suited for the task rather than the less informa-
tive hypothesis testing [28–31]. For this reason, no test 
of hypothesis has been performed and therefore no 
significance threshold was established and no p-values 
were reported, as possibly misleading [32–35]. Further-
more, in order to have a better understanding of the 
relative magnitude of volume differences between the 
groups we complemented the estimations of the mean 
difference and the relative standard error (SE), with the 
Cohen’s d [36]. We used the formula:

d =
t(n1 + n2)
√
n1n2 df

where t is the difference between the means ( βdiag ) 
divided by the corresponding standard error,  n1 and  n2 
are the sample sizes of cases and controls respectively 
and df are the degrees of freedom for the t value, i.e. 
df =  n1 +  n2 – 2. We referred to the usual classification of 
the d values, as stated by Cohen: small (d = 0.2), medium 
(d = 0.5) and big effect (d = 0.8) [36–38].

To give a quantitative measure of the relative precision 
of our estimations we also calculated the relative error

All statistical analyses have been conducted using R 
and RStudio (R version 4.1.1 [64 bit], RStudio version 
1.4.1106). The complete script used for data curation 
and the statistical analyses is available on GitHub at 
the following link: https:// github. com/ Orest eAffa tato/ 
Migra ine_ Depre ssion_ MRI_ proje ct.

Results
After the exclusion of the participants without MRI 
brain scan, we obtained a final sample that comprises 
712 individuals with migraine, 1  853 with depression 
and 43  930 controls. In Table  1 are summarized main 
sociodemographic features of the sample.

εr =
SE

βdiag
× 100%

Fig. 1 Causal directed acyclic graph (cDAG) for our causal model. In red are represented all the paths that introduce confounding. The cDAG 
was drawn using DAGitty v3.0

https://github.com/OresteAffatato/Migraine_Depression_MRI_project
https://github.com/OresteAffatato/Migraine_Depression_MRI_project
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Tables 2 and 3 display the main descriptive statistics 
of the volumes of the different subcortical regions. In 
Table  2 we reported the overall volumes (gray + white 
matter) statistics, based on the FIRST segmentation 
tool, while in Table  3 we reported the descriptive sta-
tistics of the gray matter volumes of the same subcorti-
cal regions (except nucleus accumbens), based on the 
FAST segmentation method.

We can observe from the descriptive statistics dis-
played in Tables  2 and 3 some general features. In all 
cases, mean and median are close to each other, there-
fore the distributions of the volumes of each region and 
each group are symmetric. The standard deviations (SD) 
are generally quite large, as the IQRs. Summarizing these 
facts, we can conclude that the volumetric distributions 
of each region between cases and control are extensively 
overlapping.

Differences in overall subcortical volumes
Table  4 displays the mean differences of overall subcor-
tical volumes (gray + white matter) between migraineurs 

and controls. The strongest effects, as measured in abso-
lute ( βdiag ) and relative (Cohen’s d) terms, are at the tha-
lamic (mean difference: 103  mm3, 95% CI [-2, 208]) and 
caudate (mean difference: 66  mm3, 95% CI [-3, 135]) lev-
els, were migraineurs appear to have larger volumes than 
controls.

Table  5 shows mean differences in overall volumes 
between depression cases and healthy controls. Notably, 
individuals with depression appear to have larger vol-
umes than controls at the level of the putamen (mean dif-
ference: 47  mm3, 95% CI [-7, 100]) and of the amygdala 
(mean difference: 17  mm3, 95% CI [-7, 40]).

In Fig.  2 are portrayed all the results for the overall 
volumes. The estimates are generally of small magnitude 
and affected by significant low precision. At the level of 
the pallidum and the nucleus accumbens, both individu-
als with migraine and depression do not appear to differ 
from the controls. At the level of the putamen both types 
of cases seem to have larger volumes than controls.

Differences in gray matter subcortical volumes
In Table 6 are reported the results for migraine cases. The 
effect sizes are generally very small and characterized by 
low precision.

Table 7 show the results for depression cases. Notably, 
individuals with depression appear to have larger gray 
matter volumes at putamen level (mean difference: 49 
 mm3, 95% CI [2, 95]). They also appear to have lower gray 
matter volumes at the level of the amygdala (mean differ-
ence: -21  mm3, 95% CI [-44, 2]).

Figure  3 displays the forest plot of the results for the 
gray matter volumes. As in the previous case, the esti-
mates are generally characterized by small effect size and 
low precision. Notably, also at the level of gray matter 
both migraine and depression cases appear to have no 
significant pallidum volumetric difference from controls.

Discussion
To the best of our knowledge, this is the first study that 
addresses associations between migraine and depres-
sion diagnosis and subcortical volumetric differences 
using data from a large population-based cohort. Nota-
bly, participants with migraine manifested larger overall 
volume of the caudate (mean difference: 66  mm3, 95% 
CI [-3, 135]) than healthy controls. The nucleus cau-
date is known to have important functional connections 
with other brain regions which are likely to be integral in 
migraine pathophysiology [39]. The caudate has also been 
shown to manifest anti-nociceptive functions and to play 
a role in pain modulation in connection with the periaq-
ueductal gray matter [40]. Therefore, abnormal activity at 
the level of the nucleus caudate might imply pain regula-
tion dysfunction which could in turn increase migraine 

Table 4 Mean volume difference between migraine cases and 
controls. FIRST segmentation method. All volumes are expressed 
in  mm3

Brain region Mean ± SE εr 95% 
Confidence 
Interval

Cohen’s d

Thalamus 103 ± 55 53% [-2, 208] 0.08

Caudate 66 ± 35 53% [-3, 135] 0.08

Putamen 45 ± 43 96% [-38, 129] 0.04

Pallidum 11 ± 19 173% [-27, 49] 0.03

Hippocampus -9 ± 36 400% [-79, 61] -0.01

Amygdala -8 ± 18 225% [-45, 27] -0.02

Nucleus accumbens 2 ± 8 400% [-14, 17] 0.01

Table 5 Mean volume difference between depression cases and 
controls. FIRST segmentation method. All volumes are expressed 
in  mm3

Brain region Mean ± SE εr 95% 
Confidence 
Interval

Cohen’s d

Thalamus -10 ± 34 340% [-77, 58] -0.01

Caudate 17 ± 22 130% [-27, 61] 0.03

Putamen 47 ± 27 57% [-7, 100] 0.07

Pallidum 2 ± 12 600% [-22, 26] 0.01

Hippocampus -17 ± 23 135% [-61, 28] -0.03

Amygdala 17 ± 12 71% [-7, 40] 0.06

Nucleus accumbens -2 ± 5 250% [-12, 8] -0.02
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Fig. 2 Forest plot displaying the volumetric differences (means and 95% CIs) for migraine and depression cases

Table 6 Mean gray matter volume difference between migraine 
and controls. FAST segmentation method. All volumes are 
expressed in  mm3

Brain region Mean ± SE εr 95% 
Confidence 
Interval

Cohen’s d

Thalamus 8 ± 24 300% [-40, 56] 0.01

Caudate -13 ± 62 477% [-134, 108] -0.01

Putamen 45 ± 37 82% [-28, 118] 0.05

Pallidum -1 ± 3 300% [-8, 6] -0.01

Hippocampus -10 ± 33 330% [-75, 55] -0.01

Amygdala 8 ± 18 225% [-28, 44] 0.02

Table 7 Mean gray matter volume difference between depression 
and controls. FAST segmentation method. All volumes are expressed 
in  mm3

Brain region Mean ± SE εr 95% 
Confidence 
Interval

Cohen’s d

Thalamus 5 ± 16 320% [-25, 36] 0.02

Caudate 15 ± 40 267% [-63, 92] 0.02

Putamen 49 ± 24 49% [2, 95] 0.09

Pallidum -1 ± 2 200% [-6, 3] -0.02

Hippocampus -27 ± 21 78% [-69, 15] -0.06

Amygdala -21 ± 12 57% [-44, 2] -0.08
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susceptibility. It has been also shown that the cortical 
spreading depression, a depolarization wave that is asso-
ciated with migraine, inhibits the neuronal activity in the 
caudate [39, 41]. This reduced activity might imply dis-
ruption of pain regulation and therefore lead to migraine 
pain. Moreover, we found larger overall volume of the 
thalamus (mean difference: 103  mm3, 95% CI [-2, 208]) 
than controls. The thalamus is known to play an impor-
tant role in migraine pathophysiology and therefore the 
larger thalamic volume could be due to the increased 
activity of this region in subjects with migraine [1, 42].

We also observed that subjects with depressive symp-
toms manifested a larger overall amygdala volume (mean 

difference: 17  mm3, 95% CI [-7, 40]) than healthy con-
trols. This phenotype might reflect increased activity of 
the neurons in this brain region. Other studies support 
the hypothesis that the hyper-activity of the amygdala 
increases the risk of developing depressive symptoms 
and related comorbidities [43]. Increased amygdala activ-
ity has been observed in people diagnosed with general 
internalizing disorders [44, 45]. Moreover, it has been 
shown reduced amygdalar reactivity after administra-
tion of effective treatment for depression and anxi-
ety disorders [46–48]. These observations supports 
the hypothesis that an increased activity of the amyg-
dala is associated with negative disposition, anxiety and 

Fig. 3 Forest plot displaying the gray matter volumetric differences (means and 95% CIs) for migraine and depression cases
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internalizing symptoms and therefore to future develop-
ment of depressive symptoms [43]. We also found lower 
gray matter amygdala volume (mean difference: -21  mm3, 
95% CI [-44, 2]). The discrepancy between the overall 
and gray matter level could be explained by a compen-
sation mechanism. Individuals with depression might 
have lower gray matter neurons and therefore the brain 
increases the white matter to compensate. The larger 
overall volume could be due over-compensation.

Individuals with depression appear to have also larger 
overall (mean difference: 47  mm3, 95% CI [-7, 100]) and 
gray matter (mean difference: 49  mm3, 95% CI [2, 92]) 
putamen volumes. The role of the putamen in depressive 
disorders has not been fully elucidated, and its patho-
physiological involvement is currently under thorough 
investigation [49]. In particular, the putamen is known 
for playing an important role in motor control and move-
ment disorders and for being an integral part of reward 
and learning circuits, which in turn play an important 
role in depressive conditions [50]. Previous literature 
has showed association between depressive symptoms 
and lower putamen volumes, in contrast with our find-
ings. This could be due to different MRI and statistical 
analyses.

In general, we can observe that the volumetric differ-
ences were small. Moreover, even though in some cases 
the standard error was equal or larger than the effect 
sizes, the confidence intervals are also generally compat-
ible with small effect sizes, in most of the cases. Our esti-
mates were generally characterized by small precision, 
and therefore our findings should be generally treated 
with caution.

A strength of this study is that we provided a set of 
estimations of a wide variety of subcortical brain regions 
using a large cohort. To decrease the level of bias due 
to confounding we included in our model a wide set of 
important biological and sociodemographic predictors. 
Another important feature of this study is the analysis of 
the differences in gray and white matter volumes. Data 
from UK Biobank allowed us to assess not only brain vol-
ume differences among several subcortical regions, but 
also to address differences between white and gray mat-
ter volumes. Our study also provides many estimations 
that can be used in meta-analytical research to assess on 
stronger basis the actual direction of the associations for 
all the specific subcortical regions. A limitation of our 
study is related to the average age of the UK Biobank 
cohort. This sample comprises mainly older participants 
(mean age approximately 60  years), while migraine is 
known to be mostly prevalent in younger people [1]. Age 
does not only influence whether a participant is more 
likely to manifest a condition, but it has also an impact 
on brain structure and its functional connectivity [51]. 

These features pose limits on the generalization of our 
results. Another limitation is the cross-sectional nature 
of this study. We were not able to provide any causal tra-
jectory between differences in subcortical structures and 
the presence of certain conditions. However, the patterns 
of association we found can be used to generate hypoth-
eses that can lead to design studies assessing causal rela-
tionships. Another limitation from the UK Biobank is the 
sampling bias. The UK Biobank has an uncommonly low 
acceptance rate (around 6%) and this poses an important 
limitation on our research, given the presence of such a 
bias [52].

Conclusion
This study provides estimations of subcortical volumes 
in a broad variety of brain regions as well as mean vol-
umetric differences between subjects with migraine, 
depression and healthy controls. Migraineurs manifested 
larger overall volumes at the level of the nucleus caudate 
and of the thalamus. Abnormal activity in the caudate 
and the thalamus might imply abnormal pain modula-
tion and increased migraine susceptibility. Subjects with 
depressive symptoms manifested larger amygdala and 
putamen overall volumes than controls, which might be 
due to increased activity in these regions. Migraine and 
depression are not likely to manifest similar patterns at 
the gross anatomy level in the main sub-cortical regions. 
Considering the large prevalence of migraine and depres-
sion in today’s society, mapping the neural signatures of 
the disorders will be critical for clarifying their causes.
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