
International Journal on Software Tools for Technology Transfer (2023) 25:185–204
https://doi.org/10.1007/s10009-022-00691-x

GENERAL

Special Issue: TACAS 2021

Combining rule- and SMT-based reasoning for verifying floating-point
Java programs in KeY

Rosa Abbasi1 · Jonas Schiffl2 · Eva Darulova1,3 ·Mattias Ulbrich2 ·Wolfgang Ahrendt4

Accepted: 7 November 2022 / Published online: 8 March 2023
© The Author(s) 2023

Abstract
Deductive verification has been successful in verifying interesting properties of real-world programs. One notable gap is
the limited support for floating-point reasoning. This is unfortunate, as floating-point arithmetic is particularly unintuitive
to reason about due to rounding as well as the presence of the special values infinity and ‘Not a Number’ (NaN). In this
article, we present the first floating-point support in a deductive verification tool for the Java programming language. Our
support in the KeY verifier handles floating-point arithmetics, transcendental functions, and potentially rounding-type casts.
We achieve this with a combination of delegation to external SMT solvers on the one hand, and KeY-internal, rule-based
reasoning on the other hand, exploiting the complementary strengths of both worlds. We evaluate this integration on new
benchmarks and show that this approach is powerful enough to prove the absence of floating-point special values—often a
prerequisite for correct programs—as well as functional properties, for realistic benchmarks.

Keywords Deductive verification · Floating-point arithmetic · Transcendental functions

1 Introduction

Deductive verification has been successful in providing
functional verification for programs written in popular pro-
gramming languages such as Java [2,21,40,48], Python [27],
Rust [4], C [23,53], and Ada [17,49]. Deductive verifiers
allow a user to annotate methods in a program with pre- and

B Rosa Abbasi
rosaabbasi@mpi-sws.org

Jonas Schiffl
jonas.schiffl@kit.edu

Eva Darulova
eva@mpi-sws.org

Mattias Ulbrich
ulbrich@kit.edu

Wolfgang Ahrendt
ahrendt@chalmers.se

1 MPI-SWS, Kaiserslautern and Saarbrücken, Saarbrücken,
Germany

2 Karlsruhe Institute of Technology, Karlsruhe, Germany

3 Uppsala University, Uppsala , Sweden

4 Chalmers University of Technology, Gothenburg, Sweden

postconditions, from which verification conditions (VCs)
are automatically generated. These are then either proven
directly by the verifier itself, or discharged with exter-
nal tools such as automated Satisfiability Modulo Theories
(SMT) solvers or interactive proof assistants.

While deductive verifiers fully implement many sophisti-
cated data representations (including heap data structures,
objects, and ownership), support for floating-point num-
bers remains rather limited—solely Frama-C and SPARK
offer automated support for floating-point arithmetic in C
and Ada [30]. This state of affairs is at least partially a
result of previous limitations in floating-point support in
SMT solvers. Consequently, deductive verification has been
used for floating-point programs only by experts with con-
siderable manual effort [13,30]. This is unfortunate as it
makes deductive verification unavailable for a large num-
ber of programs across many domains including embedded
systems, machine learning, and scientific computing. With
the increasing need for parallelization in code, scientific
computing specifically has recently experienced algorithmic
challenges for which formal methods may contribute to a
solution [8,56].

One of the main challenges of floating-point arithmetic is
its unintuitive behavior and the special values that the IEEE

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-022-00691-x&domain=pdf
http://orcid.org/0000-0003-1495-3470
http://orcid.org/0000-0002-9882-8177
http://orcid.org/0000-0002-6848-3163
http://orcid.org/0000-0002-2350-1831
http://orcid.org/0000-0002-5671-2555

186 R. Abbasi et al.

754 standard [38] introduces. For instance, an overflow or a
division by zero results in the special value (positive or neg-
ative) infinity, and not a runtime exception. Similarly, invalid
operations like sqrt(-1.0) result in a Not a Number (NaN)
value. These special values are problematic as seemingly
straightforward identities do not hold (x == x or x * 0.0 ==

0.0). In addition, every operation on floating-point numbers
potentially involves rounding, which compromises familiar
rules like associativity and distributivity. Hence, reasoning
support for writing correct floating-point programs is indis-
pensable.

Abstract interpretation-based tools can prove the absence
of runtime errors and special values [18,42] and bound
roundoff errors due to floating-point’s finite precision [9,
19,24,35,58]. SMT decision procedures [15] or SAT-based
model-checking [22,56], on the other hand, can prove intri-
cate properties requiring bit-precise reasoning. However,
these techniques and tools largely support only purely
floating-point programs or program snippets, or analyze pro-
grams only up to a predefined depth of the call stack. Gen-
eral reasoning about real-world object-oriented programs,
however, requires support for more than floating-point arith-
metic. Many realistic programs mix floating-point types
with other primitive types, like integers, including (implicit)
type casts and moreover use object-oriented concepts, like
the (unbounded) object heap. This necessitates different
analyses which need to be integrated with floating-point rea-
soning.

Handling floating-points in a deductive verifier has unique
advantages. First, the deductive verification approach already
comes with the infrastructure for reasoning about complex
control and data structures (like exception handling and
heaps). Second, it allows one to flexibly combine the ver-
ifier’s symbolic execution reasoning with external decision
procedures. Third, depending on the theory support, the ver-
ifier or external solver may also generate counterexamples
of a property and thus help program debugging—something
an abstract interpretation-based approach fundamentally
cannot provide.

We report on adding floating-point support to the KeY
deductive verifier, providing the first automated deductive
floating-point support for the Java programming language.
Among others, we verify the absence of the special val-
ues infinity and NaN. While those are helpful in particular
circumstances (like carefully designed implementations of
numeric analysis algorithms), for most applications they
indicate an error. Hence, showing their absence is a pre-
requisite for further (functional) reasoning. Moreover, our
extension allows to express and discharge functional prop-
erties relating pre- and poststates, including bounds on
roundoff errors and bounds on differences between two sim-
ilar floating-point programs, which we also demonstrate.

We exploit both KeY’s symbolic execution and exter-
nal SMT support. On the one hand, we handle arithmetic
operations by relying on a combination of KeY’s symbolic
execution to handle the heap and SMT-based decision pro-
cedures to handle the floating-point part of the VCs. On the
other hand, we support transcendental functions via axiom-
atization in the KeY prover itself.

Transcendental functions such as sine are a common fea-
ture in engineering applications, but are not supported by
floating-point decision procedures. We explore two ways of
supporting them soundly but approximately, by encoding
them as axiomatized uninterpreted function symbols once
directly in the SMT queries, and once in additional calcu-
lus rules in KeY. Our evaluation shows that even though
such reasoning is approximate, it is nonetheless sufficient
to prove the absence of special values in many interesting
programs.

We evaluate KeY’s floating-point support on a num-
ber of real-world floating-point Java programs, verifying
the absence of special values as well as functional cor-
rectness, including programs with loops (with the help of
loop invariants). Our benchmark set allows us to evaluate
recent progress in SMT floating-point support in Z3 [26],
CVC4 [6] andMathSAT [20] on yet unseen benchmarks. For
instance, we observe that quantifiers are challenging even if
they do not affect satisfiability of SMT queries. Our bench-
marks are openly available, and we expect our insights to be
useful for further solver development.
Contributions In summary, we make the following contribu-
tions:

– we implement and evaluate the first automated deductive
verification of floating-point Java programs by combin-
ing the strength of rule-based and SMT-based deduction;

– we develop novel automated support for reasoning about
transcendental functions in a deductive verifier;

– we add support for reasoning about (potentially round-
ing) type conversions;

– we collect a new set of challenging real-world floating-
point benchmarks in Java;1

– we compare different SMT solvers for discharging floating-
point VCs on this new set of benchmarks.

This article extends a previous conference paper [1]
by more floating-point arithmetic background, the presen-
tation of all rules for transcendental functions and sqrt,
new rules—and accordingly experiments—for (potentially
rounding) casts between integers and floats, new experi-
ments on the verification of floating-point loop invariants,
new experiments on the sensitivity of SMT solvers to numer-

1 Available at https://zenodo.org/record/6572961#%23.Yot0hJNBy3I

123

https://zenodo.org/record/6572961#%23.Yot0hJNBy3I

Combining rule- and SMT-based reasoning . . . 187

ous problem modifications, and extended reporting of the
experiments presented in [1].

2 Background

2.1 Introduction to KeY

KeY [2] is a platform for deductive verification of Java pro-
grams, working at a source code level. The input is a Java
program annotated in the Java Modeling Language (JML)
[44], encouraging a Design by Contract ([45,50]) approach
to software development. The user specifies the expected
behavior of Java classes with class invariants that the pro-
gram has to maintain at critical points. Methods are specified
with method contracts, consisting mainly of pre- and post-
conditions, with the understanding that if the precondition
holds when the method is called, the postcondition has to
hold after the method returns.

After loading an annotated program, KeY translates it to a
formula in Java Dynamic Logic [2] (JavaDL), an instance of
Dynamic Logic [36] which enables logical reasoning about
Java programs. Logical rules are provided for the translation
of programs into first-order logic, and for closing the result-
ing goals, or proof obligations. KeY is semi-interactive in
that it allows manual rule application, while also offering
powerful built-in automation and macros.

The rules are written in KeY as taclets,
calculus rule schemata, implementing rewrite rules. One

example taclet that rewrites any expression matching x + 0
to x is shown below:

find x + 0
replace x

In general, taclets have the following form:

find tfind
replace treplace
add ϕadd

show ϕshow

It consists of a schematic find term tfind which has to
match an expression or formula in the current goal, and a
term treplace which replaces the matched expression or for-
mula. New formulas may be introduced as new assumptions
onto the proof goal using add. If the rule has a side condition
ϕshow that needs to be established, it can be optionally spec-
ified using show that will open a new proof goal for ϕshow.
One of the clauses for add and replace may be empty or
omitted. The taclet language supports typed meta-variables
and heuristics for KeY’s automation.

In addition to the application of taclets, KeY also sup-
ports the translation of open goals into the common SMT
input format SMT-LIB [7] and the calling of an external
SMT solver. For specific theories, SMT solvers can be much
more efficient than KeY’s own, rule-based reasoning, while
other goals are more effectively dealt with by KeY rather
than SMT solvers. KeY therefore allows to discharge some
goals with SMT solvers, and others with KeY’s own, rule-
based proof engine.

2.2 Floating-point arithmetic in Java

Among the primitive (i.e., non-reference) types of Java,
there are two which represent floating-point numbers, namely
float and double. They are associated with the 32-bit
and 64-bit format, respectively, as specified in the IEEE
754 Standard for Floating-Point Arithmetic. More precisely,
Java implements a subset of that standard. In the following,
we summarize some central characteristics of Java floating-
point numbers, loosely following Muller et.al. [52]. Most
of this is not specific to Java, but more generally applies to
IEEE 754. Note that the Java Virtual Machine (JVM) only
supports floating-point numbers with base 2, even if the Java
language syntax supports base 10 as well, in such a way that
parsing and input/output routines translate back and forth
between the bases.

Each (base 2) floating-point number x (except the special
values +∞, −∞, and NaN, see below) with precision p can
be represented as a triplet (s,m, e), such that x = (−1)s ∗
m ∗ 2e, where s ∈ {0, 1} is the sign, m (called significand) is
a binary fixed-point number with one digit before the radix
point and p − 1 digits after the radix point (note that 0 ≤
m < 2), and e (exponent) is an integer such that emin ≤ e ≤
emax . Java supports two floating-point formats (both in base
2): float with p = 24, emin = −126, emax = 127 and
double with p = 53, emin = −1022, emax = 1023.

Whenever the result of a computation cannot be exactly
represented with the given precision, it is rounded. IEEE 754
defines various rounding modes, of which Java only sup-
ports round to nearest, ties to even. Rounding is exact, as if
one would first compute the ideal real number, and round
afterwards. Note that rounding may even occur when the
exact mathematical result of a computation corresponds to
an integer number. The single precision type float has a
significand of 24 bits and can therefore not exactly represent
all integers of the 32-bit type int. However, integers whose
absolute value is smaller than 224 can be represented in an
exact way in the type float.

A number x could potentially be represented by differ-
ent (s,m, e) triples. However, it has many computational
advantages to restrict the floating-point numbers to a normal
form. Therefore, m is always chosen such that 1 ≤ m < 2
wherever possible (these are called the normal numbers) and

123

188 R. Abbasi et al.

0 ≤ m < 1 only were necessary (these are called the subnor-
mal numbers). Note that, for subnormal numbers, e = emin .
Also note that, for subnormal numbers, the relative round-
ing error can be much worse than for normal numbers. On
the other hand, the existence of subnormals guarantees the
following equivalence: (x > y) ↔ (x − y > 0). With-
out subnormals, this would not hold, because the difference
between two normal floating-point numbers can be smaller
than any normal floating-point number.

The triple representation gives us two zeros, +0 and
−0, represented by (0, 0, 0) and (1, 0, 0), respectively.2 The
Boolean expressions +0.0==−0.0 and −0.0==+0.0 both
return true. If the absolute value of the ideal result of a
computation is too small to be representable as a floating-
point number of the given format, the resulting floating point
number is +0 or −0. In addition, there are three special val-
ues, +∞, −∞, and NaN (Not a Number). If the absolute
value of the ideal result of a computation is too big to be
representable as a floating-point number of the given for-
mat, the result is +∞ or −∞. Also, division by zero will
give an infinite result (e.g., 7.3/ + 0 = +∞).3 Comput-
ing further with infinity may give an infinite result (e.g.,
+∞ + +∞ = +∞), but may also result in the additional
‘error value’ NaN (e.g., +∞−+∞ = NaN). The predicates
==, <, >, <=, >= return false as soon as one operand eval-
uates to NaN. The predicate != returns true as soon as one
operand evaluates to NaN. In particular, NaN==NaN returns
false, and NaN!=NaN returns true. Due to the presence of
infinities and NaN, floating-point operations do not throw
Java exceptions.4

By default, the Java virtual machine is allowed to make
use of higher-precision formats provided by the hardware.
This can make computation more accurate, but it also leads
to platform-dependent behavior. This can be avoided by
using the strictfp modifier, ensuring that floating-point
computations inside methods or classes with the strictfp

modifier comply to the precision defined in the IEEE
754 Standard, even for intermediate results. This modifier
ensures portability. Additionally, one can set the Assume
strictfp option in KeY, meaning that all computations are
assumed to be within the scope of a strictfp modifier, even
if strictfp is not explicit in the code.

2 More precisely, the second element of these tuples has one zero
before the radix point, and p − 1 zeros after the radix point.
3 Note that 7.3/+ 0 and 7.3/− 0 give different results, +∞ and −∞,
respectively, even if +0.0==−0.0 returns true.
4 The notion of exceptions in the IEEE 754 Standard is not to be con-
fused with Java exceptions. IEEE 754 exceptions are rather ‘sticky
flags’ for overflow, underflow, and other problematic situations. They
do not change the control flow and certainly are not objects. In this con-
text, we can also mention that IEEE 754 exceptions are not supported
by Java.

3 Floating-point support in KeY

3.1 Arithmetics

In order to be able to specify and verify programs con-
taining floating-point numbers, we made several extensions
to the KeY tool. We added the float and double types
to the KeY type system, introduced functions and predi-
cate symbols to formalize arithmetic operations (+, *, . . .),
and comparisons (<, ==, . . .) on floating-point expressions,
and added cast operations among floating-point and integer
types ((double), (float), (int)). The translation supports
both code with and without the strictfp modifier. How-
ever, since the actual precision of non-strictfp operations
is not known, the function symbols remain uninterpreted.
We assume that the strictfp modifier is set for all our
benchmarks. We extended KeY’s parser to correctly handle
programs and annotations containing floating-point numbers
and added logic rules for translating floating-point expres-
sions from Java or JML to JavaDL.

As an example, Listing 1 shows a JML specification of
our Rectangle benchmark that contains floating-point liter-
als and makes use of the fp_nan and fp_nice predicates.
fp_nan states that a floating-point expression is NaN and
fp_nice, states that a floating-point expression is neither
NaN nor infinity. The scale method contains two contracts
that are checked separately, ensuring that the class fields of
a scaled rectangle object are not NaN, considering different
preconditions. For the first contract, the SMT solver pro-
duces a counterexample. In the second, we bound inputs by
concrete ranges that we picked arbitrarily and get the valid
result. In practice, such ranges would come from the context,
e.g., from the kind of rectangles that appear in an applica-
tion, or from known ranges of sensor values.

Concerning discharging the resulting proof obligations,
there were two main ways to consider. One is to create
a floating-point theory within KeY by adding axioms and
deduction rules, so that the desired properties can be proven
in KeY’s calculus. The other way is to translate the proof
obligations from JavaDL to SMT-LIB and call an external
SMT solver. While the KeY approach traditionally favors
conducting proofs with KeY’s own, rule-based reasoning
engine, we partially deviated from this way in order to har-
ness the greater efficiency of SMT solvers when it comes to
the combinatorically heavy reasoning about floating-point
arithmetic. Our approach attempts to get the best of both
worlds by distinguishing between basic floating-point arith-
metic, i. e., elementary operations and comparisons, and
more complex functions which do not have an SMT-LIB
equivalent (e. g., the transcendental functions), or where
rule-based reasoning is more effective than SMT solvers
currently are (see Sect. 3.2.2).

123

Combining rule- and SMT-based reasoning . . . 189

Listing 1 The Rectangle.scale benchmark

/*@ public normal_behavior

@ requires \fp_nice(arg0.x) && \fp_nice(arg0.y)

@ && \fp_nice(arg1) && \fp_nice(arg2);

@ ensures !\fp_nan(\result.x) && !\fp_nan(\result.y) &&

@ !\fp_nan(\result.width) && !\fp_nan(\result.height);

@ also

@ public normal_behavior

@ requires -5.53 <= arg0.x && arg0.x <= -3.38 &&

@ -5.53 <= arg0.y && arg0.y <= -3.38 &&

@ 3.1 < arg0.width && arg0.width <= 3.7332 &&

@ 3.0000001 < arg0.height && arg0.height <=4.0004 &&

@ 3.0003001 < arg1 && arg1 <= 4.0024 &&

@ -6.4000003 < arg2 && arg2 <= 3.0001;

@ ensures !\fp_nan(\result.x) && !\fp_nan(\result.y)&&

@ !\fp_nan(\result.width) &&!\fp_nan(\result.height);

@*/

public Rectangle scale(Rectangle arg0,double arg1,double arg2){

Area v1 = new Area(arg0);

AffineTransform v2 =

AffineTransform.getScaleInstance(arg1, arg2);

Area v3 = v1.createTransformedArea(v2);

Rectangle v4 = v3.getRectangle2D();

return v4;

}

Elementary operations and comparisons get translated
to the corresponding SMT-LIB functions. In SMT-LIB, all
floating-point computations conform to the IEEE 754 Stan-
dard. Therefore, only Java programs with the strictfp

modifier can be directly translated to SMT-LIB without loss
of correctness.

We developed a translation fromKeY’s floating-point the-
ory to SMT-LIB. In order to integrate it into KeY, we also
overhauled the existing translation from JavaDL to SMT-
LIB to create a new, more modular framework, which now
supports all the features of the original translation, e. g.,
heaps and integer arithmetic, but also floating-point expres-
sions at the same time.

Floating-point intricacies sometimes require extra cau-
tion. For example, there are two different notions of equal-
ity for floats: bitwise equality and IEEE754 equality. Our
implementation ensures these are distinguished correctly
and that the specification language remains intuitive for a
developer to use.

Using the translation to SMT-LIB, we can specify and
prove two classes of properties in KeY, the absence of spe-
cial values and functional properties. The absence of special
values is specified using the fp_nan and fp_infinite pred-
icates (or the fp_nice equivalent). Furthermore, one can
specify functional properties (including loop invariants) that
are expressible in floating-point arithmetic, e.g., one can
compare the result of a computation against the result of a
different program which is known to produce a good result
or a reference value.

3.2 Transcendental functions

Floating-point decision procedures in SMT solvers success-
fully handle programs consisting of arithmetic and square-
root operations. Many numerical real-world programs, how-
ever, include transcendental functions such as sin and cos.
In Java programs, these functions are implemented as static
library functions in the class java.lang.Math.

Unlike arithmetic operations, transcendental functions
are muchmore loosely specified by the IEEE 754 Standard—
only an upper bound on the roundoff error is given. Libraries
are thus free to provide different implementations, and even
tighter error bounds. Exact reasoning in the same spirit as
floating-point arithmetic would thus have to encode a spe-
cific implementation. Given that these implementations are
highly optimized, this approach would be arguably com-
plex. We observe, however, that such exact reasoning about
transcendental functions is often not necessary and a sound
approximate approach is sufficient and efficient.

In this section, we introduce an axiomatic approach for
reasoning about programs containing transcendental func-
tions. We observe that with the flexibility of deductive
verification and KeY itself, we can instantiate it in two
different ways. We encode transcendental functions as unin-
terpreted functions and axiomatize them in the SMT queries.
Alternatively, we encode these axioms in KeY as logical
inference rules. In the following, we explain each of these
solutions in more detail and later we will evaluate them on a
set of benchmarks.

3.2.1 Axiomatization in SMT

We encode library functions as uninterpreted functions and
include a set of axioms in the SMT-LIB translation for each
method that is called in a benchmark. That is, we extended
KeY such that when a transcendental function appears in the
proof obligation, its declaration alongside all the axioms for
that function is added to the translation.

For the axiomatization of transcendentals, we did not add
rules that expand to a definition or allow a repeated approx-
imation of the function value (like expansion into a Taylor
series). Instead, we added a number of lemmata encoding
interesting properties related to special values. For instance,
the following axiom states that if the input to the sin func-
tion is not a NaN or infinity, then the returned value of sin

is between −1.0 and 1.0:

123

190 R. Abbasi et al.

(assert (forall ((a Float64)) (=>

(and (not (fp.isNaN a)) (not (fp.isInfinite a)))

(and (fp.leq (sinDouble a)

(fp #b0 #b01111111111#b0000...000000))

(fp.geq (sinDouble a)

(fp #b1 #b01111111111#b0000...000000))))))

Note that this implies that the result is not a NaN or infin-
ity. The other axioms are similar in spirit, so we do not list
them.

These axioms are expressed as quantified floating-point
formulas and capture high-level properties of library func-
tions complying with the specifications in the IEEE 754
Standard. Clearly, since we do not have the actual imple-
mentations of these functions, we are not able to prove
arbitrary properties. However, such an axiomatization is
often sufficient to check for (the absence of) special values,
i.e., NaN and infinity, as our experiments in Sect. 4.4 show.

3.2.2 Taclets in KeY

Reasoning about quantified formulas in SMT is a long-
lasting challenge [32]. We have also observed in our exper-
iments with only arithmetic operations (Sect. 4.3) that
SMT solvers struggle with quantifiers in combination with
floating-point numbers. We have therefore implemented an
alternative approach encoding the axioms not in the SMT
queries, but instead as deductive inference rules (called
‘taclets’) in KeY.

The rules encode the same logical information as the uni-
versally quantified assertions that we add in SMT-LIB (and
where we leave the choice of instantiations entirely to the
SMT/SAT solver). With our taclet approach, we instantiate
a quantifier (only) to one’s needs. For instance, the taclet that
corresponds to the SMT axiom mentioned in Sect. 3.2.1 is
captured by the following taclet:

find sin(x)
add ¬fp_nan(x) ∧ ¬fp_infinite(x)

→ −1.0 ≤ sin(x) ≤ +1.0 	⇒

We note that this is an incomplete treatment of the formal-
ized operations. Considering only some and not all possible
quantifier instantiations buys us more closed proofs and
shorter running times in some cases. However, it may also
lead to spurious counterexamples (false positives) reported
by the SMT solver in other cases.

A heuristic strategy applies the rules automatically using
the occurrences of transcendentals as instantiation triggers.
However, instantiating the axioms too eagerly consider-
ably increases the number of open goals, which is why we
assume that the user selects the axioms to apply manually
(and did so in the experiments). After the application, the

Fig. 1 List of added axioms to KeY for transcendental functions

proof obligation can either be closed, i.e., proven, by KeY
automatically, or be given to the SMT solver as before for
final solving. Currently, the set of axioms (in the SMT-
LIB translation and as taclets in KeY) only contains axioms
for the transcendental functions occurring in our bench-
marks, namely sin, cos, and atan functions. So far we have
10 axioms; however, adding more axioms (also for further
transcendentals like exponentiation or logarithm) is straight-
forward.

The full set of axioms is listed in Fig. 1 (stated in natural
language for presentation purposes).

3.3 Interaction of floats with other primitive types

For the formal verification of Java programs with floats,
there are often not only floating-point numbers that have to
be taken into consideration, but also heap data structures,
arrays, and primitive values of other data types than float

or double. Our SMT translation in KeY does not only tar-
get the floating-point theory, but encodes other aspects of
proof obligations into theories like linear integer arithmetic
for integers, or arrays representing heap data structures.
In the evaluation, the state-of-the-art SMT solvers show
their ability to reason about these theories when they occur
simultaneously within the same proof obligation. As long
as the different theories act on disjoint domains, this com-
bined integrated translation works nicely in most cases. For
instance, programs using float arrays or class attributes of
type double can be handled as long as floating-point values
and other types are not arithmetically combined within an
expression.

However, there are relevant cases in which arithmetic
expressions in Java programs have to contain both integer
and floating-point variables, their domains thus becoming
entangled. It is, for instance, a legal Java expression to add
an integer value to a float value, yielding a float value.

123

Combining rule- and SMT-based reasoning . . . 191

Such cases of intersecting value domains require special
attention.

We call float-representable those 32-bit int values which
can be represented in float without loss of precision. In
particular, all integers between −224 and 224 are float-
representable.5 According to the Java Language Specifica-
tion (JLS) [33], an implicit widening cast called numeric
promotion is applied when different primitive types are com-
bined in an arithmetic operation. The addition iv + fv of an
integer variable iv and a float variable fv is hence equiva-
lent to the expression (float)iv + fv in which the numeric
promotion has been made explicit.

The cast operator connects the domains of the two prim-
itive types and maps integer values to floats by applying
the same rounding operation which is applied to the result
of arithmetic operations within floats. Since this family of
cast operators on primitive types is translated from JML into
JavaDL as uninterpreted functions, we can build a bridge
between the integer and floating-point domains by adding
theorems/axioms about the numeric promotion to KeY in
form of taclets.

In KeY, we can add knowledge about the casting operator
in form of taclet rules to the verification engine: The new
taclets are implemented as conditional rewriting taclet rules
introducing new constraints on the cast operator ‘(float)’.

A central property of float-representable integers is that
the cast operation can be inverted, captured by the following
taclet

find (int)(float)i
replace i
show −224 ≤ i ≤ 224

in KeY, formalising that casting an integer expression i first
to a float and then back to an int is the identity if i stays
within the range of float-representable values.

Since the JLS prescribes the same rounding mode for
float operations and numeric promotion, it does not matter,
for float-representable values, if they are first added and then
cast or the way around:

Theorem 1 Let a, b be float-representable integer values
such that a + b does not int-overflow. Then, (float)(a +
b) = (float)a + (float)b.

Proof e introduce an auxiliary injection function R : float∪
int → R canonically mapping float and integer values to
their real-valued counterparts. The function rnd : R →
float is the rounding function mapping real values to floats.
According to the JLS, the same rounding function is used

5 This interval is indeed the largest in which all integers are float-
representable. The value 224 + 1 requires a 25-bit significand to be
precisely represented, but float only has a precision of 24 bits.

after floating-point addition (f1 +float f2 = rnd(R(f1) +R

R(f2)) for floats f1, f2) and when converting integers to
floats ((float)i = rnd(R(i)) for an integer i).

With a, b as required by the theorem, we have
R(rnd(R(a))) = R(a), R(rnd(b)) = R(b) and R(a +int

b) = R(a) +R R(b). Hence,

(float)(a +int b)

= rnd(R(a +int b)) = rnd(R(a) +R R(b))

= rnd(R(rnd(R(a)) +R R(rnd(R(b))))

= (float)a +float (float)b

Note that Theorem 1 does not require a + b to be float-
representable. Indeed, a + b may need to be rounded when
casted to float on the left of the equation. At the same time,
the float addition on the right side of the equation may also
require rounding. The insight from the proof above is that
the IEEE standard and the JLS force the rounding on both
sides to be the same!

Theorem 1 can also be formulated for subtraction and
multiplication (with essentially the same correctness argu-
ments) instead of addition. A taclet that implements this
theorem for the float-representable numbers in the afore-
mentioned range is the following:

find (float)(a + b)
replace (float)a + (float)b
show −224 ≤ a ≤ 224 ∧ − 224 ≤ b ≤ 224

Note that the taclet does not cover all float-representable
integers but only the interval in which all integers are float-
representable. In this range, the sum a + b cannot overflow.
The taclet can also be formulated for subtraction. The taclet
for the case of multiplication must take this into considera-
tion:

find (float)(a ∗ b)
replace (float)a ∗ (float)b
show − 224 ≤ a ≤ 224 ∧ − 224 ≤ b ≤ 224

∧ − 231 ≤ a ∗ b < 231

Note that KeY internally operates on mathematical integers
(instead of 32-bit integers) such that the overflow check can
be implemented in this fashion.

Another important rule for the cast operator is the con-
version of literals: any expression (float)c where c is a
numerical integer literal can be rewritten to the correspond-
ing numerical literal on the float side, like

123

192 R. Abbasi et al.

Listing 2 Adding up the values in an array of floats.

/*@ public normal_behaviour

@ requires (\forall int i; 0 <= i <a.length;

@ 1.f <= a[i] && a[i]<= 2.f);

@ requires a.length < 16 777 216; //== 224

@ ensures (float)a.length <= \result &&

@ \result <= (float)a.length* 2.f;

@*/

float sum(float[] a) {

float sum = 0.0f;

int i = 0;

/*@ loop_invariant 0 <= i && i <= a.length &&

@ (float)i <= sum && sum <= (float)i * 2.f;

@ decreases a.length - i;

@ assignable \nothing;

@*/

while(i < a.length) {

sum += a[i];

i++;

}

return sum;

}

find (float)0
replace 0.0 f .

Similar theorems and rules can be formulated for other
combinations of primitive types, in particular involving
double and long.

An example program, which makes use of numeric pro-
motion in Java, is shown in Listing 2, where the loop
invariant and the postcondition contain a numeric promotion
(made explicit in the listing). In order to prove that the loop
invariant is inductive, one has to show that (float)(i+1) =
(float)i +1. f , which can be proven using the newly intro-
duced taclet mentioned above.

4 Evaluation

4.1 Benchmark programs

We collected a set of existing floating-point Java pro-
grams representing real-world applications in order to eval-
uate the feasibility and performance of KeY’s floating-point
support.

The left half of Table 1 provides an overview of our
benchmarks. Each benchmark consists of one method, which
is composed of arithmetic operations and method calls
to potentially other classes. The invocations of methods
from java.lang.Math (e.g., Math.abs) are marked by “+1”
in Table 1; these are resolved by inlining the method imple-
mentation. For benchmarks that contain calls to transcen-
dental functions and square root, the called functions are
listed; these are handled by our axiomatization. We include

sqrt in this list, as we have observed that exact support
can be expensive, so it may be advantageous to handle sqrt

axiomatically. We include benchmarks with loops and loop
invariants used for the evaluation of the tool Pine [39], repre-
sented as Pine.*. Benchmarks Rectangle, Circuit, Matrix3,
Rotation and Pine.pendulum-approx are partially shown in
Listings 1, 6, 3, 4 and 5 respectively.

Each benchmark also includes a JML contract that is to
be checked. For some methods, we specify two contracts
(marked by “(2)” in the first column of Table 1), each serv-
ing as an independent benchmark. The contracts for some
of these benchmarks check that the methods do not return
a special value, i.e., infinity and/or NaN, the preconditions
being that the variables are not themselves special values
and possibly are bounded in a given range. For the Matrix,
FPLoop, Rotate and Pine.* benchmarks, we check a func-
tional property (see Sect. 4.3). The Pine.* benchmarks and
FPLoop, which has three contracts, additionally show how to
specify floating-point loop behavior using loop invariants.

4.2 Proof obligation generation

To reason about the contract of a selected benchmark, we
apply KeY, which generates proof obligations or ‘goals’.
Some of these goals (heap-related) are closed by KeY auto-
matically. The remaining open goals are closed by either
SMT solvers with floating-point support directly (Sects. 3.1
and 3.2.1), or with a combination of transcendental KeY
taclets and floating-point SMT solving (Sect. 3.2.2).

Columns 6 and 7 in Table 1 show the number of proof
obligations closed by KeY directly and to be discharged by
external solvers, respectively. The next two columns show
the number of taclet rules that KeY applied in order to close
its goals, and the time this takes. For benchmarks with two
contracts, we show the respective values separated by ‘/’.

We run our experiments on a server with 1.5 TB memory
and 4x12 CPU cores at 3GHz. However, KeY runs single-
threadedly and does not use more than 8GB of memory.

For our set of benchmarks, the symbolic execution pro-
cess is fully automated. Note that the machinery can deal
with loop invariants, if they are provided. Automated loop
invariant generation is, however, particularly challenging for
floating-points due to roundoff errors [25,39], and a research
topic in itself.

4.3 Evaluation of SMT floating-point support

Previous work [30] reported that SMT support for float-
ing-point arithmetic is rather limited. However, with recent
advances [15], we evaluate the situation again. Most bench-
marks used to evaluate SMT solvers’ decision procedures [55]
aim to check (individual) specialized (corner case) prop-
erties of floating-point arithmetic. The proof obligations

123

Combining rule- and SMT-based reasoning . . . 193

Table 1 Benchmark details and KeY automode statistics, time is measured in seconds

Benchmark Benchmark details Automode statistics

Classes # Method
calls

Arith.
ops

Library
functions

Goals
closed
by KeY

Goals
to be
closed
externally

Rules
applied

Automode
time (s)

Complex.add (2) 1 0 2 – 3 / 3 1 / 4 185 / 286 0.7 / 0.2

Complex.divide (2) 1 0 11 – 10 / 8 2 / 8 483 / 625 0.7 / 0.8

Complex.compare 1 0 2 – 3 2 216 0.2

Complex.reciprocal (2) 1 1 6 – 1 / 1 2 / 2 402 / 406 0.4 / 0.5

Circuit.impedance 2 1 3 – 1 4 360 0.5

Circuit.current (2) 2 3 14 – 11 / 11 4 / 1 1267 / 1238 4.0 / 4.1

Matrix2.transposedEq 1 3 3 – 3 1 735 0.9

Matrix3.transposedEq 1 4 34 – 3 1 1786 5.1

Matrix3.transposedEqV2 1 4 34 – 3 1 1796 5.4

Rectangle.scale (2) 3 + 1 23 22 – 32 / 32 32 / 16 5990 / 5617 18.4 / 14.5

Rotate.computeError 1 + 1 6 26 – 108 8 3693 74.2

Rotate.computeRelErr 1 + 1 6 28 – 120 8 3898 79.6

FPLoop.fploop 1 0 1 – 2 4 99 0.1

FPLoop.fploop2 1 0 1 – 2 4 99 0.1

FPLoop.fploop3 1 0 1 – 2 4 99 0.1

Pine.ex2 1 1 9 – 2 12 320 1.3

Pine.ex2-reset 1 1 9 – 2 16 394 1.8

Pine.ex3-reset-leadlag 1 1 6 – 2 15 240 0.5

Pine.ex7-dampened 1 1 5 – 2 10 203 0.6

Pine.filter-goubault 1 1 3 – 2 8 183 0.5

Pine.filter-mine1 1 1 4 – 2 10 211 0.6

Pine.filter-mine2 1 1 3 – 2 8 172 0.6

Pine.filter-mine2-nondet 1 1 4 – 2 8 193 0.5

Pine.harmonic 1 1 5 – 2 9 199 0.4

Pine.pendulum-approx 1 1 17 – 2 10 299 0.9

Pine.pendulum-small 1 1 7 – 2 10 224 0.7

Pine.symplectic 1 1 6 – 2 9 195 0.7

Cartesian.toPolar 2 + 1 3 6 sqrt, atan 1 4 438 0.5

Cartesian.distanceTo 1 + 1 1 5 sqrt 2 1 191 0.1

Polar.toCartesian 2 + 1 3 4 cos, sin 1 2 364 0.5

Circuit.instantCurrent 2 + 1 14 23 sqrt, atan, cos 17 2 1686 14.1

Circuit.instantVoltage 1 + 1 1 4 cos 0 2 138 0.1

generated from our set of benchmarks are complementary
in that they are more arithmetic heavy, while nonetheless
relying on accurate reasoning about special values and func-
tional properties.

For each open goal not automatically closed, KeY gen-
erates one SMT-LIB file that is fed to the solvers for
validation. We compare the performance of the three major
SMT solvers with floating-point support CVC4 [6] (version
1.8, with the SymFPU library [15] enabled), Z3 (4.8.9) [26]
and MathSAT (5.6.3) [20]. For this, we set a timeout of 300s
for each proof obligation. While KeY is able to discharge

proof obligations in parallel, for our experiments, we do so
sequentially to maintain comparability.

KeY’s default translation to SMT introduces axioms
which include quantifiers. These quantifications are not
related to floating-point arithmetic, but are used to logically
encode important properties of the Java memory model, like
the type hierarchy and the absence of dangling references
on any valid Java heap. If we reason about floating-point
problems in isolation, they are not needed, but if we want to
consider Java verification more holistically with questions
combining aspects of heap and floating point reasoning,

123

194 R. Abbasi et al.

Table 2 Summary of valid / invalid goals correctly decided and average running times of each solver for the SMT translations with and without
quantified axioms

Details Experiment Quantified axioms # Goals CVC4 Z3 MathSAT

Goals decided Avg. # Goals decided Avg. # Goals decided Avg.

Table 3 Valid
contracts

✓ 80 79 5.4 25 25 – –
Table 4 ✗ 80 79 5.3 52 63.7 80 10.1

Table 5 Invalid
contracts

✓ 9 0 7.6 0 2.6 – –
✗ 9 8 12.8 7 60.4 9 2.0

Table 8 Axioms in SMT ✓ 10 9 17.3 4 65.0 – –

Axioms as taclets ✓ 10 10 28.0 2 164.0 – –

Axioms as taclets ✗ 10 10 28.1 5 84.3 8 1.5

Table 9 fp.sqrt ✗ 7 7 40.4 1 23.5 5 1.2

Axiomatized sqrt ✗ 7 5 2.1 5 86.4 5 3.9

Table 6 Loop invariants ✗ 113 113 6.5 112 13.5 113 5.0

Fig. 2 Runtimes for valid goals with SMT translations with quantifiers

they become essential. We manually inspected that the proof
obligations without our axiomatized treatment of transcen-
dental functions do not depend on these properties and
investigate the quantifier support by including or removing
them from the SMT translations. We do not report results
with quantifiers for MathSAT, since it does not support
them.

Table 2 summarizes the results of our experiments; the
first column lists the corresponding table with detailed
results. Column 4 shows the number of expected valid or
invalid goals for all benchmarks. For each solver, we show
the number of goals that each solver can validate or inval-
idate, together with the average time (in seconds) needed.
The goals resulting in timeout were excluded from the com-
putation of the average time. Column 3 shows whether the
SMT queries include quantifiers or not. The rows summa-
rize our experiments with valid contracts, invalid contracts,

Fig. 3 Runtimes for valid goals with SMT translations without quan-
tifiers

axiomatizations of transcendental functions and square root,
and loop invariants, respectively.

Figures 2 and 3 show a more detailed view of the solvers’
running time for the valid benchmarks. The x-axis shows
the number of open goals that are discharged by the SMT
solvers, sorted by running time for each solver individually.
The k-th point of one graph shows the minimum running
time needed by the solver to close each of the k fastest goals.
Note that each solver may have different goals which are its
k fastest. The y-axis shows the time on a logarithmic scale,
and the maximum value of 300 indicates the timeout.

We conclude that in the presence of quantified axioms
and floating-point arithmetic solvers’ performance deterio-
rate for both valid and invalid goals. In particular, none of the
solvers is able to find counterexamples for any of the invalid
goals. However, when the quantified axioms are removed

123

Combining rule- and SMT-based reasoning . . . 195

Listing 3 The Matrix3 benchmark

public class Matrix3 {

//The matrix: [[a b c],[d e f],[g h i]]

double a, b, c, d, e, f, g, h, i;

double det;

// method transpose not shown

double determinant() {

return (a * e * i + b * f * g + c * d * h) -

(c * e * g + b * d * i + a * f * h);

}

double determinantNew() {

return (a * (e * i) + (g * (b * f) + c * (d * h))) -

(e * (c * g) + (i * (b * d) + a * (f * h)));

}

/*@ ensures \fp_normal(\result) ==> (\result == det); @*/

double transposedEq() {

det = determinant();

return transpose().determinant();

}

/*@ ensures \fp_normal(\result) ==> (\result == det); @*/

double transposedEqV2() {

det = determinantNew();

return transpose().determinantNew();

}

}

from the SMT translations, their performance improves. For
valid contracts, CVC4 and MathSAT perform better than
Z3, in terms of both number of goals validated and the run-
ning time per goal. In particular, MathSAT is able to prove
all goals. However, the running time performance of CVC4
is better than MathSAT’s. For invalid contracts, solvers are
able to produce the expected counterexamples at least par-
tially. Particularly, MathSAT has a better performance than
CVC4 and Z3 in terms of both running time and the number
of proof obligations for which it can produce counterexam-
ples.

Proving functional properties Listings 3 and 4 show exam-
ples of functional properties that are concerned with floating-
point computation. The verification results are included
in Table 3 and Table 4.

Table 3 Summary of valid goals proved and running times of each solver for the SMT translations with quantified axioms

Benchmark # Goals CVC4 Z3

Goals proven Avg. Max. # Goals proven Avg. Max.

Complex.add(1) 1 1 0.6 0.6 1 1.6 1.6

Complex.divide(1) 2 2 1.7 1.9 2 1.8 2.3

Complex.divide(2) 8 8 3.4 11.5 4 3.2 TO

Complex.compare 2 2 0.5 0.6 2 1.5 1.5

Complex.reciprocal(1) 2 2 1.0 1.7 0 – TO

Complex.reciprocal(2) 2 2 1.8 2.4 2 2.7 4.0

Circuit.impedance 4 4 0.8 0.9 3 87.5 TO

Circuit.current(1) 4 4 6.3 13.2 0 – TO

Circuit.current(2) 1 1 5.5 5.5 0 – TO

Matrix2.transposedEq 1 1 0.5 0.5 0 – TO

Matrix3.transposedEqV2 1 1 1.3 1.3 0 – TO

Rectangle.scale(1) 32 31 2.2 TO 7 46.6 TO

Rotate.computeError 8 8 9.8 13.9 0 – TO

Rotate.computeRelErr 8 8 25.3 45.6 0 – TO

FPLoop.fploop 4 4 0.5 1.0 4 2.3 8.1

Summary 80 79 5.4 TO 25 25 TO

123

196 R. Abbasi et al.

Table 4 Summary of valid goals proved and running times of each solver for the SMT translations without quantified axioms

Benchmark # Goals CVC4 Z3 MathSAT

Goals proven Avg. Max. # Goals proven Avg. Max. # Goals proven Avg. Max.

Complex.add(1) 1 1 0.5 0.5 1 1.3 1.3 1 0.2 0.2

Complex.divide(1) 2 2 1.6 1.9 2 2.1 2.7 2 1.5 1.9

Complex.divide(2) 8 8 3.4 11.4 4 2.5 TO 8 29.0 209.5

Complex.compare 2 2 0.5 0.6 2 1.1 1.3 2 0.2 0.2

Complex.reciprocal(1) 2 2 0.9 1.5 1 198.5 TO 2 2.2 2.4

Complex.reciprocal(2) 2 2 1.7 2.3 2 2.8 3.4 2 1.5 1.9

Circuit.impedance 4 4 0.7 0.7 4 9.5 17.1 4 0.4 0.5

Circuit.current(1) 4 4 6.3 13.0 0 – TO 4 13.3 36.2

Circuit.current(2) 1 1 5.2 5.2 0 – TO 1 26.3 26.3

Matrix2.transposedEq 1 1 0.5 0.5 0 – TO 1 0.6 0.6

Matrix3.transposedEqV2 1 1 1.1 1.1 0 – TO 1 3.9 3.9

Rectangle.scale(1) 32 31 2.1 TO 32 95.1 251.8 32 2.4 4.2

Rotate.computeError 8 8 9.7 13.5 0 – TO 8 22.7 35.7

Rotate.computeRelErr 8 8 25.0 45.0 0 – TO 8 27.5 46.4

FPLoop.fploop 4 4 0.5 1.1 4 2.0 7.2 4 0.4 1.0

Summary 80 79 5.3 TO 52 63.7 TO 80 10.1 209.5

Table 5 Summary of invalid goals proved and running times of each solver for the SMT translations with and without quantified axioms

Benchmark # Goals CVC4 Z3 MathSAT

Goals Avg. Max. # Goals Avg. Max. # Goals Avg. Max.
Valid Invalid Valid Invalid Valid Invalid Valid Invalid

With quantified axioms

Matrix3.transposedEq 0 1 0 0 – TO 0 0 – TO – – – –

Rectangle.scale(2) 12 4 12 0 12.2 TO 8 0 4.6 TO – – – –

Complex.add(2) 2 2 2 0 0.6 0.7 2 0 1.4 TO – – – –

FPLoop.fploop2 3 1 3 0 0.9 1.7 3 0 0.5 TO – – – –

FPLoop.fploop3 3 1 3 0 0.4 1.7 3 0 0.3 TO – – – –

Summary 20 9 20 0 7.6 TO 16 0 2.6 TO – – – –

Without quantified axioms

Matrix3.transposedEq 0 1 0 1 170.2 170.2 0 0 – TO 0 1 16.2 16.2

Rectangle.scale(2) 12 4 12 3 12.2 TO 12 3 108.2 TO 12 4 2.4 9.5

Complex.add(2) 2 2 2 2 0.5 0.5 2 2 0.7 1.0 2 2 0.2 0.2

FPLoop.fploop2 3 1 3 1 0.4 0.6 3 1 0.9 1.7 3 1 0.3 0.5

FPLoop.fploop3 3 1 3 1 0.3 0.6 3 1 0.6 1.7 3 1 0.2 0.4

Summary 20 9 20 8 12.8 TO 20 7 60.4 TO 20 9 2.0 16.2

For Matrix, we check that the determinants of a matrix
and its transpose are equal. Note that this property holds
trivially under real arithmetic, but not necessarily under
floating-points. After feeding transposedEq (which uses the
determinant method) and its contract to KeY, increasing
the default timeout sufficiently and discharging the created
goal, CVC4 generates a counterexample in 170.2s seconds
and MathSAT in 16.2s. Z3 times out after 30 minutes.
By feeding transposedEqV2 (which uses the determinantNew

method) to KeY, CVC4 validates the contract in 1.1s, Math-
SAT in 3.9s and Z3 times out again. One thing worth noting
is that the way programs are written can greatly influence
the computational complexity needed to reject or verify the
contract. This is evident from the fact that slightly modify-
ing the order of operations (using determinantNew instead)
substantially reduces verification time and changes the veri-
fication result for MathSAT and CVC4.

123

Combining rule- and SMT-based reasoning . . . 197

Listing 4 The Rotation benchmark

public class Rotation {

final static double cos90 = 6.123233995736766E-17;

final static double sin90 = 1.0;

// rotates a 2D vector by 90 degrees

public static double[] rotate(double[] vec) {

double x = vec[0] * cos90 - vec[1] * sin90;

double y = vec[0] * sin90 + vec[1] * cos90;

return new double[]{x, y};

}

/*@ requires (\forall int i; 0 <= i && i < vec.length;

@ \fp_nice(vec[i]) && vec[i] > 1.0 && vec[i] < 2.0) &&

@ vec.length == 2;

@ ensures \result[0] < 1.0E-15 &&

@ \result[1] < 1.0E-15;

@*/

public static double[] computeError(double[] vec) {

double[] temp = rotate(rotate(rotate(rotate(vec))));

return new double[]{Math.abs(temp[0] - vec[0]),

Math.abs(temp[1] - vec[1])};

}

}

For Rotate, we check that the difference between an orig-
inal vector and the one that is rotated four times by 90
degrees must not be larger than 1.0E-15. We also verified
the same bound for the relative difference (by exploiting
another method and contract) for this benchmark. The con-
stant cos90 in Listing 4 is not precisely 0.0 to account for
rounding effects in the computation of the cosine. FPLoop

includes three loops, for which the contracts check that the
return value is bigger than a given constant.

Furthermore, we have investigated KeY’s capability in
proving floating-point loop invariants in more details in the
next experiment.

Though not always very fast, these examples show that
verification of functional floating-point properties is viable.

Proving loop invariants We conducted an experiment to
assess KeY in proving floating-point loop invariants for a
set of benchmarks. As part of this experiment, we verified
some of the floating-point loop invariants generated by the
Pine tool [39] (represented as Pine.* in Table 1). Listing 5
shows the nonlinear Pine.pendulum-approx benchmark and
the loop invariant that Pine has generated. This benchmark
simulates a simple pendulum and uses a Taylor approxima-
tion of the sine function. The condition of the while loop is a
placeholder for any condition, meaning that we are proving
the loop invariant regardless of how many iterations the loop
takes. We thus specify diverges true, which means that the
method is (unconditionally) allowed to not terminate.

Row 10 in Table 2 summarizes the results of this experi-
ment, and Table 6 shows the detailed results. As shown, KeY

is able to prove that all but one of the considered invariants
are in fact inductive. We used the timeout of two hours for
this experiment and observed that MathSAT performs better
than the other solvers in proving the invariants.

Note that not all invariants generated by Pine are neces-
sarily verifiable by KeY (e.g., Ex2 in Table 6), because the
semantics of Pine and KeY differ subtly. In Pine, the gener-
ated invariant and bounds are considered to be real-valued,
whereas in KeY they are evaluated under a floating-point
semantics.

Sensitivity to contract variations We conducted an exper-
iment on our Rectangle.scale benchmark to assess the
solver’s sensitivity to various changes, applied to the bench-
mark’s contract or its implementation.

Specifically, we considered the following versions of the
benchmark:

• v0: is the original version of the benchmark (Listing 1
using the second contract) and our baseline;

• v1: reduces the number of classes involved to two, while
keeping the same functionality;

• v2: reduces the number of classes involved to one, while
keeping the same functionality;

• v3: modifies v2 such that variable bounds in the precon-
dition become more “complicated” in terms of longer
fractional parts (e.g., the bounds for arg2 become
[3.0000001, -6.4000000003] instead of [3.0001, -6.4000
003]);

• v4: simplifies the mathematical expression of v2 (less
arithmetic operations)

• v5: modifies v3 such that arg2 has a tighter bound, i.e.,
the interval width is smaller

• v6: modifies v2 such that arg2 has a larger bound, i.e.,
the interval width is larger

• v7: modifies v2 such that only arg2 has a “complicated”
bound

• v8: modifies v0 such that arg2 has a tighter bound

Table 7 summarizes the results for this experiment. With
the quantified formulas included in the SMT translation,
both CVC4 and Z3 are able to prove more goals when the
number of classes is reduced, and also when the number
of arithmetic operations is reduced. Z3 further seems to be
sensitive to whether variable bounds are “complicated” or
not, whereas CVC4 is not. We obtain a somewhat surprising
result when arg2 has a tighter bound. While Z3’s perfor-
mance improves, CVC4 validates two goals less. On the
other hand, increasing the bounds on arg2 does not seem
to make a difference.

It seems that arg2 is the bottleneck for this benchmark;
when only arg2 has a “complicated” input interval, CVC4
proves less goals. Finally, constraining arg2 in the original

123

198 R. Abbasi et al.

Table 6 Summary of goals proved and running times of each solver for benchmarks with floating-point loop invariants without quantified axioms

Benchmark # Goals CVC4 Z3 MathSAT

Goals proven Avg. Max. # Goals proven Avg. Max. # Goals proven Avg. Max.

Ex2 12 9(CE) 5.2 34.4 9(CE) 27.6 TO 9(CE) 3.4 22.7

Ex2-reset 16 16 0.8 4.2 16 19.3 162.8 16 0.9 2.9

Ex3-reset-leadlag 15 15 0.7 5.7 15 0.4 496.8 15 0.9 8.5

Ex7-dampened 10 10 1.5 10.2 10 1.9 3081.0 10 3.9 34.2

Filter-goubault 8 8 2.1 13.2 8 8.7 360.4 8 3.3 21.8

Filter-mine1 10 10 1.2 4.6 10 1.3 522.2 10 1.9 8.1

Filter-mine2 8 8 8.4 63.0 8 0.3 997.5 8 21.0 163.1

Filter-mine2-nondet 8 8 0.9 2.7 8 14.1 707.7 8 0.8 3.6

Harmonic 9 9 2.9 20.1 9 28.5 2643.0 9 2.7 20.2

Pendulum-approx 10 10 47.2 223.7 9 4.9 TO 10 16.8 421.2

Pendulum-small 10 10 1.9 14.5 10 7.5 2412.5 10 1.8 14.6

Symplectic 9 9 1.7 9.2 9 32.9 1989.1 9 3.4 21.5

Summary 113 113 6.5 223.7 112 13.5 TO 113 5.0 421.2

Table 7 SMT solvers summary statistics for various versions of the Rectangle benchmark with quantified axioms in the SMT translations

version Applied change # Goals CVC4 Z3

Goals validated Avg. Max. # Goals validated Avg. Max.

v0 None (original) 32 31 2.3 TO 7 46.2 TO

v1 Fewer classes (2) in v0 32 32 2.5 4.8 9 42.7 TO

v2 Fewer classes (1) in v0 32 32 2.4 4.2 7 85.2 TO

v3 Complicated intervals for all vars in v2 32 32 2.5 5.5 6 59.3 TO

v4 Simpler math in v2 16 16 1.0 1.3 12 35.3 TO

v5 Shorter interval for arg2 in v3 32 30 2.3 TO 9 95.1 TO

v6 Longer interval for arg2 in v2 32 32 2.6 7.4 7 14.8 TO

v7 Complicated interval for arg2 in v2 32 31 2.4 TO 7 23.9 TO

v8 Shorter interval for arg2 in v0 32 32 2.5 4.2 7 46.5 TO

benchmark more tightly allows CVC4 to validate all goals
but Z3’s performance remains unaffected.

With the SMT-LIB translation that does not introduce
quantified axioms, we can see that CVC4’s results, in terms
of number of goals validated, are the same as before, while
Z3 performs much better than before. MathSAT is able to
validate all goals of all versions.

In summary, the solvers’ performance seems to be sensi-
tive to slight innocuous looking changes such as the number
of classes involved and variable bounds. For example, con-
straining arg2 in the original benchmark more tightly allows
CVC4 to validate all goals (1 more). This behavior could be
potentially exploited by, e.g., relaxing a variable’s bounds.

4.4 Transcendental functions in KeY

We evaluated the two approaches from Sect. 3.2.1 on
our set of benchmarks; rows 5, 6, and 7 in Table 2 sum-
marize the results. The detailed results of these experiments

are included in Table 8. Note that both approaches are fully
automated.

We conclude that the SMT solvers perform better when
the axiomatization is applied at the KeY level. When axioms
for transcendental functions are added to the SMT-LIB
translation directly Z3 validates 4 out of 10 goals. With the
axiomatization at the KeY level, solvers are able to vali-
date more goals (with quantified formulas removed from the
SMT translations), e.g., Z3 is able to validate 5 goals and
CVC4 can validate all. Therefore, it is preferable to apply
them on the KeY side via taclet rules.

All the solvers we have used in this work comply with the
IEEE 754 standard and therefore have bit-precise support for
the square-root function. They provide bit-precise reasoning
by effectively encoding the behavior of floating-point cir-
cuits over bitvectors (which is naturally expensive), together
with different heuristics and abstractions to speed up solv-
ing time. However, depending on the property, we do not
always need bit-precise reasoning, so we propose handling

123

Combining rule- and SMT-based reasoning . . . 199

Table 8 Summary statistics with axioms in SMT-LIB translations and as taclet rules in KeY

Benchmark # Goals CVC4 Z3 MathSAT

Goals validated Avg. Max. # Goals validated Avg. Max. # Goals validated Avg. Max.

Axioms in SMT-LIB translation

Cartesian.toPolar 4 4 7.1 9.2 1 16.8 TO – – –

Polar.toCartesian 2 2 0.9 0.9 2 69.7 95.7 – – –

Circuit.instantCurrent 2 1 123.6 TO 0 – TO – – –

Circuit.instantVoltage 2 2 1.1 1.1 1 103.8 TO – – –

Summary 10 9 17.3 TO 4 65.0 TO – – –

Axioms as taclet rules in KeY with quantified formulas

Cartesian.toPolar 4 4 6.8 7.7 1 40.0 TO – – –

Polar.toCartesian 2 2 1.4 1.9 1 288.0 TO – – –

Circuit.instantCurrent 2 2 123.8 128.3 0 – TO – – –

Circuit.instantVoltage 2 2 1.3 1.3 0 – TO – – –

Summary 10 10 28.0 128.3 2 164.0 TO – – –

Axioms as taclet rules in KeY without quantified formulas

Cartesian.toPolar 4 4 6.9 7.5 1 23.5 TO 4 1.2 1.7

Polar.toCartesian 2 2 1.5 2.3 2 52.6 81.2 2 0.6 0.8

Circuit.instantCurrent 2 2 123.5 127.5 0 – TO 0 – TO

Circuit.instantVoltage 2 2 1.5 1.7 2 146.4 160.7 2 0.8 0.8

Summary 10 10 28.1 127.5 5 84.3 TO 8 1.5 TO

Listing 5 The pendulum-approx benchmark

/*@ public normal_behavior

@ requires 0.0f <= u && u <= 0.0f && 2.0f <= v && v <= 3.0f;

@ diverges true;

@*/

public float pendulum-approx(float u, float v) {

/*@ loop_invariant -1.1f <= u && u <= 1.2f &&

@ -3.2f <= v && v <= 3.1f &&

@ (-0.11f*u) + (0.01f*v) + (1.0f*u*u) + (0.03f*u*v)

@ + (0.12f*v*v) <= 1.15f;

@*/

while (true) {

u = u + 0.01f * v;

v = v + 0.01f * (-0.5f * v - 9.81f *
(u - (u * u * u) / 6.0f +

(u * u * u * u * u) / 120.0f));

}

return u;

}

the square-root function with the same taclet-based axioma-
tization as introduced in Sect. 3.2.2.

To this end, we conducted an experiment on the bench-
marks containing sqrt, comparing the approach from
Sect. 3.2.2 (adding the necessary axioms, resp. taclet rules)
to using the square root implemented in SMT solvers
(fp.sqrt). We chose to include only axioms specified in
or inferred from the IEEE 754 standard. The set of used
axioms are as follows:

• If arg is NaN or less than zero, then sqrt(arg) is NaN.
• If arg is positive infinity, then sqrt(arg) is positive infin-

ity.
• If arg is positive zero or negative zero, then sqrt(arg) is
the same as arg.

• If arg is not NaN and greater than or equal to zero, then
sqrt(arg) is not NaN.

• If arg is not infinity and is greater than one then
sqrt(arg) < arg.

Rows 8 and 9 in Table 2 summarize the results for this
experiment; the detailed results are included in Table 9.

We observed that for two out of the three benchmarks,
the average running time of all solvers decreases using
the axiomatized square root. Furthermore, Z3 is able to
reason about more proof obligations with the axiomatized
version. However, the success of this approach depends
on the axioms added to KeY and may not always work
if we do not have suitable axioms. For example, for the
Circuit.instantCurrent benchmark which computes the
instantanious current of an RL circuit (Listing 6), using the
axiomatized square root, CVC4 is not able to validate the
contract, but with fp.sqrt the contract is validated. The rea-
son our approach is unsuccessful on this benchmark is that
the square-root function appears early in the computation
followed by atan and cos afterwards, resulting in complex

123

200 R. Abbasi et al.

Table 9 Summary statistics for benchmarks containing the square-root function, with quantified formulas removed from the SMT-LIB
translation

Benchmark # Goals CVC4 Z3 MathSAT

Goals validated Avg. Max. # Goals validated Avg. Max. # Goals validated Avg. Max.

fp.sqrt

Cartesian.toPolar 4 4 6.9 7.5 1 23.5 TO 4 1.2 1.7

Cartesian.distanceTo 1 1 8.2 8.2 0 – TO 1 1.0 1.0

Circuit.instantCurrent 2 2 123.5 127.5 0 – TO 0 – TO

Summary 7 7 40.4 127.5 1 23.5 TO 5 1.2 TO

Axiomatized sqrt

Cartesian.toPolar 4 4 2.0 2.9 4 49.81 163.0 4 1.0 1.6

Cartesian.distanceTo 1 1 2.7 2.7 1 233.0 233.0 1 1.0 1.0

Circuit.instantCurrent 2 0 – TO 0 – TO 0 (2 CE) 11.1 13.8

Summary 7 5 2.1 TO 5 86.4 TO 5 3.9 13.8

Listing 6 The Circuit.instantCurrent benchmark

public class Circuit {

double maxVoltage, frequency, resistance, inductance;

// ...

/*@ public normal_behavior

@ requires 1.0 < this.maxVoltage && this.maxVoltage < 12.0 && 1.0 < this.frequency && this.frequency < 100.0 &&

@ 1.0 < this.resistance && this.resistance < 50.0 && 0.001 < this.inductance && this.inductance < 0.004 &&

@ 0.0 < time && time < 300.0;

@ ensures !\fp_nan(\result) && !\fp_infinite(\result);

@*/

public double instantCurrent(double time) {

Complex curr = computeCurrent();

double maxCurrent = Math.sqrt(curr.getRealPart() * curr.getRealPart() + curr.getImaginaryPart() * curr.getImaginaryPart());

double theta = Math.atan(curr.getImaginaryPart() / curr.getRealPart());

return maxCurrent * Math.cos((2.0 * Math.PI * frequency * time) + theta);

}

}

expressions. In order to prove the corresponding proof obli-
gations, in this case stronger axioms are needed.

In summary, treating sqrt axiomatically can result in
shorter solving times than performing bit-precise reasoning,
but the approach may not always succeed when the axioms
are not sufficient to prove a particular property.

4.5 Discussion and insights

In our set of experiments, we used benchmarks taken from
real code to examine the feasibility of our approach and
the solver’s support for the floating-point theory. We can
conclude that, for our set of benchmarks, generally all the
solvers perform better with an SMT translation that does
not introduce quantified formulas. Especially if the contract
of the benchmark is invalid, the solvers are not able to pro-
duce counterexamples when quantifiers are present. Another
observation is that solvers’ performance is affected by the
number of heap operations performed and the complexity

of variable input ranges. From our experiment with pro-
grams containing loops, we observed that KeY is able to
prove the provided invariants and solvers are mostly able to
prove the generated goals. Finally, based on our results, we
can confirm that the support for floating-point theory seams
promising in all the solvers we examined. However, in terms
of scalability and the size and type of problems they can han-
dle, there is still room for improvement.

From our experiments with programs containing tran-
scendental functions (and sqrt), we observed that handling
these functions as uninterpreted with an appropriate axiom-
atization at the SMT-LIB or the taclet level is a viable
approach, with an interesting trade-off between the verifier
performance and the properties that can be proven. Clearly,
properties that require exact semantics for transcendental
functions will not be proven with our approach, but our
experiments show that reasoning about the absence of spe-
cial values is indeed possible. We further observe that both
our approaches for adding axioms to the SMT queries or as

123

Combining rule- and SMT-based reasoning . . . 201

taclet rules work to some extent, however, applying axioms
as taclets in KeY directly has several advantages. Using
taclets avoids quantified axioms in the SMT query, which
in turn improves the performance. While the additional
assertions do not compromise the theoretical decidability
of the theory (since the quantified domains are finite), they
add considerably to the complexity of the encoding for the
bit-blasting SAT-based decision procedures such that run-
ning times may increase exponentially. The experiments
have thus exposed a weakness of the SAT-based verification
approach: if symbols outside the canonical arithmetic oper-
ations with fixed semantics are used within a program or
specification, providing semantics for these symbols within
the SMT-LIB translation is not efficient.

Concretely, applying the axiomatization as taclets (and
removing other quantifiers from the SMT translation) allows
us to use MathSAT as the solver. Furthermore, we have also
observed that quantifiers in the SMT queries result in poor
performance (unknown results or timeouts) when a query is
invalid. Applying axioms as taclets lets us avoid this issue.
The rule-based sequent calculus, on which the KeY reason-
ing engine is based, deals with universally quantified symbol
axiomatizations very successfully in many domains. The
taclet mechanism and the implemented automatic strategy
allow one to control the treatment of the symbol depend-
ing on a variety of side conditions, e.g., applying a lemma
only if another relevant formula is also present in the proof
obligation. Furthermore, taclets can also be applied manu-
ally, which allows the verifying user to control the calculus
in a very fined-grained manner. Another advantage of hav-
ing taclet rules is that we can create taclets with different
formats for a single axiom and by doing so can sometimes
even reduce the size of the proof obligation. This is the case
when, instead of adding an axiom to the proof obligation,
we replace a term with another one and thus avoid enlarg-
ing the proof obligation. That said, an axiomatization at the
KeY level may result in spurious counterexamples if a rule
application for an uninterpreted symbol, which would make
the sequent valid, has not been applied yet. However, such a
spurious counterexample can be straightforwardly identified
by simply executing the method in question on it.

To summarize, the experiments show that highly auto-
mated floating point program verification is viable for
relevant properties (handling of special values and some
functional properties), up to a certain level of complexity
(given by the SMT solvers). The choices of which parts of
a proof obligation are delegated to SMT, and how they are
translated to SMT are crucial for achieving effective and
efficient program verification. Arithmetic operations proved
to be more efficiently dealt with by delegation to SMT,
whereas for transcendental functions, axiomatization and
rule-based treatment in the theorem prover, outside the SMT
solver, perform clearly better.

5 Related work

Our implementation uses the floating-point SMT-LIB the-
ory [16], which, however, does not handle transcendental
functions, as their semantics is (library) implementation
dependent. Some real-valued automated solvers do handle
transcendental functions [3,31], but to the best of our knowl-
edge, the combination of floating-points and reals in SMT
solvers is still severely limited.

None of the existing deductive verifiers support floating-
point transcendental functions automatically. The Why3
deductive verification framework [28] has support for floating-
point arithmetic, with front-ends for the C and Ada program-
ming languages through Frama-C [23] and SPARK [17,30],
respectively. Why3 has back-end support for different SMT
solvers, as well as interactive proof assistants like Coq.
Until recently, Why3 would discharge still many interest-
ing floating-point problems with the help of Coq, relying on
significant user interaction. In later work [30] (in the context
with floating-point verification for Ada programs), Why3
can achieve a higher degree of automation. Note, however,
that the user is still required to add code assertions as well
as ‘ghost code’ to a significant extent.

The Boogie intermediate verification language [46] also
supports floating-point expressions and targets Z3 for dis-
charging proof obligations. In the Boogie community, it
was observed that writing a specification in Boogie leads
to decreases in SMT solver performance when compared to
writing the goal in SMT-LIB directly, probably due to an
inherent mixing of theories when using Boogie [57]. This
matches our own experiences, and separation of theories
should be considered an important task for the further devel-
opment of floating-point verification.

Other deductive verifiers for Java have only rudimentary
support for floating-points. Verifast [40] treats floating-point
operations as if they were real values, and OpenJML [21]
parses programs with floating-point operations, but essen-
tially treats float and double as uninterpreted sorts.

The Java category of verification competition SV-COMP
[10] contains a number of benchmarks that make use of
floating-point variables. However, the focus of these bench-
marks is usually not on arithmetical properties of expres-
sions, but on the completeness of the Java language support.
Amongst the participants of SV-COMP 2020, Symbolic
(Java) Pathfinder (SPF) [54] (and various extensions) and
the Java Bounded Model Checker (JBMC) [22] support
floating-point arithmetic. Besides being limited to exploring
the state space up to a bounded depth, their constraint lan-
guages do not support quantifiers and abstracting of method
calls—which are features that we have used in this work.

Floating-point arithmetic has also been formalized in sev-
eral interactive theorem provers [14,29,41]. While one can
prove intricate properties about floating-point programs [12,

123

202 R. Abbasi et al.

13,37], proofs using interactive provers are to a large part
manual and require significant expertise.

Abstract interpretation-based techniques can show the
absence of special values in floating-point code fully auto-
matically, and several abstract domains which are sound
with respect to floating-point arithmetic exist [18,42]. While
the analysis itself is fully automated, applying it success-
fully to real-world programs in general requires adaptation
to each program analyzed by end-users, e.g., the selection of
suitable abstract domains or widening thresholds [11].

Besides showing the absence of special values, recent
research has developed static analyses to bound floating-
point roundoff errors [24,34,47,51,58]. These analyses cur-
rently work only for small arithmetic kernels and the tools
in particular do not accept programs with objects.

Dynamic analyses generally scale well on real-world
programs, but can only identify bugs (when given failure-
triggering input), rather than proving correctness for all
possible inputs. Executing a floating-point program together
with a higher-precision one allows one to find inputs which
cause large roundoff errors [9,19,43]. Ariadne [5] uses a
combination of symbolic execution, real-valued SMT solv-
ing and testing to find inputs that trigger floating-point
exceptions, including overflow and invalid operations. Our
work subsumes this approach as the SMT solvers that we
use can directly generate counterexamples, but more impor-
tantly, KeY is able to prove the absence of such exceptions.

6 Conclusion

In this work, we set out to enable efficient verification of
programs which feature floating-point computations in com-
bination with the other features of a fully fledged, widely
used programming language, here Java. This is a differ-
ent problem from verifying floating-point computations in
isolation. To achieve that, we extend the verification tool
KeY, which prior to this work supported full sequential Java
except floating-point types. The core of KeY is a prover
applying proof rules capturing an axiomatic semantics of
the target language (Java), with the option to export proof
goals to SMT solver plug-ins. This gave us the freedom
to decide which features, and under which circumstances,
should be dealt with by proof rules within the KeY prover,
or by exporting goals to an SMT solver, respectively.

By joining the complementary strengths of SAT-based
SMT solving and rule-based deduction, we presented the
first working floating-point support in a deductive verifica-
tion tool for Java. At the same time, we close a remaining
gap in KeY to now support full sequential Java. Our eval-
uation shows that for specifications dealing with absence
of NaN and infinity, as well as with value ranges, our
approach can verify realistic programs automatically within
a reasonable time frame. This includes programs using tran-

scendental functions, as well as programs with loops. We
observe that the MathSAT and CVC4 solver’s floating-point
support scales sufficiently for our benchmarks, as long as the
queries do not include any quantifiers. On the other hand,
our axiomatized approach for transcendental functions is
best realized using calculus rules in KeY’s internal reason-
ing engine, rather than in SMT solvers. We also presented
rules for handling potentially rounding casts from integers
to floating-point types.

While our work is implemented within the KeY verifier,
we expect the insights from this work to be portable to other
verifiers.

Acknowledgements This research was partially funded by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) project
387674182. The authors would like to thank Daniel Eddeland, who
together with co-author W. Ahrendt performed prestudies which
impacted the current work.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Abbasi, R., Schiffl, J., Darulova, E., Ulbrich, M., Ahrendt, W.:
Deductive verification of floating-point java programs in key. In:
Tools and Algorithms for the Construction and Analysis of Sys-
tems (TACAS) (2021)

2. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H.,
Ulbrich, M. (eds.): Deductive Software Verification - The KeY
Book - From Theory to Practice, LNCS, vol. 10001. Springer
(2016)

3. Akbarpour, B., Paulson, L.C.: MetiTarski: An Automatic Theo-
rem Prover for Real-Valued Special Functions. J. Autom. Reason.
44(3) (2010)

4. Astrauskas, V., Müller, P., Poli, F., Summers, A.J.: Leveraging
rust types for modular specification and verification. In: Object-
Oriented Programming Systems, Languages, and Applications
(OOPSLA) (2019)

5. Barr, E.T., Vo, T., Le, V., Su, Z.: Automatic detection of
floating-point exceptions. In: Principles of Programming Lan-
guages (POPL) (2013)

6. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanovi’c,
D., King, T., Reynolds, A., Tinelli, C.: CVC4. In: Computer Aided
Verification (CAV) (2011). Snowbird, Utah

7. Barrett, C., Stump, A., Tinelli, C., et al.: The SMT-LIB standard:
version 2.0. In: Proceedings of the 8th International Workshop on
Satisfiability Modulo Theories (2010)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Combining rule- and SMT-based reasoning . . . 203

8. Beckert, B., Nestler, B., Kiefer, M., Selzer, M., Ulbrich, M.:
Experience report: Formal methods in material science. CoRR
arXiv:1802.02374 (2018)

9. Benz, F., Hildebrandt, A., Hack, S.: A dynamic program analysis
to find floating-point accuracy problems. In: Programming Lan-
guage Design and Implementation (PLDI) (2012)

10. Beyer, D.: Advances in automatic software verification: SV-
COMP 2020. In: Tools and Algorithms for the Construction and
Analysis of Systems (TACAS) (2020)

11. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L.,
Miné, A., Monniaux, D., Rival, X.: A static analyzer for large
safety-critical software. In: Programming Language Design and
Implementation (PLDI) (2003)

12. Boldo, S., Clément, F., Filliâtre, J.C., Mayero, M., Melquiond, G.,
Weis, P.: Wave equation numerical resolution: A comprehensive
mechanized proof of a C program. J. Autom. Reason. 50(4) (2013)

13. Boldo, S., Filliâtre, J.C., Melquiond, G.: Combining Coq and
Gappa for certifying floating-point programs. In: Intelligent Com-
puter Mathematics (2009)

14. Boldo, S., Melquiond, G.: Flocq: A unified library for proving
floating-point algorithms in Coq. In: IEEE Symposium on Com-
puter Arithmetic (ARITH) (2011)

15. Brain, M., Schanda, F., Sun, Y.: Building better bit-blasting for
floating-point problems. In: Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS) (2019)

16. Brain, M., Tinelli, C., Rümmer, P., Wahl, T.: An automatable for-
mal semantics for IEEE-754 floating-point arithmetic. In: IEEE
Symposium on Computer Arithmetic (ARITH) (2015)

17. Chapman, R., Schanda, F.: Are we there yet? 20 years of industrial
theorem proving with SPARK. In: Interactive Theorem Proving
(ITP) (2014)

18. Chen, L., Miné, A., Cousot, P.: A sound floating-point polyhedra
abstract domain. In: Asian Symposium on Programming Lan-
guages and Systems (APLAS) (2008)

19. Chiang, W.F., Gopalakrishnan, G., Rakamaric, Z., Solovyev, A.:
Efficient search for inputs causing high floating-point errors. In:
Principles and Practice of Parallel Programming (PPoPP) (2014)

20. Cimatti, A., Griggio, A., Schaafsma, B., Sebastiani, R.: The Math-
SAT5 SMT solver. In: Tools and Algorithms for the Construction
and Analysis of Systems (TACAS) (2013)

21. Cok, D.R.: OpenJML: JML for Java 7 by extending OpenJDK. In:
NASA Formal Methods (NFM) (2011)

22. Cordeiro, L.C., Kesseli, P., Kroening, D., Schrammel, P., Trtík, M.:
JBMC: A bounded model checking tool for verifying java byte-
code. In: Computer Aided Verification (CAV) (2018)

23. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J.,
Yakobowski, B.: Frama-C. In: Software Engineering and Formal
Methods (SEFM) (2012)

24. Darulova, E., Izycheva, A., Nasir, F., Ritter, F., Becker, H., Bastian,
R.: Daisy - framework for analysis and optimization of numeri-
cal programs. In: Tools and Algorithms for the Construction and
Analysis of Systems (TACAS) (2018)

25. Darulova, E., Kuncak, V.: Towards a compiler for reals. ACM
Trans. Program. Lang. Syst. (TOPLAS) 39(2) (2017)

26. De Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Tools
and Algorithms for the Construction and Analysis of Systems
(TACAS) (2008)

27. Eilers, M., Müller, P.: Nagini: A static verifier for python. In: Com-
puter Aided Verification (CAV) (2018)

28. Filliâtre, J.C., Paskevich, A.: Why3—where programs meet
provers. In: European Symposium on Programming (ESOP)
(2013)

29. Fox, A., Harrison, J., Akbarpour, B.: A formal model
of IEEE floating point arithmetic. HOL4 Theorem Prover
Library (2017). https://github.com/HOL-Theorem-Prover/HOL/
tree/master/src/floating-point

30. Fumex, C., Marché, C., Moy, Y.: Automating the verification of
floating-point programs. In: Verified Software: Theories, Tools,
and Experiments (VSTTE) (2017)

31. Gao, S., Kong, S., Clarke, E.M.: dReal: An SMT solver for non-
linear theories over the reals. In: International Conference on
Automated Deduction (CADE-24) (2013)

32. Ge, Y., de Moura, L.: Complete instantiation for quantified for-
mulas in satisfiabiliby modulo theories. In: Computer Aided
Verification (CAV) (2009)

33. Gosling, J., Joy, B., Steele, G., Bracha, G.: Java Language Specifi-
cation, Second Edition: The Java Series, 2nd edn. Addison-Wesley
(2000)

34. Goubault, E., Putot, S.: Static analysis of finite precision compu-
tations. In: Verification, Model Checking, and Abstract Interpreta-
tion (VMCAI) (2011)

35. Goubault, E., Putot, S.: Robustness analysis of finite precision
implementations. In: Asian Symposium on Programming Lan-
guages and Systems (APLAS) (2013)

36. Harel, D., Kozen, D., Tiuryn, J.: Dynamic logic. In: Handbook of
Philosophical Logic, pp. 99–217. Springer (2001)

37. Harrison, J.: Floating point verification in HOL light: the expo-
nential function. Formal Methods Syst. Des. 16(3) (2000)

38. IEEE, C.S.: IEEE standard for floating-point arithmetic. IEEE Std
754-2008 (2008)

39. Izycheva, A., Darulova, E., Seidl, H.: Counterexample and
simulation-guided floating-point loop invariant synthesis. In:
Static Analysis Symposium (SAS) (2020)

40. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W.,
Piessens, F.: VeriFast: A powerful, sound, predictable, fast verifier
for C and java. In: NASA Formal Methods (NFM) (2011)

41. Jacobsen, C., Solovyev, A., Gopalakrishnan, G.: A parameterized
floating-point formalizaton in HOL Light. Electron. Notes Theo-
ret. Comput. Sci. 317 (2015)

42. Jeannet, B., Miné, A.: Apron: a library of numerical abstract
domains for static analysis. In: Computer Aided Verification
(CAV) (2009)

43. Lam, M.O., Hollingsworth, J.K., Stewart, G.W.: dynamic floating-
point cancellation detection. Parallel Comput. 39(3) (2013)

44. Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of JML:
A behavioral interface specification language for java. ACM SIG-
SOFT Software Engineering Notes 31(3) (2006)

45. Leavens, G.T., Cheon, Y.: Design by contract with JML (2006).
http://www.jmlspecs.org/jmldbc.pdf

46. Leino, K.R.M.: This is Boogie 2 (2008). https://www.microsoft.
com/en-us/research/publication/this-is-boogie-2-2/

47. Magron, V., Constantinides, G., Donaldson, A.: Certified roundoff
error bounds using semidefinite programming. ACM Trans. Math.
Softw. 43(4) (2017)

48. Marché, C., Paulin-Mohring, C., Urbain, X.: The KRAKATOA
tool for certification of Java/JavaCard programs annotated in JML.
J. Logic Algebraic Programm. 58(1) (2004)

49. McCormick, J.W., Chapin, P.C.: Building high integrity appli-
cations with SPARK. Cambridge University Press, Cambridge
(2015)

50. Meyer, B.: Applying “Design by Contract”. Computer 25(10)
(1992)

51. Moscato, M., Titolo, L., Dutle, A., Muñoz, C.: Automatic estima-
tion of verified floating-point round-off errors via static analysis.
In: SAFECOMP (2017)

52. Muller, J., Brisebarre, N., de Dinechin, F., Jeannerod, C., Lefèvre,
V., Melquiond, G., Revol, N., Stehlé, D., Torres, S.: Handbook of
Floating-Point Arithmetic. Birkhäuser (2010)

53. Müller, P., Schwerhoff, M., Summers, A.J.: Viper: a verification
infrastructure for permission-based reasoning. In: Verification,
Model Checking, and Abstract Interpretation (VMCAI) (2016)

123

http://arxiv.org/abs/1802.02374
https://github.com/HOL-Theorem-Prover/HOL/tree/master/src/floating-point
https://github.com/HOL-Theorem-Prover/HOL/tree/master/src/floating-point
http://www.jmlspecs.org/jmldbc.pdf
https://www.microsoft.com/en-us/research/publication/this-is-boogie-2-2/
https://www.microsoft.com/en-us/research/publication/this-is-boogie-2-2/

204 R. Abbasi et al.

54. Pasareanu, C.S., Mehlitz, P.C., Bushnell, D.H., Gundy-Burlet, K.,
Lowry, M.R., Person, S., Pape, M.: Combining unit-level symbolic
execution and system-level concrete execution for testing NASA
software. In: International Symposium on Software Testing and
Analysis (ISSTA) (2008)

55. QF_FP SMT benchmarks. https://clc-gitlab.cs.uiowa.edu:2443/
SMT-LIB-benchmarks/QF_FP (2019)

56. Siegel, S.F., Mironova, A., Avrunin, G.S., Clarke, L.A.: Using
model checking with symbolic execution to verify parallel numer-
ical programs. In: International Symposium on Software Testing
and Analysis (ISSTA) (2006)

57. Slow verification of programs combining multiple floating point
values (Github issue) (2019 (accessed May 11, 2020)). https://
github.com/boogie-org/boogie/issues/109

58. Solovyev, A., Jacobsen, C., Rakamaric, Z., Gopalakrishnan, G.:
rigorous estimation of floating-point round-off errors with sym-
bolic taylor expansions. In: Formal Methods (FM) (2015)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_FP
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_FP
https://github.com/boogie-org/boogie/issues/109
https://github.com/boogie-org/boogie/issues/109

	Combining rule- and SMT-based reasoning for verifying floating-point Java programs in KeY
	Abstract
	1 Introduction
	2 Background
	2.1 Introduction to KeY
	2.2 Floating-point arithmetic in Java

	3 Floating-point support in KeY
	3.1 Arithmetics
	3.2 Transcendental functions
	3.2.1 Axiomatization in SMT
	3.2.2 Taclets in KeY

	3.3 Interaction of floats with other primitive types

	4 Evaluation
	4.1 Benchmark programs
	4.2 Proof obligation generation
	4.3 Evaluation of SMT floating-point support
	4.4 Transcendental functions in KeY
	4.5 Discussion and insights

	5 Related work
	6 Conclusion
	Acknowledgements
	References

