
Formal Methods in Computer-Aided Design 2022

TRICERA: Verifying C Programs Using the Theory
of Heaps

Zafer Esen
Uppsala University, Uppsala, Sweden

zafer.esen@it.uu.se

Philipp Rümmer
University of Regensburg, Regensburg, Germany

Uppsala University, Uppsala, Sweden
philipp.ruemmer@it.uu.se

Abstract—TRICERA is an automated, open-source verification
tool for C programs based on the concept of Constrained Horn
Clauses (CHCs). In order to handle programs operating on heap,
TRICERA applies a novel theory of heaps, which enables the tool
to hand off most of the required heap reasoning directly to the
underlying CHC solver. This leads to a cleaner interface between
the language-specific verification front-end and the language-
independent CHC back-end, and enables verification tools for
different programming languages to share a common heap back-
end. The paper introduces TRICERA, gives an overview of the
theory of heaps, and presents preliminary experimental results
using SV-COMP benchmarks.

I. INTRODUCTION

This paper presents TRICERA, an automated open-source
verification tool for C programs. TRICERA accepts programs
in a subset of the C11 standard [1] with the purpose of
checking whether explicit and implicit safety assertions in
a program are valid. The tool has been developed mainly
with applications in the embedded systems area in mind:
restrictions in the supported language features are aligned
with the recommendations made in the MISRA C coding
guidelines [2]. TRICERA works by translating C programs
to sets of Constrained Horn Clauses (CHCs), which are then
processed and solved by the CHC solvers ELDARICA [33] or
SPACER [37], thus either proving that assertions can never fail,
or computing counterexample traces leading to an assertion
violation.

TRICERA is a model checker for C programs, but includes
a plethora of additional features that go beyond C11, such
as processing specifications in the ACSL language [6], mod-
elling concurrent and parameterised systems, and augmenting
programs with timing constraints. A distinguishing feature of
TRICERA is the handling of heap data-structures, which are
among the most challenging aspects in the verification of im-
perative programs. Existing verification tools based on CHCs
tend to handle heap either using the theory of arrays (e.g., as
done by SEAHORN [30]), or apply bespoke encodings of heap
data using refinement types [28], invariants (JAYHORN [35])
or prophecies (RUSTHORN [43]). As the heap encoder is
often one of the most complex components of a CHC-based
verification tool, this implies repeated implementation effort
when designing verification tools for different programming
languages, and migrating a tool to a different style of heap
encoding is an extremely complex task.

We propose a departure from this conventional architecture
of CHC-based verification tools, instead using a language-
independent theory of heaps [24] augmenting the interface
between verification tools and CHC solvers. The theory of
heaps is designed to cover the features of many existing
programming languages; it is deliberately kept simple, so that
it can be integrated easily in verifiers; and it is kept high-level,
so that CHC solvers are able to implement a wide range of
methods for solving problems involving heap, including the
aforementioned encodings through arrays and invariants. The
resulting architecture is shown in Figure 1.

TRICERA is the first verification tool that produces CHCs
modulo the theory of heaps. At the point of writing this
paper, in addition a project is underway to convert the Java
verification tool JAYHORN [35] to use the theory. The de-
velopment of effective solvers for CHCs modulo heaps is an
ongoing effort as well; currently the CHC solver ELDARICA
provides direct support for CHCs modulo heaps by integrating
a native decision and interpolation procedure for the theory
of heaps [23]. In addition a tool is available for translating
CHCs with heaps to CHCs with algebraic data-types (ADTs)
and arrays. A more detailed description of the theory of heaps
is available as a technical report [24].

TRICERA is developed at Uppsala University and the Uni-
versity of Regensburg. It is open source1 and distributed under
a 3-Clause BSD license. A web-interface to try it online is
available2.

The contributions of this paper are (i) a presentation of
the verification tool TRICERA, including an overview of its
features, the verification approach, and architecture; (ii) a
definition of a high-level encoding of heap data using the
theory of heaps; (iii) an experimental evaluation of TRICERA,
on C benchmarks taken from SV-COMP, with and without
heap.

II. TRICERA FEATURES

A. Input Language

We start with an overview of the features and languages
supported by TRICERA. As its main input language TRICERA
can handle a large subset of C11 [1], extended with additional
features that are useful for verification purposes. An overview

1https://github.com/uuverifiers/tricera
2http://logicrunch.it.uu.se:4096/∼zafer/tricera/

https://doi.org/10.34727/2022/isbn.978-3-85448-053-2 45 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD22
https://orcid.org/0000-0002-1522-6673
https://orcid.org/0000-0002-2733-7098
https://github.com/uuverifiers/tricera
http://logicrunch.it.uu.se:4096/~zafer/tricera/
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_45
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_45
https://creativecommons.org/licenses/by/4.0/

C Programs Java Programs · · ·

CHCs modulo Heaps
(+ Integers, Bit-vectors, etc.)

Native SAT/Interpolation
Procedures for Heap

Encoding of Heap
as Arrays

Encoding of Heap
using Invariants [35]

CHC solvers

TRICERA

Fig. 1: Program verification using the theory of heaps.

of the currently supported and unsupported types, operations
and constructs is given in Table I.

The initially supported subset of C11 is selected as to
provide a strong foundation that can be easily extended. Our
choice of language features to support is mainly influenced
by safety-critical programs from the embedded systems area,
and largely aligned with the recommendations made by the
MISRA C [2].

TRICERA supports most of the standard C types with the
exception of floating-point numbers, function pointers and
strings. Integer types can be treated either as mathematical
integers or as bit-vectors, in the latter case modelling the stan-
dard wrap-around semantics. TRICERA has full support for
the C operators and statements, including several extensions
discussed later in this section. TRICERA can also handle a
(small) part of the C library, in particular functions for memory
allocation. Heap data, pointers, and arrays are encoded through
the theory of heaps, which we discuss in more detail in
Section V.

The partial support in Table I for arrays refers to the
following restrictions: (i) the type of array cells must be
specified during allocation using malloc; (ii) pointers used
to index arrays (either through brackets or pointer arithmetic)
must be declared as arrays when they are first declared. For
instance, i n t *a cannot be used to index an array, but
i n t a [] can. Pointers to array cells are allowed: for instance
i n t *b = &a [i] is allowed where a is an i n t array, but
b cannot later be indexed as an array. Since arrays are a recent
addition to TRICERA, these are restrictions of the current
TriCera C front-end and not a theoretical limitation of the

TABLE I: Supported subset of the C language (not exhaustive).
✓ represents fully or almost-fully supported, ✢ represents
partially supported, and ✗ represents unsupported features.

Types ✓integers (mathematical, machine arithmetic), ✓structs,
✓enums, ✓heap pointers, ✢arrays, ✢stack pointers, ✗floating
point, ✗strings, ✗function pointers,

Expressions ✓(postfix, unary, logical, bitwise, arithmetic, cast operators)
Statements
and Blocks

✓(compound, expression, selection, iteration statements),
✓(atomic, within and thread blocks (non-standard C))

Other ✓(assert and assume statements), ✓(malloc, calloc, and free)
✓threads, ✓communicating timed systems,
✓function contract and loop invariant inference,
✢ACSL parser (only for function contracts)

theory of heaps.
TRICERA has limited support for pointers to stack variables.

Such pointers are statically associated with the variables they
point to on the stack. This imposes some restrictions on such
pointers: they cannot be mixed and matched with pointers to
the heap, and they cannot be reassigned. The restrictions result
in easier to solve encodings.

The following paragraphs survey some of the additional
features beyond C11.

B. Supported Code Annotations

In line with other model checkers, TRICERA uses a s s e r t
and assume statements for explicitly specifying properties,
which have their usual semantics as given by Flanagan and
Saxe [27]. TRICERA in addition automatically adds several
implicit properties:

• all pointer de-references are checked for type safety,
• array accesses are checked to be within array bounds,
• (optionally) memory leaks are detected by ensuring all

allocated memory on the heap is freed at program exit.
Checking pointer de-references for type safety also implies
memory safety, because TRICERA encodes unallocated loca-
tions using a special type. More information is provided in
Section V.

Given a program with an entry function (default main),
TRICERA will attempt to prove that none of the explicit and
implicit properties can be violated. When TRICERA reports
that an assertion is reachable, a counterexample trace is
provided for debugging purposes.

TRICERA supports the declaration of non-deterministically
initialised (local or global) variables (with program type T)
using the notation T x = _.

Function calls in a program are handled, by default,
through inlining; by annotating a function with the comment
/ *@ c o n t r a c t @* / , TRICERA can be instructed to instead
compute a contract consisting of a pre- and post-condition for
the function (also see Section II-C). Functions that do not have
a body are assumed to produce some non-deterministic result,
but not change global variables or heap data.

Function contracts can optionally be specified using the
ACSL specification language [6]. At the moment, TRICERA
can parse and encode requires, ensures and assigns
clauses. Listing 1 shows an example program that TRICERA
can check. Programs annotated with contracts are verified
modularly: for each function f with a contract, TRICERA will
try to prove that f will never violate its contract that will then
be used for encoding f at its call sites. More details about the
supported ACSL features are given in [21].

C. Annotation Inference

TRICERA can be used to automatically infer function con-
tracts and loop invariants for safe programs (with respect to
implicit and explicit assertions) [4]. An example program is
given in Listing 2, encoding the tak function [44]. Based
on the properties assumed and asserted at lines 12 and 14,

381

Listing 1: Example of ACSL function contracts in TRICERA.
The program is unsafe because q is accessed but only p is
specified in the assigns clause.

1 / *@
2 r e q u i r e s \ v a l i d (p , q) ;
3 a s s i g n s *p ;
4 * /
5 vo id foo (i n t * p , i n t * q) {
6 *q = 4 2 ;
7 }

Listing 2: An example contract inference problem in TRICERA

1 / *@ c o n t r a c t @* /
2 i n t tak (i n t x , i n t y , i n t z) {
3 i f (y < x)
4 r e t u r n tak (tak (x−1 , y , z) ,
5 tak (y−1 , z , x) ,
6 tak (z−1 , x , y)) ;
7 e l s e r e t u r n y ;
8 }
9

10 vo id main () {
11 i n t x , y , z ;
12 assume (x > y && y <= z) ;
13 i n t r = tak (x , y , z) ;
14 a s s e r t (r == z) ;
15 }

respectively, TRICERA is able to compute a contract for tak
that is sufficient to show the safety of the program:

fpre :true

fpost :(r ̸= z ∨ y ≥ z ∨ x > y) ∧ (r ̸= y ∨ y ≥ z ∨ y ≥ x) ∧
(r = z ∨ r = y ∨ y > z) ∧ (r = y ∨ z ≥ y ∨ x > y)

where fpre and fpost are the pre- and post-conditions of tak.
The inferred contracts and invariants can be printed in the

ACSL language [6], as well as in SMT-LIB2 and in Prolog.
As of writing this paper, ACSL printing is limited to programs
without heap.

D. Uninterpreted Predicates

TRICERA allows declaration of uninterpreted predicates as
annotations, which can then be used in a s s e r t and assume
statements. Uninterpreted predicates provide a way to directly
affect the generated set of CHCs, as assumptions about the
shape of invariants can be manually specified. A program
annotated with uninterpreted predicates is considered safe if
and only if an interpretation of the predicates (in the sense of
first-order logic) exists such that all assertions hold.

An example application is given in Figure 2. In the left
column, an array a is updated in a loop, and the loop at

line 8 encodes the property ∀j : 0 ≤ j < n → a[j] = 2j.
Although the program is simple, it turns out to be challenging
for software model checkers, since a universally quantified
property about the array elements is needed.

The right column shows a version of the program rewritten
for verification purposes; the uninterpreted predicate p_a is
now used to specify a data invariant for the array a. The
two arguments are selected to correspond to the index, and
the value residing at that index, respectively. Writes to a are
replaced with assertions to p_a as in line 6, which asserts that
the array a contains the value 2*i at index i. Reads from a
are replaced with assumptions with an additional fresh variable
in lines 9–10. The program in the right column can be verified
by TRICERA almost instantaneously.

The encoding in Figure 2 closely corresponds to the en-
coding of universally quantified properties in [13], and is also
similar to the invariant encoding of [35], where heap data and
operations are encoded through data invariants. Uninterpreted
predicates in TRICERA make it possible to easily experiment
with encoding tricks of this kind.

E. Concurrency

TRICERA has basic support for handling concurrency in
programs. Static threads, executing concurrently with the
main program, can be declared using the keyword thread .
TRICERA currently applies a relatively simple, sequentially
consistent thread model that is defined in [34]. This support
for concurrency is mainly intended for modelling purposes, but
is also useful, e.g., for defining monitors that check temporal
properties during execution. For instance, the following thread
asserts that the global variable x will never decrease during
program execution.

1 t h r e a d Monitor {
2 i n t t = x ;
3 a s s e r t (x >= t) ;
4 }

Thread interleaving can be controlled using atomic
blocks, which mandate that all statements in the block are
executed in one atomic step. Threads can moreover be con-
trolled using synchronous rendezvous, which are introduced
through UPPAAL-style binary communication channels [7]. In
the following program, the two statements chan send and
c h a n r e c e i v e can only be executed together, thus ensuring
that the assertion will be checked after the assignment:

1 chan s ; i n t x ;
2 t h r e a d A {x = 4 2 ; chan send (s) ; }
3 t h r e a d B { c h a n r e c e i v e (s) ; a s s e r t (x>0);}

Finally, TRICERA also supports the declaration of infinitely
replicated threads, which are useful to model dynamic thread
creation and parameterised systems. An example of a param-
eterised model is given in the next section.

382

http://logicrunch.it.uu.se:4096/~zafer/tricera/?ex=perma/1653156166_1619575909

1
2 vo id main () {
3 i n t i , n = _ ;
4 i n t a [n] ;
5 f o r (i = 0 ; i < n ; ++i) {
6 a [i] = 2*i ;
7 }
8 f o r (i = 0 ; i < n ; ++i) {
9

10
11 a s s e r t (a [i] == 2*i) ;
12 }
13 }

1 / * $ p a (i n t , i n t) $ * /
2 vo id main () {
3 i n t i , n = _ ;
4
5 f o r (i = 0 ; i < n ; ++i) {
6 a s s e r t (p_a (i , 2*i)) ;
7 }
8 f o r (i = 0 ; i < n ; ++i) {
9 i n t v = _ ;

10 assume (p_a (i , v)) ;
11 a s s e r t (2*i == v) ;
12 }
13 }

Fig. 2: Encoding an array program (left column) using uninterpreted predicates (right column).

Listing 3: The parameterised Fischer protocol [3]
1 i n t lock = 0 ;
2 t h r e a d [tid] Proc {
3 c l o c k C ;
4 assume (tid > 0) ;
5
6 w h i l e (1) {
7 a to mi c { assume (lock == 0) ; C = 0 ; }
8 w i t h i n (C <= 1) { lock = tid ; }
9 C = 0 ; assume (C > 1) ;

10
11 i f (lock == tid) { / / c r i t i c a l s e c t .
12 a s s e r t (lock == tid) ;
13 lock = 0 ;
14 }
15 }
16 }

F. Timing Constraints

For modelling purposes, TRICERA supports timing con-
straints in C programs. C programs with time have semantics
similar to UPPAAL timed automata [7], which means that
computations (program instructions) consume zero time, but
are interleaved with explicit time-elapse transitions. The pass-
ing of time can be observed using clocks, which are declared
as variables of type c l o c k , can be reset to 0, and can be
compared with constants in a s s e r t and assume statements.

As an example, Listing 3 shows a parameterised version
of the well-known Fischer mutual exclusion protocol [3]. An
arbitrary number of processes can participate in the protocol by
communicating through a shared variable lock. In line 2, for
this purpose an infinitely replicated thread Proc is declared.
Each instance of Proc has a unique thread id tid of type
i n t and a clock C. Each process executes a simple loop: it
waits until it observes that lock == 0, and then writes its

thread id to lock. The wi th in block in line 8 has similar
semantics as an UPPAAL time invariant: it enforces execution
of the assignment before the condition C <= 1 has become
false, i.e., at most one time unit after executing the block in
line 7. The process then waits for more than one time unit in
line 9, and then checks that no other process has meanwhile
overwritten the value in lock. Line 12 asserts that at most
one process is able to enter the critical section at a time.

TRICERA is able to verify the safety of this model for an
unbounded number of participating threads, using an encoding
of the program as CHCs over k-indexed invariants [34].

III. THE TRICERA VERIFICATION APPROACH

A. Constrained Horn Clauses

TRICERA analyses programs by translating them to sets
of Constrained Horn Clauses (CHCs, or just clauses in this
paper), in such a way that the CHCs are satisfiable iff the
program is safe. A Constrained Horn Clause is a sentence
∀x̄.

(︁
C ∧ B1 ∧ ... ∧ Bn → H

)︁
where H is either an atom

(application of a predicate to first-order terms) or false , Bi

(for 1 ≤ i ≤ n) is an atom, and C is a constraint over
some background theories (including heaps). A CHC with at
least one positive literal (an atom or its negation) is called a
definite clause, and a CHC with no positive literals is called
a goal clause (or an assertion clause). In the rest of the paper
we leave the universal quantification of variables implicit,
and write the clauses from right to left in the spirit of logic
programming.

B. The Architecture of TRICERA

An overview of the TRICERA architecture is given in
Figure 3. The preprocessor and the CHC solver are external
tools; we call the whole toolchain “TRICERA”.

a) Preprocessor: Input programs are preprocessed in
order to simplify parsing and encoding. To simplify parsing,
all t y p e d e f s are removed and some language constructs are
normalised into a standard form. Unused type and function
declarations are removed; removing unused data-types makes

383

http://logicrunch.it.uu.se:4096/~zafer/tricera/?ex=perma%2F1653061937_379790425
http://logicrunch.it.uu.se:4096/~zafer/tricera/?ex=timed%2Ffischer

C
program Preprocessor: Clang, LibTooling

Parser CHC encoder CHC merger

CHC solver: ELDARICA
safe/

unsafeTRICERA

Verifier Core
simplified program

CHCs modulo heap

Fig. 3: An overview of TRICERA.

modelling heap simpler as the number of possible types for a
heap object is reduced. The preprocessor is written as a stand-
alone tool using the LibTooling3 library in C++.

b) Verifier Core: The TRICERA core component is a
translator from C programs into CHCs, written in Scala. The
verifier core works by first creating a parse tree of the input
program, and then translating this tree into a set of CHCs. The
translator supports the language features given in Table I.

The CHC encoder also includes a CHC simplifier that post-
processes the generated CHCs before being sent to a CHC
solver. This simplifier attempts to merge the CHCs in order to
produce a smaller but equisatisfiable set of CHCs.

c) CHC solver: The resulting set of CHCs are finally
sent to a CHC solver to check if their conjunction is satisfiable.
TRICERA primarily uses ELDARICA [33] for this purpose as
it has native support for the theory of heaps, and can easily be
integrated as a Scala library; however, the final set of CHCs
can also be post-processed by eliminating heap operations,
instead encoding using the theory of arrays, and then be
checked by other solvers such as Z3/SPACER [37].

C. Programs as Constrained Horn Clauses (CHCs)

The overall translation from sequential programs to CHCs
applied by TRICERA follows the strategy defined, e.g., in [12],
[29]. In this setting, linear CHCs are used to model the control-
flow graph of a program: each node of the graph is interpreted
to represent the set of possible states at a program location and
each transition corresponds to a program control instruction.
Asserted properties add additional sink nodes to the graph,
whose edges are the negations of those properties. The goal of
the process is to discover program invariants that are sufficient
to show that none of the sink nodes is reachable.

A program is thus encoded in CHCs as follows:

• An uninterpreted predicate is declared for each program
location to represent program invariants: the interpreta-
tions of these predicates (provided by the CHC solver
when the set of CHCs is satisfiable) correspond to sets of
program states that hold at each location. The arguments
to a predicate are all program variables currently in scope,
as well as additional terms required in the encoding, for
instance terms representing the heap.

3https://clang.llvm.org/docs/LibTooling.html

• A definite clause consisting of only a single positive
literal is added as program entry, e.g., P (. . .) ← true .
The CHC (1) in Figure 4 is an example.

• A definite clause is introduced for each program control
instruction. These CHCs encode Hoare triples between
locations [32]. The set of CHCs can be cyclic (e.g.,
{P1(. . .) ← P0(. . .), P0(. . .) ← P1(. . .)}), representing
program loops. Guarded control instructions are encoded
by adding the guards as constraints. The CHCs (2) – (5)
in Figure 4 provide an example.

• Two clauses are added for each asserted property: a goal
clause whose constraint is the negation of the asserted
property, and a definite clause whose constraint is the
asserted property. The CHCs (6) and (7) in Figure 4
provide an example.

• Functions are encoded either through predicates repre-
senting their pre-/post-conditions, or by inlining them.

An example encoding is provided in Figure 4.
The translation of concurrent and timed programs follows

the calculus defined in [34]. To handle concurrency, TRICERA
uses a variant of the Owicki-Gries proof rules [47], [34], to
which explicit variables to represent time and clocks are added.
The representation of replicated threads uses the k-indexed
invariants approach [52], [34].

IV. THE THEORY OF HEAPS

One of the most challenging aspects of encoding computer
programs as CHCs is the encoding of heap-allocated data-
structures and heap-related operations. One approach to rep-
resent such data-structures is using the theory of arrays (e.g.,
[36], [17]). This is a natural encoding since a heap can be seen
as an array of memory locations; however, as the encoding is
byte-precise, in the context of CHCs it tends to be low-level
and often yields clauses that are hard to solve.

An alternative approach is to transform away such data-
structures with the help of invariants or refinement types (e.g.,
[49], [13], [45], [35], and the example in Section II-D). The
resulting CHCs tend to be over-approximate (i.e., can lead
to false positives), even with smart refinement strategies that
aim at increasing precision. This is because every operation
that reads, writes, or allocates a heap object is replaced with
assertions and assumptions about local object invariants, so
that global program invariants might not be expressible. In
cases where local invariants are sufficient, however, they can
enable efficient and modular verification even of challenging
programs.

Both approaches leave little design choice with respect to
handling of heaps to CHC solvers. Dealing with heaps at the
encoding level also implies repeated effort when designing
verifiers for different programming languages.

The vision of the presented line of research is to extend
CHCs to a standardised interchange format for programs with
heaps. We apply a high-level theory of heaps [24] that does
not restrict the way in which CHC solvers approach heap
reasoning, while covering the main functionality needed for
program verification: (i) representation of the type system

384

https://clang.llvm.org/docs/LibTooling.html

1 / * P0 * /
2 i f (x > 0)
3 x+=1; / * P1 * /
4 e l s e
5 x−=1; / * P2 * /
6 / * P3 * /
7 a s s e r t (x > 0) ;
8 / * P4 * /

P0(x)← true (1)
P1(x)← P0(x) ∧ x > 0 (2)
P2(x)← P0(x) ∧ x ≤ 0 (3)
P3(x

′)← P1(x) ∧ x′ = x+ 1 (4)
P3(x

′)← P2(x) ∧ x′ = x− 1 (5)
P4(x

′)← P3(x) ∧ x > 0 (6)
false ← P3(x) ∧ x ≤ 0 (7)

Fig. 4: The CHC encoding of a branching statement

Listing 4: SMT-LIB-style declaration of a heap. In lines 4–
8 the constructors and the selectors of the data-types are
declared. The constructors and selectors in lines 5–6 serve
as the wrappers and the getters for the program types Node
and int. Node is encoded as an ADT (line 4) and the C type
int is encoded using mathematical integers (Int).

1 (declare-heap
2 Heap Addr Object O_Empty
3 ((Node 0) (Object 0))
4 (((Node (data Int) (next Addr)))
5 ((O_Node (getNode Node))
6 (O_Int (getInt Int))
7 (O_Uninit_Node) (O_Uninit_Int)
8 (O_Empty))))

associated with heap data; (ii) reading and updating of data
on the heap; (iii) object allocation.

The theory of heaps employs algebraic data-types (ADTs),
as already standardised by SMT-LIB [5], as a flexible way to
handle (i). The theory offers operations akin to the theory
of arrays to handle (ii) and (iii). Arithmetic operations on
pointers are excluded in the theory, as are low-level tricks
like extracting individual bytes from bigger pieces of data
through pointer manipulation. Being language-agnostic, the
theory of heaps allows for common encodings across different
applications.

a) Sorts: To encode a program using the theory of heaps,
first a heap data-type has to be declared that covers the
required program types; a declaration in SMT-LIB notation
is shown in Listing 4. Each declared heap introduces the
three sorts, Heap, Addr and AddrRange , and in addition can
declare any number of ADTs later used to represent the data
stored on the heap (lines 5–8, see Section V). A Heap address
has the sort Addr . Although an address itself does not carry
type information, the type of a heap Object can be checked
using ADT discriminator functions. A range of addresses can
be defined with the AddrRange sort, which is needed when
encoding contiguous data-structures such as arrays.

The objects on the heap are represented with a single Object
sort, which can either be selected from one of the pre-declared
sorts, or declared as an ADT in a heap theory declaration. The
latter makes referring to heap theory sorts possible, such as
Addr , as done in Line 4 of Listing 4. In the sequel we call a

constructor function that produces an Object a wrapper, and
a selector that returns the underlying term from an Object a
getter.

b) Operations: The operations of the theory of heaps are
given in Table II. The function allocate is used for allocating
new objects on the heap, and each allocation returns a new
⟨Heap,Addr⟩ pair that is valid and contains the passed object.
The allocatedness of an Addr in a Heap can be tested using
the predicate valid. The function emptyHeap returns a heap
that is invalid at all addresses, and nullAddr returns an address
that is invalid in all heaps.

The functions read and write are used for reading from
and writing to heap addresses. If a read address is invalid, the
default object is returned (O_Empty in line 2 in Listing 4). An
invalid write returns the heap that was passed to the function
without any modifications. The default Object to be returned
on invalid reads is specified in the heap declaration, and this
is needed to make the read function total.

Operations (14)–(17) are used for batch heap operations,
which are needed when encoding array-like data on the heap.
These operations operate over address ranges rather than
single addresses (Addr). The functions batchAllocate and
batchWrite allow batch allocation and batch update of ad-
dress ranges. Given an address range, nthInAddrRange allows
the extraction of an individual address, and the predicate
withinAddrRange allows testing if an address is within a range.

c) Implementation: The theory of heaps is currently im-
plemented in the SMT solver PRINCESS [50] and in the CHC
solver ELDARICA [33]. The decision procedure for solving

TABLE II: Operations defined by the theory of heaps

emptyHeap : () → Heap (8)
nullAddr : () → Addr (9)
allocate : Heap ×Object → Heap ×Addr (10)

valid : Heap ×Addr → Bool (11)
read : Heap ×Addr → Object (12)
write : Heap ×Addr ×Object → Heap (13)

batchAllocate : Heap ×Object × N → Heap ×AddrRange (14)
batchWrite : Heap ×AddrRange ×Object → Heap (15)

nthInAddrRange : AddrRange × N → Addr (16)
withinAddrRange : AddrRange ×Addr → Bool (17)

385

TABLE III: O T is the object wrapper for sort T , which is the
encoding of the program type T. O T (T0) constructs a zero-
valued term of sort T . h represents the heap. Non-primed and
primed terms encode the same program variable (and the heap)
before and after the execution of a statement. x is a variable,
p is a (non-array) pointer. a and b are pointers to arrays of
type T. i, j and n are integers.

C statement Mathematical encoding with heaps

*p = x ;
h′ = write(h, p,O T (x)) ∧

(is-O Uninit T (read(h, p)) ∨ is-O T (read(h, p)))

x = *p ; x = getT (read(h, p)) ∧ is-O T (read(h, p))

x = a [i] ;
x = getT (read(h, nthInAddrRange(a, i))) ∧

is-O T (read(h, nthInAddrRange(a, i))) ∧
withinAddrRange(a, i)

a [i] = x ;

h′ = write(h, nthInAddrRange(a, i),O T (x)) ∧
(is-O Uninit T (read(h, nthInAddrRange(a, i))) ∨

is-O T (read(h, nthInAddrRange(a, i)))) ∧
withinAddrRange(a, i)

p = malloc (s i z e o f (T)) ; ⟨h′, p⟩ = allocate(h,O Uninit T)

p = calloc (s i z e o f (T)) ; ⟨h′, p⟩ = allocate(h,O T (T0))

a = malloc (s i z e o f (T) * n) ;
⟨h′, p⟩ = batchAllocate(

h,O Uninit T, n)

free (p) ;
h′ = write(h, p,O Empty) ∧

¬is-O Empty(read(h, p)))

free (a) ;
h′ = batchWrite(h, a,O Empty) ∧

∀q : Addr .(withinAddrRange(a, q) →
¬is-O Empty(read(h, q)))

formulas over the theory in PRINCESS is introduced in [23].
ELDARICA mostly defers the solving of heap theory formulas
to PRINCESS; there is ongoing work to implement additional
static analysis of heap properties directly in ELDARICA.

V. ENCODING OF C PROGRAMS WITH HEAP

When translating programs with heaps, TRICERA augments
all introduced relation symbols (state invariants and pre-
conditions) with explicit Heap arguments; post-conditions
receive both the pre- and the post-heap.

A heap Addr can be seen as a direct counterpart of an
(untyped) C pointer. Any program type that makes use of an
Addr , such as a list node, needs to be declared as part of the
heap theory declaration. Lastly, Object wrappers and getters
need to be declared for all program types that can be on the
heap. For instance, Listing 4 shows a heap declaration for a
program over (mathematical) integers and a node struct:

s t r u c t Node {
i n t data ;
s t r u c t Node* next ;

} ;

Since Node has a pointer field, it is declared as an ADT
as part of the heap declaration as shown in line 4 of List-
ing 4. The object wrappers and getters for all program types
are declared in lines 5–6. Additional empty object wrappers
are defined in lines 7–8 to serve as the uninitialised and
default objects respectively. TRICERA uses the default object
to mark de-allocated locations as shown in Table III. The

uninitialised objects are used as initial values for allocated
memory locations with uninitialised values, as is the case with
malloc. An uninitialised object constructor is declared for
each programming type on the heap.

After the heap is declared, every statement that accesses the
heap is encoded as shown in Table III. A new heap term h′ is
produced for statements modifying the starting heap term h.

Each de-reference of a pointer is also coupled with a type-
safety assertion. In the table, those assertions are conjoined
with the actual transition relations of the CHCs; as a result, the
stated formulas describe all correct executions of a statement.
TRICERA in addition introduces assertions that will detect
cases in which these conditions are violated. For instance,
for the expression *p, assuming that p is encoded using the
sort T , TRICERA asserts the predicate is-O T (read(h, p)). is-
O T is the discriminator predicate for the ADT sort T . Since
invalid reads would return the default object, this type-safety
assertion doubles as a memory safety assertion. C also allows
the allocation of uninitialised memory; TRICERA models this
by placing the object O Uninit T in these addresses, which
represents an uninitialised value for the sort T .

Functions that require byte-level access to data-structures
such as memset are currently not supported by TRICERA;
however, these can be handled without introducing a full
byte-level memory representation. It is sufficient to infer
which values a heap object can assume when setting all its
bytes to a certain value, taking into account the compiler
and architecture when necessary. To prevent aliasing when
using such functions, safety assertions that ensure the accessed
memory region belongs to a single object can be automatically
added to each access.

a) Arrays: TRICERA uses the theory of heaps also to
model C arrays. Arrays are allocated and freed using the
batch operations of the theory. The address of an array cell
is obtained with the nthInAddrRange function, which can
then be used as any other address. Whenever an array cell
is accessed (a [i]), TRICERA automatically asserts that the
accessed index is within bounds (withinAddrRange(a, i)).

Arithmetic operations on array pointers can be supported
by augmenting AddrRange terms with offsets (not shown in
Table III). This yields a model in which arithmetic on array
pointers is possible, but modified pointers have to remain in
the same array, which is again in line with the MISRA C
coding guidelines [2].

The theory of heaps does not provide a direct operation for
de-allocation, i.e., an allocated address always remains valid.
TRICERA overcomes this limitation by writing the default
object (O Empty) to de-allocated addresses, and provides an
option to add a memory safety assertion such that all addresses
must contain the default object at program exit. Double-freeing
of memory is caught by an additional assertion that the freed
addresses do not contain the default object.

Stack-allocated arrays are also modeled using the theory of
heaps, and the functions to free their memory are automatically
added by TRICERA when they go out of scope. Non-array

386

Source files
(C)

Heap
(CHCs)TriCera heap2array

Array
(CHCs)

Fig. 5: The three sets of heap benchmarks: (i) the source
C benchmarks from SV-COMP are encoded into (ii) CHCs
modulo the theory of heaps using TRICERA, then heap2array
is applied to these benchmarks to produce (iii) CHCs modulo
the theory of arrays.

stack pointers do not make use of the theory, and are supported
with some limitations as described in [22].

Table III does not show the encoding of field updates for
record types, for instance p->f = x where p is a pointer to
a record type with f as one of its fields. This is encoded by
first reading the record from p, creating a new ADT term with
only the field f updated, and then writing back the new ADT
to the address pointed to by p.

VI. EXPERIMENTAL RESULTS

A. Benchmarks

As TRICERA does not have a model of pthreads yet, we
focus in our evaluation on sequential C programs. We col-
lected C benchmarks from SV-COMP 2022’s ReachSafety and
MemSafety categories [10], and generated CHCs in the SMT-
LIB [5] format for all benchmarks that the current version
of TRICERA could parse and encode (see Section II-A). This
resulted in 396 heap (i.e., where the heap is modelled using the
theory of heaps) benchmarks (349 in the ReachSafety and 128
in the MemSafety categories, with some benchmarks occurring
in both categories), and 1453 non-heap benchmarks in the
ReachSafety category. Many of the benchmarks that TRICERA
could not parse were under the Juliet test and the Linux
device driver suites, which failed mainly due to currently
unsupported operations and constructs such as memcpy and
function pointers. Mathematical integer semantics was used in
the benchmarks encoded by TRICERA.

For the heap benchmarks, an additional set of benchmarks
was created through a translation of the theory of heaps into
the theory of arrays, using an extended version of the encoding
given in [24] implemented in the tool heap2array4. This
serves the purpose of making additional back-ends available
to solve the generated CHCs. Similarly generated benchmarks
were also submitted to CHC-Comp 2022 and were part of
the LIA-nonlin-Arrays-nonrecADT track5. The benchmark cre-
ation process is depicted in Figure 5.

We then applied two of the top CHC solvers currently
available [26] to the CHCs: ELDARICA, which is the default
solver in TRICERA and natively supports the theory of heaps,
and Z3/SPACER [37]. We have used the default settings in
both ELDARICA and Z3/SPACER. ELDARICA was used in two
different configurations for the heap benchmarks: TRICERA
(ELDARICA-heap), using the native solver for the theory of

4https://github.com/zafer-esen/heap2array
5https://github.com/zafer-esen/tricera-adt-arr

heaps on the CHCs with heaps, and TRICERA (ELDARICA-
array), applying ELDARICA’s array solver to the array version
of the CHCs. Z3/SPACER was only applied to the array
benchmarks (TRICERA (Z3/SPACER)). The portfolio rows in
the result tables show the results achieved by running both
back-ends of TRICERA in parallel and taking the first result
(TRICERA (portfolio)).

B. Experimental Setup

The experiments were ran on an AMD Opteron 2220 SE
(2.8 GHZ with 4 CPUs) machine running 64-bit Linux with
6 GB of RAM and a wall-clock timeout of 900 seconds. To
compare TRICERA6 against the state of the art, we gathered
the results published by SV-COMP 2022 [9] for the Reach-
Safety and MemSafety tracks.

C. Results

The results are given in Table IV for the non-heap bench-
marks in the ReachSafety category, in Table V for the heap
benchmarks in the ReachSafety category and in Table VI
for the heap benchmarks in the MemSafety category. All
benchmarks can be found in [25].

For non-heap, TRICERA showed performance competitive
with the best tools evaluated at SV-COMP, in particular
on safe problems. The TRICERA results are not completely
comparable to the results of SV-COMP tools due to the use
of mathematical integer semantics in TRICERA, however. For
19 benchmarks, the statuses reported by TRICERA were incon-
sistent with the expected SV-COMP statuses for this reason.
The two TRICERA back-ends, ELDARICA and Z3/SPACER,
always produced the same answer.

For heap problems, TRICERA performed worse than some
of the tools based on bounded model checking or symbolic
execution, but was comparable with CEGAR-based tools like
CPACHECKER. Comparing the TRICERA back-ends, ELD-
ARICA applied to the array encoding performs best by some
margin (TRICERA (ELDARICA-array)).

TRICERA currently cannot check for reachability and
memory-safety properties separately, it always adds the im-
plicit memory-safety assertions. This, coupled with the use
of mathematical integers, led to results that did not match
their expected SV-COMP statuses in 25 heap benchmarks
(13 reported incorrectly unsafe, 12 reported incorrectly safe)
using the portfolio method; again there were no inconsistencies
between the different TRICERA back-ends.

VII. RELATED WORK

There are several other verification tools that make use
of CHCs, and many others for verifying C programs. As
discussed in Section I, these tools either transform away the
heap, or use the theory of arrays for encoding heap.

JAYHORN, a model checker for Java programs, encodes
heap by using invariants that summarise the possible states
of a reference at a program location [35], which is inspired
by methods like liquid types [49]. Although this method is

6https://github.com/uuverifiers/tricera/commit/5ffd2b6

387

https://github.com/zafer-esen/heap2array
https://github.com/zafer-esen/tricera-adt-arr
https://github.com/uuverifiers/tricera/commit/5ffd2b6

TABLE IV: Results for the non-heap benchmarks in the
ReachSafety category. The column “solved” gives the total
number of “safe” or “unsafe” results.

safe unsafe unknown solved

GOBLINT [51] 180 0 1273 180
THETA [53] 250 140 1063 390
UKOJAK [46] 278 221 954 499
VERIFUZZ [15] 0 515 938 515
2LS [42] 428 265 760 693
CBMC [38] 313 394 746 707
TRICERA (Z3/SPACER) 442 271 740 713
CRUX [19] 293 427 733 720
LART [40] 346 392 715 738
ESBMC-KIND [41] 484 380 589 864
SYMBIOTIC [14] 423 458 572 881
UTAIPAN [18] 598 298 557 896
UAUTOMIZER [31] 612 302 539 914
PESCO [48] 584 458 411 1042
TRICERA (ELDARICA) 698 360 395 1058
GRAVES-CPA [41] 636 442 375 1078
TRICERA (portfolio) 730 379 344 1109
CPACHECKER [11] 666 470 317 1136
VERIABS [16] 739 507 207 1246

TABLE V: Results for the heap benchmarks in the ReachSafety
category.

safe unsafe unknown solved

THETA [53] 10 7 332 17
GOBLINT [51] 27 0 322 27
GRAVES-CPA [41] 22 26 301 48
TRICERA (ELDARICA-heap) 12 36 301 48
2LS [42] 35 21 293 56
TRICERA (Z3/SPACER) 20 40 289 60
UTAIPAN [18] 32 33 284 65
UAUTOMIZER [31] 32 35 282 67
UKOJAK [46] 25 42 282 67
VERIFUZZ [15] 0 71 278 71
TRICERA (ELDARICA-array) 36 49 264 85
TRICERA (portfolio) 39 58 252 97
CRUX [19] 55 48 246 103
CPACHECKER [11] 58 46 245 104
PESCO [48] 65 47 237 112
CBMC [38] 65 51 233 116
LART [40] 90 30 229 120
SYMBIOTIC [14] 102 62 185 164
ESBMC-KIND [41] 122 49 178 171
VERIABS [16] 223 81 45 304

TABLE VI: Results for the heap benchmarks in the MemSafety
category.

safe unsafe unknown solved

VERIFUZZ [15] 0 5 123 5
SESL 0 11 117 11
UAUTOMIZER [31] 6 11 111 17
UTAIPAN [18] 7 10 111 17
UKOJAK [46] 9 10 109 19
2LS [42] 14 11 103 25
TRICERA (ELDARICA-heap) 12 19 97 31
TRICERA (Z3/SPACER) 23 16 89 39
CPACHECKER [11] 53 10 65 63
TRICERA (ELDARICA-array) 39 24 65 63
TRICERA (portfolio) 40 26 62 66
ESBMC-KIND [41] 54 18 56 72
CPA-BAM-SMG 53 30 45 83
CBMC [38] 54 36 38 90
SYMBIOTIC [14] 68 36 24 104

incomplete (i.e., can lead to false positives), with various
optimisations the authors have managed to significantly im-
prove its effectiveness. Using the theory of heaps, much of the
work in JayHorn could be shifted to a CHC solver. TRICERA
and JAYHORN both use ELDARICA for solving the generated
CHCs, but otherwise do not share any infrastructure.

RUSTHORN is a verifier for Rust programs, and also trans-
forms away the heap [43] by exploiting the ownership system
of Rust. Since the method is not directly applicable in case of
unsafe code blocks, a theory of heaps could be used to extend
the tool in this direction.

SEAHORN is a verifier for LLVM-based languages [30].
SEAHORN employs Z3/SPACER as one of its back-ends for
CHC-based model-checking. It also employs various static
analyses that can be used on their own as a verification engine,
or to provide invariants to its CHC back-ends. SEAHORN
encodes the heap as a set of non-overlapping arrays that
are created by a data structure analysis (DSA) [39]. Since
SEAHORN works with the LLVM intermediate representation,
it can be used to target other LLVM-based languages than C.
In contrast, TRICERA comes with its own parser that currently
cannot handle all the peculiarities of C; however, its custom
parser can handle several non-standard C constructs as shown
in Table I and can easily be extended.

KORN is a verifier for C programs that uses CHCs; however
its main focus is showing the feasibility of using loop contracts
as opposed to loop invariants and currently supports a small
fragment of C [20]. KORN uses ELDARICA as one of its back-
ends.

Information about the other verification tools evaluated in
Section VI can be found in the SV-COMP report [8].

VIII. CONCLUSIONS AND OUTLOOK

This paper has introduced the verification tool TRICERA,
given an overview of the encoding of C programs using
the theory of heaps, and provided first experimental results
using SV-COMP benchmarks. Both TRICERA and the theory
of heaps are still under development, and planned future
work includes support for further features of C (see Table I),
improved decision and interpolation procedures for the theory
of heaps, and the development of additional heap back-ends
(in particular along the lines of [35]). Once multiple CHC
solvers with support for the theory of heaps are available, we
will also propose a heap track at the Horn solver competition
CHC-COMP.

ACKNOWLEDGEMENTS

This work was supported by the Swedish Research Council
(VR) under grant 2018-04727, by the Swedish Foundation
for Strategic Research (SSF) under the project WebSec (Ref.
RIT17-0011), and by the Knut and Alice Wallenberg Founda-
tion under the project UPDATE.

388

REFERENCES

[1] Information technology — programming languages — C. ISO/IEC
9899:2011, International Organization for Standardization, Geneva,
Switzerland (2011)

[2] Guidelines for the use of the C language in critical systems. MISRA
C:2012, The MISRA Consortium Limited, Norfolk, England (2012)

[3] Abadi, M., Lamport, L.: An old-fashioned recipe for real time.
ACM Trans. Program. Lang. Syst. 16(5), 1543–1571 (sep 1994).
https://doi.org/10.1145/186025.186058, https://doi.org/10.1145/186025.
186058

[4] Amilon, J., Esen, Z., Gurov, D., Lidström, C., Rümmer, P.: An exercise
in mind reading: Automatic contract inference for Frama-C. In: Guide
to Software Verification with Frama-C. Core Components, Usages, and
Applications (2022), (To appear)

[5] Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB Standard: Version
2.6. Tech. rep., Department of Computer Science, The University of
Iowa (2017), available at www.SMT-LIB.org

[6] Baudin, P., Cuoq, P., Filliâtre, J.C., Marché, C., Monate, B., Moy, Y.,
Prevosto, V.: ACSL: ANSI/ISO C Specification Language Version 1.17.
(2021)

[7] Bengtsson, J., Larsen, K.G., Larsson, F., Pettersson, P., Yi, W.: UP-
PAAL - a tool suite for automatic verification of real-time sys-
tems. In: Alur, R., Henzinger, T.A., Sontag, E.D. (eds.) Hybrid
Systems III: Verification and Control, Proceedings of the DIMAC-
S/SYCON Workshop on Verification and Control of Hybrid Sys-
tems, October 22-25, 1995, Ruttgers University, New Brunswick, NJ,
USA. Lecture Notes in Computer Science, vol. 1066, pp. 232–243.
Springer (1995). https://doi.org/10.1007/BFb0020949, https://doi.org/10.
1007/BFb0020949

[8] Beyer, D.: Progress on software verification: SV-COMP 2022. In:
Fisman, D., Rosu, G. (eds.) Tools and Algorithms for the Construction
and Analysis of Systems - 28th International Conference, TACAS
2022, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2022, Munich, Germany, April 2-7, 2022,
Proceedings, Part II. Lecture Notes in Computer Science, vol. 13244,
pp. 375–402. Springer (2022). https://doi.org/10.1007/978-3-030-99527-
0 20, https://doi.org/10.1007/978-3-030-99527-0 20

[9] Beyer, D.: Results of the 11th Intl. Competition on Software Verification
(SV-COMP 2022) (Jan 2022). https://doi.org/10.5281/zenodo.5831008,
https://doi.org/10.5281/zenodo.5831008

[10] Beyer, D.: SV-Benchmarks: Benchmark Set for Software Verification
and Testing (SV-COMP 2022 and Test- Comp 2022) (Jan 2022).
https://doi.org/10.5281/zenodo.5831003, https://doi.org/10.5281/zenodo.
5831003

[11] Beyer, D., Keremoglu, M.E.: Cpachecker: A tool for configurable
software verification. In: Gopalakrishnan, G., Qadeer, S. (eds.) Com-
puter Aided Verification - 23rd International Conference, CAV 2011,
Snowbird, UT, USA, July 14-20, 2011. Proceedings. Lecture Notes
in Computer Science, vol. 6806, pp. 184–190. Springer (2011).
https://doi.org/10.1007/978-3-642-22110-1 16, https://doi.org/10.1007/
978-3-642-22110-1 16

[12] Bjørner, N., Gurfinkel, A., McMillan, K.L., Rybalchenko, A.: Horn
clause solvers for program verification. In: Beklemishev, L.D., Blass,
A., Dershowitz, N., Finkbeiner, B., Schulte, W. (eds.) Fields of Logic
and Computation II - Essays Dedicated to Yuri Gurevich on the Occasion
of His 75th Birthday. Lecture Notes in Computer Science, vol. 9300,
pp. 24–51. Springer (2015). https://doi.org/10.1007/978-3-319-23534-
9 2, https://doi.org/10.1007/978-3-319-23534-9 2

[13] Bjørner, N., McMillan, K.L., Rybalchenko, A.: On solving universally
quantified Horn clauses. In: Logozzo, F., Fähndrich, M. (eds.) Static
Analysis - 20th International Symposium, SAS 2013, Seattle, WA, USA,
June 20-22, 2013. Proceedings. Lecture Notes in Computer Science,
vol. 7935, pp. 105–125. Springer (2013). https://doi.org/10.1007/978-3-
642-38856-9 8, https://doi.org/10.1007/978-3-642-38856-9 8

[14] Chalupa, M., Mihalkovic, V., Rechtácková, A., Zaoral, L., Strejcek, J.:
Symbiotic 9: String analysis and backward symbolic execution with
loop folding - (competition contribution). In: Fisman, D., Rosu, G.
(eds.) Tools and Algorithms for the Construction and Analysis of
Systems - 28th International Conference, TACAS 2022, Held as Part of
the European Joint Conferences on Theory and Practice of Software,
ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings, Part
II. Lecture Notes in Computer Science, vol. 13244, pp. 462–467.
Springer (2022). https://doi.org/10.1007/978-3-030-99527-0 32, https:
//doi.org/10.1007/978-3-030-99527-0 32

[15] Chowdhury, A.B., Medicherla, R.K., Venkatesh, R.: Verifuzz: Program
aware fuzzing - (competition contribution). In: Beyer, D., Huisman, M.,
Kordon, F., Steffen, B. (eds.) Tools and Algorithms for the Construction
and Analysis of Systems - 25 Years of TACAS: TOOLympics, Held
as Part of ETAPS 2019, Prague, Czech Republic, April 6-11, 2019,
Proceedings, Part III. Lecture Notes in Computer Science, vol. 11429,
pp. 244–249. Springer (2019). https://doi.org/10.1007/978-3-030-17502-
3 22, https://doi.org/10.1007/978-3-030-17502-3 22

[16] Darke, P., Agrawal, S., Venkatesh, R.: Veriabs: A tool for scalable
verification by abstraction (competition contribution). In: Groote, J.F.,
Larsen, K.G. (eds.) Tools and Algorithms for the Construction and
Analysis of Systems - 27th International Conference, TACAS 2021, Held
as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2021, Luxembourg City, Luxembourg, March 27 -
April 1, 2021, Proceedings, Part II. Lecture Notes in Computer Science,
vol. 12652, pp. 458–462. Springer (2021). https://doi.org/10.1007/978-
3-030-72013-1 32, https://doi.org/10.1007/978-3-030-72013-1 32

[17] De Angelis, E., Fioravanti, F., Pettorossi, A., Proietti,
M.: Program verification using constraint handling rules
and array constraint generalizations. Fundam. Inform.
150(1), 73–117 (2017). https://doi.org/10.3233/FI-2017-1461,
https://doi.org/10.3233/FI-2017-1461

[18] Dietsch, D., Heizmann, M., Nutz, A., Schätzle, C., Schüssele, F.: Ulti-
mate taipan with symbolic interpretation and fluid abstractions - (compe-
tition contribution). In: Biere, A., Parker, D. (eds.) Tools and Algorithms
for the Construction and Analysis of Systems - 26th International Con-
ference, TACAS 2020, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2020, Dublin, Ireland, April
25-30, 2020, Proceedings, Part II. Lecture Notes in Computer Science,
vol. 12079, pp. 418–422. Springer (2020). https://doi.org/10.1007/978-
3-030-45237-7 32, https://doi.org/10.1007/978-3-030-45237-7 32

[19] Dockins, R., Foltzer, A., Hendrix, J., Huffman, B., McNamee, D.,
Tomb, A.: Constructing semantic models of programs with the software
analysis workbench. In: Blazy, S., Chechik, M. (eds.) Verified Soft-
ware. Theories, Tools, and Experiments - 8th International Conference,
VSTTE 2016, Toronto, ON, Canada, July 17-18, 2016, Revised Selected
Papers. Lecture Notes in Computer Science, vol. 9971, pp. 56–72
(2016). https://doi.org/10.1007/978-3-319-48869-1 5, https://doi.org/10.
1007/978-3-319-48869-1 5

[20] Ernst, G.: A complete approach to loop verification with invariants and
summaries. CoRR abs/2010.05812 (2020), https://arxiv.org/abs/2010.
05812

[21] Ernstedt, P.: Contract-Based Verification in TriCera. Master’s thesis,
Uppsala University, Department of Information Technology (2022)

[22] Esen, Z.: Extension of the ELDARICA C model checker with heap
memory. Master’s thesis, Uppsala University, Department of Information
Technology (2019)

[23] Esen, Z., Rümmer, P.: Reasoning in the theory of heap: Satisfiabil-
ity and interpolation. In: Fernández, M. (ed.) Logic-Based Program
Synthesis and Transformation - 30th International Symposium, LOP-
STR 2020, Bologna, Italy, September 7-9, 2020, Proceedings. Lec-
ture Notes in Computer Science, vol. 12561, pp. 173–191. Springer
(2020). https://doi.org/10.1007/978-3-030-68446-4 9, https://doi.org/10.
1007/978-3-030-68446-4 9

[24] Esen, Z., Rümmer, P.: A theory of heap for constrained horn clauses
(extended technical report). CoRR abs/2104.04224 (2021), https://arxiv.
org/abs/2104.04224

[25] Esen, Z., Rümmer, P.: TriCera Benchmarks: SMT-LIB Encod-
ings of SV-COMP 2022 Benchmarks by TriCera (Aug 2022).
https://doi.org/10.5281/zenodo.6950363, https://doi.org/10.5281/zenodo.
6950363

[26] Fedyukovich, G., Rümmer, P.: Competition report: CHC-COMP-
21. In: Hojjat, H., Kafle, B. (eds.) Proceedings 8th Workshop
on Horn Clauses for Verification and Synthesis, HCVS@ETAPS
2021, Virtual, 28th March 2021. EPTCS, vol. 344, pp. 91–108
(2021). https://doi.org/10.4204/EPTCS.344.7, https://doi.org/10.4204/
EPTCS.344.7

[27] Flanagan, C., Saxe, J.B.: Avoiding exponential explosion: generat-
ing compact verification conditions. In: Hankin, C., Schmidt, D.
(eds.) Conference Record of POPL 2001: The 28th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages,
London, UK, January 17-19, 2001. pp. 193–205. ACM (2001).
https://doi.org/10.1145/360204.360220, https://doi.org/10.1145/360204.
360220

389

https://doi.org/10.1145/186025.186058
https://doi.org/10.1145/186025.186058
https://doi.org/10.1007/BFb0020949
https://doi.org/10.1007/BFb0020949
https://doi.org/10.1007/978-3-030-99527-0_20
https://doi.org/10.5281/zenodo.5831008
https://doi.org/10.5281/zenodo.5831003
https://doi.org/10.5281/zenodo.5831003
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-319-23534-9_2
https://doi.org/10.1007/978-3-642-38856-9_8
https://doi.org/10.1007/978-3-030-99527-0_32
https://doi.org/10.1007/978-3-030-99527-0_32
https://doi.org/10.1007/978-3-030-17502-3_22
https://doi.org/10.1007/978-3-030-72013-1_32
https://doi.org/10.3233/FI-2017-1461
https://doi.org/10.1007/978-3-030-45237-7_32
https://doi.org/10.1007/978-3-319-48869-1_5
https://doi.org/10.1007/978-3-319-48869-1_5
https://arxiv.org/abs/2010.05812
https://arxiv.org/abs/2010.05812
https://doi.org/10.1007/978-3-030-68446-4_9
https://doi.org/10.1007/978-3-030-68446-4_9
https://arxiv.org/abs/2104.04224
https://arxiv.org/abs/2104.04224
https://doi.org/10.5281/zenodo.6950363
https://doi.org/10.5281/zenodo.6950363
https://doi.org/10.4204/EPTCS.344.7
https://doi.org/10.4204/EPTCS.344.7
https://doi.org/10.1145/360204.360220
https://doi.org/10.1145/360204.360220

[28] Freeman, T., Pfenning, F.: Refinement types for ML. In:
PLDI. pp. 268–277. ACM, New York, NY, USA (1991).
https://doi.org/10.1145/113445.113468, http://doi.acm.org/10.1145/
113445.113468

[29] Grebenshchikov, S., Lopes, N.P., Popeea, C., Rybalchenko, A.: Synthe-
sizing software verifiers from proof rules. In: Vitek, J., Lin, H., Tip, F.
(eds.) ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’12, Beijing, China - June 11 - 16, 2012.
pp. 405–416. ACM (2012). https://doi.org/10.1145/2254064.2254112,
https://doi.org/10.1145/2254064.2254112

[30] Gurfinkel, A., Kahsai, T., Komuravelli, A., Navas, J.A.: The Sea-
Horn Verification Framework. In: Kroening, D., Pasareanu, C.S. (eds.)
Computer Aided Verification - 27th International Conference, CAV
2015, San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part
I. Lecture Notes in Computer Science, vol. 9206, pp. 343–361. Springer
(2015). https://doi.org/10.1007/978-3-319-21690-4 20, https://doi.org/
10.1007/978-3-319-21690-4 20

[31] Heizmann, M., Chen, Y., Dietsch, D., Greitschus, M., Hoenicke, J.,
Li, Y., Nutz, A., Musa, B., Schilling, C., Schindler, T., Podelski, A.:
Ultimate automizer and the search for perfect interpolants - (com-
petition contribution). In: Beyer, D., Huisman, M. (eds.) Tools and
Algorithms for the Construction and Analysis of Systems - 24th In-
ternational Conference, TACAS 2018, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2018,
Thessaloniki, Greece, April 14-20, 2018, Proceedings, Part II. Lec-
ture Notes in Computer Science, vol. 10806, pp. 447–451. Springer
(2018). https://doi.org/10.1007/978-3-319-89963-3 30, https://doi.org/
10.1007/978-3-319-89963-3 30

[32] Hoare, C.A.R.: An axiomatic basis for computer pro-
gramming. Commun. ACM 12(10), 576–580 (1969).
https://doi.org/10.1145/363235.363259, https://doi.org/10.1145/363235.
363259

[33] Hojjat, H., Rümmer, P.: The ELDARICA horn solver. In: FMCAD 2018.
pp. 1–7 (2018). https://doi.org/10.23919/FMCAD.2018.8603013

[34] Hojjat, H., Rümmer, P., Subotic, P., Yi, W.: Horn clauses for
communicating timed systems. In: Bjørner, N., Fioravanti, F., Ry-
balchenko, A., Senni, V. (eds.) Proceedings First Workshop on
Horn Clauses for Verification and Synthesis, HCVS 2014, Vi-
enna, Austria, 17 July 2014. EPTCS, vol. 169, pp. 39–52
(2014). https://doi.org/10.4204/EPTCS.169.6, https://doi.org/10.4204/
EPTCS.169.6

[35] Kahsai, T., Kersten, R., Rümmer, P., Schäf, M.: Quantified heap in-
variants for object-oriented programs. In: Eiter, T., Sands, D. (eds.)
LPAR-21, 21st International Conference on Logic for Programming,
Artificial Intelligence and Reasoning, Maun, Botswana, May 7-12, 2017.
EPiC Series in Computing, vol. 46, pp. 368–384. EasyChair (2017),
https://easychair.org/publications/paper/Pmh

[36] Komuravelli, A., Bjørner, N., Gurfinkel, A., McMillan, K.L.: Compo-
sitional verification of procedural programs using Horn clauses over
integers and arrays. In: Kaivola, R., Wahl, T. (eds.) Formal Methods in
Computer-Aided Design, FMCAD 2015, Austin, Texas, USA, Septem-
ber 27-30, 2015. pp. 89–96. IEEE (2015)

[37] Komuravelli, A., Gurfinkel, A., Chaki, S., Clarke, E.M.: Automatic
abstraction in smt-based unbounded software model checking. In:
Sharygina, N., Veith, H. (eds.) Computer Aided Verification - 25th
International Conference, CAV 2013, Saint Petersburg, Russia, July 13-
19, 2013. Proceedings. Lecture Notes in Computer Science, vol. 8044,
pp. 846–862. Springer (2013). https://doi.org/10.1007/978-3-642-39799-
8 59, https://doi.org/10.1007/978-3-642-39799-8 59

[38] Kroening, D., Tautschnig, M.: CBMC - C bounded model checker
- (competition contribution). In: Ábrahám, E., Havelund, K. (eds.)
Tools and Algorithms for the Construction and Analysis of Systems
- 20th International Conference, TACAS 2014, Held as Part of the
European Joint Conferences on Theory and Practice of Software,
ETAPS 2014, Grenoble, France, April 5-13, 2014. Proceedings. Lec-
ture Notes in Computer Science, vol. 8413, pp. 389–391. Springer
(2014). https://doi.org/10.1007/978-3-642-54862-8 26, https://doi.org/
10.1007/978-3-642-54862-8 26

[39] Lattner, C., Adve, V.S.: Automatic pool allocation: improving per-
formance by controlling data structure layout in the heap. In:
Sarkar, V., Hall, M.W. (eds.) Proceedings of the ACM SIGPLAN
2005 Conference on Programming Language Design and Imple-
mentation, Chicago, IL, USA, June 12-15, 2005. pp. 129–142.
ACM (2005). https://doi.org/10.1145/1065010.1065027, https://doi.org/
10.1145/1065010.1065027

[40] Lauko, H., Rockai, P.: LART: compiled abstract execution - (competition
contribution). In: Fisman, D., Rosu, G. (eds.) Tools and Algorithms for
the Construction and Analysis of Systems - 28th International Confer-
ence, TACAS 2022, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2022, Munich, Germany, April
2-7, 2022, Proceedings, Part II. Lecture Notes in Computer Science, vol.
13244, pp. 457–461. Springer (2022). https://doi.org/10.1007/978-3-030-
99527-0 31, https://doi.org/10.1007/978-3-030-99527-0 31

[41] Leeson, W., Dwyer, M.B.: Graves-cpa: A graph-attention verifier se-
lector (competition contribution). In: Fisman, D., Rosu, G. (eds.)
Tools and Algorithms for the Construction and Analysis of Systems
- 28th International Conference, TACAS 2022, Held as Part of the
European Joint Conferences on Theory and Practice of Software,
ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings, Part
II. Lecture Notes in Computer Science, vol. 13244, pp. 440–445.
Springer (2022). https://doi.org/10.1007/978-3-030-99527-0 28, https:
//doi.org/10.1007/978-3-030-99527-0 28

[42] Malı́k, V., Schrammel, P., Vojnar, T.: 2ls: Heap analysis and memory
safety - (competition contribution). In: Biere, A., Parker, D. (eds.)
Tools and Algorithms for the Construction and Analysis of Systems
- 26th International Conference, TACAS 2020, Held as Part of the
European Joint Conferences on Theory and Practice of Software,
ETAPS 2020, Dublin, Ireland, April 25-30, 2020, Proceedings, Part
II. Lecture Notes in Computer Science, vol. 12079, pp. 368–372.
Springer (2020). https://doi.org/10.1007/978-3-030-45237-7 22, https:
//doi.org/10.1007/978-3-030-45237-7 22

[43] Matsushita, Y., Tsukada, T., Kobayashi, N.: RustHorn: CHC-based
Verification for Rust Programs. ACM Trans. Program. Lang. Syst. 43(4),
15:1–15:54 (2021). https://doi.org/10.1145/3462205, https://doi.org/10.
1145/3462205

[44] McCarthy, J.: An interesting lisp function. ACM Lisp Bulletin (3), 6–8
(1979)

[45] Monniaux, D., Gonnord, L.: Cell morphing: From array programs to
array-free Horn clauses. In: Rival, X. (ed.) Static Analysis - 23rd
International Symposium, SAS 2016, Edinburgh, UK, September 8-
10, 2016, Proceedings. Lecture Notes in Computer Science, vol. 9837,
pp. 361–382. Springer (2016). https://doi.org/10.1007/978-3-662-53413-
7 18, https://doi.org/10.1007/978-3-662-53413-7 18

[46] Nutz, A., Dietsch, D., Mohamed, M.M., Podelski, A.: ULTIMATE
KOJAK with memory safety checks - (competition contribution). In:
Baier, C., Tinelli, C. (eds.) Tools and Algorithms for the Construction
and Analysis of Systems - 21st International Conference, TACAS
2015, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2015, London, UK, April 11-18,
2015. Proceedings. Lecture Notes in Computer Science, vol. 9035,
pp. 458–460. Springer (2015). https://doi.org/10.1007/978-3-662-46681-
0 44, https://doi.org/10.1007/978-3-662-46681-0 44

[47] Owicki, S.S., Gries, D.: An axiomatic proof technique
for parallel programs i. Acta Inf. 6, 319–340 (1976).
https://doi.org/10.1007/BF00268134

[48] Richter, C., Wehrheim, H.: Pesco: Predicting sequential combinations
of verifiers - (competition contribution). In: Beyer, D., Huisman, M.,
Kordon, F., Steffen, B. (eds.) Tools and Algorithms for the Construction
and Analysis of Systems - 25 Years of TACAS: TOOLympics, Held
as Part of ETAPS 2019, Prague, Czech Republic, April 6-11, 2019,
Proceedings, Part III. Lecture Notes in Computer Science, vol. 11429,
pp. 229–233. Springer (2019). https://doi.org/10.1007/978-3-030-17502-
3 19, https://doi.org/10.1007/978-3-030-17502-3 19

[49] Rondon, P.M., Kawaguchi, M., Jhala, R.: Liquid types. In: Gupta,
R., Amarasinghe, S.P. (eds.) Proceedings of the ACM SIGPLAN
2008 Conference on Programming Language Design and Imple-
mentation, Tucson, AZ, USA, June 7-13, 2008. pp. 159–169.
ACM (2008). https://doi.org/10.1145/1375581.1375602, https://doi.org/
10.1145/1375581.1375602

[50] Rümmer, P.: A constraint sequent calculus for first-order logic with linear
integer arithmetic. In: Proceedings, 15th International Conference on
Logic for Programming, Artificial Intelligence and Reasoning. LNCS,
vol. 5330, pp. 274–289. Springer (2008)

[51] Saan, S., Schwarz, M., Apinis, K., Erhard, J., Seidl, H., Vogler,
R., Vojdani, V.: Goblint: Thread-modular abstract interpretation using
side-effecting constraints - (competition contribution). In: Groote, J.F.,
Larsen, K.G. (eds.) Tools and Algorithms for the Construction and
Analysis of Systems - 27th International Conference, TACAS 2021, Held
as Part of the European Joint Conferences on Theory and Practice of

390

http://doi.acm.org/10.1145/113445.113468
http://doi.acm.org/10.1145/113445.113468
https://doi.org/10.1145/2254064.2254112
https://doi.org/10.1007/978-3-319-21690-4_20
https://doi.org/10.1007/978-3-319-21690-4_20
https://doi.org/10.1007/978-3-319-89963-3_30
https://doi.org/10.1007/978-3-319-89963-3_30
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/363235.363259
https://doi.org/10.4204/EPTCS.169.6
https://doi.org/10.4204/EPTCS.169.6
https://easychair.org/publications/paper/Pmh
https://doi.org/10.1007/978-3-642-39799-8_59
https://doi.org/10.1007/978-3-642-54862-8_26
https://doi.org/10.1007/978-3-642-54862-8_26
https://doi.org/10.1145/1065010.1065027
https://doi.org/10.1145/1065010.1065027
https://doi.org/10.1007/978-3-030-99527-0_31
https://doi.org/10.1007/978-3-030-99527-0_28
https://doi.org/10.1007/978-3-030-99527-0_28
https://doi.org/10.1007/978-3-030-45237-7_22
https://doi.org/10.1007/978-3-030-45237-7_22
https://doi.org/10.1145/3462205
https://doi.org/10.1145/3462205
https://doi.org/10.1007/978-3-662-53413-7_18
https://doi.org/10.1007/978-3-662-46681-0_44
https://doi.org/10.1007/978-3-030-17502-3_19
https://doi.org/10.1145/1375581.1375602
https://doi.org/10.1145/1375581.1375602

Software, ETAPS 2021, Luxembourg City, Luxembourg, March 27 -
April 1, 2021, Proceedings, Part II. Lecture Notes in Computer Science,
vol. 12652, pp. 438–442. Springer (2021). https://doi.org/10.1007/978-
3-030-72013-1 28, https://doi.org/10.1007/978-3-030-72013-1 28

[52] Sánchez, A., Sankaranarayanan, S., Sánchez, C., Chang, B.Y.E.: In-
variant generation for parametrized systems using self-reflection -
(extended version). In: Miné, A., Schmidt, D. (eds.) SAS. Lec-
ture Notes in Computer Science, vol. 7460, pp. 146–163. Springer

(2012). https://doi.org/10.1007/978-3-642-33125-1 12, https://doi.org/
10.1007/978-3-642-33125-1

[53] Tóth, T., Hajdu, Á., Vörös, A., Micskei, Z., Majzik, I.: Theta: A frame-
work for abstraction refinement-based model checking. In: Stewart, D.,
Weissenbacher, G. (eds.) 2017 Formal Methods in Computer Aided De-
sign, FMCAD 2017, Vienna, Austria, October 2-6, 2017. pp. 176–179.
IEEE (2017). https://doi.org/10.23919/FMCAD.2017.8102257, https://
doi.org/10.23919/FMCAD.2017.8102257

391

https://doi.org/10.1007/978-3-030-72013-1_28
https://doi.org/10.1007/978-3-642-33125-1
https://doi.org/10.1007/978-3-642-33125-1
https://doi.org/10.23919/FMCAD.2017.8102257
https://doi.org/10.23919/FMCAD.2017.8102257

	Introduction
	TriCera Features
	Input Language
	Supported Code Annotations
	Annotation Inference
	Uninterpreted Predicates
	Concurrency
	Timing Constraints

	The TriCera Verification Approach
	Constrained Horn Clauses
	The Architecture of TriCera
	Programs as Constrained Horn Clauses (CHCs)

	The Theory of Heaps
	Encoding of C Programs with Heap
	Experimental Results
	Benchmarks
	Experimental Setup
	Results

	Related Work
	Conclusions and Outlook
	References

