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Next generation pan-cancer blood proteome
profiling using proximity extension assay
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Martin Zwahlen 1, Adil Mardinoglu 1,2, Per-Henrik Edqvist 3,
Tobias Sjöblom 3, Emma Lundin 3, Natallia Rameika 3, Gunilla Enblad 3,
Henrik Lindman3, Martin Höglund 4, Göran Hesselager 4, Karin Stålberg 5,
Malin Enblad 6, Oscar E. Simonson 6, Michael Häggman6, Tomas Axelsson4,
Mikael Åberg 7, Jessica Nordlund 4, Wen Zhong 8, Max Karlsson 1,
Ulf Gyllensten 3, Fredrik Ponten 3, Linn Fagerberg 1 & Mathias Uhlén 1,9

A comprehensive characterization of blood proteome profiles in cancer
patients can contribute to a better understanding of the disease etiology,
resulting in earlier diagnosis, risk stratification and better monitoring of the
different cancer subtypes. Here, we describe the use of next generation pro-
tein profiling to explore the proteome signature in blood across patients
representingmany of the major cancer types. Plasma profiles of 1463 proteins
from more than 1400 cancer patients are measured in minute amounts of
blood collected at the time of diagnosis and before treatment. An open access
Disease Blood Atlas resource allows the exploration of the individual protein
profiles in blood collected from the individual cancer patients.We also present
studies in which classification models based on machine learning have been
used for the identification of a set of proteins associated with each of the
analyzed cancers. The implication for cancer precision medicine of next gen-
eration plasma profiling is discussed.

Cancer is a highly heterogeneous disease in need of accurate and
non-invasive diagnostic tools. Cancer Precision Medicine aims to
enable high-resolution individualized diagnosis by the use of
molecular tools such as genomics, proteomics and metabolomics,
with subsequent optimized treatment and monitoring of cancer
patients. Of particular importance is the possibility to identify
cancers early, allowing initiation of treatment and thereby improv-
ing patient outcomeby avoiding tumor progression,metastasis, and
emergence of treatment resistant tumors. When cancers are
detected at an earlier stage, treatment is more effective and survival

is drastically improved1. As an example, according to US-based
statistics2, the five-year survival for breast cancer is 99% when
detected at an early stage (localized), whereas survival decreases to
only 30%when detected at later stages (metastasized). Similarly, the
corresponding survival for ovarian cancer is 93% at early stage and
31% when detected at later stage2. Based on this, several population
screening programs have been initiated to identify cancer before
symptoms arise, including screening for prostate cancer using PSA
protein level3, colorectal cancer by detecting blood in feces4, and
breast cancer using mammography5.
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The main focus of Cancer Precision Medicine in the past decade
has been to use genomics, involving next-generation sequencing to
explore the genetic make-up of individual cancers. Huge efforts have
beenmade to gain genetic insight into tumors frompatients, including
The Cancer Genome Atlas (TCGA)6,7; the International Cancer Genome
Consortium (ICGC)8; and the Pan-Cancer Analysis of Whole Genomes
(PCAWG) consortium9. Although invaluable insights regarding the
biology of individual cancers have been gained by these efforts, the
genomics information has not led to substantial changes in ther-
apeutic regimes or facilitated screening for cancer in the population.
Therefore, a move towards a multi-omics analysis has been
suggested10, including functional analysis and alternative assay plat-
forms, such as proteomics using either dissected tumor biopsies or
non-invasive body fluids11.

An interesting approach in Cancer Precision Medicine is thus to
use protein profiling to allow for liquid biopsy assays from minute
amounts of blood. An attractive vision would be to allow multiple
cancer types to be screened and detected using a single multiplex
protein assay. However, the staggering dynamic range in concentra-
tions of blood proteins spanning at least ten orders ofmagnitude, with
concentrations as low as pg/ml for cytokines, makesmultiplex analysis
involving even a handful of protein targets difficult. This has hampered
the development of multiplex blood protein assays during the last few
decades. This situation has now changed with the recent development
of high-throughput platforms for sensitive proteomics assays in blood,
such as Somascan12 and Proximity Extension Assay (PEA)13. These
platforms allow thousands of target proteins to be analyzed simulta-
neously using a few microliters of blood with sensitivity to detect and
quantify proteins present in low femtomolar amounts. Thismeans that
evenproteinswell below thedetection level formass spectrometry can
now be accurately quantified and used for population screening.

Here, we describe a strategy for pan-cancer analysis in which the
plasmaprofiles of patients with different types of cancer are compared
to find cancer-specific signatures that can distinguish each type of
cancer from other cancer types. Next Generation Blood Profiling14,
combining the antibody-based PEA with next-generation sequencing,
has been used to quantify protein concentrations in multiple cancer
types. Samples ofmore than 1400 cancer patients from a standardized
biobank collection have been analyzed, along with a wealth of clinical
metadata15. Altogether 12 cancer types including the most prevalent
types such as colorectal-, breast-, lung-, and prostate-cancer, have
been studied. The data is presented in the Disease Blood Atlas
resource, which is available without restrictions (open access) to allow
researchers both fromacademia and industry to explore the individual
blood protein profiles from cancer patients. We also present initial
studies in which classificationmodels based onmachine learning have
been used to identify a panel of proteins associated with each of the
analyzed cancers.

Results
The pan-cancer cohort
In this study, we have characterized the plasma proteome of a pan-
cancer cohort from the Uppsala-Umeå Comprehensive Cancer Con-
sortium (U-CAN) biobank15, comprising 1477 patients from twelve
cancer types, including acute myeloid leukemia (AML) (n = 50),
chronic lymphocytic leukemia (CLL) (n = 48), diffuse large B-cell lym-
phoma (DLBCL) (n = 55), myeloma (n = 38), colorectal cancer (n = 221),
lung cancer (n = 268), glioma (n = 145), breast cancer (n = 152), cervical
cancer (n = 102), endometrial cancer (n = 101), ovarian cancer (n = 134),
and prostate cancer (n = 163). Plasma samples were collected at the
time of diagnosis and before treatment was initiated. Summary sta-
tistics for the cancer cohorts regarding age, sex, grade, and stage
distribution are available in Suppl. data 1. A summary of the age dis-
tribution of the cancer patients is shown in Fig. 1a and the clinical

metadata regarding age, sex, diagnosis, and cancer stage or grade
available for the cancer samples are available in Suppl. data 2.

The open access Human Disease Blood Atlas resource
The Human Disease Blood Atlas resource has been created as part of
the Human Protein Atlas (v22.proteinatlas.org). This section contains
more than 2million data points representing the individual blood level
for target proteins in 1477 cancer patients. The individual protein
levels in blood are presented across these cancer patients character-
ized using the Olink Explore 1536 Proximity Extension Assay (PEA)
technology, allowing the quantification of 1463 proteins using less
than 3microliters of plasma13. The Olink Explore has been shown to be
a robust platform13, and we here report on the coefficient of variation
(CV) with an average IntraCV of 13.3% and average InterCV of 21.1%
(Fig. S1a), and a high interpanel correlation for assays used as technical
controls (r =0.97 for IL6, r =0.96 for CXCL8 and r = 0.91 for TNF)
(Fig. S1b). Several upregulated and downregulated proteins in specific
cancer types can be observed as exemplified in Fig. 1b. Some of these
potential biomarkers are cancer-specific, such as Fms-related receptor
tyrosine kinase 3 (FLT3) in AML and SLAM family member 7 (SLAMF7)
in myeloma, while others are found to be elevated in two or more
cancers, such as lymphocyte antigen 9 (LY9) with higher expression in
both CLL and myeloma. Interestingly, the B lymphocyte antigen
receptor CD79b molecule (CD79B) exhibits elevated plasma levels in
all four immune cell-related cancers. Figure 1c shows an overview of
our workflow used to identify cancer-associated proteins based on
both differential expression analysis and classification models.

Identification of cancer-specific proteins using differential
expression
To investigate the cancer-specific proteome profiles, differential
expression analyseswere performedwhere each cancerwas compared
to all other cancers (Fig. 1c). For the male and female cancers, only
samples with the same sex were compared. The up- and down-
regulated proteins in each cancer are summarized by volcano plots
(Fig. 2a and Fig. S2a). For glioma, the significantly upregulatedproteins
include the glialfibrillary acidicprotein (GFAP), a proteinwith enriched
expression in astrocytes according to the Human Protein Atlas
(v22.proteinatlas.org) and for AML, the most significant protein is
FLT3, a protein with elevated expression in lymphoid tissues. FKBP
prolyl isomerase 1B, a protein shown by HPA to be elevated in reg-
ulatory T-cells, is upregulated in colorectal cancer, while progesterone
associated emndometrial protein (PAEP), a protein secreted in the
female reproductive tissues according to HPA, is significantly upre-
gulated in ovarian cancer. The results for all 12 cancer types can be
found on the interactive Disease Blood Atlas resource with links to the
underlying blood levels for all analyzed proteins.

In Fig. 2b, the number of up- and downregulated proteins are
shown across the 12 cancers. The results show that a large fraction of
the analyzed proteins is differentially expressed. The overlap between
proteins upregulated in more than one different cancer type is shown
in Fig. 2c. As expected, there is a large number of upregulated proteins
shared by the four immune cell-related cancers (AML, CLL, lymphoma,
and myeloma), in many cases consisting of proteins related to
immune-related functions. However, the largest number of over-
lapping proteins is observed for lung and colorectal cancer. This
observationmight reflect common features between these two cancer
types, such as adenocarcinomaorigin and a high fraction of high-grade
tumors with likely similar host inflammatory response. A functional
gene ontology (GO) analysis was also performed for the upregulated
proteins for each of the cancer types (Fig. S2b). As expected, the
upregulated proteins in the immune cell-related cancers (AML, CLL,
and lymphoma) are related to immune processes, while breast,
endometrial, and prostate cancer have an over-representation of cell
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adhesion proteins and both lung and colorectal cancer had an over-
representation of apoptotic-related proteins.

Cancer-specific classification models
To identify proteins relevant for each cancer type, a disease classifi-
cation model was built for each cancer, respectively, using all mea-
sured proteins as input (n = 1463) and 70% of the cancer patients as

the training set (Fig. 1c). To build the models, the machine learning
algorithm glmnet16, which is based on regularized generalized linear
models, was selected. The control group in each model was com-
posed of all the other cancer samples and was subsampled to include
a similar number of patients to themodeled cancer. For themale and
female cancers, only samples with the same sex were used as
controls.
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The training of a glmnet model results in an estimation of the
overall importance of each protein to a model (ranging between
0–100%), revealing how many proteins are relevant to the specific
classification problem and to which extent. In Fig. 3a, the number of
proteins contributing to each cancer classification model is shown.
Note that many proteins have a relatively high importance score for
some of the cancers, including colorectal and lung cancers, while for
other cancers, such as the hematological cancers and glioma, relatively

few proteins contribute to the classification model. This suggests that
some of the cancers require a higher number of proteins to be inclu-
ded in the model to classify the cancer samples from the controls. For
some cancers, such as glioma, one protein (GFAP) is given a high score
with considerably lower scores for the other proteins (<50%), while
in other cancers there is a continuum of importance scores, such
as AML or colorectal cancer. In Fig. S3a, a heatmap visualization
shows the importance score for the 486 proteins that scored high

Fig. 1 | Overview of the pan-cancer study. a Age distribution and number of
patients included for each cancer and the healthy cohort. b Examples of protein
levels for four example proteins across the 12 cancer types. Boxplots summarize the
median value, upper and lower hinges corresponding to the first and third quar-
tiles, and whiskers indicating the minimum and maximum values within 1.5 times
the IQR. Individual data points are presented for each cancer group, with n = 1462,
n = 1402, n = 1462, and n = 1399 independent samples for CD79B, FLT3, LY9, and
SLAMF7, respectively. c Schematic representation of the workflow used in this
study. Blood plasma from 1477 cancer patients and 74 healthy individuals was

analyzed using Proximity Extension Assay. Differential expression analysis and
classification models was used to compare one cancer to all other cancers and
identify cancer-associated proteins. The models for cancer classification were
generated using machine learning techniques (70% of the data in training set). The
resulting pan-cancer protein panel was used in a pan-cancer multiclassification
strategy, and the performance tested against a test set (30% of the data) and ulti-
mately compared against healthy individuals. Source data are provided as a Source
data file. AML acute myeloid leukemia, CLL chronic lymphocytic leukemia, DLBCL
diffuse large B-cell lymphoma.
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Fig. 2 | Differential expression analysis. a Volcano plots summarizing the differ-
ential expression results for AML, colorectal, glioma, and ovarian cancer. Corre-
sponding results for all 12 cancers are shown inFig. S2. P-values are calculated using
a two-sided t-test, with Benjamini-Hochberg multiple hypothesis correction.
b Barplot showing the number of proteins significantly upregulated, significantly

downregulated, or with no significant differential expression for all cancer types.
c Upset plot showing the number of upregulated proteins shared by the different
cancer types. The top barplot shows the total number of upregulated proteins per
cancer. Sourcedata areprovided as a Sourcedatafile. AML acutemyeloid leukemia,
CLL chronic lymphocytic leukemia, DLBCL diffuse large B-cell lymphoma.
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(>25% importance) in at least one of the cancer types by glmnet.
Moreover, several proteins scored high (>25% importance) in more
than one cancer, as shown in the network visualization revealing
relationships between the potential biomarkers in the different cancer
types (Fig. S3b). In Fig. 3b, the ten proteins with the highest important
score using the glmnet algorithm are shown for each cancer, with
examples of boxplots of upregulated proteins for each cancer in

Fig. 3c. The importance scores for each protein across the 12 cancer
types are found in Suppl. data 3.

Evaluation of cancer-specific classification models
The performance of the cancer classificationmodels was subsequently
evaluated using the 30% of the data excluded from themodel training.
In Fig. 4a, the classification probabilities for each of the cancer models
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are summarized. For each cancer model, we show the probability of
theplasma sample in the test set to come from the specific cancer type.
We found that the machine learning models can separate samples
between all the specific cancers with area under the curve AUC16 ran-
ging between 0.8 and 1 (Fig. 4b). Particularly high confidence was
observed for three of the immune cell-related cancers: AML, CLL, and
myeloma, all having AUC of 0.99–1. To investigate the sensitivity and
specificity further, a confusion matrix17 was created based on the
probabilities estimated on the test set (Fig. 4c), with a probability
cutoff calculated according to the Youden method18. The results sug-
gest relatively high specificity and sensitivity across all cancers, with
largest number of false positves for lung, endometrial, and breast
cancers. However, the low sample size in general in the test set rein-
forces the need to validate the classificationmodels in larger cohorts in
the future.

In this analysis, all proteins were used as input to the model to
classify the cancer types. However, to investigate the impact of using
less proteins, we analyzed the classification power using different
numbersof proteins as inputdata to themodel. In Fig. S4a, the receiver
operating characteristic (ROC) plots for each cancer using all proteins
as input (n = 1463) were compared with using only themost important

proteins for each cancer, including 3, 10, 50, and 200 proteins. The
AUC and accuracy for each of the 12 cancers differs quite significantly
as summarized in the radar plots (Fig. S4b, c) demostarting much
higher AUC when using 50 or more proteins as input to the classifi-
cationmodels formost of the cancers, although some cancers, such as
AML, myeloma, and glioma, only need a few proteins to obtain high
AUC scores. Additional performance scores are available in Suppl.
data 4. In conclusion, this demonstrates the value of including many
proteins in the classificationmodel to gain higher confidence for some
of the cancers.

Selection of a panel with cancer-specific proteins
Combining the previous results, we sought to identify a panel of pro-
teins based on the ranking from the glmnet models and relevant to
each of the analyzed cancers. The following inclusion criteria were
used: (i) proteins with more than 50% overall importance as indicated
by the cancer classification models, (ii) proteins identified as upregu-
lated by differential expression analysis, and (iii) at least three proteins
per cancer, which for three cancers (glioma, myeloma, and ovarian
cancer) resulted in the inclusion of one or two proteins below the 50%
cutoff, respectively. Based on these criteria, we ended up with a panel

Fig. 3 | Estimation of protein importance by the cancer classification models.
a Protein importance rank profiles for each cancermodel. For each cancer, the first
500 proteins in the importance rank are included (y-axis), and the corresponding
importance score is shown (x-axis). The total number of proteins with a positive
score is indicated for each of the cancers. b Lollipop chart showing the top ten
scoring proteins in each cancer model, with the exception of myeloma with only
nine positive proteins. c Selected examples of upregulated proteins for each of the
cancer types. The colored boxes indicate the cancer type where the protein is
upregulated, and gray shading indicates the absence of upregulation. Boxplots

summarize the median value, upper and lower hinges corresponding to the first
and third quartiles, and whiskers indicating the minimum and maximum values
within 1.5 times the IQR. Individualdata points are presented for each cancer group,
with n = 1462, n = 1402, n = 1457, n = 1413, n = 1432, n = 1476, n = 1402, n = 1432,
n = 1462,n = 1389, n = 1389, and n = 1477, for PRDX5, CEACAM5, PRTG, GLO1, DNER,
PLAT, GFAP, CXCL9, CD244, PAEP, TCL1A, and CNTN5, respectively. Source data
are provided as a Source data file. AML acute myeloid leukemia, CLL chronic
lymphocytic leukemia, DLBCL diffuse large B-cell lymphoma.

AML CLL DLBCL Myeloma Lung Colorectal Glioma Prostate Breast Cervical Endometrial Ovarian

C
an
ce
r

C
on
tr
ol

C
an
ce
r

C
on
tr
ol

C
an
ce
r

C
on
tr
ol

C
an
ce
r

C
on
tr
ol

C
an
ce
r

C
on
tr
ol

C
an
ce
r

C
on
tr
ol

C
an
ce
r

C
on
tr
ol

C
an
ce
r

C
on
tr
ol

C
an
ce
r

C
on
tr
ol

C
an
ce
r

C
on
tr
ol

C
an
ce
r

C
on
tr
ol

C
an
ce
r

C
on
tr
ol

0.00

0.25

0.50

0.75

1.00

True_class

P
ro
b
ab
ili
ty
_c
an
ce
r

AUC: 1 AUC: 1 AUC: 0.82 AUC: 0.99 AUC: 0.95 AUC: 0.99 AUC: 0.98 AUC: 0.91 AUC: 0.89 AUC: 0.9 AUC: 0.88 AUC: 0.95
0

1

S
en
si
ti
vi
ty

AML CLL DLBCL Myeloma Lung Colorectal Glioma Prostate Breast Cervical Endometrial Ovarian

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
1−Specificity

22

0

0

15

22

0

0

14

16

2

6

14

11

1

0

10

77

6

11

74

64

2

2

64

41

2

3

41

29

4

6

44

40

5

10

40

27

8

3

22

19

0

11

30

35

5

5

35Cancer

Control

Tr
u
e_
cl
as
s

AML CLL DLBCL Myeloma Lung Colorectal Glioma Prostate Breast Cervical Endometrial Ovarian

C
an
ce
r

C
on
tr
ol

C
an
ce
r

C
on
tr
ol

C
an
ce
r

C
on
tr
ol

C
an
ce
r

C
on
tr
ol

C
an
ce
r

C
on
tr
ol

C
an
ce
r

C
on
tr
ol

C
an
ce
r

C
on
tr
ol

C
an
ce
r

C
on
tr
ol

C
an
ce
r

C
on
tr
ol

C
an
ce
r

C
on
tr
ol

C
an
ce
r

C
on
tr
ol

C
an
ce
r

C
on
tr
ol

Predicted_class

a

b

c

Fig. 4 | Performance of the classificationmodels for each cancer on the test set.
a Cancer probabilities for samples in the test set per cancer. The optimal prob-
ability cutoffs are indicated with a dashed gray line. b ROC curves and corre-
sponding AUC. The sensitivity and specificity corresponding to the optimal
probability cutoff is marked with an x. c Confusion matrices summarizing the

classification results for each cancer at the given probability cutoff. The optimal
probability cutoff was calculated using the Youden method. Source data are pro-
vided as a Source data file. AML acute myeloid leukemia, CLL chronic lymphocytic
leukemia, DLBCL diffuse large B-cell lymphoma.
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of 83 proteins (Fig. 5a), which are listed in Suppl. data 5 along with the
results from the classification models and differential expression.
Lung- and prostate cancer contributed to the largest number of pro-
teins in the panel, 18 and 14, respectively, whereas only three protein
targets each were selected for AML, glioma, myeloma, and ovarian
cancer.

In Fig. 5b, the average plasma levels of the 83 selected protein
members of the panel are visualized across all cancer types. Most of
the selected proteins had a higher level in only one cancer, while some
had high protein levels in multiple cancers. For example, CXADR-like
membrane protein (CLM), selected to identify endometrial cancer,
also showed elevated plasma levels in myeloma patients. Only two of
the proteins were given a high importance score (> 50%) by the clas-
sificationmodel inmore thanone cancer. Both FKBprolyl isomerase 1B
(FKBP1B) and peroxiredoxin 5 (PRDX5) had higher plasma levels in
lung- and colorectal cancer as compared to all the other cancers and
were also selected independently by the models for both of these
cancer types. Interestingly, FKBP1B is involved in immunoregulation
and protein folding and has previously been linked to colorectal
cancer19 but not to lung cancer. Similarly, PRDX5 has an antioxidant
function in normal and inflammatory conditions and several other
proteins of the peroxiredoxin family have been linked to lung and
colorectal cancers in transcriptomics analysis of cancer cell lines20,21.

Classification of the pan-cancer cohort based on the selected
protein panel
Next, we aimed to assess whether a multiclass classification model
based on the selected protein panel could result in an accurate clas-
sification of samples of the different cancer types. Here, a glmnet
model was built using all previous cancer samples from the training set
and the performance was estimated on all cancer samples on the test
set, looking at the ability of the model to score each sample with a
probability to belong to each of the cancer types. In order to explore
the impact of including different number of proteins, we built four
differentmulticlass classificationmodels basedon adifferent selection
of proteins: (i) all proteins (n = 1463), (ii) those selected in the panel
(n = 83), (iii) the threemost important proteins per cancer (n = 36) and
(iv) the single most important protein per cancer (n = 12), and we
evaluated the performance in each setting. Comparative ROC analyses
were performed for each cancer type in which the specificity/sensi-
tivity measured as AUC was determined for different number of pro-
teins (Fig. S5).

The results (Fig. 5c) show that the panel of 83 proteins can identify
the right cancerwith relatively high selectivity and sensitivitywith AUC
ranging between 0.93 and 1 for all cancer types. The analysis using all
proteins gave only slightly better results, while the use of only the top
3 proteins in each cancer gave somewhat less reliable results. The
lowest performance scores were obtained when using only the top
protein for each of the 12 cancers. Additional performance scores for
the different protein numbers are summarized for each of the cancers
in Suppl. data 6.

The results demonstrate that a panel with only a small number of
proteinmarkers can achieve similar classification reliability as using all
proteins. Although based on a small sample size in the test cohort, the
results suggest that a panel of less than hundred proteins yields highly
promising results (AUC) for simultaneous identificationof all 12 cancer
types. As shown in Fig. 5d, there is some overlap in the classification
results for some of the cancers, such as lung and colorectal cancer,
while for other cancers, such as glioma and immune-related cancers,
the samples have a high probability of being correctly classified.

Comparative analyses between healthy individuals and patients
with cancer
An important question is how well the protein signature identified on
the pan-cancer study can distinguish cancer patients from healthy

individuals. To investigate this, for eachof the 12 cancer types, a cancer
classification model was built but this time including 74 healthy indi-
viduals previously studied as part of a wellness study14,22,23 as the con-
trol group instead of all of the other cancers. As described above, each
of the cancers contributed to the panel with a different number of
proteins3–18 and these models were based only on these specific pro-
teins, i.e., the AMLmodel was basedon the threeAML-specific proteins
included in the panel. We again used 70% of the cancer and healthy
samples as the training set and the remaining 30% to test the perfor-
mance of the model, being the cancer samples in the train and test set
the same as before.

The results for four of the cancers are shown in Fig. 6a–d and all
cancers in Fig. S6. For CLL (Fig. 6a), the model can distinguish cancer
patients from healthy controls using the six proteins selected for CLL
with total accuracy (AUC= 1). Similarly, the same analysis for color-
ectal- (Fig. 6b), ovarian- (Fig. 6c), and lung cancer (Fig. 6d), respec-
tively, shows high accuracy with all AUC results above 0.83when using
the corresponding proteins, demonstrating that the selected cancer
signatures can distinguish cancer patients from healthy individuals
with relatively high accuracy. Additional performance metrics are
provided for all models in Suppl. data 7. These results suggest that the
protein panel is suitable to classify patients with the analyzed cancer
types from each other as well as distinguish cancer patients from
healthy individuals (without a cancer diagnosis). However, caution is
required since the wellness panel was sampled and analyzed in a
separate study, thus sample bias can not be ruled out.

Stratification of patients with cancers of different stages
An important quest in the field of Cancer Precision Medicine is to aid
clinicians to indicate the stage of the cancer. For some cancers in this
study, a relatively large number of patients had stage data available and
therefore we investigated whether the protein panel could stratify
patients into stages for these cancer types. In Fig. 6e, we show four
examples of proteins where we find an association between the plasma
levels anddisease stage, including (i) CD22used to identifyCLLpatients;
(ii) galectin 4 (LGALS4) in colorectal cancer patients; (iii) arbhydrolsase
domain containing 14B (ABHD14B) in lung cancer patients; and (iv) the
ovarian cancer biomarker Progestagen associated endometrial protein
(PAEP). These examples demonstrate the possibility to perform stage
stratification simply by analyzing selected plasma protein levels, but
further analyses in additional cohorts are needed to demonstrate the
validity of the protein panel for cancer stage stratification.

Classification of early-stage cancer samples
One of the most important objectives in the field of cancer precision
medicine is to identify cancer at an early stage to provide successful
therapeutic intervention and to improve patient survival. To assess the
ability of the protein panel to distinguish early-stage cancer from
healthy individuals, we stratified the ROC analysis into the early (stage
1 and 2) and advanced (stage 3 and 4) stages for colorectal and lung
cancer, where we have the largest sample sizes for patients across
stages (Fig. S7 and Fig. 6f, g). In Fig. 6f (top), the cancer probability
score for lung cancer patients across stages is compared with the
corresponding score for healthy individuals. A clear difference in score
is shown for most samples and the AUC score (Fig. 6f, bottom) for
separating early-stage colorectal cancer patients from healthy indivi-
duals is 0.80. Similarly, for the early-stage lung cancer patients, a clear
difference in the estimated probabilities is observed between early-
stage cancer and healthy samples by the protein panel model (Fig. 6g,
top), and the corresponding AUC score (Fig. 6g, bottom) is 0.79. In
both cases, there is no significant difference between the model per-
formance on early and advanced stage cancer patients. This highlights
the potential of the selected biomarker panel to identify early-stage
colorectal and lung cancer patients, althoughmore in depth analysis in
independent cohorts is warranted.
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Discussion
Here,wedescribe a strategy basedonnext-generationplasmaprofiling
to explore the cancer proteome signatures by comprehensively
exploring the protein levels in patients representing most major can-
cer types. The study describes and compares the plasma proteome
across allmajor cancers using amultiplex assayplatform.Theplatform
allows thousands of proteins to be quantitatively analyzed using only a
few microliters of blood opening up new opportunities for Precision
Cancer Medicine. The plasma levels of each individual protein have
been determined for more than 1400 cancer patients representing 12

different cancer types, and the results for the individual protein targets
are presented in the open access Human Disease Blood Atlas
(v22.proteinatlas.org/humanproteome/disease).

We have used the data to identify a set of proteins associatedwith
each of the cancers studied using machine learning. A classification
model based on a restricted set of 83 upregulated proteins was built
and the accuracy of the classification of pan-cancer samples was
evaluated in a separate test cohort. It is interesting to observe the
dramatic increase in classificationperformancewhenusing the protein
panel (n = 83) as compared to the use of only the top protein marker
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for each cancer. This demonstrates the added advantage of using a
panel of blood proteins, as exemplified by patients with breast cancer
for which individual markers are relatively unselective, but the classi-
fication model using multiple proteins gave a potentially much more
accurate classification.

The panel allowed the stratification of plasma samples frommost
cancer types with high sensitivity and specificity and it was also able to
detect patients with early disease, as exemplified by early-stage
patients in lung and colorectal cancers. However, in this context it is
important to point out that the test cohorts used for the various cancer
validations were relatively small sized and additional validation
cohorts are needed to confirm the validity of each protein in the
classification model. For example, in two earlier studies of blood from
glioma patients24,25, only a few upregulated proteins were found and
none of these were significantly upregulated here. This demonstrates
the importance of several independent studies before establishing a
pan-cancer protein panel. The performance of the classificationmodel
and the utility of the protein panel need to be validated in independent
cohorts before consideration for clinical use. Of particular importance
is validation in a large background of non-diseased individuals to
establish the breadth of false positives. It is also desirable to have the
results validated by independent technical platforms, such as
sandwich26, mass spectrometry27, or Somascan12 assays.

The proteins used in the classificationmodels include well-known
markers for some of the cancers, but also proteins with, to our
knowledge, no previous connection to cancer. It is noteworthy that the
cancer-specific elevation of the panel proteins in blood plasma could
reflect several underlying causes, such as an increase of leakage or
secretion from the tumor or surrounding tissue itself, or due to the
bodily response to the tumor. However, a more in-depth analysis is
needed to explain the causal relationshipbetween the proteins and the
respective cancer types.

As mentioned above, it is noteworthy that individual variation of
protein plasma levels in both healthy and disease states calls for vali-
dationof potential biomarkers using an independent assay platform as
well as using independentpatient cohorts. Sinceevenahighly selective
assay used in a population screening still could generate a large
number of falsepositives,whenmillions of individuals are screened for
presence of cancer, it is particularly important to rule out false posi-
tives, which could cause considerable and unnecessary stress for the
individual. It is thus important for any screening procedure to be fol-
lowed up by independent validation, such asmammography for breast
cancer, blood in feces and/or colon spectroscopy for colorectal can-
cer, radiological examination, and/or tissue-based analysis of biopsies
for many other cancers. This makes it possible to combine initial and
broad population screening with less cost-effective assay platforms to
establish the diagnosis of patients with cancer.

It is of course interesting to expand the analysis presented here to
add other frequent and important cancers to the pan-cancer strategy,
such as liver, kidney, and pancreatic cancers. Similarly, it is also valu-
able to compare the cancer profiles reported herewith plasma profiles
from patients having other diseases. Our aim in the near future is to be
able to report such studies as part of the open access Human Disease
Blood Atlas resource for patients in the field of cardiovascular, auto-
immune, neurological, and infectious disease, among others. It is also
interesting to addmore protein targets to the analysis and such larger
panels are now available for exploration by both the PEA13 technology,
which currently can analyze 3000 targets, and the Somascan
platform12, including 7000 targets.

In summary, we describe a strategy for exploration of protein
profiles in blood with the ultimate objective to allow simultaneous
identification of cancers using few microliters of blood. Since the
analytical platform used here can be combined with simple sample
collection formats such as dried blood spots, cost-effective pan-cancer
population screening can be foreseen in which a panel of proteins are

used to identify multiple cancer types in a single assay. Such popula-
tion screenings could be organized to allow the discovery of cancers
early and thus help clinicians to start treatment of cancer patients at
earlier stages. It is our hope that the data in the open access Human
Blood Disease database will be a valuable resource for such future
efforts in the field of Cancer Precision Medicine.

Methods
The research complies with all relevant ethical regulations. The pan-
cancer study was approved by the Swedish Ethical Review Authority
(EPMdnr 2019-00222). The researchwas in linewith donor consents in
U-CAN (28631533, EPN Uppsala 2010-198 with amendments), and all
participants provided written informed consent. TheWellness healthy
cohort study was approved by the Ethical Review Board of Goteborg,
Sweden (registration number 407-15), and all participants provided
written informed consent. The study protocol conforms to the ethical
guidelines of the 1975 Declaration of Helsinki.

The pan-cancer study cohort
Plasma samples from 1477 cancer patients were obtained from the
U-CAN biobank which collects samples from consenting patients
diagnosed at the Akademiska hospital in Uppsala as part of the clinical
routine and with a high degree of standardization15. Plasma samples
were obtained from treatment-naïve patients taken around the time of
their diagnosis. Plasma was prepared from whole blood by cen-
trifugation at 2.400 × g for seven minutes at room temperature, after
which the plasma was aliquoted into several 220 µl vials and immedi-
ately frozen for long-term storage at −80 °C. Exclusion criteria inclu-
ded any concurrent or previous cancer within the last five years, and
arm-to-freezer time exceeding 360min. Diagnosis, stage, age, sex and
other variables were obtained from the U-CAN database and the
patient’s clinical records.

The Wellness healthy cohort
Plasma samples from healthy individuals (39 males and 35 females)
were selected from the first sampling time point of the Swedish Sci-
LifeLab SCAPIS Wellness Profiling (S3WP) study as described
previously22,23. The selection process aimed to include patients with
the most complete data available for all sampling time points across
multiple datasets. The S3WP program includes longitudinal samples
from 101 healthy individuals aged 50–64, recruited from the pro-
spective observational Swedish CArdioPulmonary bioImage Study
(SCAPIS) sampled at six different time points during a 2-year period.

Measurement of protein levels
The protein levels of all 1477 cancer samplesweremeasured inplasma
using the Olink Explore PEA technology13, which uses antibody-
binding capabilities to detect the levels of 1463 targets in plasma
coupled with next-generation sequencing (NGS) readout. The Well-
ness healthy cohort had previously been analyzed in theOlink Explore
as described in Zhong et al.14 and 16 samples from this study were
included in the cancer study to allow for bridging between the results
for the two cohorts. The Olink Explore 1536 platform includes four
different panels: the Olink Explore 384 Cardiometabolic Reagent Kit
(Panel lot number: B04413, Product number: 97700/97300), theOlink
Explore 384 Inflammation Reagent Kit (Panel lot number: B04411,
Product number: 97500/97100)), the Olink Explore 384 Oncology
Reagent Kit (Panel lot number: B04412, Product number: 97600/
97200)), and the Olink Explore 384 Neurology Reagent Kit (Panel lot
number: B04414, Product number: 97800/97400). A total of 1472
proteins were targeted using specific antibodies, including 1463
unique proteins as well as controls. Each antibody was conjugated
separately with two complementary probes, and distributed in four
separate 384-plex panels, focused on the four disease areas: cardio-
vascular, inflammation, neurology, and oncology. In brief, the PEA
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workflow started with an overnight incubation to allow the con-
jugated antibodies to bind to the corresponding proteins in the
samples. The incubation was followed with an extension and pre-
amplification step when the hybridization and extension of com-
plementary probes takes pace. The extended DNAwas then amplified
by PCR and further indexed to allow the preparation of libraries,
which were then sequenced using Illumina’s NovaSeq platform. The
counts obtained from the sequencing run were subjected to a quality
control and normalization procedure. Here, internal controls intro-
duced at different steps were used to reduce intra-assay variability.
These include an incubation control consisting of a non-human anti-
gen measured with the same technology, an extension control con-
sisting of an antibody conjugated to a unique pair of probes which are
in proximity and is expected to produce a positive signal, and a
control in the amplification step consisting of a double-stranded DNA
sequence which is expected to produce a positive signal independent
of the amplification step. Additionally, external controls such as
negative control (buffer sample) and plate controls (pool of plasma)
were used to establish a limit of detection (LOD) and adjust levels
between plates, respectively. Finally, two known samples acted as
sample controls to calculate the precision of themeasurements. After
quality control and normalization, the data was provided in the rela-
tive protein quantification unit Normalized Protein eXpression (NPX)
unit, which is on a log2 scale. The NPX score is calculated based on
matched counts from the sequencing data and a high NPX value can
be interpreted as a highprotein level. Allmeasurements that failed the
internal quality control and thus reported with a warning were
excluded from the dataset. Three of the protein assays (IL6, CXCL8,
and TNF) were included in all four panels for quality assurance pur-
poses and were used as technical controls to investigate the quality of
the samples using the interpanel correlation between all NPX values
above the give limit of detection range (LOD)13. In addition, the
coefficient of variation (CV) of each assaywas calculated as ameasure
of the technical variance within a plate (IntraCV) and across several
plates (InterCV), based on the pooled plasma sample run in duplicate
on each plate in the Olink Explore setup, following the procedure as
presented in Wik et al.13.

Differential expression analysis
Thedifferential protein expressionwas assessedusing a two-sided t-test
coupled with Benjamini-Hochberg multiple hypothesis correction28,
with a significance threshold of 0.05 for adjusted p-values. The adjusted
p-values and difference in average expression per group were sum-
marized in volcano plots for each of the analyzed cancers. Enrichment
analysis of upregulated protein sets were performed using the cluster-
Profiler package (version 3.18.1)29. The enricher() function in cluster-
Profiler was used to perform overrepresentation analysis against the
biological annotations from Gene Ontology (GO) biological processes
(BP)30, with subsequent p-value adjustment using the Benjamini-
Hochberg method28 and using adjusted p-value <0.05 as threshold for
significance.

Disease classification models
Classification models were built in three different settings: (1) to clas-
sify patients with one cancer from patients with other cancers, (2) to
classify all cancers simultaneously, and (3) to classify patients with a
specific cancer from healthy samples. All models were built using the
caret R package (v 6.0.90)31.

First, the cancer and wellness data were split in 70% for training
purposes and 30% for testing purposes using the createDataParti-
tion() function in caret, generating a training and testing pool of
samples. For all models described, the test and train sets were com-
posed of a subset of the training and testing pool sets, to avoid data
leakage32,33. In the first setting, the training set for the classification of
a specific cancer was composed of all samples from that cancer in the

training pool and a balanced equally sized subset of samples from all
other cancers acting as controls. In the samemanner, the test set was
composed of all samples from that cancer in the testing pool and
matching number of controls representing all other cancers. For
cancers consisting of male or female samples exclusively, only sam-
ples from the same sex were used as controls. In the multi-
classification setting, all cancer samples in the training and testing
pools, respectively, were combined into two large set of samples used
for training and testing. Finally, when classifying patients from one
cancer against the healthy cohort, all samples from that cancer and
healthy patients were used, with samples in the training pool being
used for training the model and samples in the testing pool being
used for testing. Again, only male or female samples were used as
control for male and female-specific cancers, respectively.

Before the model training, the data with missing values due to
failed quality control was imputed using the preProcess() function in
caret with the “knnImpute” method. Batch correction using the
removeBatchEffect() function in the limma package (version 3.46.0)34

was performed to correct for potential batch effects between the
cancer and healthy samples. The cancer prediction models were built
on the selected training sets using the function train() in caret, and
glmnet was used as the classification algorithm16. A 5-fold cross-vali-
dation scheme and built-in parameter tuning were applied to the
models. The contribution of each protein to the model was retrieved
using the varImp() function in the caret package. When indicated, the
data used as input to the model was restricted to a subset of proteins,
which was guided by the feature importance ranking obtained when
training the model using all proteins and thus based solely on
training data.

The predict() function in caret was used to estimate the class
probabilities for the samples in the test set, which were not part of the
training of any of the models and allowed an unbiased estimation of
model performance. ROC analyses were performed to assess the sen-
sitivity and specificity of the classification, summarized as AUC scores.
The pROC R package (v 1.18.0) was used for binary classifications and
multiROC (v 1.1.1) was used for multiclass classification. Statistical
significance for differences in AUC were calculated using the DeLong
test35 implementation in the pROCpackage, using p-value < 0.05 as the
threshold for significance. Additionally, sensitivity, specificity, positive
predictive value (PPV), negative predictive value (NPV), precision,
recall, and F1 scores were calculated. For the binary classifications,
these metrics were based on a probability threshold estimated using
the coords() function in pROC with the Youden index18.

Data visualization
Data visualization was performed in R (version 4.0.3)36, using the
ggplot2 (version 3.3.5)37, ggbeeswarm (version 0.6.0)38, ggpubr (ver-
sion 0.5.0)39, ggraph (version 2.0.5)40, ggrepel (version 0.9.1)41, ggrid-
ges (version 0.5.3)42, ggplotify (version 0.1.0)43, igraph (version 1.2.6)44,
pheatmap (version 1.0.12)45, patchwork (version 1.1.1)46, tidygraph
(version 1.2.0)47, and UpSetR (version 1.4.0)48 packages. For the heat-
map visualization, data was rescaled to a 0–1 scale and hierarchical
clustering was performed using the “ward.D2” method. The limma R
package (version 3.46.0)34wasused to correct for batch differences for
the comparison between the U-CAN cancer cohorts and the Wellness
healthy cohorts. The figures were assembled in Affinity designer
(version 1.10.0.1127).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The normalized U-CAN proteomics data generated in this study have
been deposited in the BioStudies database under accession code
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S-BSST935, as well as on the Human Protein Atlas data publication
page [https://www.proteinatlas.org/about/publicationdata]. All pro-
teins are also visualized on the individual protein summary pages of
the Human Disease Blood Atlas. For the Wellness healthy cohort, the
Olink Explore participant-level datasets have been deposited with the
Swedish National Data Service [https://snd.gu.se/sv/catalogue/study/
preview/88efa94d-39b3-4a50-8b3b-87b1abedefd4], and the data have
been previously published14. Due to patient consent and con-
fidentiality agreements, the datasets can be made available only for
validation purposes by contacting snd@snd.gu.se. Data access will be
evaluated according to Swedish legislation. Data access for research-
related questions in the S3WP program can be made available by
contacting the corresponding author. Source data are provided with
this paper.

Code availability
All code necessary for the data analysis and visualization is available at
https://github.com/buenoalvezm/Pan-cancer-profiling49.
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