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ABSTRACT

Snow in the mountains is essential for the water cycle in cold regions. The complexity of the snow processes in such an environment makes it

challenging for accurate snow and runoff predictions. Various snow modelling approaches have been developed, especially to improve snow

predictions. In this study, we compared the ability to improve runoff predictions in the Överuman Catchment, Northern Sweden, using differ-

ent parametric representations of snow distribution. They included a temperature-based method, a snowfall distribution (SF) function based

on wind characteristics and a snow depletion curve (DC). Moreover, we assessed the benefit of using distributed snow observations in

addition to runoff in the hydrological model calibration. We found that models with the SF function based on wind characteristics better pre-

dicted the snow water equivalent (SWE) close to the peak of accumulation than models without this function. For runoff predictions, models

with the SF function and the DC showed good performances (median Nash–Sutcliffe efficiency equal to 0.71). Despite differences among the

calibration criteria for the different snow process representations, snow observations in model calibration added values for SWE and runoff

predictions.
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HIGHLIGHTS

• Models with a snow distribution based on wind and topography in addition to precipitation and temperature improved snow predictions.

• Models with a snow distribution based on wind and topography could use snow information and perform similarly to models with a

depletion curve for runoff.

• The robustness of model calibration increased by including spatially distributed snow observations in addition to runoff data.

1. INTRODUCTION

Snow is a key component of the water cycle in cold regions. Snow, accumulated in the mountains, stores large amounts of
winter precipitation that is reallocated in time to spring and summer runoff, influencing streamflow variability in the down-
stream regions. The knowledge of the amount of winter snow, snowmelt timing and runoff is essential for the sustainable use
of this resource for human consumption, agriculture and hydropower (Viviroli et al. 2011; Sturm et al. 2017), ecological
services (Wipf & Rixen 2010; Boelman et al. 2019) and flood control.

Accurate predictions of snow in this resource are challenging because processes at different scales distribute this resource
unevenly (Clark et al. 2011). Orographic effects on precipitation, wind and vegetation induce snow accumulation in topo-

graphic depressions and erosion in wind-swept areas (Liston & Sturm 1998; Winstral et al. 2002). Spatially variable air
temperature and exposure to solar radiation control the snow energy budget and influence snowmelt patterns and runoff
dynamics (DeBeer & Pomeroy 2010; Grünewald et al. 2010). Depending on the modelling purpose and data availability,

snow spatial distribution in mountain catchments has been represented in different ways. Snowpack energy balance
models complemented with snow transport algorithms were used to explicitly simulate all physical processes, including
the effect of wind redistribution on snow depth patterns (Lehning et al. 2006; Liston & Elder 2006). These models can
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reproduce snow distribution at relatively very fine (,100 m) spatial scales (Lehning et al. 2008; Mott et al. 2010; Marsh et al.
2020). However, they require spatially detailed meteorological (e.g., air temperature, wind and solar radiation) and snow
observations, which are difficult to obtain and scarce in the mountains. A way to model the snow spatial distribution
using only precipitation and air temperature consisted of distributing snowfall or rainfall and melt rates as a function of

elevation, i.e., with the temperature-index model. Given its simplicity, this approach was found particularly suitable to be inte-
grated into models for runoff predictions with snow processes represented at the scale of landscape units by lumping similar
land uses, soils and elevations (Lindström et al. 1997; Viviroli et al. 2009; Seibert & Vis 2012). Using a simple model struc-
ture, Girons Lopez et al. (2020) evaluated the effect of modifying different temperature-index models, discovering that few

modifications were most valuable.
Based on snow depth or snow water equivalent (SWE) observations, different studies have explored the link and the predic-

tive power of topographic characteristics (e.g., elevation, slope, aspect and curvature) alone and with wind data to snow spatial

distribution (Winstral et al. 2002, 2013; Grünewald et al. 2013; Helbig et al. 2015; Skaugen & Melvold 2019). Topographic
characteristics are, in fact, readily extractable from digital elevation models. The combination of different topography-related
factors was meant to account for the integrated effect of snow accumulation and melt processes on snow spatial distribution.

The predictive power of the topography-related factors was found to increase with the spatial aggregation of the snow obser-
vations (Grünewald et al. 2013; Helbig et al. 2015). When applied at different alpine sites, they were found to be site-specific
and dependent on the spatial resolution of snow data. Studies on the relation between snow amount and topography-related

factors mainly provided information on snow spatial variability at the peak of the accumulation but did not evaluate the
results for runoff predictions.

Next to the spatial distribution of snow amount, snow cover variability was also explored and used to model the effect of
uneven snow spatial distribution on melt dynamics (Luce et al. 1998; Luce & Tarboton 2004; Pomeroy et al. 2004). Snow
cover depletion curves were found suitable to implicitly model snow processes by linking the temporal evolution of SWE
to the snow-covered area on larger model units, e.g., sub-kilometre, than fine grid (Skaugen & Randen 2013; Frey &
Holzmann 2015). The shapes of SWE distributions for such relations were assumed a priori and consisted, for example, of

two-parameter log-normal or gamma distributions (Skaugen & Randen 2013; Frey & Holzmann 2015). In such approaches,
the SWE dynamic was linked to precipitation forcing. The distribution parameters were estimated through model calibration
and validation on runoff and fractional snow cover data, respectively.

In addition to the different model designs, the key point is, in fact, the availability of data to estimate or validate snow model
parameters. Most studies used runoff and satellite data to estimate these parameters through calibration and to validate the
evolution in time of the snow-covered area (Freudiger et al. 2017). Although spatially distributed, satellite snow cover data do
not provide quantitative information about snow amount, while runoff provides integrated information on all catchment

hydrological processes. Only a few studies used SWE in addition to runoff observations for parameter estimations (Whitaker
et al. 2003; Girons Lopez et al. 2020; Nemri & Kinnard 2020). However, these studies mainly used SWE to calibrate one
snow modelling approach, i.e., the snow routines based on temperature-index models.

Attempts to model snow redistribution processes for a more realistic representation of snow in mountainous terrain for
runoff predictions are still needed, as noted by Freudiger et al. (2017) and Frey & Holzmann (2015).

In line with the need to improve the representation of the snow distribution in mountain catchments for runoff predictions,

the aim of this paper is two-fold. On one hand, we investigate the impact of different snow model structures on SWE and
runoff predictions. As a novel component, a snowfall distribution (SF) function based on wind shelter factors and wind direc-
tion data was implemented in the semi-distributed hydrological model HYPE (hydrological predictions for the environment,

Lindström et al. 2010). On the other hand, assess the value of using distributed snow observations in addition to runoff and
non-distributed snow observations in hydrological model calibration using snow survey observations and runoff observations
from the Lake Överuman Catchment, Northern Sweden.

2. STUDY SITE

TheÖverumanCatchment is located in the north-west part of Sweden at the border withNorway and is the headwater of the River

Umeälven,whichdrains into theBothnianBay (Figure 1). TheÖverumanCatchment extendsover anareaof 652 km2with its outlet
through the Överuman Lake (85 km2), used as a hydropower reservoir. Elevation ranges between 524 and 1,575 m above sea level
with an average elevationof 834 m. The catchment areamostly consists of bare rock,moss, heathers and shrubs (56%),while forests
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cover about 31%of the lower areas along the lake. Sparse birch forests are at higher elevations and slightly denser birch forests are in

the lowest areas along the large lakes. The terrain varies from moderate to very steep in some areas.

3. DATA

3.1. Meteorological forcing and runoff data

Meteorological forcing and runoff data covered the periods 2016–2020. The meteorological forcing data consist of precipi-

tation, air temperature and fields of wind direction. Precipitation data were provided by a gridded product based on gauge
data, Precipitation Temperature Hydrologiska Byråns Vattenmodell (PTHBV) (Johansson & Chen 2003). The PTHBV pro-
duct is available at a spatial resolution of 4� 4 km2 and a daily time resolution. Hourly air temperature and wind direction

data were provided by the MESAN meteorological analysis of the AROME meteorological model and observations (Hägg-
mark et al. 2000). The spatial resolution of air temperature and wind direction data is 2.5� 2.5 km2. They were aggregated
to a daily time scale, the same temporal resolution of precipitation data. Precipitation data were resampled to the same air

temperature and wind direction data spatial resolution. Both products are currently used by the Swedish Meteorological
and Hydrological Institute (SMHI 2022).

The daily average runoff at the catchment outlet is measured as the residual between reservoir storage change and reservoir
outflow. These data were provided by the water regulation company, Vattenregleringsföretagen AB.

3.2. Snow data

Snow surveys were performed in the Överuman Catchment close to the snow accumulation peak in the years 2017–2020
along survey lines distributed in the catchment area (Figure 1). Snow depth measurements were acquired along the survey

Figure 1 | Map of the Överuman Catchment. Catchment boundary is shown with a thick grey line and represents the hydrological model unit
in the lumped model setup. Square grids (2.5� 2.5 km2) in light grey represent the hydrological model units in the gridded model setup. The
snow survey lines (Ö1–Ö8) are represented by thick black lines.
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lines using a ground penetrating radar (GPR) system (Sensor & Software, Noggin Plus with a 500 MHz antenna) connected

to a global positioning system (Trimble) pulled by a snowmobile. SWE was obtained by combining the two-way travel time
(TWT) of the radar signal, between the snow surface and the ground, with point density measurements. The latter were taken
approximately every kilometre along the survey lines (Marchand 2003). The final spatial resolution between SWE measure-

ments was about 1 m distance. SWE estimates were aggregated to the spatial resolution of 25 m distance and used for model
calibration and validation.

3.3. Topographic and vegetation data

A digital elevation model (DEM) with a resolution of 25� 25 m was obtained by bilinear resampling of a 32� 32 m DEM
provided by ArcticDEM (Porter et al. 2018). The digital elevation model was used to extract topographic characteristics of

the catchment (i.e., elevation, aspect) and to calculate the wind shelter factor (Winstral et al. 2002). Elevation and aspect
were used to discretize the catchment landscape in classes of the model domain. The wind shelter factor was used to
model the snow spatial variability induced by wind transport processes in the catchment (Section 4.1). Land-use character-

istics were derived from the European Space Agency (ESA) land cover climate change initiative data aggregated into surface
water, forest, non-forest, bare soil and glacier classes.

4. METHODS

4.1. HYPE model setup

This study used the semi-distributed hydrological model HYPE (Lindström et al. 2010) to simulate SWE and runoff in four

hydrological years (2016–2020). The model consists of several subroutines where the different hydrological processes are
described. The landscape can be divided into different units. Each is further divided into classes representing different soil
and land use properties. Model parameters link landscape characteristics to the physical processes through the model par-

ameters. Two different model spatial configurations were considered, lumped and gridded (Figure 1). In the lumped
configuration, the Överuman Catchment consisted of one model unit and meteorological data were aggregated at the catch-
ment scale. In the gridded configuration, the catchment was divided into 2.5� 2.5 km2 units preserving the spatial variability

of meteorological forcing at that spatial scale. Each unit was further divided into three elevation zones, four aspect zones
(north, east, south and west facing slopes), five land use classes (water, forest, non-forest, bare soil and glacier) and one
soil class. In general, in the HYPE model, hydrological processes in the classes are simulated independently within each
model unit, except for the SF model introduced in this study, which will be described in more detail in the next section.

Runoff from the land classes is aggregated into water classes representing river and lake networks in each unit. It is further
routed into the river classes in the next downstream model unit.

4.2. Snow processes in HYPE

In the HYPE model, four different snow models were considered: base, depletion curve (DC), snowfall distribution (SF) and

the SF with the DC (Table 1). In all of the model configurations, precipitation (P) is distributed between snowfall, Ps and rain-
fall, Pr, as a linear function of air temperature (T ) within a temperature interval:

Pr ¼ P � arain (1)

Ps ¼ P � (1� arain) (2)

arain ¼
0 T , ttpd� 1
1 T . ttpdþ 1

T � (ttpd� 1)
2

else

8>><
>>:

(3)

where arain is the proportion of rainfall and ttpd (°C) is the mid-point of the temperature interval with mixed rainfall/snowfall
precipitation (Table 2). For this study, the width of the temperature interval with mixed precipitation was fixed to 2 °C, but it

may also be changed using additional parameters that were not used here. The correction of air temperature as a function of
elevation will to some extent generate the variability of snowfall and rainfall fraction between the land surface classes of a
model unit depending on their elevation differences.
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For each model unit and land surface class, the snowfall is accumulated in a single snow layer, characterized by its SWE

(mm), (optionally) depth (cm) and density (kg m�3). Snow melt is calculated by a temperature-index model, with an air temp-
erature threshold, ttmp, optionally treated as a free parameter, but here fixed at 0 °C to initiate snow melt and release water for
soil infiltration. First, the potential amount of melting snow, pmelt, is calculated as proportional to the air temperature

through the parameter cmlt (°C mm day�1). The actual melt is then based on the available SWE, swe (mm):

pmelt ¼ cmlt � (T � ttmp) (4)

melt ¼ min( pmelt, swe) (5)

In this model version, snow is assumed to cover the entire land class, if present.
The model, including a snow DC to calculate the snow-covered area separately for each land class, is referred to as the DC

model (Table 1). The snow DC is used to scale the estimated snow melt and evaporation.

Table 1 | Model type and snow process representation

Model type Snow process representation in land classes

Base Snow accumulation: snowfall/rainfall partition by elevation-temperature changes
Snow melt: proportional to air temperature

Depletion curve (DC) Snow accumulation: snowfall/rainfall partition by elevation-temperature changes
Snow melt: proportional to air temperature and scaled by DC (snow-covered area –

SWE relation)

Snowfall distribution (SF) Snow accumulation: (1) snowfall/rainfall partition by elevation-temperature changes and
(2) SF function
Snow melt: proportional to air temperature

Snowfall distribution and depletion curve
(SFþDC)

Snow accumulation: (1) snowfall/rainfall partition by elevation-temperature changes and
(2) SF function
Snow melt: proportional to air temperature and scaled by DC (snow-covered area –

SWE relation)

Table 2 | Model parameters considered in the calibration strategy

Parameter Description Min–Max Unit

Process above ground

ttpd Snowfall/rainfall threshold [�2,0 4,0] °C

cevpcorr Correction factor for evaporation [�1,0 1,0] –

wsfscale Scaling factor for SF [0,01 0,1] –

sfdmax Maximum amount of SF [5,0 10,0] –

Land processes

cmlt
(forest, non-forest, bare soil)

Snow melt factor [2 5] °C mm day�1

wcep Effective porosity [0,01 0,2] –

srrcs
(forest, non-forest, bare soil)

Recession coefficient for surface runoff [0,001 0,5] day

rrcs1 Recession coefficient for uppermost soil layer [0,2 0,7] day�1

rrcs2 Recession coefficient for lowest soil layer [0,03 0,2] day�1

mper1 Maximum percolation capacity from soil layer 1 to soil layer 2 [10 100] mm day�1

mper2 Maximum percolation capacity from soil layer 2 to soil layer 3 [10 100] mm day�1
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In this case, the snow-covered area in each land class, fsc, is related to the SWE, swe, following a hyperbolic function:

fsc ¼ fscmax � tanh swe
10

(6)

where fscmax is the maximum value set equal to one. The snow-covered area is then used to scale the potential melt following:

pmelt ¼ cmlt � (T � ttmp) � fsc (7)

The effective melt is then calculated as in the base model.
In this study, an explicit SF function was introduced to represent the influence of local topography on the spatial variability

of snow.
The SF function based on the wind shelter factor (Winstral et al. 2002) was introduced. The wind shelter factor was calcu-

lated on a 25� 25 m2 resolution DEM for eight wind directions and five searching distances (from 150 up to 2,500 m). A
preliminary investigation of the predictive power of the wind shelter factor and the GPR-derived SWE data (Section 3.2)
at 25 m spatial resolution indicated a correlation between the two variables (Figure S1). To further investigate the type of

relationship between SWE data and wind shelter factor that could have been used to model the snow distribution, we derived
the ratio between the SWE in each GPR point and the mean SWE along the survey line. A log-linear function best represented
the relation between the snow spatial distribution and the wind shelter factor (Figure S2). This optimal searching distance of

300 m was chosen as a trade-off among the different analysed searching distances based on the correlation between GPR-
derived SWE and wind shelter factor for the eight wind directions (Figure S1). The wind shelter factors were then aggregated
on the land classes of the model.

Snowfall within a model land class was, thus, distributed by the wind shelter factor following the relation:

Ps class

Ps mean
¼ wN � 10(wsf scale�WSFclass) (8)

where Ps mean is the mean snowfall in the model unit at that time step and Ps class and WSFclass are the corrected snowfall and
wind shelter factors for the land class, respectively. The wsfscale is a scaling parameter and wN is a wind shelter weight cal-
culated separately so that the sum of the snowfall correction ratios within a model unit (N) adds up to one. The parameter
sfdmax is an upper limit to the SF ratio (Ps class/Ps mean). The model including the SF function is referred to as the SF model

(Table 1). We finally considered a model with the combination of the SF function and DC (SFþDC; Table 1).

4.3. Model calibration and validation

The model calibration was based on the generalized likelihood uncertainty estimation (GLUE) technique (Beven & Binley
1992) and a split-sample approach (Klemes 1986). The GLUE method was implemented as follows: a Monte Carlo sampling

from a parameter space was used to generate a prior distribution of model realizations (Beven & Freer 2001). Pseudo-like-
lihood transformations of performance criteria (goodness-of-fit between observations and predictions) were introduced
and used to obtain the posterior distributions, rescaling the prior distribution with the pseudo-likelihood values of each

model realization as weight. This rescaling was performed by resampling the prior distribution (with replacement) with
the estimated pseudo-likelihood values as a probability. The pseudo-likelihood transformations consisted of scaling perform-
ance criteria linearly between zero and one. For this purpose, a minimum and a maximum threshold were defined for each

performance criterion. In this way, a strict subjective decision of a behavioural cut-off value that excludes the model realiz-
ations below that threshold, as often done in the implementations of the GLUE methodology, is avoided. In addition, the
pseudo-likelihood transformations help to combine different performance criteria to rescale the prior distribution into the
posterior distribution of model realizations. Due to the limited snow data available, model calibration and validation can

be sensitive to a specific year. This limitation is overcome with the split-sample approach that divides the study period
into an equal number of years both for calibration and validation (cross-calibration/validation).

Around 10,000 simulations were performed with a Monte Carlo sampling from a feasible parameter space with

uniform distribution for both the lumped and gridded HYPE models. Model parameters and their ranges were defined
based on previous HYPE model applications in cold environments (Strömqvist et al. 2012; Gelfan et al. 2017), as reported
in Table 2.
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Multiple criteria were considered for model calibration and validation with two hydrological variables, SWE and runoff,

including the temporal and spatial information content of the observations: the Nash–Sutcliffe efficiency (q1, Nash &
Sutcliffe 1970), the volume error (Madsen 2000), calculated between computed and observed runoff (q2), the volume error
calculated between computed and observed catchment SWE mean (s1) and the Pearson correlation coefficient (Freedman

et al. 2007) calculated between the computed and observed SWE spatial frequency distributions (s2). The performance cri-
teria were transformed into pseudo-likelihood functions and linearly rescaled between zero and one using a chosen
minimum (xmin) and a maximum (xmax) threshold for each performance criterion (x):

fx ¼ x� xmin

xmax � xmin
where x ¼ q1, q2, s1, s2 (9)

The minimum and maximum thresholds were 0.5–1 for q1,+ 20% for q2 and s2 and above 0.5 for s2 performance criteria.

The different pseudo-likelihood functions were then combined to generate multi-likelihood functions with regard to model
performance criteria for runoff and SWE:

fq ¼ fq1 � fq2 (10)

fs ¼ fs1 � fs2 (11)

fqþs ¼ fq � fs : (12)

Posterior distributions were then generated by resampling model realizations (with replacement) with a probability given by
the likelihood estimated as described above.

The 4-year study period was divided into two equally long 2-year periods. Information from the two different periods was

combined to generate two separate final posterior distributions (one posterior distribution for calibration and one for
validation).

The correlation of the SWE distributions, s2 and the runoff Nash–Sutcliffe efficiency, q1, were then used to evaluate the
different models about catchment runoff and snow distribution for the different performance criteria.

4.4. Statistical analysis

The posterior distributions of the model’s performances in snow distribution (s2) and catchment runoff (q1) were tested for
significant differences. For each of the four considered snow models (base, DC, SF and SFþDC, Section 4.2), the non-para-
metric Kruskal–Wallis test was used to detect whether significant differences occurred among all the posterior distributions.

The post-hoc Dunn’s test (Dunn 1964) was then used to identify the distribution pairs that were significantly different at the
95% significance level.

This statistical analysis was performed for both lumped and gridded HYPE model configurations in cross-calibration and
cross-validation periods.

5. RESULTS

5.1. Model performance in terms of snow distribution

The results of the HYPE model performances in simulating SWE distributions differed among the snow models (Table 1) and
between model spatial configurations in cross-calibration (Figure 2). The base model’s performance with the lumped configur-

ation showed high variability depending on the criteria used in calibration (Figure 2(a)). The highest model performances
were found for the snow distribution criteria (s2). The performance of the DC model with the lumped configuration
showed similar results to the base model (Figure 2(a)). In contrast with the base and DC models, the performance of the
SF model showed low variability among the different criteria. The highest model performances were still found for

the snow distribution criterion (s2) alone and in combination with the runoff criteria (q). Similar results were found for
the model SFþDC. The base and DC models performed the worst among all the models with the lumped model configur-
ation. In contrast, the SF and the SFþDC performed best in simulating the SWE distribution (Figure 2(a)). This result was

confirmed when the snow distribution simulated by the four snow models was compared with the observations (Figure 3).
The SF and SFþDC models were able to better capture the observed snow distributions compared to the base and the
DC models in both calibration years 2018 and 2020. In both years, the snow distributions simulated by the base and DC
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models were skewed compared to the snow distribution simulated by the other two models and the observations. The peak of

the snow distribution was simulated by the base and DC models towards the highest SWE values compared to observations,
especially in the year 2020 (Figure 3, lower panel). This SWE overestimation did not occur in the observed snow distribution.

The results with the gridded model configuration were similar to those with the lumped model configuration (Figure 2(b)).

However, the performance of the SF and the SFþDC models showed a higher spread than in the lumped configuration
(Figures 2(a) and (b)). The best model performances were found when models were calibrated based on the snow distribution
(s2). The combination with the runoff criteria (q), in particular with Nash–Sutcliffe efficiency (q1), did not decrease the

model’s performance (Figure 2(b)).
Changes in model performances between cross-calibration and cross-validation are shown as relative percentages for the

four snow models (base, DC, SF, SFþDC) and model configurations (lumped and gridded) in Figure 4. Small relative per-

formance changes (,+ 2%) of the SF and SFþDC were found from cross-calibration to cross-validation in the lumped
and gridded configurations. This result indicated similar performance in snow distribution from cross-calibration to cross-vali-
dation. The performance changes of the base and the DC models were slightly bigger than those of the SF and SFþDC
models. The performance changes of the base and DC models with the calibration criteria varied more from cross-calibration

to cross-validation compared to the other two models. This result is more marked with the lumped (Figure 4(a)) than the
gridded model configuration (Figure 4(b)).

5.2. Model performance in terms of catchment runoff

Similar to the results of snow distributions, the HYPE model performances in simulating catchment runoff differed among
snow models (Figure 5).

However, this difference is less marked than the model performances in snow distribution (Figure 2). In contrast with the
results of snow distribution, similar model performances were found with both the lumped (Figure 5(a)) and gridded
(Figure 5(b)) configurations for a given snow model.

Model performances also differed with calibration criteria, although these differences are less marked than for snow dis-
tribution (Figures 2 and 5). The performance of the base model was high when the model was calibrated with the runoff
(q) and snow volume (s1) criteria, not with the snow distribution criteria (s2). The results of the DC model were similar to

Figure 2 | Boxplot of the model performances in terms of snow distribution (s2) for prior (prio) and posterior distributions with the different
calibration criteria (q1 to qþ s). Model performances are reported for the four snow models (base, DC, SF and SFþDC) for the HYPE lumped
(a) and gridded (b) model configurations. Numbers in each panel indicate distributions not significantly different models at the 95% level.
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the base model. The performance of the SF model varied less with the calibration criteria compared to the performances
of the base and the DC models. In particular, the model performance did not decrease with snow distribution observations
as for the other two models. The best performances of the SF were found when calibrated with snow and runoff (qþ s).
Similar results were found for the SFþDC model.

This result was confirmed when the runoff simulated by the four snow models was compared with the observations
(Figure 6). All models captured the observations, particularly the spring flood in both calibration years 2018 and 2020. How-

ever, the SF and SFþDC models were able to better capture the hydrograph recession curves compared to the base and the
DC models in June 2018 and August 2020, respectively. This ability is more evident in 2020, a year characterized by more
snow than in 2018 (Figure 3).

Changes in model performances between cross-calibration and cross-validation are shown as a relative percentage for the

different models and model configurations in Figure 7. Small relative changes (,+ 2%) in the SF and SFþDC model per-
formances were found in simulating catchment runoff from cross-calibration to cross-validation both in the lumped
(Figure 7(a)) and gridded configurations (Figure 7(b)).

The performance of the base and DC models with the lumped configuration slightly decreased in cross-validation com-
pared to cross-calibration (Figure 7(a)). This decrease in model performance occurred with calibration criteria based on
snow distribution observations (s2). Low performances were already found with the same criteria in cross-calibration

(Figure 5(a)).

6. DISCUSSION

When comparing models with different snow process representations, the best model performances in terms of snow distri-
bution were obtained with the explicit SF function (median among criteria equal to 0.72 in Figure 8(a)), compared to the other
models, e.g., base and DC (median among criteria equal to 0.57 in Figure 8(a)). This result means that the model with the SF

Figure 3 | Observed and simulated SWE distribution with the calibration criteria qþ s for the four snow models (base, DC, SF and SFþDC)
for the HYPE lumped configuration.
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function was able to better capture the snow distribution in the catchment close to the snow accumulation peak than the
models where snow distribution was only generated with precipitation partition with temperature elevation. In contrast

with the other two models, the SWE in a land class depends on the degree of exposure to wind direction through the
wind shelter factor in the models with the SF function. Simulated SWE can thus vary among different elevation classes
and within the same elevation class. Similar to previous studies that explored the predictive power of the wind shelter

factor at the peak of accumulation in mountain areas ( Schirmer et al. 2011; Grünewald et al. 2013), this factor could explain
part of the snow distribution at the catchment scale. More recently, the study by Skaugen & Melvold (2019) showed instead
that this factor was unfavourably compared with other terrain parameters, e.g., the squared slope, to explain the snow depth

Figure 4 | Relative percentage change of model performances in terms of snow distribution between cross-calibration and cross-validation
for prior (prio) and posterior distributions with the different calibration criteria (q1 to qþ s). Relative percentage changes are reported for the
four snow models (base, DC, SF and SFþDC) for the HYPE lumped (a) and gridded (b) model configurations.

Figure 5 | Boxplot of the model performance in terms of catchment runoff (q1) for prior (prio) and posterior distributions with the different
calibration criteria. Model performances are reported for the different snow models (base, DC, SF and SFþDC) and for the HYPE lumped (a)
and gridded (b) model configurations. Numbers in each panel indicate the distributions not significantly different at the 95% level.
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distribution at the peak of accumulation. In contrast with previous studies, the wind shelter factor in the SF function was not

fixed for a prevailing wind direction but calculated for all possible wind directions and aggregated on the land use classes
(Section 4.2). This dynamical integration had the advantage of considering the meteorological variability between snowfall
events within and across snow seasons.

The use of distributed meteorological forcing (gridded configuration) did not increase the performances of models based
only on precipitation partition with elevation, e.g., base and DC models (median among criteria equal to 0.60 in Figure 8(a)).
The performances of models with the SF function increased (median among criteria equal to 0.84 in Figure 8(a)). At the same

Figure 6 | Observed and simulated catchment runoff with the calibration criteria qþ s for the four snow models (base, DC, SF and SFþDC)
for the HYPE lumped configuration.

Figure 7 | Relative percentage changes of model performances in terms of catchment runoff between cross-calibration and cross-validation
for prior (prio) and posterior (q1 to qþ s) distributions in cross-calibration. Relative percentage changes are reported for the four snow models
(base, DC, SF and SFþDC) for the HYPE lumped (a) and gridded (b) configurations.
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time, the larger spread of the model performances found with the gridded (Figure 2(b)) compared to the lumped configuration
(Figure 2(a)) indicated higher model uncertainty. Since the model calibration with lumped and gridded configurations was
performed with the same approach, this uncertainty might result from the uncertainty in the gridded meteorological data.

This uncertainty is mainly related to the precipitation data that originate from a topography-driven spatial interpolation of
point gauge data relatively sparse in the model area (Johansson & Chen 2003). The distributed meteorological data provide
some additional information. However, the uncertainty in model forcing for single years or grid cells can lead to increased

model uncertainty, i.e., a large spread of the model performances. On the other hand, the assessment of model performance
change from cross-calibration to cross-validation indicated a more stable model performance with the gridded models
(Figure 4(b)) than in the lumped models (Figure 4(a)) – almost irrespective of snow model types or calibration strategies.
The models without SF function, i.e., base and DC, are the most unstable from calibration to validation among the different

criteria, especially for the lumped configuration (Figure 4(a)).
Regarding catchment runoff, high model performances (median among the criteria equal to 0.71 in Figure 8(b)) were found

for models with the SF function (SF and SFþDC models). The base and DC models showed similar performances (median

among the criteria equal to 0.71 in Figure 8(b)), except for the decreased performance for the snow distribution criteria (s2).
The models with the SF function (SF and SFþDC models) better captured both the runoff dynamics and the snow distri-
bution in the catchment compared to the others. In contrast with the model’s performances in snow distribution, the

gridded configuration did not improve the runoff predictions. However, the model performance is still more stable from cali-
bration to validation than in the lumped (Figure 7).

The analysis of the model performances thus suggests that, beyond spatial model configurations, models with the snowfall

function are more suitable to predict both SWE and runoff models than those without this function. This finding is in line with
the previous modelling attempts to improve snow volume estimations and thus snowmelt magnitude and timing by including
snow redistribution for runoff simulations in mountainous catchments (Frey & Holzmann 2015; Freudiger et al. 2017).

Figure 8 | Medians of the model performances in terms of snow distribution (a) and catchment runoff (b) for prior (prio) and posterior (q1 to
qþ s) distributions in cross-calibration. Performance indicators are reported for the four snow distribution models (base, DC, SF and SFþDC)
in the HYPE lumped (grey) and gridded (black) configurations.
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Similar to the previous studies (Girons Lopez et al. 2020; Nemri & Kinnard 2020) that used snow observations in model

calibration and showed an overall positive impact, in this study, model performances did not decrease in terms of runoff. In
addition, models with SF function proved to be more stable across calibration criteria for snow and runoff predictions and
able to include the information from distributed snow observations.

For operational applications where the objective is spring flood forecasting (e.g., for hydropower), an implicit way to
represent snow distribution, such as the DC, could also be adopted.

Investigating how to use the information from the distributed snow observations to improve SWE simulations with the DC,
understanding whether these results are site-specific, consistent across more snow seasons and how to transfer to other moun-

tainous areas are relevant to the research objectives of future work.

7. CONCLUSIONS

In this study, we used different approaches to represent the spatial distribution of snow in a hydrological model and investi-

gated their impact on SWE and runoff predictions. At the same time, we also investigated the impact of criteria such as snow
volume and spatial distribution, in addition to runoff only in model calibration. Models including an SF function based on
wind characteristics better predicted SWE distribution at the accumulation peak than models without.

For runoff predictions, models using the SF function and the DC showed good performances. In addition, the gridded
model configuration showed similar model performances to the lumped model. To predict SWE and runoff, models with
the SF function are more suitable than those without. Despite differences among the calibration criteria for the different
snow process representations, the inclusion of snow observations in model calibration provided added value for snow and

runoff predictions. As a general conclusion, the use of explicit representation of snow distribution, either by a spatially
gridded model configuration or by the explicit SF function, provided stable improvements of the runoff simulation compared
to the base model with a lumped configuration.
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