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A B S T R A C T   

When people use rule-based integration of abstracted cues to make multiple-cue judgments they tend to default 
to linear additive integration of the cues, which may interfere with efficient learning in non-additive tasks. We 
hypothesize that this effect becomes especially pronounced when cues are presented numerically rather than 
verbally, because numbers elicit expectations about a task with a simple numerical solution that can be 
appropriately addressed by linear and additive integration. This predicts that, relative to a verbal format, a 
numerical format should be advantageous for learning in additive tasks, but detrimental for learning in non- 
additive tasks. In two experiments, we find support for the hypothesis that a verbal format can improve 
learning in non-additive tasks. The division-of-labor between cognitive processes observed in previous research 
(Juslin et al., 2008), with cue abstraction in additive tasks and exemplar memory in non-additive tasks, was only 
present in conditions with numeric information and may therefore in part be driven by the use of numeric 
formats. This illustrates how surface characteristic of stimuli can elicit different priors about the nature of the 
variables and the generative model that produced the cues and the criterion. We fitted cue-abstraction and 
exemplar algorithms by PNP-modeling (Sundh et al., 2021). At the end of training both cue abstraction and 
exemplar memory processes primarily involved exact analytic processes marred by occasional error, rather than 
the noisy and approximate intuitive processes typically assumed in previous studies – specifically, cue abstrac
tion was primarily implemented by number crunching and exemplar memory by rote memorization.   

1. Introduction 

When learning the relations between variables in a new environ
ment, such as the functional relations between cues and a criterion and 
how the effect of multiple cues combine, people tend to assume linear 
relationships and additive integration of cues (e.g., Brehmer, 1974; 
Cooksey, 1996; Juslin, Nilsson, & Winman, 2009; Juslin, Nilsson, Win
man, & Lindskog, 2011). That is, if one beer is good, then ten beers 
should, at least, be much better (monotonicity), or perhaps even ten 
times better (proportional linearity), and if duck liver is tasty and ice 
cream is good, then duck liver with ice cream should be delicious 
(additivity). Interestingly, most research investigating performance and 
cognitive processes in multiple-cue judgment involve tasks with nu
merical cues and a numerical criterion (Brehmer, 1994; Cooksey, 1996; 
Karelaia & Hogarth, 2008), although some studies have used analogue 
stimuli (e.g., Albrecht, Hoffmann, Pleskac, Rieskamp, & von Helversen, 
2020; Hoffmann, von Helversen, & Rieskamp, 2019), or even non-metric 
cues (see e.g., Björkman, 1973; Castellan & Edgell, 1973; Edgell, 1983). 

In everyday decision-making however, we are faced with vast 
amounts of non-numeric information on which we base our judgments 
and decisions. To exemplify, if you have a cough and are pondering if you 
should go to work or not, you (probably) would not measure the intensity 
and latency of your coughs, but rather decide based on a verbal magni
tude estimation of the cough as “mild” or “severe”. At other times, 
quantification is not even possible, for example when making a judgment 
about how your first encounter with your partner’s parents will be. The 
cue-information you use could be information about how open minded or 
strict they are, probably described in terms of “very” or “not at all”. 

The purpose of this article is to investigate the potential format 
dependence of results in the multiple-cue judgment literature by 
examining how the cognitive processes and learning are affected by 
numeric vs. verbal magnitude formats of the cues and the criterion. Do 
different formats for presentation of the cues and the criterion elicit 
different expectations (or priors) in the participants about the nature of 
the variables and the underlying generative process in ways that 
determine the nature of the cognitive processes engaged? 
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1.1. Linearity and additivity in multiple-cue judgment 

We will refer to a multiple-cue judgment task as linear in Cue X1, if – 
when keeping other cues constant – a certain change in X1 always pro
duces the same change in the Criterion Y. We refer to a multiple-cue 
judgment task as additive with respect to cues X1 and X2, if the effect 
of a certain change in X1 on the Criterion Y is always the same regardless 
of the value of X2 (and vice versa). A task where all the cue-criterion 
relationships satisfy these conditions accordingly correspond to the 
standard-case of the “linear additive model”. 

Cognitive research indicates that by default people tend to expect 
linear relations between cues and criterion (e.g., Brehmer, 1974; Juslin 
et al., 2011; Kalish, Lewandowsky, & Kruschke, 2004; Karelaia & 
Hogarth, 2008). Linear relationships are more available in memory and 
more easily learned than more complex relationships such as U-shaped 
relations, which may only be learned with clear and unambiguous 
feedback (Brehmer, 1980; Brehmer, Kuylenstierna, & Liljergren, 1974). 
People, likewise, typically default to considering the additive effect of 
each cue in isolation, independently of the values of the other available 
cues (Brehmer, 1994; Juslin, Karlsson, & Olsson, 2008; Karlsson, Juslin, 
& Olsson, 2007; Olsson, Enkvist, & Juslin, 2006), although they do also 
have the ability to learn non-additive relations (e.g., Juslin et al., 2008; 
Mellers, 1980) and configural cue patterns (Castellan & Edgell, 1973; 
Edgell & Castellan, 1973). People accordingly seem to approach tasks 
with, at least implicit, assumptions of linearity and additivity. Only if the 
feedback unambiguously falsifies these default assumptions, are other 
relations considered. 

Linear, additive models are also known to be particularly robust and 
applicable, allowing good performance also in new and unknown en
vironments (Brehmer, 1974, 1994; Dawes & Corrigan, 1974; Hammond, 
1996; Karelaia & Hogarth, 2008). Therefore, from an adaptive and 
evolutionary perspective, linear additive cue integration is a plausible 
candidate for a default process, likely to be reinforced by everyday 
experience (Brehmer, 1974). 

Van Dooren, De Bock, Janssens, and Verschaffel (2008) further 
describe the emphasis on the linear model through mathematical edu
cation and elaborate on the characteristics of mathematical education, 
which is suggested to produce an over-application of linearity, a “linear 
imperative”, which is activated in mathematical tasks, and may impair 
estimation in non-linear tasks. Ebersbach, Van Dooren, Van den 
Noortgate, and Resing (2008), for example, show that children’s un
derstanding of exponential growth is hindered when they learn to count 
(a linear process), and over-apply this strategy. In addition, when pre
sented with mathematical problems individuals tend to neglect relevant 
real-life knowledge suggesting non-linearity and instead adopt linear 
integration strategies (see e.g., Verschaffel, De Corte, & Lasure, 1994) 
and individuals tend to integrate based on a linear model in mathe
matical settings due to reliance on mathematical habits and expectations 
invited by the task-content (see e.g., De Bock, Van Dooren, Janssens, & 
Verschaffel, 2002; De Bock, Van Dooren, Janssens, & Verschaffel, 2007; 
Dewolf, Van Dooren, & Verschaffel, 2011). Relatedly, linear properties 
are overused also in probabilistic reasoning in school mathematics (see 
Van Dooren, De Bock, Depaepe, Janssens, & Verschaffel, 2003). In sum: 
the default to linear additive cue integration may be supported by 
cognitive constraints, its pervasive robustness for predictions in real-life 
tasks, as well as by mathematical education and, especially when the 
task is in a numeric format. 

1.2. Cognitive processes in multiple-cue judgment 

Much research on multiple-cue judgment has modeled the cognitive 
process as an interplay between rule-based processes captured by cue 
abstraction models and the memory- and similarity-based processes 
captured by exemplar models (e.g., Hoffmann, von Helversen, & 

Rieskamp, 2016; Juslin, Olsson, & Olsson, 2003; Juslin et al., 2008; 
Pachur & Olsson, 2012; Trippas & Pachur, 2019). The cue abstraction 
model claims that people encode the cues independently, assess their 
individual importance for the judgment criterion, and by default inte
grate these beliefs by a linear and additive cue process. The exemplar 
model claims that people consider the criterion values of previously 
observed similar exemplars, which are weighted into judgment based on 
the (nonlinear) similarity functions. One empirical criterion for dis
tinguishing between the cue abstraction and the exemplar models is the 
ability to extrapolate the performance beyond the observed training 
range (DeLosh, Busemeyer, & McDaniel, 1997; Juslin et al., 2003). As 
illustrated in Fig. 2 in the Results section of Experiment 1, when par
ticipants rely on cue abstraction, and even if they train only on exem
plars with criterion values in the range 20 to 80, because they have 
induced the rule-based structure, they extrapolate beyond this training 
range (see Fig. 2B). By contrast, when participants rely only on the 
similarity to concrete training exemplars, they are unable to extrapolate 
beyond the observed training range, that is, they do not respond with 
values below 20 or above 80 (Fig. 2A). 

A large literature demonstrates that people shift between these two 
processes as a function of task properties (e.g., Hoffmann et al., 2016; 
Hoffmann, von Helversen, & Rieskamp, 2014; Juslin et al., 2003; Juslin 
et al., 2008; Karlsson et al., 2007; Olsson et al., 2006; Pachur & Olsson, 
2012; Platzer & Bröder, 2013; von Helversen & Rieskamp, 2009) and 
properties of the decision maker (e.g., Hoffmann et al., 2014; Little & 
McDaniel, 2015; von Helversen, Mata, & Olsson, 2010). In multiple-cue 
learning tasks, the initial default process often involves attempts at 
explicit “problem solving”, trying to abstract what cues are relevant for 
inferring the criterion and then to combine the cues according to a linear 
additive rule. As a backup strategy, to the extent that these attempts at 
cue abstraction prove futile, people resort to retrieving similar exem
plars (configurations of cue values) by direct use of memory processes 
(Juslin et al., 2008: Karlsson et al., 2007; Olsson et al., 2006; see Trippas 
& Pachur, 2019, for results qualifying this claim). 

In the present study, we explore how the relative support for these 
two models is affected by whether the tasks are presented in a numerical 
or verbal format. In the General Discussion, we return to an elaborate 
discussion of limits on identifiability of the processes and representa
tions in tasks like these, the scope of generalization, and how the results 
can be interpreted in models that assume blends of the two processes 
(Bröder, Gräf, & Kieslich, 2017). 

The described research on multiple-cue judgment explains the 
inclination to assume linear additive cue-criterion relations by claiming 
that cue abstraction processes are strongly constrained by working 
memory resources to primarily induce linear cue-criterion relations and 
additive inter-cue relations. For example, the default to infer linear re
lationships may, at least in part, be driven by that people often only 
consider two X,Y coordinates at a time in working memory, which 
naturally supports detection of the sign of a linear relationship, but 
provides little support for identifying nonlinear relations (Juslin et al., 
2008). Because of constraints on working memory capacity, people may 
have difficulty with interpreting and responding differently to the value 
of X1, depending on the value of other cues (e.g., X2), as required to 
capture non-additive inter-cue relations when sequentially attending to 
the cues (Juslin et al., 2008). The human preference for the “simplicity 
and elegance” of the linear model may thus in part also derive from very 
basic information processing constraints. 

1.3. Analytic or intuitive cognitive processes 

Based on the Precise-Not-Precise (PNP)-model (Sundh, Collsiöö, 
Millroth, & Juslin, 2021), we further distinguish between two different 
interpretations of cue abstraction and exemplar memory processes, 
respectively. The PNP model draws on a proposal by Brunswik (1956), 
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that analytic processes are typically precise but occasionally marred by 
large errors (a leptokurtic distribution) and that intuitive processes are 
approximate and ubiquitously perturbed by normally distributed noise.1 

With Analysis, the response distribution is concentrated at the deter
ministic execution of the algorithm (see the histograms in Fig. 4 under 
2.2.3 Cognitive modeling), while with Intuition the processes are always 
perturbed by a random noise that yields a normal distribution (the 
continuous function in Fig. 4). Good fit of a cue abstraction model may 
thus either imply explicit and analytical rule-based integration accord
ing to explicit formulae (i.e., crunching an explicit equation in working 
memory), or the intuitive additive weighting of separate rules for 
cue-criterion relations that is assumed in much of the multiple-cue 
judgment research in the Brunswikian tradition (Brehmer, 1994; Kar
elaia & Hogarth, 2008; Sundh et al., 2021). 

Likewise, the good fit of an exemplar-based memory model may 
either signify rote memorization of exemplars, or exemplar-based 
inference that involves similarity-based weighting of exemplars (i.e. 
the standard interpretation of good fit with the Generalized Context 
Model by Nosofsky, 2011; see Collsiöö, Sundh, & Juslin, 2023; Izy
dorczyk & Bröder, 2021). A response based on rote-memory, as when 
you recall the year of your birth, (almost) always gives the same correct 
result, leading to an extremely leptokurtic distribution. Similarity-based 
inferences from known exemplars, as when you estimate the price level 
of a new restaurant based on the price-levels of similar known restau
rants, is more likely to produce a variable output from time to time that 
is better described by a Gaussian distribution. As detailed in the Method 
section below, the distribution of judgment errors and PNP modeling 
(Sundh et al., 2021) allow us to distinguish between the analytic and 
intuitive applications of these two cognitive processes. Most previous 
research on multiple-cue judgment has made the implicit assumptions 
that the good fit of cue abstraction models mainly involves intuitive cue 
integration (rather than “explicit number crunching”), and likewise that 
the good fit of exemplar models mainly involves similarity-based 
weighting of exemplars (rather than rote memorization and the 
retrieval of individual exemplars). With the PNP-model, in this article 
we can now subject these assumptions about the processes to stringent 
empirical test. 

1.4. What are the effects of numeric formats on the task priors? 

Although there are important exceptions (e.g., pictorial cues in 
Albrecht et al., 2020; Hoffmann et al., 2019), it seems fair to conclude 
that most of the studies of multiple-cue judgment with metric cues have 
relied on a numerical format (Brehmer, 1994; Cooksey, 1996; Karelaia & 
Hogarth, 2008). The claim for the widespread use of linear additive cue 
integration may thus be over-stated or premature, given that many 
studies use a numeric format that in itself may elicit a “linear impera
tive” (De Bock et al., 2002; De Bock et al., 2007; Dewolf et al., 2011; Van 
Dooren et al., 2008; Verschaffel et al., 1994). A numeric format may 
affect the participants’ expectations (or “priors”) about the task in two 
different ways. First, the choice of numbers may elicit the expectation 
that the variables so represented have a metric and cardinal nature. 
Second, the numbers may elicit the expectation that the cues and cri
terion are governed by an underlying simple equation that can be 
induced (”cracked”) by intense efforts at problem solving. Both of these 
factors are likely to encourage linear additive cue integration, because – 
as we have seen – mathematical education supports linear thinking as a 
default rule that is applied whenever it is triggered by mathematical 
cues in the context (De Bock et al., 2002; De Bock et al., 2007; Dewolf 
et al., 2011; Van Dooren et al., 2008; Verschaffel et al., 1994). 

In order to investigate if a numeric format promotes increased 

reliance on linear additive rules in multiple-cue tasks, we need an 
alternative format to compare the numeric format to. In this article, we 
compare a numeric format with a verbal magnitude format. In addition 
to the research on mathematical education, there are several lines of 
research in Psychology that suggest differences between numeric and 
verbal formats. When people integrate verbal magnitude phrases, in 
comparison to numerical information, they rely more on interpreting the 
information and adapting their strategy to the context, rather than to use 
context-independent rules (Liu, Juanchich, Sirota, & Orbell, 2020a). 
This partially explains why numbers require more effort to process, as 
the correct interpretation of the contextual meaning of a numerical 
magnitude is not necessarily provided by the context (Childers & Vis
wanathan, 2000). 

Additionally, numeric measures are suggested to invite rule-based 
reasoning while verbal measures invite associative and intuitive 
thinking (Windschitl & Wells, 1996), and verbal information is recalled 
better than numerical information (Scammon, 1977). Furthermore, in
dividuals prefer to receive and communicate with verbal statements 
when information is unreliable or imprecise and with numerical state
ments when information is reliable and precise (see e.g., Budescu & 
Wallsten, 1987; Wallsten, Budescu, Zwick, & Kemp, 1993). This suggests 
that individuals infer suitable processing strategies from the format of 
the information. 

Schkade and Kleinmuntz (1994) show how numbers, relative to 
verbal magnitude information, resulted in more compensatory actions 
(e.g., trading off attributes) relative to non-compensatory actions (e.g., 
elimination of attributes or relying on a cut-off value) and more arith
metic and summary actions, where the latter constitute for example 
aggregating attribute values. Verbal formats lead to relatively more 
effort spent on acquisition of information, rather than integration, and 
increased alternative based search, that is reading all information for 
one alternative at a time rather than investigating individual cues over 
all alternatives (Schkade & Kleinmuntz, 1994; Stone & Schkade, 1991). 
These results again indicate increased tendency for linear integration 
(which is dependent on arithmetic and summary actions as well as focus 
on one cue at a time) when magnitudes are numeric rather than verbal, 
and a greater role for memory-based processes with verbal information 
(which are dependent on effort spend on acquisition of information 
related to an alternative). 

Windschitl and Wells (1996) suggest that while a numeric format 
should be advantageous in situation where rule-based reasoning is 
beneficial, verbal formats should be superior in environments where 
people need to apply strategies that are not rule-based (e.g., memory- 
based ones). Together this suggests that one could expect verbal 
magnitude formats to, in terms of the PNP-model, invite intuitive pro
cesses as the format invites associative processes and an expectation 
about inherent variability in the underlying processes. 

1.5. Purpose of the present study 

The predictions for the experiments were derived from two as
sumptions and a new hypothesis. The first assumption is that of a division 
of labor between cognitive processes (Juslin et al., 2008). People have 
difficulty with capturing non-additive cue criterion relations with their 
controlled rule-based thinking (cue abstraction). In tasks that require 
non-additive integration of several cue-criterion relations, they there
fore have to shift to exemplar-memory processes (Hoffmann et al., 2014, 
2016; Juslin et al., 2003; Juslin et al., 2008; Karlsson et al., 2007; Pachur 
& Olsson, 2012; Platzer & Bröder, 2013; von Helversen & Rieskamp, 
2009). 

The second assumption is that of a rule bias (Ashby & Maddox, 2005; 
Juslin et al., 2008): people are inclined to start the learning of a novel 
task in a “problem solving mode”. They initially try to induce the rules 
that connect the individual cues to the criterion (cue abstraction), 
turning to less explicit and more effortful learning strategies, like 
exemplar memory, only if the cue abstraction fails to allow satisfactory 

1 Note that this definition of analysis and intuition is different from the dual- 
systems definition (e.g., Evans, 2008; Evans & Stanovich, 2013) of intuition and 
analysis. 
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performance (or, alternatively, because the task becomes over-learned 
and potentially automatized). 

The new hypothesis is that words, in comparison to numbers, should 
decrease the rule bias, the initial inclination to attempt at explicit cue 
abstraction encouraging an immediate or faster transition to exemplar 
memory. Numbers will invite linear additive rules improving the 
learning in a linear-additive task, but delaying learning in a non-additive 
task, where the participants are required to switch to an exemplar- 
memory based strategy (Juslin et al., 2003; Juslin et al., 2008). 
Research on mathematical learning accordingly suggest over- 
application of linear rules when numbers are present (De Bock et al., 
2002; De Bock et al., 2007; Van Dooren et al., 2008; Verschaffel et al., 
1994) and that verbal information invites relatively more associative 
reasoning (e.g., Liu et al., 2020a; Liu, Juanchich, Sirota, & Orbell, 
2020b; Windschitl & Wells, 1996). 

The prediction therefore is that, relative to numbers, a verbal 
magnitude format should impede learning in an additive task (where cue 
abstraction is viable and efficient), but speed up learning in a non- 
additive task (where cue abstraction is difficult and a shift to exemplar 
memory is required). These assumptions also predict that at the end of 
training (in a test phase) regardless of the cue-criterion format most 
participants should rely on exemplar memory in a non-additive task, 
while many of the participants should use cue abstraction in an additive 
task, especially if they address the task with numbers that invite use of 
cue abstraction. By applying the PNP-model to the test phase data, we 
can empirically test if the cognitive processes reveal the hallmarks of 
analytic vs. intuitive cognitive processes and explore if the effects of a 
numerical format are mediated by a shift to analytic cognitive processes. 

2. Experiment 1: Verbal and Numerical Formats in Multiple-cue 
Judgment Tasks 

2.1. Method 

2.1.1. Participants 
Eighty participants2 (63 females, 16 males and 1 non-binary indi

vidual) ranging in age from 18 to 75 (M = 26.33, SD = 8.56) were 
recruited through public advertisement at various places at Uppsala 
University. Compensation was awarded in the form of a cinema voucher 
or (for students at the Department of Psychology) course credit. 

2.1.2. Design 
The experiment was a 2 × 2 between-subjects factorial design with 

format (verbal or numerical magnitude) and task (additive or non- 
additive cue-criterion relation) as the independent between-subject 
variables. The data from the training phase of the experiment was 
analyzed as a 2(format) x 2(task) x 10(training blocks) mixed factorial 
design with repeated measurement across training blocks. The depen
dent measure was the participants’ judgments of the criterion and the 
accuracy of the judgments measured by the root mean square error 
(RMSE) between the judgment and the criterion. The responses and 
criteria in the verbal magnitude format condition were converted to 
their numerical counterparts in order to facilitate parametric testing and 
comparison across conditions. 

2.1.3. Material 
The participant’s task was to judge an individual’s blood concen

tration of the fictitious hormone Caldionine based on information about 
the amount of the two other fictitious hormones, Progladine and Ama
lydine, in the individual’s urine. Both Progladine and Amalydine could 
take five values (1, 2, 3, 4, 5 or very little, a little, average, a lot, very 
much depending on the format condition).3 A 5 × 5 factorial combi
nation produced 25 items. 

The criterion, Caldionine, could take nine values (10, 20, 30, 40, 50, 
60, 70, 80, 90 or extremely low, very low, low, somewhat low, normal, 
somewhat high, high, very high, extremely high depending on condi
tion). Criterion values were created from the numerical cue values, and 
then mapped to their verbal counterpart for the verbal magnitude 
format conditions. The computer program used for stimulus presenta
tion by default saved response times. The participants answered on a 
fixed scale (see Fig. 1 above for an illustration). A full list of the nu
merical items for the additive and non-additive conditions are presented 
in Appendix A. 

The normative additive and non-additive functions for inferring the 
criterion C (called Caldionine) from the cues P (Progladine) and A 
(Amalydine), respectively, were: 

C(additive) = 50+ 10P − 10A (1)  

C(non − additive) = 50+ 10(P − 3)(A − 3) (2)  

2.1.4. Procedure 
The participants conducted the experiment in separate computer 

booths at the Department of Psychology at Uppsala University under 

Fig. 1. Task Appearance for the Numeric Format and the Verbal Magnitude Format. 
Note: The cue values are presented in the boxes with the headers “Progladine” and “Amalydine”. Below this it reads “Your judgment of Caldionine” and then follows 
the 9-step response scale. 

2 Note that six participants were removed as outliers for the analysis of 
performance during the test phase and five participants were removed as out
liers for the analysis of performance during the training phase due to deviating 
>1.5 interquartile ranges from Q3 for RMSE (i.e. for having extremely high 
RMSE). 

3 The experiment was carried out in Swedish and verbal cue- and criterion 
values were presented in Swedish. 
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scrutiny of an experiment leader. They were randomly assigned to one of 
the between-subject cells. The experiment consisted of a training phase 
and a test phase. The training phase included 23 of the 25 items, items 
with extreme values (10 and 90) were either all excluded (additive task) 
or some excluded (non-additive task) in order to investigate the use of 
exemplar-based memory.4 The participants conducted 10 training 
blocks, each with 23 items presented in an individually randomized 
order, resulting in 230 training trials per participant. The test phase 
consisted of two blocks with all 25 items, randomized for each block. 
Trials were presented one at a time and the participants recorded their 
estimate for each trial before moving on to the next. After each training 
trial participants received feedback with the correct concentration of 
Caldionine. After the test phase, participants wrote a short description of 
how they solved the task. 

2.1.5. Cognitive modeling: The PNP-model 
To investigate if the participants solved the task by using a deter

ministic and analytic process (e.g., number crunching or retrieving a 
known fact) or an approximate, intuitive process perturbed by noise, we 
used the PNP model (Sundh et al., 2021). The PNP model assumes that 
intuitive processes involve a homogenous Gaussian noise around the 
output of a cognitive algorithm, whereas analytic processes yield lep
tokurtic (spiked) distributions, effectively sampling from two distribu
tions: i) error-free application of the algorithm and ii) occasional 
erroneous execution of the algorithm. If B is a Bernoulli random variable 
with probability λ that an error occurs in execution of the algorithm, 
each estimate y given a cognitive process (function) g(x|θ) is defined by 

y|(B = b) =
{

g(x|θ ) + N
(
0, σ2), b = 1

g(x|θ ) + N
(
0, τ2), b = 0 (3) 

For an intuitive process we have λ = 1 and ubiquitous Gaussian noise 
perturb the output of the model (as assumed in most statistical 
modeling). For an analytic process, λ is a small number. For technical 
reasons, it is prudent to introduce a very narrow Gaussian tolerance 
around the error free responses, as describe by the fixed parameter τ (see 
Sundh et al., 2021 for details). 

The PNP model was fitted to individual participant data from the test 
phase with three cognitive process functions g(x|θ). To capture additive 
and non-additive cue abstraction (see Eq. 1 and Eq. 2 above for the 
normative values for constants) we fitted two rule-based models to data: 

g(x|θ) = α+ω1*P − ω2*A, (4)  

g(x|θ) = α+ω1*(P − ω2)*(A − ω2). (5) 

Each model gives a prediction of the participant’s response for the 
value of the criterion (Caldionine) where α represents the intercept and 
P (Progladine) and A (Amalydine) represent the cues. In the additive 
rule-based model (Eq. 4) ω1 is the weight given to cue P and ω2 is the 
weight given to cue A. In the non-additive model (Eq. 5) ω1 is the weight 
given to the product of the cues after subtraction of the ω2 constant, 
(P − ω2)*(A − ω2), where ω2 represents the constant to be subtracted 
from the cue-values before multiplication. α, ω1 and ω2 were modeled as 
free parameters. The memory-based processes were captured by the 
Generalized Context Model (see Nosofsky, 1984, 2011), applied to a 
continuous criterion (see e.g., Juslin et al., 2003), 

g(x|θ) =

∑23
j=1exp

(
− β

∑2
i=1

⃒
⃒
⃒xi − x*

ji

⃒
⃒
⃒

)
*Cj

∑23
j=1exp

(
− β

∑2
i=1

⃒
⃒xi − x*

ji

⃒
⃒
) , (6)  

where g(x|θ) represents a weighted average of the criterion Cj of each of 
the 23 exemplars from the feedback training based on the relative 
similarity of the cue-values (x*j1 … x*j2) of the exemplars to the corre
sponding cue-values (x1 … x2) of the probe, that is the test-item. β de
fines how much the relative similarity between an exemplar and the test- 
item affects the weight put on each exemplar. When β = 1 all exemplars 
are thus weighted in accordance to their exponential similarity to the 
test-item, whereas higher values of β results in more weight on the 
exemplar(s) most similar to the test-item relative to less similar exem
plars. Lower values of β thus result in relatively more weight on less 
similar exemplars and with β = 0 all exemplars are weighted equally. We 
fitted both a configural and a non-configural version of the exemplar- 
based memory model, because in the non-additive environment only 
the relation between the cue-values (and not their position) is relevant 
for the value of the criterion (i.e., the task setting is non-configural).5 

We fitted all three models with λ as a free parameter.6 A low λ –value 
indicates an analytic process, and a high λ –value indicates an intuitive 
process. For example, a low λ and parameters α = 50, β1 = 10, β2 = 10 
in the additive task (Eq. 1) indicate analytic execution (number 
crunching) of Eq. 4, marred by occasional errors in the computations.7 In 
other words, most responses are perfect executions of Eq. 1 with the 
correct parameters. 

2.1.5.1. Model fit. Parameters were estimated by maximum likelihood 
estimation8 and the Bayesian Information Criterion (BIC) was used to 
identify the best model fit for each individual (see Raftery, 1995). BIC 
contributes no information on the absolute fit, so we also report adjusted 
R2 of the models with the best relative fit.9 If we identify the correct 
model, all systematic variance in data should be accounted for and all 
residual noise should be random. We therefore also report a Saturation 
Index (SI) defined by 

SI = R2
adj

/
ρ, (7)  

where ρ is the reliability coefficient, or proportion of systematic variance 
in data, as estimated by the test-retest reliability when participants 
perform each judgment twice. SI will approach 1 if the model accounts 
for all systematic variance in data, while a low SI suggests that there is 
non-trivial residual systematicity that the model fails to explain (see 
Sundh et al., 2021 for further discussion on this measure). That is, if for a 
participant R2

adj is equal to 0.6 and test-retest reliability for the partici
pant is 0.6 the model captures all systematic variance. However, if test- 

4 See Appendix A for a full list of items, including items excluded from 
training. 

5 For the configural exemplar-based model similarities were calculated ac
cording to Eq. 6. For the non-configural exemplar-based model, because cue- 
order is immaterial to the process, the cue pairs for each item were first sor
ted so the lower value was viewed as cue1, regardless of original position and 
similarities were then calculated according to Eq. 6. That is the item with cue1 
= 5 and cue2 = 1 was after reordering identical to the item with cue1 = 1 and 
cue2 = 5.  

6 The Raw- and processed data analyzed in the present paper, as well as 
MATLAB code for use of the PNP model, are available here: https://osf.io/qx6gt 
/  

7 Given the 9-step scale we do not expect λ –values above 0.89, given that 
participants should by chance answer precisely in 1 out of 9 times. As the 
participants responded by selecting one of nine alternative answers, the toler
ance τ was set so that only the selection of the correct alternative corresponds to 
a perfectly correct response.  

8 The PNP model uses the function fminsearchbnd (D’Errico, 2022) for 
maximum likelihood estimation.  

9 The standard version of adjusted R2 was used, R2
adj = 1 −

(
1 − R2) n− 1

n− p, 
where n equals sample size (number of items) and p equals number of 
explanatory variables. 
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retest reliability of the participant would have been 0.9 there would be 
systematic variance in the data not accounted for by the model. Like
wise, if R2

adj is larger than the test-retest reliability the model accounts 
for more variance than the actual systematic variance in the data, 
indicating overfitting. 

2.2. Results 

Fig. 2 presents the median judgments for each item in the test phase 
in each of the experimental cells of Experiment 1. The median judgments 
in the verbal additive task yield the pattern implied by exemplar 
memory, with poorer judgments for the extrapolation items. With the 
numerical additive task, the median judgments reproduce the pattern 
with accurate extrapolation implied by cue abstraction. The lower 
panels for the non-additive tasks are more ambiguous. In the low range, 
the participants extrapolate, suggestive of cue abstraction. In the high 
range, however, the participants fail to produce the extreme judgments 
required for the item not presented during training, as predicted by 
exemplar memory. 

One hint to a possible explanation for these puzzling results is to note 
that in the non-additive (but not the additive) task, the order of the cues 
is immaterial. In contrast to the additive task, the cues [X, Y] always 
imply the same criterion value as cues [Y, X], so in the non-additive task 
participants are well advised to ignore the order of the cues. An exem
plar model with non-configural coding assumes that exemplar [X, Y] is 
perceived to be identical to exemplar [Y, X], and yields asymmetric 
predictions similar to the data illustrated in the lower panels of Fig. 2.10 

As will be clear in the section on cognitive modeling below, however, 
also taking this possibility into account, the results show that the models 
considered in this article are insufficient to fully account for the data 
from the numerical non-additive task. 

Fig. 2. Median Judgments in Experiment 
1. 
Note. This figure displays the median 
judgments for each stimulus in the test 
phase as function of the criterion value in 
each of the four cells of Experiment 1. The 
identity line represents perfectly accurate 
judgments. Diamond items (red) are 
extreme items requiring a response outside 
of the training range given a configural 
exemplar based memory strategy. Circle 
items (green) are extreme items requiring 
a response outside of the training range for 
both a configural and a non-configural 
exemplar based memory strategy in the 
non-additive tasks. Solid lines indicate 
interquartile ranges. Multiple points and 
lines overlap.   

10 Ignoring the order of the cues, in the low range, there exists perfect twins 
[5,1] to the items that require extrapolation [1,5] in the training set, that has 
the required criterion value of 10, so retrieval of this latter item produces the 
correct judgment. By contrast, in the upper range there exists no such (non- 
configural) twin to the new item that requires an equally extreme response in 
the training range (criterion 90). See all numeric items in Appendix A. 
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2.2.1. Performance during training 
We conducted a 2x2x10 mixed factorial BANOVA with RMSE as the 

dependent variable and format (verbal/numerical) and task (additive/ 
non-additive) as between-subject independent variables and training 
block (1− 10) as the within-subject variable. The best supported model 
includes a main effect of block, format, and task, as well as an interaction 
between block and task and format and task (BFM = 37.968, BF10 > 1096, 
BF2nd best model = 2.864).11 The support for each factor is presented in 
Table 1. There is extreme evidence for main effects of block and task and 
for an interaction between block and task. Strong evidence is found for 
an interaction between format and task and inconclusive evidence for a 
potential three-way interaction between format, task, and block. The 
results are illustrated in Fig. 3, which highlight the interaction between 
format and task: In the additive task the verbal format (Mean RMSE =
8.753, SD = 4.200) is detrimental for performance relative to the nu
merical format (M = 5.650, SD = 2.301), while in the non-additive task 
the verbal format (M = 14.412, SD = 4.908) is advantageous in relation 
to the numerical format (M = 16.885, SD = 3.295). 

2.2.2. Performance at test 
A factorial BANOVA with RMSE from the test phase (including both 

old items from the training phase and new extrapolation items) as the 
dependent variable, revealed no evidence for a main effect of format 
(BFincl = 0.262), extreme evidence for a main effect of task (BFincl =

27,894.988), and evidence for an interaction between format and task in 
the test phase of the experiment (BFincl = 3.995).12 The interaction 
pattern is the same pattern as in the training phase, with the participants 
in the numerical additive task (M = 2.073, SD = 2.680) performing 
better than the participants in the verbal additive task (M = 5.239, SD =
2.973), whereas the participants in the verbal non-additive task (M =
9.782, SD = 6.959) had a better performance than the participants in the 
numerical non-additive task (M = 13.934, SD = 8.768). 

The interaction is explained by the new extrapolation items in the 
test phase, as verified by one-sample Bayesian t-tests on the difference in 
RMSE between new items and training items. There is no evidence for a 
performance difference between the old items and the extrapolation 
items in the numerical additive task (Fig. 2B, Mean difference in RMSE =
− 0.330, SD = 3.469, n = 17, BF10 = 0.267, BF01 = 3.750) and very weak 
evidence for a difference in the verbal additive task (Fig. 2A, M = 4.419, 
SD = 8.557 n = 17, BF10 = 1.492). There is, however, medium evidence 
for poorer performance for the new items in the verbal non-additive task 
(Fig. 2C, M = 8.919, SD = 14.740, n = 20, BF10 = 3.873) and extreme 
evidence in the numerical non-additive task (Fig. 2D, M = 29.508, SD =
19.706, n = 20, BF10 = 9019.650). 

The poorer performance in the verbal-additive and both non-additive 
tasks indicates inability to extrapolate, suggestive of exemplar memory. 
This is investigated further under 2.2.3 Cognitive modeling below. 

2.2.3. Cognitive modeling 
We categorized a model as supported for a participant, if the BIC- 

difference between that model and all other models13 were < − 2 (see 
Raftery, 1995). If not, the participant was left “Uncategorized”. A null 
model assuming that the response is the mean response for all trials14 

had poor fit for all but three participants. The SI medians in Table 2 for 
the best-fitting model for each participant suggest that the models ac
count for almost all of the systematic variance in the additive tasks (SI ~ 
1), whereas SI is lower in the non-additive tasks and especially with a 
numeric format. For the numerical non-additive task, the median best 
fitting model only accounts for 67.7% of the systematic variance. 
Evidently, for many participants in this condition, the cognitive process 
is not well captured by the models considered here.15 

In all conditions, the fitted λ is far below 1 that signifies a Gaussian 
distribution and intuition (Sundh et al., 2021). Surprisingly, λ was low 
also when the exemplar model was the best fitting model, although 
somewhat higher with exemplar memory than with cue abstraction 
(median λ ¼ 0.18 for exemplar models vs. median λ ¼ 0.02 for cue 
abstraction; BF10 = 267.891, n = 76, Bayesian Mann-Whitney test). 
Fig. 4 illustrates residual distributions across all participants best fitted 
by a cue abstraction model (Panel A) and an exemplar model (Panel B), 
after subtracting the model predictions from the responses. In both 
cases, the residuals are distinctly leptokurtic and deviate from a normal 
distribution, indicative of an analytic process. In these simple tasks, at 
the end of training, not only cue abstraction, but also exemplar memory, 
takes an analytic form: rote-memorization of individual exemplars. 

Median parameter estimates for the best fitting models appear in 
Appendix C. The median parameter estimates for the coefficients of the 
cue abstraction models (see Eqs. 4 & 5) coincide exactly with the correct 
constants in the tasks (50, 10, 10 & 50, 10, 3, respectively). The typical 
response thus coincides with analytic execution of these equations (or a 
process invariably producing the same response). Bayesian Mann- 
Whitney tests revealed no evidence for or against main effects on λ of 
format (verbal format median λ = 0.16 vs. numeric format median λ =
0.06; BF10 = 0.699, BF01 = 1.430, n = 76, Bayesian Mann-Whitney test) 
or task (additive task median λ ¼ 0.044 vs non-additive task median λ ¼
0.16; BF10 = 0.967, BF10 = 1.034, n = 76, Bayesian Mann-Whitney test). 

Table 1 
Support for each Factor of a 2x2x10 Mixed Factorial BANOVA based on the Training Phase.  

Effects P(incl) P(excl) P(incl|data) P(excl|data) BFincl 

Block 0.263 0.263 4.698e − 4 5.013e − 87 9.372e + 82 
Task 0.263 0.263 1.466e − 4 9.496e − 15 1.544e + 10 
Format 0.263 0.263 0.053 0.237 0.224 
Block ✻Task 0.263 0.263 0.983 4.777e − 4 2058.392 
Block✻Format 0.263 0.263 0.015 0.732 0.021 
Task ✻ Format 0.263 0.263 0.693 0.054 12.786 
Block ✻ Task ✻ Format 0.053 0.053 0.016 0.014 1.174 

Note. Compares models that contain the effect to equivalent models stripped of the effect. Higher-order interactions are excluded. Analysis suggested by Sebastiaan 
Mathôt. The inclusion Bayes Factor (BFincl) is the primary factor of concern showing the evidence for including a factor in the final model. 

11 See Appendix B for a full presentation of model comparisons.  
12 See Appendix B for a full presentation of model comparisons. 

13 Note, model comparison was focused on if participants were best fit by the 
additive cue abstraction model, the non-additive cue abstraction model, any 
exemplar-based model or the null model. Hence BIC of the best fitting 
exemplar-based model (regardless if it was the configuratory or non- 
configuratory version) was compared to the BIC of the other models for 
calculation of BIC-difference and best-fitting model for each participant.  
14 If the model with best fit predicted the same response for all trials, the 

participant was also categorized as being best described by the null-model.  
15 There is bimodality in the distributions for the Adj R2 and the SI for the 

numeric non-addditive task. The non-additive cue abstraction model provides 
quite good fit for some participants. The poor fit is observed for some of the 
participants that were best fitted by the exemplar model (especially the stan
dard configuratory one). 
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The categorization of participants according to best-fitting model 
appears in Table 3.16 Across both formats there is inconclusive support 
for the division of labor hypothesis, the percentage of individuals best 

described by an exemplar memory was somewhat higher in the non- 
additive than in the additive tasks (66% vs. 45%: BF10 = 1.477; n =
76). We replicate the results from previous studies in the sense that there 
is a shift from additive cue abstraction towards more exemplar memory 
in the non-additive tasks, and especially with the numerical format (i.e., 
from 14 vs. 5 to 0 vs. 12). However, in contrast to our predictions and 
previous studies there was as a non-trivial minority of participants (13, 
33%) that appeared to engage in non-additive cue abstraction. The low 
SI for the numerical non-additive task in Table 2 indicates poor fit for 

Fig. 3. Effects of Cue-Criterion Format and Cue-Criterion Relationship on Performance (RMSE) during Training. 
Note. Effects of cue-criterion format and cue-criterion relationship on performance (RMSE) during training for each block of training in the additive task (Panel A) 
and the non-additive task (Panel B). The effects of cue-criterion format and cue-criterion relationship on performance (RMSE) during training (Panel C). Error bars 
are 95% credible intervals. 

Table 2 
Median Adjusted R2 and SI (Saturation Index) with Interquartile Index for the Best Fitting Model (Determined by BIC) for Each Individual Grouped by the Conditions in 
Experiment 1.     

Task    

Index Additive Non-additive Main effect (Format) 

Format Numeric R2 0.995 
[0.916: 1.000] 

0.585 
[0.117: 0.945] 

0.923 
[0.392: 1.000] 

SI 0.999 
[0.980: 1.000] 

0.677 
[0.336: 0.990] 

0.990 
[0.600: 1.000] 

Verbal R2 0.931 
[0.816: 0.978] 

0.854 
[0.386: 0.932] 

0.894 
[0.605: 0.970] 

SI 0.990 
[0.951: 0.998] 

0.938 
[0.740: 0.999] 

0.979 
[0.867: 0.998] 

Main effect (Task) R2 0.964 
[0.854: 1.000] 

0.678 
[0.328: 0.963] 

0.911 
[0.567: 0.990] 

SI 0.997 
[0.971: 1.000] 

0.915 
[0.473: 0.995] 

0.980 
[0.693: 1.000] 

Note. Values in brackets denote lower and upper quartiles. 

16 Note the reported Bayesian contingency table tests compare number of 
participants categorized as relying on EBM with number of participants cate
gorized as relying on CAM (additive and non-additive CAM collapsed). Thus 
participants with best support for the null model or uncategorized participants 
are excluded. They are though reported in Table 3 for transparency. 
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some participants, but these participants are mainly those best fit by the 
exemplar based model, rather than those best fit by the non-additive cue 
abstraction model. 

The rate of exemplar memory processes with the verbal and nu
merical format was similar (64% vs. 46%: BF10 = 0.960; n = 76). There 
was increased reliance on exemplar memory in the verbal-additive cell 
(63%) as compared to the numeric-additive cell (26%) (BF10 = 4.789, n 
= 38). Exemplar memory dominated both in the verbal non-additive 
task (65%) and in the numeric non-additive task (67%) (BF10 = 0.368, 
BF01 = 2.717, N = 38). However, while the percentage of individuals 
best described by an exemplar memory was higher in the numeric non- 
additive cell (67%) than the numeric additive cell (26%) (BF10 = 7.368 
n = 37), exemplar memory dominated in both the verbal additive (63%) 
and the verbal non-additive cell (65%) (BF10 = 0.368, BF01 = 2.717, n =
39). The division of labor observed in previous studies was only 
observed with the numeric format, not with the verbal format. 

2.3. Discussion 

The results of Experiment 1 confirmed that a verbal magnitude 
format impedes learning in the additive task, but enhances learning in 
the non-additive task, as predicted if the verbal magnitude format de
creases the initial rule bias that is advantageous in the additive task, but 
disadvantageous in the non-additive task. As in most previous studies, 
after training, in the test phase, with the numerical format (additive) 
rule-based cue abstraction with extrapolation was observed in the ad
ditive task, while exemplar memory, implying limited extrapolation, 
was the modal process in the non-additive task. By contrast, with the 
verbal magnitude format exemplar-based memory was the modal 

process both in the additive and the non-additive task. Note that while 
there was no difference in the number of participants in the non-additive 
tasks that had adopted exemplar memory in the test phase, the differ
ence in performance suggests, in line with the prediction, that the par
ticipants with a verbal format adopted a memory strategy earlier, thus 
being able to fine-tune it and memorize items better. Model parameters 
(see Table 1C in Appendix C) also support such a conclusion with higher 
error-parameters in the numeric non-additive task than in the verbal 
non-additive task. 

There were, however, also two important discrepancies between the 
results of Experiment 1 and the results from previous studies (e.g., 
Hoffmann et al., 2014, 2016; Juslin et al., 2003; Juslin et al., 2008; 
Karlsson et al., 2007; von Helversen & Rieskamp, 2009). First, there was 
a surprisingly high rate of non-additive cue abstraction. In the non- 
additive tasks, 13 participants were best described by the model that 
assumes that they abstract the cues and explicitly integrate them ac
cording to the non-additive equation (Eq. 2), allowing them to extrap
olate also in the non-additive tasks. Such non-additive cue abstraction 
has rarely, if ever, been observed in the previous studies. However, as we 
discuss further in the General Discussion below, we find it unlikely that 
the participants have abstracted the exact algebraic Eq. 2 above and, 
literally speaking, number-crunch the cues according to Eq. 2. We rather 
suspect that they capture the non-additive relationship through the use 
of heuristic and sequential subspace strategies, which emulate the non- 
additive cue integration. 

Second, in contrast to the assumption made in previous studies on 
multiple-cue judgment, the PNP modeling of the results from Experi
ment 1 suggested cognitive processes that typically came to exact 
deterministic outputs, occasionally marred by errors, rather than the 

Fig. 4. Residual Distributions. 
Note. The residuals from the predictions by the cue abstraction model (left) and the exemplar model (right) are distinctly leptokurtic and deviating from a normal 
distribution (in red), implying analytic processes with the PNP model. 
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ubiquitously noisy output typical of intuitive cognitive processes (Sundh 
et al., 2021). In multiple-cue judgment, the cue integration in cue 
abstraction processes has typically been characterized as “quasi- 
rational”, plagued by the inconsistencies associated with intuitive cue 
integration (see Hammond & Stewart, 2001; Karelaia & Hogarth, 2008). 
Likewise, exemplar memory has been assumed to involve intuitive 
retrieval processes (Nosofsky, 2011). These results suggest that partici
pants best fit by a cue abstraction model seem to engage in number 
crunching an exact formula, and the participants best fit by an exemplar- 
based model to engage in rote-memorization. We return to this issue in 
the General Discussion. 

3. Experiment 2: What numeric information elicits rule Bias 

As is evident in Table 3, it is only in the numeric additive task, with 
both numeric cues and a numeric criterion, that cue abstraction is the 
modal model (app. 70%), in all other cells, exemplar memory is more 
frequent (app. 65%). The results of Experiment 1 did, however, not 
reveal if numerical cues alone are sufficient, if a numerical criterion 
alone is sufficient, or if both are necessary to elicit the initial cue 
abstraction that drives the division of labor observed with the numerical 
format, where cue abstraction dominates in the additive task but 
exemplar memory dominates in the non-additive task. In Experiment 2, 
we thus complemented the congruent conditions investigated in Experi
ment 1, where either both cues and criterion were numerical or verbal, 
with the corresponding incongruent conditions: either verbal cues and a 
numerical criterion or numerical cues and a verbal criterion. 

Specifically, Experiment 2 allows us to contrast two alternative hy
potheses. An associative hypothesis claims that (any) numeric information 
in the task changes participants expectations about the task, because the 
numbers elicit mathematical associations, such as that the properties 
represented are cardinal in nature and are related by some simple 
equation that can be identified, where the “simplicity” is suggestive of 
linear additive relations (see e.g., De Bock et al., 2002; De Bock et al., 
2007; Dewolf et al., 2011; Van Dooren et al., 2008; Verschaffel et al., 
1994). If this hypothesis is correct, introduction of numbers either in the 
cues or in the criterion should be sufficient to elicit the rule bias observed 
for the numerical formats in Experiment 1. This implies that we should 
observe the classical division of labor in all cells of Experiment 2, with 
cue abstraction in additive tasks and exemplar memory in non-additive 
tasks. On this hypothesis, both verbal cues and a verbal criterion are 
needed to inhibit the expectations of simple mathematical rules that 
hampers learning in the non-additive task in Experiment 1. 

The computational hypothesis claims that it is crucial that both the 
cues and the criterion are numerical, because this allows the direct 
application of mathematical operations to the task content (as is the case 
in classical mathematical tasks where over-reliance on linearity is 
common, see e.g., Van Dooren et al., 2008; Dewolf et al., 2011; De Bock 
et al., 2007; De Bock et al., 2002; Verschaffel et al., 1994). If this hy
pothesis is correct both numerical cues and a numerical criterion is 
necessary to elicit the rule bias, and we should not observe a division-of- 
labor in any of the cells of Experiment 2, because none of the tasks in 
Experiment 2 have numbers both in the cues and the criterion, which 
allow direct computation based on the task contents. On this hypothesis, 
the rule bias only occurs if the task directly allows computation.17 

In a later part of the Results section of Experiment 2 we benefit from 
the fact that Experiments 1 and 2 involve the same participant- 
population and jointly instantiate a complete factorial design that al
lows estimation of all main effects and interactions when independently 
manipulating cue and criterion formats in a complete factorial design. 

3.1. Method 

3.1.1. Participants 
Eighty participants18 (59 females, 20 males and 1 non-binary indi

vidual) ranging in age from 18 to 68 (M = 26.86, SD = 7.96) were 
recruited through public advertisement at various places at Uppsala 
University. Compensation was awarded in the form of a cinema voucher 
or (for students at the Department of Psychology) course credit. 

3.1.2. Design 
The experiment had a 2 × 2 between-subjects factorial design with 

format (verbal cues and numeric criterion or the reversed) and task 
(additive or non-additive) as independent between-subject variables. 
The dependent measure was the participants’ judgments of the criterion 
and the accuracy of the judgments as measured by the RMSE between 

Table 3 
Compilation of the Number of Participants Best Fitted by each Model, for each Cell and the Main Effects of Experiment 1.     

Task    

Model Additive Non-additive Main effect (Format) 

Format Numeric CAM(A) 14 0 14 
CAM (NA) 0 6 6 
EBM 5 12 (7 NC) 17 (7NC) 
Uncateg. 0 1 1 
Null model 1 1 2 

Verbal CAM(A) 7 0 7 
CAM (NA) 0 7 7 
EBM 12 13 (7 NC) 25 (7 NC) 
Uncateg. 0 0 0 
Null model 1 0 1 

Main effect (Task) CAM(A) 21 0 21 
CAM (NA) 0 13 13 
EBM 17 25 (14 NC) 42 (14 NC) 
Uncateg. 0 1 1 
Null model 2 1 3 

Note: The modal model in each condition is denoted in bold font. CAM(A) refers to an additive cue abstraction model; CAM(NA) refers to a non-additive cue abstraction 
model; EBM to an exemplar-based model with either configural or non-configural coding; the null-model are participants best described by assuming that they always 
respond with their average response or the same response. Participants for whom BIC difference between the two best models were > − 2 are marked as uncategorized. 
The modal model is marked in bold.”NC” refers to exemplar models with non-configural coding that ignores the order of the two cues (see main text). 

17 For reasons of transparency, we acknowledge that, while Experiment 2 
tested the sufficiency conditions that are articulated in these two hypotheses 
already in the original versions of the article, the terms “associative hypothesis” 
and “computational hypothesis” were introduced in a later draft to simplify the 
exposition. 
18 Note that four participants were removed as outliers for analysis of per

formance during the test phase and three participants were removed as outliers 
for analysis of performance during the training-phase due to deviating >1.5 
interquartile ranges from Q3 for RMSE (i.e. for having extremely high RMSE) 
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Fig. 5. Task Appearance for Verbal Cues (Left) and Numeric Cues (Right). 
Note: The cue values are presented in the boxes with the headers “Progladine” and “Amalydine”. Below this it reads “Your judgment of Caldionine” and then follows 
the 9-step response scale. 

Fig. 6. Median Judgments in Experiment 2. 
Note. The median judgments for each stimulus in the Test Phase as a function of the criterion value in each of the four cells of Experiment 2. The identity line 
represents perfectly accurate judgments. Diamond (red) items are extrapolation items given a configural exemplar-based memory strategy. Circle (green) items are 
extrapolation items for both a configural and a non-configural exemplar-based memory strategy in the non-additive tasks. Solid lines indicate interquartile ranges. 
Note that multiple points and lines overlap. 
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the judgment and the criterion. 

3.1.3. Material 
The material was identical to the material used in Experiment 1 with 

the exception that participants were either presented with verbal cues 
and a numeric criterion or numeric cues and a verbal criterion, as 
compared to Experiment1 where the cue-criterion format was congruent 
(see Fig. 5 for an example of how the task looked). The computer pro
gram used for stimulus presentation by default saved response times. 
The normative functions for inferring the criterion values were the same 
as in Experiment 1. 

3.1.4. Procedure & cognitive modeling 
The procedure was identical to Experiment 1, see 2.1.4. Procedure. 

Cognitive modeling was carried out in the same way as in Experiment 1, 
see 2.1.5. Cognitive modeling: The PNP model. 

3.2. Results and discussion 

Fig. 6 illustrates the median test phase judgments in each experi
mental cell of Experiment 2. These graphs indicate cue abstraction with 
accurate extrapolation in both of the additive cells. These results 
therefore suggest that having either numerical cues or a numerical cri
terion is sufficient to elicit initial cue abstraction that is successful in the 
additive task and that the median pattern indicating exemplar memory 
in the additive task occur only when both cues and criterion are verbal 
(as in Experiment 1, see Fig. 2A). The lower panels in Fig. 6 for the non- 
additive cells are similar to those for the corresponding cells of Experi
ment 1 (Fig. 2C-D), demonstrating inability to correctly judge new items 
in the higher criterion regions, but an ability to correctly judge the item 
in the lower regions. 

3.2.1. Performance in training 
A 2×2×10 mixed factorial BANOVA with RMSE as dependent vari

able and format (verbal cues and numeric criterion vs. numeric cues and 
verbal criterion) and task (additive vs. non-additive) as between-subject 
independent variables and training block (1–10) as the within-subject 
variable was computed. The two best supported but mutually indistin
guishable models have a main effect of block, task, and format and an 
interaction of block and task (BFM = 13.01, BF10 > 1092, BF2nd best model 
= 1.039) while the second model also includes an interaction between 
task and format.19 All factors from the model with the strongest support 
are supported also when looking at their inclusion individually in 
Table 4. 

The support for block and Block x Task is less interesting, as this is a 
training experiment where the participants, by design, learn from 
feedback to master two tasks that differ in speed of learning. The support 
for a main effect of task is the standard finding that people find it more 
difficult to learn non-additive than additive tasks (BFincl. >

1,000,000,000: M = 15.383, SD = 4.453 for the non-additive task and M 

= 6.814, SD = 4.676 for the additive task). There is weak support (BFincl. 
= 2.394) for better performance with numerical cues and a verbal cri
terion (M = 10.129, SD = 6.396) than with verbal cues and a numerical 
criterion (M = 12.373, SD = 5.985). As illustrated in Fig. 7, however, 
this effect is mainly driven by a difference in the learning performance in 
the additive task (numeric cues & verbal criterion M = 4.716, SD =
3.687 vs. verbal cues & numeric criterion M = 8.801, SD = 4.725), 
although this interaction is too weak to overcome the effect of a con
servative prior (BFincl. = 0.962). 

As we will see in a later section (3.2.3. Cognitive modeling), additive 
cue abstraction dominates in the additive task and application of 
mathematical processing may be easier with numerical cues and a verbal 
criterion that only requires translation of one word into a number, than 
with verbal cues and a numerical criterion that requires two such 
translations of words into numbers. Maciejovsky and Budescu (2013) 
indeed show that incompatible formats lead to slower and worse inte
gration due to translation. If the cue abstraction processes that dominate 
in the additive task are executed by numerical calculations that require 
such translation, whereas the exemplar memory processes in the non- 
additive task involve memory processes that require no verbal to num
ber translations, this could explain why the format effects are mainly 
observed in the additive task. 

Notably, in the non-additive task, performance is very poor regard
less of the cue-criterion format combination (numeric cues & verbal 
criterion: M = 15.000, SD = 3.844, verbal cues & numerical criterion: M 
= 15.767, SD = 5.061: BF10 = 0.347; BF01 = 2.884). In sum: in Exper
iment 2, with numerical information in all the cells of the design, we 
only observed the standard finding that learning is slower with non- 
additive than with additive tasks, suggesting that the rule bias is oper
ative in all of the cells, as implied by the associative hypothesis. This 
preliminary conclusions will be tested with cognitive modeling under 
3.2.3 Cognitive modeling. 

3.2.2. Performance at test 
For the performance in the test phase, the model with the strongest 

support only includes a main effect of task (BFM = 7.922, BF10 > 107, 
BF2nd best model = 3.747),20 with better performance in the additive task 
(M = 3.416, SD = 3.756) than in the non-additive task (M = 13.499, SD 
= 7.424). In contrast to Experiment 1, there is no interaction with 
format. Bayesian one-sample t-tests provide evidence against a differ
ence in the performance between the (old) training items and the new 
extrapolation items in the additive task for both verbal cues and a nu
merical criterion (Mean difference in RMSE = 0.695, SD = 5.464, n = 18, 
BF10 = 0.277, BF01 = 3.613) and numerical cues and a verbal criterion 
(M = 1.215, SD = 3.775, n = 18, BF10 = 0.538, BF01 = 1.857), suggesting 
extrapolation and reliance on cue abstraction in the additive cells. Nu
merical cues or a numerical criterion, alone, appear sufficient to elicit 
cue abstraction, and since this is a successful strategy in the additive 
tasks, it is maintained into the test phase. The mean differences between 
training items and new items in both the verbal cues non-additive task 

Table 4 
Summary of Support for each Factor of a 2x2x10 Mixed Factorial BANOVA with Training Phase RMSE as the Dependent Variable.  

Effects P(incl) P(excl) P(incl|data) P(excl|data) BF incl 

Block 0.263 0.263 1.723e − 7 4.627e − 84 3.724e + 76 
Cue-Format 0.263 0.263 0.420 0.175 2.394 
Task 0.263 0.263 1.074e − 7 3.677e − 17 2.922e + 9 
Block ✻ Cue-Format 0.263 0.263 0.001 0.824 0.001 
Block ✻ Task 0.263 0.263 1.000 1.725e − 7 5.796e + 6 
Cue-Format ✻ Task 0.263 0.263 0.404 0.420 0.962 
Block ✻ Cue-Format ✻ Task 0.053 0.053 2.974e − 5 5.654e − 4 0.053 

Note. Compares models that contain the effect to equivalent models stripped of the effect. Higher-order interactions are excluded. Analysis suggested by Sebastiaan 
Mathôt. The inclusion Bayes Factor (BFincl) is the primary factor of concern showing the evidence for including a factor in the final model. 

19 See Appendix D for a full presentation of model comparison results. 20 See Appendix D for a full presentation of model comparison results. 
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Fig. 7. Effects of Cue-Criterion Format and Cue-Criterion Relationship on Performance (RMSE) during Training. 
Note. Effects of cue-format, cue-criterion relationship and training block on performance during training in the additive task (Panel A) and the non-additive task 
(Panel B). Error bars are 95% credible intervals. 

Table 5 
Median Adjusted R2 and SI (Saturation Index) with Interquartile Index for the Best Fitting Model (Determined by BIC) for Each Individual Grouped by the Conditions in 
Experiment 2.     

Task    

Index Additive Non-additive Main effect (Format) 

Format Numeric cues, 
verbal criterion 

R2 0.990 
[0.934: 1.000] 

0.653 
[0.309: 0.793] 

0.839 
[0.479: 0.992] 

SI 0.999 
[0.994: 1.000] 

0.679 
[0.509: 0.929] 

0.967 
[0.604: 1.000] 

Verbal cues, 
numeric criterion 

R2 0.979 
[0.844: 1.000] 

0.602 
[0.420: 0.984] 

0.877 
[0.452: 0.995] 

SI 0.997 
[0.944: 1.000] 

0.921 
[0.542: 0.999] 

0.986 
[0.799: 1.000] 

Main effect (Task) R2 0.989 
[0.877: 1.000] 

0.645 
[0.383: 0.865] 

0.877 
[0.472: 0.995] 

SI 0.998 
[0.963: 1.000] 

0.783 
[0.518: 0.987] 

0.985 
[0.649: 1.000] 

Note. Values in brackets denote lower and upper quartiles. 

Table 6 
Compilation of the Number of Participants Best Fitted by each Model, for each Cell and the Main Effects of Experiment 2.     

Task    

Model Additive Non-additive Main effect (Format) 

Format Numeric cues, verbal criterion CAM(A) 13 0 13 
CAM (NA) 0 1 1 
EBM 7 18 (13 NC) 25(13NC) 
Uncateg. 0 1 1 
Null model 0 0 0 

Verbal cues, numeric criterion CAM(A) 11 1 12 
CAM (NA) 0 5 5 
EBM 7 14 (7 NC) 21(7NC) 
Uncateg. 0 0 0 
Null model 2 0 2 

Main effect (Task) CAM(A) 24 1 25 
CAM (NA) 0 6 6 
EBM 14 32 (20 NC) 46 (20NC) 
Uncateg. 0 1 1 
Null model 2 0 2 

Note: The modal model in each condition is denoted in bold font. CAM(A) refers to an additive cue abstraction model; CAM(NA) refers to a non-additive cue abstraction 
model; EBM to an exemplar-based model with either configural or non-configural coding; the null-model are participants best described by assuming that they always 
respond with their average response or the same response. Participants for whom BIC difference between the two best models were > − 2 are marked as uncategorized. 
The modal model is marked in bold.”NC” refers to exemplar models with non-configural coding that ignores the order of the two cues (see main text). 
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(M = 18.851, SD = 15.796, n = 20, BF10 = 666.772) and the numerical 
cues non-additive task (M = 32.197, SD = 16.944, n = 20, BF10 =

213,574.796) were different from 0 with strong evidence, suggesting 
inability to extrapolate in the upper criterion regions. At the end of the 
training in the non-additive task, many participants have shifted to 
exemplar memory or some other process that constrains their ability to 
assess the new items. 

3.2.3. Cognitive modeling 
Cognitive modeling was carried out in the same way as in Experi

ment 1. The SI and Adj R2 reported in Table 5 suggest that for all con
ditions except the numerical cues non-additive task, the best-fitting 
models account for most of the systematic variance in data. As in 
Experiment 1, for the numerical cues non-additive task, the best fitting 
model only accounts for app. two-thirds of the systematic variance in the 
data, suggesting that here the true cognitive process of all participants is 
not well captured by the models.21 

The median parameter estimates for the coefficients of the cue 
abstraction model (Eqs. 4 & 5, see Appendix E) coincide exactly with the 
constants in the tasks (50, 10, 10 and 50, 10, 3 respectively). Median λ is 
close to zero in all conditions except the non-additive task with numeric 
cues and a verbal criterion, suggesting that the responses draw on an
alytic execution of the equations. Median λ was higher with exemplar 
memory than with cue abstraction (0.2 vs. 0.02; BF10 = 1544.805, N =
77, Bayesian Mann-Whitney test) and when the task was non-additive as 
compared to additive (0.2 vs. 0.02; BF10 = 8.949, N = 77, Bayesian 
Mann-Whitney test). 

As is evident in Table 6, we have the division of labor in all format 
conditions, with additive cue abstraction in the additive tasks and 
exemplar memory in the non-additive tasks.22 The percentage of in
dividuals best described by an exemplar memory process was higher in 
the non-additive tasks than in the additive tasks (82% vs. 37%: BF10 =

1078.712; n = 77). The pattern is similar in both of the incongruent 
format conditions with very strong support in the numerical cues and 
verbal criterion condition (non-additive task 95% vs. additive task 35%: 
BF10 = 975.381, n = 39) and weaker support in the verbal cues and 
numeric criterion condition (non-additive task 70% vs. additive task 
39%: BF10 = 2.281, n = 38). This again suggests support for the associate 
hypotheses, that as long as there is some numerical information in the 
task, participants start with cue abstraction processes, which – when 
successful – persist into the test phase. 

As in Experiment 1, we observe a high rate of best fit for the non- 
additive cue abstraction model and, in contrast to the assumption 
made in much of the previous literature, most of the participants 
adopted analytic cognitive processes. The participants best fit by cue 
abstraction accordingly seem primarily to engage in number crunching 
of a formula and the participants best fit by an exemplar model seem to 
engage in rote-memorization. 

3.2.4. Collapsed analyses 
Experiment 1 and 2 can be viewed as cells in larger design with in

dependent variables cue format (verbal/numerical), criterion format 
(verbal/numerical) and task (additive/non-additive). Because the ex
periments include non-overlapping samples of participants sampled 
from the same subject pool, we collapsed the two datasets into one in 
order to investigate interactions spanning the two experiments, as well 
as to increase the statistical power. 

We performed a 2×2×2×10 mixed factorial BANOVA with cue 
format (verbal/numerical), criterion format (verbal/numerical), task 
(additive/non-additive) as between-subject independent variables and 
block (1–10) as the within-subject variable and RMSE as the dependent 
variable. The model with the strongest support includes a main effect of 
block, cue-format and task and an interaction effect of Block × Task and 
Cue-Format × Task (BFM = 151.773, BF10 > 10201, BF2nd best model =

1.836).23 All factors in the model, except the main effect of cue-format, 
are supported when looking at the factors individually. 

There is inconclusive evidence against a main effect of cue-format 
(BFincl = 0.749). Support for a two-way interaction between cue- 
format and task is substantial (BFincl = 26.316). Additionally, there is 
weak support for a three-way interaction between block, task and cue- 
format when looking at the factors individually (BFincl = 2.113).24 

These interactions are described in Fig. 8 below. As is evident from the 
graph the two-way and three-way interactions are driven by faster 
learning in the numerical cues conditions in the additive task (M =
5.156, SD = 3.104) in relation to the verbal cues conditions in the ad
ditive task (M = 8.777, SD = 4.410). In the non-additive task, average 
performance during training is similar between the numeric cues (M =
15.943, SD = 3.661) and the verbal cues (M = 15.090, SD = 4.968) 
conditions. 

Fig. 9 compiles the proportions of participants best-fitted by the 
exemplar model in Experiment 1 and 2 as a function of the cue and 
criterion formats, with BF-factors from the Bayesian contingency tests 
previously presented in the result sections for each experiment. While 
there is a difference in the rate of exemplar memory in all cells with, at 
least some, numeric information, there is no difference when all infor
mation is presented in a verbal format. Again, this indicates that as long 
as some numerical information is present participants are invited to 
search for linear rules, which are successfully maintained into the test 
phase in the additive tasks. 

4. Experiment 3: Replicating the beneficial effects of a verbal 
format in a non-additive environment 

Experiment 2 suggests that the rule bias that slows down learning in 
the non-additive tasks was elicited in all cells of Experiment 2, as rule- 
based cue abstraction was the modal strategy in both of the additive 
cells. Because the presence of both verbal cues and a verbal criterion 
seems necessary to inhibit the rule bias that hampers learning in non- 
additive tasks, the beneficial effect of a verbal format in non-additive 
tasks in only tested in one cell across the two experiments (the cell 
with verbal cues and a verbal criterion in Experiment 1, all other cells 
included either numeric cues, a numeric criterion, or both). Because the 
beneficial effect of the verbal format in the non-additive task is a 
counter-intuitive, but important prediction, we wanted to replicate this 
result with an all-verbal format in a separate data collection. 

4.1. Method 

4.1.1. Participants 
Ninety-nine25 participants (32 females, 66 males and 1 non-binary 

individual) ranging in age from 21 to 71 (M = 37.36, SD = 10.44) 
located in the United Kingdom or the United States were recruited 
through Amazon Mechanical Turk. Participants received 7$ for con
ducting the experiment. 

21 Note that the SI distribution is positively skewed and the best fitting model 
accounts for almost all of the variance for six participants.  
22 Note the reported Bayesian contingency table tests compare number of 

participants categorized as relying on EBM with number of participants cate
gorized as relying on CAM (additive and non-additive CAM collapsed). Thus 
participants with best support for the null model or uncategorized participants 
are excluded. They are though reported in Table 6 for transparency. 

23 See Appendix F, Table 1F for model comparison of the best 20 models.  
24 See Appendix F, Table 2F, for a full presentation of model average support 

for individual model factors.  
25 100 participants were originally recruited, but one was excluded due to 

failing to answer questions separating an actual active human subject from a 
bot. 
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Fig. 8. Effects of Cue Format and Cue-Criterion 
Relationship on Performance (RMSE) during 
Training. 
Note. Effects of cue format and cue-criterion rela
tionship on performance (RMSE) during training for 
each block of training in the additive task (Panel A) 
and the non-additive task (Panel B). The effects of cue 
format and cue-criterion relationship on performance 
(RMSE) during training (Panel C). Error bars are 95% 
credible intervals. Data consists of all data from Exp1 
and Exp2. Note that the scale of the Y-axis differs 
between panels.   

Fig. 9. Proportion of Participants Categorized as Relying on Exemplar-Based Memory (EBM) Depending on the Format of the Cues, the Format of the Criterion and 
the Task. 
Note. The BF10 is the previously reported results from the Bayesian contingency table tests analyzing the difference in the proportion of participants relying on 
exemplar-based memory vs. cue abstraction in the additive and non-additive tasks in the respective experimental cells. Error bars are 95% Confidence intervals. 
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4.1.2. Design 
The experiment had a between-subjects design with format (verbal 

or numeric cues and criterion) as the independent between-subject 
variable. The dependent measure was the participants’ judgments of 
the criterion and the accuracy of the judgments measured by the RMSE 
between the judgment and the criterion. All participants conducted the 
non-additive task from Experiment 1. 

4.1.3. Material 
The same material was used as in the non-additive task in Experi

ment 1, however the interface was altered slightly, presenting the trials 
with a survey program, and cue- and criterion labels translated to En
glish, in order to facilitate online testing. 

4.1.4. Procedure 
Participants conducted the experiment via the online platform 

Amazon Mechanical Turk and were randomized to either of the two 
conditions. The training and test phase contained the same items as the 
non-additive task in Experiment 1, but the training was shortened to 6 
blocks (rather than 10) to avoid fatigue effects with the AMT-format. 

4.2. Results and discussion 

A 2 × 6 mixed factorial BANOVA with RMSE as the dependent var
iable, format (verbal/numerical) as the between-subject independent 
variable and training block (1–6) as the within-subject variable showed 
that the best-supported model includes a main effect of format and block 
(BFM = 10.758, BF10 > 1027, BF2nd best model = 3.517), with a BFincl =

3.516 for a main effect of format.26 The quicker learning of a non- 
additive task with a verbal (M = 16.665, SD = 6.383) rather than nu
merical (M = 19.639, SD = 5.447) format illustrated in Fig. 10 therefore 
replicates the result in Experiment 1 for an all-verbal format. 

5. General discussion 

The aim of this study was to investigate the effects of a verbal format 
of cues and criterion on the learning performance and the cognitive 
process adopted by the participants in a multiple-cue judgment task. The 
predictions for the study were based on two assumptions from the 
multiple-cue learning literature and a new hypothesis. The assumption 
of a division of labor between cognitive processes (Juslin et al., 2008) 
claims that while people can learn additive cue-criterion relations by 
controlled rule-based thinking (cue abstraction), they have to shift from 

cue abstraction to exemplar-based memory processes in tasks that 
require non-additive integration of the cue-criterion relations. The 
assumption of a rule bias (Ashby & Maddox, 2005; Juslin et al., 2008) 
claims that people typically start in a problem-solving mode when they 
learn categorization and multiple-cue judgment tasks, where they 
actively try to induce the underling structure of the task to arrive at 
explicit cue-criterion rules. 

The new hypothesis was that a verbal format, in relation to a nu
merical one, should weaken this initial rule bias, facilitating a faster or 
immediate shift to exemplar memory in a non-additive task. Research 
suggests that through mathematical education we learn to apply linear 
mathematical models in mathematical contexts. While often helpful, this 
also leads to an over-application of linear rules in numerical contexts, 
impairing estimation in non-linear tasks (De Bock et al., 2002; De Bock 
et al., 2007; Dewolf et al., 2011; Ebersbach et al., 2008; Van Dooren 
et al., 2008; Verschaffel et al., 1994). We therefore hypothesized that 
mathematical training may establish an acquired association between 
numeric formats and use of linear, additive strategies, suggesting a po
tential format dependence of the results. It is thus plausible that the 
tendency to search for linear additive relations stems not only from 
cognitive constraints (Juslin et al., 2008) and linear additive models 
being prevalent and useful for prediction (Brehmer, 1994; Dawes & 
Corrigan, 1974), but also from mathematical education. 

The two assumptions and the new hypothesis imply that a verbal 
format should impair learning in the additive environment (where cue 
abstraction is a viable strategy) but improve learning in the non-additive 
environment in relation to the numeric format (where a shift from cue 
abstraction to exemplar memory is needed). Further, we predicted that 
at the end of training most participants should have shifted to reliance 
on exemplar memory in the non-additive task, while many participants 
should still use cue abstraction in the additive task, especially in the 
numeric condition that more strongly invites cue abstraction. A division 
of labor should thus be observed with a numeric format, but not 
necessarily with a verbal format. 

5.1. Summary of the results 

In Experiment 1, we confirmed the predicted interaction: a verbal 
format impaired learning in the additive task but enhanced learning in the 
non-additive task – as we argued – by partially or wholly, de-activating 
the rule bias and the mathematical problem solving that is elicited 
initially by a numerical format. After training, in the numeric condition 
there was primarily cue abstraction in the additive task and exemplar 
memory in the non-additive task, but in the verbal condition, exemplar 
memory dominated in both tasks. This is in line with research suggesting 
that verbal formats invite more context dependent and associative 
reasoning (Liu et al., 2020a, 2020b; Windschitl & Wells, 1996). A nu
merical format is not always beneficial; under predictable conditions a 
verbal format allows faster learning. 

In Experiment 2, we investigated what, and how much, numeric 
information that is needed to elicit the rule bias operative in the nu
merical condition of Experiment 1: Is a numeric format of both cues and 
criterion needed (so as to directly support a mathematical operation) to 
elicit the rule-bias that is a hindrance in learning a non-additive task, or 
is a numeric format of either cues or criterion sufficient to prime it. The 
results of Experiment 2 indicated that a numeric format of either the 
cues or the criterion is enough to elicit a rule-bias. This suggests that it is 
not the direct applicability of mathematical operations, as such, that is 
crucial, but rather that any numeric information changes the partici
pant’s expectations about the task, as implied if numeric formats invite 
higher expectations of a simple mathematical rule. 

Benefitting from the fact that Experiments 1 and 2 involve the same 
participant population and jointly instantiate a complete factorial design 
that allows estimation of all main effects and interactions between cue- 
and criterion formats, aggregate analyses allowed us to address further 
questions. With regard to performance in training, the interaction effect 

Fig. 10. Effects of Cue-Criterion Format on Performance (RMSE) during 
Training. 
Note. Effects of Format (Verbal vs. Numerical) and Training Block (1–6) on 
performance during training. Participants are conducting a non-additive task. 
Error bars are 95% credible intervals. 

26 See Appendix G for a full presentation of results. 
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of cue format and task seems the most important factor: cue format has 
the largest effect on speed of learning and drives the different learning 
rates in the additive and non-additive tasks. This suggests that a nu
merical format of the cues traps the participant in (successful or futile) 
attempts at cue abstraction for a longer time than a numerical format of 
the criterion. The results, however, suggest that complete absence of 
numeric information is needed for clear improvement in the non- 
additive task, as seen in Experiment 1 and the replication. 

With regard to eliciting stronger reliance on cue abstraction in the 
test phase, an interaction is the most important effect (see Fig. 9): When 
both the cues and the criterion are verbal, exemplar memory dominates 
both in the additive and in the non-additive task, but as soon as there is 
any numerical information in the task, cue abstraction is more prevalent 
in the additive task and exemplar memory is more prevalent in the non- 
additive task. A numeric format in either cues or criterion is sufficient to 
invite more initial cue abstraction, which, however, only survives into 
the test phase in additive tasks, where it is successful. This reaffirms the 
conclusion suggested already by the analysis of Experiment 2 alone. 

The key predicted interaction between format and task was observed 
both in Experiment 1 and the collapsed analysis of Experiment 1 and 2, 
but the most counter-intuitive part of this interaction – that a verbal 
format can actually enhance learning in a non-additive task – was only 
tested and confirmed by a comparison between two cells in Experiment 
1 (i.e., where both cues and criterion have the same format). Thus, we 
performed Experiment 3 with the critical all-verbal condition that 
enhanced learning in the non-additive task and replicated the beneficial 
effect of a verbal format. 

To conclude, we draw the conclusion that the tendency to shift from 
rule-based cue abstraction to exemplar-based memory processes as a 
function of task-properties, as shown in numerous studies, seems to be 
considerably larger in the presence of numeric formats. When all in
formation is verbal participants appear more rapidly to home in on an 
exemplar-based memory strategy regardless of the task-properties. This 
provides an explanation for why the verbal format is beneficial for 
learning in the non-additive environment, namely that if participants 
engage exemplar-based memory early on, their learning will be faster 
and at the end of training the given exemplar-based memory process will 
be more fine-tuned. 

5.2. “Anomalies” relative to previous results 

We now turn to other discrepancies from previous results, namely: i) 
a surprising number of participants seem to adopt a non-additive inte
gration strategy (13 in Experiment 1 and 6 in Experiment 2) and ii) most 
participants address the task in an analytic manner. In regard to the first 
result, we do not believe that the participants best fit by the non-additive 
cue abstraction model really have induced the rather complex nonlinear 
function (Eq. 2) and that they literally crunch the cues according to this 
equation. Rather, we hypothesize that they rely on sub-space strategies. 
They partition the stimulus space into subspaces and adopt a range of 
strategies that successfully emulate non-additive integration at the level 
of the whole space (see e.g., Kalish et al., 2004). This could for example 
entail either adopting multiple different linear additive rules depending 
on the cue values present (theoretically the non-additive task can be 
solved by adopting 5 different linear additive rules); identifying one or 
several linear additive rules that successfully capture the relations be
tween cues and criterion in some areas of the stimulus space and 
memorizing the remaining cue-criterion combinations, or a sequential 
decision-tree which identifies a few contingencies that together emulate 
the non-additive judgments. This proposal is purely speculative at pre
sent and need to be examined in future research. 

Concerning the second point, most participants solved the task by 
analytical exact application of an algorithm (Sundh et al., 2021). Thus, 
participants best fit by a cue abstraction model in this paper are not 
integrating the cues by an informal and inconsistent process (as sug
gested by e.g., Brehmer, 1994; Karelaia & Hogarth, 2008; Juslin et al., 

2008), rather they number crunch an exact formula (either the norma
tive rule, multiple rules or a formalized decision tree). Participants best 
fit by an exemplar-based modal similarly produce exact responses. This 
suggests that the participants are relying more on rote-memorization of 
exemplars, rather than on a similarity-based inference. Because previous 
studies have not drawn on the PNP model, this possibility has not been 
previously investigated. 

Interestingly, we find no support for more analytical processes (e.g., 
number crunching rather than informal integration) when the format is 
numerical as compared to verbal. This in apparent contrast to findings 
suggesting that verbal magnitude formats are processed more intuitively 
than numerical ones (Liu et al., 2020b; Wallsten et al., 1993; Windschitl 
& Wells, 1996). Note, however, that this is because, at least in the test 
phase, the performance based on exemplar memory in these tasks take 
the form of overlearned rote-memorization of individual exemplars. In 
tasks where people cannot draw on rote memorizing each individual 
exemplar it may still be true that associative and similarity-based 
exemplar inference is primarily intuitive. The previous studies referred 
to above have also been performed in the context of the dual-systems 
framework (e.g., Evans, 2008), which need not overlap with the oper
ational Brunswikian definition in the PNP model (Sundh et al., 2021). 

5.3. Limitations and future directions 

A first foundational limitation refers to the possibility to empirically 
distinguish between abstract rule-based representations and memories 
of concrete exemplars. As noted by Barsalou (1990), assumptions about 
representations can only be examined in the context of additional pro
cessing assumptions, so that what we can test and compare are always 
specific representation-process conjunctions, rather than general claims 
about representation. 

This is what we do in this study when we compare cue abstraction 
and exemplar models. The conjunctions between representations and 
processes embodied in these models are, however, not arbitrary but 
tested (and frequently supported) in numerous studies (see the review in 
the Introduction). It is well-known that these two models can be 
empirically distinguished in data, for example, by the degree to which 
they allow extrapolation beyond the training range and by their ability 
to produce accurate judgments also in highly nonlinear environments. 
Our study is concerned with empirically identifying conditions under 
which we find more relative support for one rather than the other of 
these two models. But the results cannot be taken to motivate unquali
fied and open-ended universal claims about the role of abstract and 
concrete representations in any shape or form in these tasks. 

A related limitation refers to the (plausible) possibility that judg
ments are based on mixes between rule-based and exemplar processes 
within the same task, participant or even trial (Bröder et al., 2017; 
Izydorczyk & Bröder, 2021). The present studies were not designed to 
test this possibility, which needs to be examined in future research. We, 
however, believe that our results can be convincingly interpreted also 
within such a mixed-process framework. These mixed-process models 
represent the observed judgments as a weighted combination of judg
ments produced by rule-based and exemplar-based cognitive processes. 
In this framework, our results translate into the conclusion that numbers 
seem to lead to judgments with more initial weight assigned to rule- 
based cue abstraction processes, whereas the verbal formats seem to 
invite judgments with a larger initial weight for exemplar processes. 

Another limitation is that the experiments are conducted within a 
narrow experimental paradigm, and in order to strengthen the conclu
sions and the generalizability across contexts future research comparing 
numerical and verbal formats within other contexts, both in regards to 
for example the number of cues and the cue-criterion relationships (i.e., 
the exact algorithms that relate the cues to the criterion) are warranted. 
In addition, the manipulation of the formats themselves can be 
expanded to include, for example, longer texts as verbal information, 
and different measures both for performance, and for investigating the 
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cognitive process can be used for further generalizability across meth
odologies. While we acknowledge this limitation, which plagues much 
of research in cognitive psychology, we believe that this issue of 
generalization needs treatment beyond what we can pursue in this 
article. 

That some participants provide exactly correct responses in the non- 
additive environment raises the question of what type of process these 
participants are relying on. An interesting endeavor for future research 
is to design environments where sub-space strategies that rely on 
adopting multiple linear rules are either possible or not possible and to 
continue the work on the developing models to successfully capture 
cognitive processes that rely on both memory and cue abstraction (as, e. 
g., the CX-COM, see Albrecht et al., 2020). 

The comparatively bad fit of the best fitting model in the numeric 
non-additive environment raises questions. What are participants in this 
condition doing? The informal inspection of individual data patterns 
suggest that they might be relying on a mixed strategy where the old- 
items have been rote-memorized. Participants may be memorizing 
items throughout training, but fall back on linear additive integration 
for new items in the test phase, or when facing new items retrieve an 
item probabilistically rather than retrieving the most similar item. As 
noted above, combined strategies, both multiple cue abstraction stra
tegies and combinations of exemplar memory and cue abstraction are 
relevant avenues for future research (see Albrecht et al., 2020; Bröder 
et al., 2017; Izydorczyk & Bröder, 2021). 

6. Conclusions 

A verbal magnitude format is beneficial for learning in a non- 
additive multiple-cue environment, but detrimental for learning in an 
additive environment as compared to a numerical format. This is an 
effect of the cognitive process adopted. As long as any numeric infor
mation is present, participants are invited to actively search for linear 
additive rules, which is helpful in an additive task, but detrimental in a 
non-additive task. Conversely, with a verbal magnitude format, partic
ipants home in on reliance on exemplar-based memory. Thus, a division 
of labor between rule-based processes in additive tasks and exemplar- 
based processes in non-additive tasks may be contingent on the pres
ence of numeric information. At a more paradigm-critical level, the re
sults also illustrate how apparently trivial choices of convenience in the 
design of the experimental tasks, like the common use of numerical 

formats, can have strong substantive implications for the conclusions 
obtained. 
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Appendix A. List of numerical items  

Table 1A 
Items for the additive and non-additive numerical conditions.  

Item Progladine (cue1) Amalydine (cue2) Additive criterion (Caldionine) Additive 
Included in training (1) 

Non-additive criterion (Caldionine) Non-additive  

Included in training (1) 

1 1 1 50 1 90 0 
2 1 2 40 1 70 1 
3 1 3 30 1 50 1 
4 1 4 20 1 30 1 
5 1 5 10 0 10 1 
6 2 1 60 1 70 1 
7 2 2 50 1 60 1 
8 2 3 40 1 50 1 
9 2 4 30 1 40 1 
10 2 5 20 1 30 1 
11 3 1 70 1 50 1 
12 3 2 60 1 50 1 
13 3 3 50 1 50 1 
14 3 4 40 1 50 1 
15 3 5 30 1 50 1 
16 4 1 80 1 30 1 
17 4 2 70 1 40 1 
18 4 3 60 1 50 1 

(continued on next page) 

A. Collsiöö et al.                                                                                                                                                                                                                                

https://osf.io/qx6gt/


Cognition 240 (2023) 105584

19

Table 1A (continued ) 

Item Progladine (cue1) Amalydine (cue2) Additive criterion (Caldionine) Additive 
Included in training (1) 

Non-additive criterion (Caldionine) Non-additive  

Included in training (1) 

19 4 4 50 1 60 1 
20 4 5 40 1 70 1 
21 5 1 90 0 10 0 
22 5 2 80 1 30 1 
23 5 3 70 1 50 1 
24 5 4 60 1 70 1 
25 5 5 50 1 90 1 

Note. Items with a zero (0) in the “Included in training” column were omitted during training in order to differentiate if participants adopted an exemplar-based 
memory strategy or a rule-based strategy to solve the task. 

Appendix B. Exp.1 Model comparison of factors influencing performance (RMSE)  

Table 1B 
Training-Phase Model Comparison Mixed Factorial Bayesian ANOVA.  

Models P(M) P(M|data) BF M BF 10 error % 

Null model (incl. subject) 0.053 1.339e − 97 2.410e − 96 1.000  
Block + Task + Format + Block ✻ Task + Task ✻ Format 0.053 0.678 37.968 5.067e + 96 4.414 
Block + Task + Block ✻ Task 0.053 0.237 5.583 1.769e + 96 1.067 
Block + Task + Format + Block ✻ Task 0.053 0.053 1.008 3.960e + 95 1.817 
Block + Task + Format + Block ✻ Task + Block ✻ Format + Task ✻ Format + Block ✻ Task ✻ Format 0.053 0.016 0.299 1.220e + 95 2.228 
Block + Task + Format + Block ✻ Task + Block ✻ Format + Task ✻ Format 0.053 0.014 0.254 1.039e + 95 2.702 
Block + Task + Format + Block ✻ Task + Block ✻ Format 0.053 0.001 0.020 8.476e + 93 3.584 
Block + Task + Format + Task ✻ Format 0.053 3.237e − 4 0.006 2.418e + 93 4.011 
Block + Task 0.053 1.206e − 4 0.002 9.008e + 92 1.493 
Block + Task + Format 0.053 2.549e − 5 4.589e − 4 1.904e + 92 2.290 
Block + Task + Format + Block ✻ Format + Task ✻ Format 0.053 7.307e − 6 1.315e − 4 5.458e + 91 4.064 
Block + Task + Format + Block ✻ Format 0.053 5.408e − 7 9.734e − 6 4.039e + 90 1.743 
Block 0.053 7.314e − 15 1.317e − 13 5.464e + 82 0.346 
Block + Format 0.053 2.137e − 15 3.846e − 14 1.596e + 82 1.031 
Block + Format + Block ✻ Format 0.053 4.483e − 17 8.069e − 16 3.348e + 80 0.981 
Task + Format + Task ✻ Format 0.053 2.961e − 87 5.329e − 86 2.212e + 10 2.399 
Task 0.053 1.769e − 87 3.185e − 86 1.322e + 10 1.352 
Task + Format 0.053 2.830e − 88 5.093e − 87 2.114e + 9 2.048 
Format 0.053 2.944e − 98 5.299e − 97 0.220 0.943 

Note. All models include subject. The table starts with the Null Mode. All subsequent models are ordered from the one with the strongest support to the one the weakest 
support.  

Table 2B 
Training-Phase Analysis of the Effects of Included Factors.  

Effects P(incl) P(excl) P(incl|data) P(excl|data) BF incl 

Block 0.263 0.263 4.698e − 4 5.013e − 87 9.372e + 82 
Task 0.263 0.263 1.466e − 4 9.496e − 15 1.544e + 10 
Format 0.263 0.263 0.053 0.237 0.224 
Block ✻ Task 0.263 0.263 0.983 4.777e − 4 2058.392 
Block ✻ Format 0.263 0.263 0.015 0.732 0.021 
Task ✻ Format 0.263 0.263 0.693 0.054 12.786 
Block ✻ Task ✻ Format 0.053 0.053 0.016 0.014 1.174 

Note. Compares models that contain the effect to equivalent models stripped of the effect. Higher-order interactions are excluded. Analysis suggested by Sebastiaan 
Mathôt. The inclusion Bayes Factor (BFincl) is the primary factor of concern showing the evidence for including a factor in the final model.  

Table 3B 
Test Phase Model Comparison Factorial Bayesian ANOVA.  

Models P(M) P(M|data) BF M BF 10 error % 

Null model 0.200 1.552e − 5 6.206e − 5 1.000  
Task + Format + Task ✻ Format 0.200 0.454 3.323 29,243.628 1.555 
Task 0.200 0.433 3.051 27,885.351 3.588e − 8 
Task + Format 0.200 0.114 0.512 7319.683 1.679 
Format 0.200 4.066e − 6 1.626e − 5 0.262 0.014 

Note. The table starts with the Null Mode. All subsequent models are ordered from the one with the strongest support to the one the weakest support.  
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Table 4B 
Test Phase Analysis of the Effects of Included Factors.  

Analysis of Effects - RMSE 

Effects P(incl) P(excl) P(incl|data) P(excl|data) BF incl 

Task 0.400 0.400 0.546 1.958e − 5 27,894.988 
Format 0.400 0.400 0.114 0.433 0.262 
Task ✻ Format 0.200 0.200 0.454 0.114 3.995 

Note. Compares models that contain the effect to equivalent models stripped of the effect. Higher-order interactions are excluded. Analysis suggested by 
Sebastiaan Mathôt. The inclusion Bayes Factor (BFincl) is the primary factor of concern showing the evidence for including a factor in the final model. 

Appendix C. Exp. 1 Median parameters from cognitive model fitting  

Table 1C 
Compilation of Median Parameter Estimates (λ, α, ω β and σ) for Participants Best Fit by the Additive Cue Abstraction Model (CAM(A)), the Non-Additive Cue 
Abstraction Model (CAM(NA)), and the Exemplar-Based Model (EBM).  

Condition CAM(A) CAM(NA) EBM 

λ α ω1 ω2 σ* λ α ω1 ω2 σ* λ β σ* 

Verbal-Additive 0.04 50 10 10 9.99(10.14)      0.16 17.00 18.87 
Numeric-Additive 0 50 10 10 0 (20)      0.20 15.54 14.14 
Verbal-Non-Additive      0.02 50 10 3 14.14(29.27) 0.24 16.27 22.36 
Numeric-Non-Additive      0.06 50 10 3 22.69(26.97) 0.17 17.74 31.04 

Note: The σ -value without parenthesis is the median error variance across all participants in each condition, where participants that only produced exact responses (λ 
= 0) have been assigned zero error variance. The values within parenthesis is the median error variance across the participants that occasionally produced responses 
with error variance (λ > 0). See Sundh et al. (2021) for a discussion of these different ways of reporting the error variance with the PNP model. 

Appendix D. Exp. 2 Model comparison of factors influencing performance (RMSE)  

Table 1D 
Training-Phase Model Comparison Mixed Factorial Bayesian ANOVA.  

Models P(M) P(M|data) BF M BF 10 error % 

Null model (incl. subject) 0.053 6.620e −
94 

1.192e −
92 

1.000  

Block + Cue-Format + Task + Block ✻ Task 0.053 0.420 13.014 
6.339e +
92 2.639 

Block + Cue-Format + Task + Block ✻ Task + Cue-Format ✻ Task 0.053 0.404 12.196 
6.102e +
92 

5.724 

Block + Task + Block ✻ Task 0.053 0.175 3.825 2.648e +
92 

1.057 

Block + Cue-Format + Task + Block ✻ Cue-Format + Block ✻ Task 0.053 6.370e − 4 0.011 9.624e +
89 

2.236 

Block + Cue-Format + Task + Block ✻ Cue-Format + Block ✻ Task + Cue-Format ✻ Task 0.053 5.654e − 4 0.010 
8.541e +
89 2.586 

Block + Cue-Format + Task + Block ✻ Cue-Format + Block ✻ Task + Cue-Format ✻ Task + Block ✻ Cue- 
Format ✻ Task 

0.053 2.974e − 5 5.353e − 4 
4.493e +
88 

2.231 

Block + Cue-Format + Task 0.053 7.643e − 8 1.376e − 6 1.155e +
86 

4.227 

Block + Cue-Format + Task + Cue-Format ✻ Task 0.053 6.498e − 8 1.170e − 6 
9.817e +
85 3.936 

Block + Task 0.053 3.090e − 8 5.562e − 7 
4.668e +
85 0.860 

Block + Cue-Format + Task + Block ✻ Cue-Format 0.053 
1.167e −
10 

2.100e − 9 
1.762e +
83 

5.718 

Block + Cue-Format + Task + Block ✻ Cue-Format + Cue-Format ✻ Task 0.053 1.003e −
10 

1.805e − 9 1.515e +
83 

3.465 

Block 0.053 
2.001e −
17 

3.602e −
16 

3.023e +
76 0.314 

Block + Cue-Format 0.053 
1.674e −
17 

3.012e −
16 

2.528e +
76 1.303 

Block + Cue-Format + Block ✻ Cue-Format 0.053 2.524e −
20 

4.543e −
19 

3.813e +
73 

1.378 

Cue-Format + Task 0.053 2.064e −
84 

3.715e −
83 

3.118e + 9 1.877 

Cue-Format + Task + Cue-Format ✻ Task 0.053 
1.554e −
84 

2.797e −
83 2.347e + 9 2.134 

Task 0.053 
1.009e −
84 

1.816e −
83 1.524e + 9 0.729 

Cue-Format 0.053 4.720e −
94 

8.496e −
93 

0.713 0.981 

Note. All models include subject. The table starts with the Null Mode. All subsequent models are ordered from the one with the strongest support to the one the weakest 
support.  
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Table 2D 
Training-Phase Analysis of the Effects of Included Factors.  

Effects P(incl) P(excl) P(incl|data) P(excl|data) BF incl 

Block 0.263 0.263 1.723e − 7 4.627e − 84 3.724e + 76 
Cue-Format 0.263 0.263 0.420 0.175 2.394 
Task 0.263 0.263 1.074e − 7 3.677e − 17 2.922e + 9 
Block ✻ Cue-Format 0.263 0.263 0.001 0.824 0.001 
Block ✻ Task 0.263 0.263 1.000 1.725e − 7 5.796e + 6 
Cue-Format ✻ Task 0.263 0.263 0.404 0.420 0.962 
Block ✻ Cue-Format ✻ Task 0.053 0.053 2.974e − 5 5.654e − 4 0.053 

Note. Compares models that contain the effect to equivalent models stripped of the effect. Higher-order interactions are excluded. Analysis suggested by Sebastiaan 
Mathôt. The inclusion Bayes Factor (BFincl) is the primary factor of concern showing the evidence for including a factor in the final model.  

Table 3D 
Test Phase Model Comparison Factorial Bayesian ANOVA.  

Models P(M) P(M|data) BF M BF 10 error % 

Null model 0.200 1.998e − 8 7.991e − 8 1.000  
Task 0.200 0.664 7.922 3.326e + 7 1.709e − 11 
Task + Cue-Format 0.200 0.177 0.862 8.876e + 6 1.507 
Task + Cue-Format + Task ✻  Cue-Format 0.200 0.158 0.752 7.919e + 6 2.543 
Cue-Format 0.200 5.191e − 9 2.076e − 8 0.260 0.017 

Note. The table starts with the Null Mode. All subsequent models are ordered from the one with the strongest support to the one the weakest support.  

Table 4D 
Test Phase Analysis of the Effects of Included Factors.  

Effects P(incl) P(excl) P(incl|data) P(excl|data) BF incl 

Task 0.400 0.400 0.842 2.517e − 8 3.345e + 7 
Cue-Format 0.400 0.400 0.177 0.664 0.267 
Task  ✻ Cue-Format 0.200 0.200 0.158 0.177 0.892 

Note. Compares models that contain the effect to equivalent models stripped of the effect. Higher-order interactions are excluded. Analysis suggested by Sebastiaan 
Mathôt. The inclusion Bayes Factor (BFincl) is the primary factor of concern showing the evidence for including a factor in the final model. 

Appendix E. Exp. 2 Median parameters from cognitive model fitting  

Table 1E 
Compilation of Median Parameter Estimates (λ, α, ω, β and σ) for Participants Best Fit by the Additive Cue-Abstraction Model (CAM(A)), the Non-Additive Cue- 
Abstraction Model (CAM(NA)), and the Exemplar-Based Model (EBM).  

Condition CAM(A) CAM(NA) EBM 

λ α ω1 ω2 σ* λ α ω1 ω2 σ* λ β σ* 

Verbal Cues Additive 0.02 50 10 10 9.06 (10)      0.18 15.64 14.90 
Numeric Cues Additive 0.02 50 10 10 4.78 (9.14)      0.08 17.48 22.34 
Verbal Cues Non-Additive 0.76 − 10.1 10 − 10 16.91 0 50 10 3 0(10) 0.26 16.95 26.55 
Numeric Cues Non-Additive      0.30 50 10 3 47.81 0.21 18.29 29.11 

Note: The σ -value without parenthesis is the median error variance across all participants in each condition, where participants that only produced exact responses (λ 
= 0) have been assigned zero error variance. The values within parenthesis is the median error variance across the participants that occasionally produced responses 
with error variance (λ > 0). See Sundh et al. (2021) for a discussion of these different ways of reporting the error variance with the PNP model. 

Appendix F. Collapsed analysis Model comparison of factors influencing performance (RMSE)  

Table 1F 
Training-Phase Model Comparison Mixed Factorial Bayesian ANOVA.  

Models P(M) P(M|data) BFM BF10 error 
% 

Null model (incl. subject and random slopes) 0.006 
1.205 ×
10− 202 

2.000 ×
10− 200 1.000  

Block + Cue-Format + Task + Block✻ Task + Cue-Format✻ Task 0.006 0.478 151.773 
3.965 ×
10+201 2.167 

Block + Cue-Format + Criterion-Format + Task + Block✻ Task + Cue-Format✻ Task 0.006 0.260 58.366 
2.160 ×
10+201 1.513 

Block + Cue-Format + Criterion-Format + Task + Block✻ Task + Cue-Format✻ Task + Criterion-Format✻  
Task 

0.006 0.081 14.555 6.692 ×
10+200 2.071 

Block + Cue-Format + Criterion-Format + Task + Cue-Format✻ Criterion-Format + Block✻ Task + Cue- 
Format✻ Task 0.006 0.074 13.183 

6.108 ×
10+200 13.174 

Block + Task + Block✻ Task 0.006 0.024 4.071 
1.987 ×
10+200 0.783 

(continued on next page) 

A. Collsiöö et al.                                                                                                                                                                                                                                



Cognition 240 (2023) 105584

22

Table 1F (continued ) 

Models P(M) P(M|data) BFM BF10 error 
% 

Block + Cue-Format + Criterion-Format + Task + Cue-Format✻ Criterion-Format + Block✻ Task + Cue- 
Format✻ Task + Criterion-Format✻ Task 0.006 0.019 3.301 

1.618 ×
10+200 2.168 

Block + Cue-Format + Task + Block✻ Task 0.006 0.018 3.080 
1.512 ×
10+200 1.116 

Block + Criterion-Format + Task + Block✻ Task 0.006 0.014 2.278 1.124 ×
10+200 0.978 

Block + Cue-Format + Criterion-Format + Task + Block✻ Task 0.006 0.010 1.665 8.244 ×
10+199 1.039 

Block + Cue-Format + Criterion-Format + Task + Cue-Format✻ Criterion-Format + Block✻ Task + Cue- 
Format✻ Task + Criterion-Format✻ Task + Cue-Format✻ Criterion-Format✻ Task 0.006 0.006 0.968 

4.813 ×
10+199 2.430 

Block + Criterion-Format + Task + Block✻ Task + Criterion-Format✻ Task 0.006 0.004 0.713 
3.548 ×
10+199 6.784 

Block + Cue-Format + Criterion-Format + Task + Block✻ Task + Criterion-Format✻ Task 0.006 0.003 0.519 2.586 ×
10+199 3.835 

Block + Cue-Format + Criterion-Format + Task + Cue-Format✻ Criterion-Format + Block✻ Task 0.006 0.003 0.431 2.150 ×
10+199 0.968 

Block + Cue-Format + Task + Block✻ Cue-Format + Block✻ Task + Cue-Format✻ Task + Block✻ Cue- 
Format✻ Task 0.006 0.002 0.358 

1.788 ×
10+199 2.615 

Block + Cue-Format + Criterion-Format + Task + Block✻ Cue-Format + Block✻ Task + Cue-Format✻ Task +
Block✻ Cue-Format✻ Task 0.006 0.001 0.200 

1.000 ×
10+199 3.026 

Block + Cue-Format + Task + Block✻ Cue-Format + Block✻ Task + Cue-Format✻ Task 0.006 0.001 0.179 8.955 ×
10+198 9.126 

Block + Cue-Format + Criterion-Format + Task + Cue-Format✻ Criterion-Format + Block✻ Task + Criterion- 
Format✻ Task 

0.006 7.798 ×
10− 4 0.130 6.474 ×

10+198 1.396 

Block + Cue-Format + Criterion-Format + Task + Block✻ Cue-Format + Block✻ Task + Cue-Format✻ Task 0.006 
5.038 ×
10− 4 0.084 

4.182 ×
10+198 1.256 

Block + Cue-Format + Criterion-Format + Task + Block✻ Cue-Format + Block✻ Task + Cue-Format✻ Task +
Criterion-Format✻ Task + Block✻ Cue-Format✻ Task 

0.006 
3.542 ×
10− 4 0.059 

2.940 ×
10+198 2.232 

Note. All models include subject, and random slopes for all repeated measures factors. 
Note. Showing the best 20 out of 167 models.  

Table 2F 
Training-Phase Analysis of the Effects of Included Factors.  

Effects P(incl) P(excl) P(incl|data) P(excl|data) BFincl 

Block 0.114 0.114 1.058 × 10− 13 1.383 × 10− 180 7.649 × 10+166 

Cue-Format 0.114 0.114 0.031 0.042 0.749 
Criterion-Format 0.114 0.114 0.285 0.523 0.546 
Task 0.114 0.114 7.095 × 10− 15 9.840 × 10− 36 7.210 × 10+20 

Cue-Format✻ Criterion-Format 0.299 0.299 0.097 0.356 0.272 
Cue-Format✻ Task 0.299 0.299 0.914 0.035 26.316 
Criterion-Format✻ Task 0.299 0.299 0.109 0.362 0.301 
Cue-Format✻ Criterion-Format✻ Task 0.114 0.114 0.006 0.020 0.297 
Block✻ Cue-Format 0.299 0.299 0.002 0.952 0.002 
Block✻ Criterion-Format 0.299 0.299 2.306 × 10− 4 0.477 4.837 × 10− 4 

Block✻ Task 0.299 0.299 0.996 1.060 × 10− 13 9.393 × 10+12 

Block✻ Cue-Format✻ Criterion-Format 0.114 0.114 2.087 × 10− 8 3.199 × 10− 7 0.065 
Block✻ Cue-Format✻ Task 0.114 0.114 0.004 0.002 2.113 
Block✻ Criterion-Format✻ Task 0.114 0.114 2.901 × 10− 7 5.555 × 10− 5 0.005 
Block✻ Cue-Format✻ Criterion-Format✻ Task 0.006 0.006 1.552 × 10− 13 4.952 × 10− 12 0.031 

Note. Compares models that contain the effect to equivalent models stripped of the effect. Higher-order interactions are excluded. Analysis suggested by Sebastiaan 
Mathôt. 

Appendix G. Exp. 3 Model comparison of factors influencing performance (RMSE)  

Table 1G 
Training-Phase Model Comparison Mixed Factorial Bayesian ANOVA.  

Models P(M) P(M|data) BFM BF10 error % 

Null model (incl. subject) 0.200 9.465e − 29 3.786e − 28 1.000  
Block + Format 0.200 0.729 10.758 7.702e + 27 2.236 
Block 0.200 0.207 1.046 2.190e + 27 0.725 
Block + Format + Block ✻ Format 0.200 0.064 0.272 6.733e + 26 3.478 
Format 0.200 3.247e − 28 1.299e − 27 3.430 1.232 

Note. All models include subject. The table starts with the Null Mode. All subsequent models are ordered from the one with the strongest support to the one the weakest 
support.  
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Table 2G 
Training-Phase Analysis of the Effects of Included Factors.  

Effects P(incl) P(excl) P(incl|data) P(excl|data) BF incl 

Block 0.400 0.400 0.936 4.193e − 28 2.233e + 27 
Format 0.400 0.400 0.729 0.207 3.516 
Block ✻ Format 0.200 0.200 0.064 0.729 0.087 

Note. Compares models that contain the effect to equivalent models stripped of the effect. Higher-order interactions are excluded. Analysis suggested by 
Sebastiaan Mathôt. The inclusion Bayes Factor (BFincl) is the primary factor of concern showing the evidence for including a factor in the final model. 
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