
G.W. Hamilton, T. Kahsai, M. Proietti (Eds.):

Joint International Workshops on

Horn Clauses for Verification and Synthesis (HCVS 2022)

Verification and Program Transformation (VPT 2022)

EPTCS 373, 2022, pp. 35–43, doi:10.4204/EPTCS.373.4

© H. Hojjat & P. Rümmer

This work is licensed under the

Creative Commons Attribution License.

OptiRica: Towards an Efficient Optimizing Horn Solver

Hossein Hojjat

Tehran Institute for Advanced Studies, Khatam University
University of Tehran, Iran

hojjat@ut.ac.ir

Philipp Rümmer

University of Regensburg, Germany
Uppsala University, Sweden

philipp.ruemmer@it.uu.se

This paper describes an ongoing effort to develop an optimizing version of the Eldarica Horn solver.

The work starts from the observation that many kinds of optimization problems, and in particular

the MaxSAT/SMT problem, can be seen as search problems on lattices. The paper presents a Scala

library providing a domain-specific language (DSL) to uniformly model optimization problems of

this kind, by defining, manipulating, and systematically exploring lattices with associated objective

functions. The framework can be instantiated to obtain an optimizing Horn solver. As an illustration,

the application of an optimizing solver for repairing software-defined networks is described.

1 Introduction

Constrained Horn Clauses have proven to sit at a sweet spot: the language of Horn clauses is expres-

sive enough to capture interesting properties of complex systems; at the same time, their mathematical

properties (in particular the existence of least models) enable efficient algorithms and solvers that scale

to real-world applications. Nevertheless, for a long time, people have tried to extend the language of

Horn clauses, while keeping some of its convenient properties. Among others, it was proposed to extend

Horn clauses with well-foundedness predicates [5], universally quantified literals in the clause body [6],

existentially quantified literals in the clause head [4], and disjunctions in heads [3].

This paper presents ongoing work in a similar direction: the development of optimizing solvers in

which side conditions are formulated in terms of Horn clauses, and optimization objectives are charac-

terized using finite lattices. This setting naturally generalizes MaxSAT/SMT [2] (and minimal unsatisfi-

ability) to the setting of Horn clauses, and thus captures many forms of analysis and reasoning tasks; for

instance, the exploration of all counterexamples of a set of clauses, the inference of safe parameters or

sufficient pre-conditions, or program repair.

Our work builds on a lattice-based optimization framework designed for the purpose of interpolant

exploration [9] and network repair [8]. In those earlier papers, only a prototypical implementation was

provided that was not directly reusable in other contexts. This paper recapitulates the optimization frame-

work, gives an overview of ongoing implementation work in the context of the Horn solver Eldarica [7],

and illustrates the use of optimization for repair. We include several code examples showing how our

new optimization library can be used to formulate and solve optimization problems.

Related work. In addition to the research already mentioned, our work is related to the computation of

maximum specifications of functions [1], and weakest solutions of Horn clauses [10]. Other approaches

proceed in a counterexample-guided manner, and refine solutions until a maximum or weakest solution

has been found [1, 10]. The methodology behind our framework is different, as we require an upfront

specification of the optimization objective and search space in the form of a finite lattice; our work is

closer in spirit to MaxSAT/SMT [2].

http://dx.doi.org/10.4204/EPTCS.373.4
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

36 OptiRica: Towards an Efficient Optimizing Horn Solver

2 The Lattice-Based Optimization Framework

2.1 The Framework

The lattice-based optimization framework [8, 9] is inspired by the MaxSAT/SMT paradigm [2], but

generalizes MaxSAT in two ways: (i) where MaxSAT can be seen as a search on the powerset lattice

induced by some set of constraints, we consider arbitrary finite lattices; and (ii) where side conditions

in MaxSAT are given in terms of SAT or SMT constraints, the feasibility of solutions in the lattice

optimization framework can be defined by any computable function.

The central definition needed to explain the framework is the notion of an optimization lattice; the

following definition is a slightly generalized version of the definition in earlier papers [8]:

Definition 1 (Optimization lattice) An optimization lattice is a triple (〈L,⊑L〉,F,obj) consisting of a

complete lattice 〈L,⊑L〉, a downward-closed feasibility predicate F ⊆ L, and a monotonically increasing

objective function obj : L→ D to a set D that is totally ordered.

We call the elements in F feasible. Note that the predecessors of feasible elements are also feasible, and

the successors of infeasible elements are also infeasible. An element l ∈ L is maximal feasible if l is

feasible, but all of its successors are infeasible.

Definition 2 An element lmax ∈ L is called optimal if it is maximal feasible, and it is the case that

obj(lmax) = max{obj(l) | l ∈ F}.

Examples of useful optimization lattices are powerset lattices, interval lattices, as well as lattice

products [8]. Algorithms to compute maximal feasible and optimal elements are able to handle large

finite lattices (e.g., lattices with > 1010 elements) by representing those lattices symbolically [8, 9].

Those algorithms are based on three main principles: greedy optimization, which is achieved by walking

upward in a lattice until reaching a maximal feasible element; the computation of incomparable elements,

to identify the next starting point in the lattice after discovering one maximal feasible element; and the

inference of upper bounds on feasible elements in the lattice for early pruning. The computation of

incomparable elements is related to hitting set methods used in MaxSAT [2], while upper feasibility

bounds have similarities with the use of blocking clauses in SAT.

2.2 Implementation

We are in the process of developing a Scala library for lattice-based optimization.1 At the moment, our

library does not include a parser for a modeling language for expressing optimization problems; instead,

we define an embedded domain-specific language (EDSL) using a set of basic lattice types, and operators

to derive new lattices from those basic lattices.

An overview of the lattice classes is provided in Figure 1. In general, a lattice is symbolically

described through a type LatticeObj of the nodes in the lattice, a partial order latticeOrder on

those nodes, and methods for computing joins, meets, successors, and predecessors of nodes. Moreover,

lattices are labeled, with a method getLabel mapping lattice nodes to elements of some defined label

type. While Label is a type parameter of the Lattice trait, the type LatticeObj is an abstract type

member, and should be seen as an existential type: every lattice is associated with some type of lattice

nodes, but given a lattice no assumptions can in general be made about the node type.

Optimization lattices are derived from general lattices, but in addition provide an objective func-

tion toScore for mapping lattice nodes to some Score type, a feasibility predicate isFeasible, as

1https://github.com/uuverifiers/lattice-optimiser

https://github.com/uuverifiers/lattice-optimiser

H. Hojjat & P. Rümmer 37

<<trait>>

Lattice

+LatticeObj: type

+latticeOrder: PartialOrdering[LatticeObj]

+top: LatticeObj

+bottom: LatticeObj

+join(x:LatticeObj,y:LatticeObj): LatticeObj

+meet(x:LatticeObj,y:LatticeObj): LatticeObj

+succ(x:LatticeObject): Iterator[LatticeObj]

+pred(x:LatticeObj): Iterator[LatticeObj]

+getLabel(x:LatticeObj): Label

Label:type

<<trait>>

OptLattice

+scoreOrder: Ordering[Score]

+toScore(x:LatticeObj): Score

+isFeasible(x:LatticeObj): Boolean

+map[L1](f: Label => L1): OptLattice[L1, Score]

+filter(p: Label => Boolean): OptLattice[Label, Score]

+flatMap[L1, S1](f: Label => OptLattice[L1, S1]): OptLattice[L1, (Score, S1)]

+withScore[S1](f: Label => S1, order:Ordering[S1]): OptLattice[Label, S1]

+mapScore[S1](f: Score => S1, order:Ordering[S1]): OptLattice[Label, S1]

Label:type

Score:type

BitSetLattice

+width: Int

IntervalLattice

+lowerLimit: BigInt

+upperLimit: BigInt

ProductLattice

+left: OptLattice[LA, SA]

+right: OptLattice[LB, SB]

<<singleton>>

Algorithms

+maximalFeasibleObjects[L,S](lattice:OptLattice[L,S],lowerBound:lattice.LatticeObj): Iterator[lattice.LatticeObj]

+optimalFeasibleObjects[L,S](lattice:OptLattice[L,S],lowerBound:lattice.LatticeObj): Set[lattice.LatticeObj]

Figure 1: Class diagram of lattice types

well as a monadic interface consisting of map, filter, and flatMap methods. The map method is used

to redefine the labeling of a lattice, by specifying a function from the old to a new label type; filter

strengthens the feasibility predicate of a lattice by conjoining a new constraint; and flatMap is used to

construct product lattices by mapping labels to optimization lattices. The objective function toScore

can be redefined using two methods: the method withScore creates lattices in which the score of a node

is computed as a function of the node label; and mapScore mutates the score of each node by applying

some function f to it.

The functions to compute optimal elements in lattices are collected in the class Algorithms. The

method maximalFeasibleObjects enumerates the maximal feasible nodes above some lowerBound

in a given lattice; method optimalFeasibleObjects returns the set of maximal feasible nodes above

lowerBound with maximum score.

Example 1 A simple example of an optimization problem expressed using the library is given in List-

ing 1. The code snippet2 solves the problem of computing the subset of the numbers {0,1, . . . ,16} that

(i) has the property that it does not contain any number x as well as its square x2; and (ii) has the

maximum element sum. To model the problem, in line 4 the powerset lattice of the set {0,1, . . . ,16} is

declared; powerset lattices are an instance of the BitsetLattice class. The objective function is de-

fined in line 5 to be the sum of the elements of a set, and the feasibility condition is defined in line 6. The

sets of maximal feasible and optimal solutions are computed in lines 9 and 11, respectively. Since the

methods to compute solutions are randomized, in line 0 the used random number generator is initialized.

2Complete working example in https://github.com/uuverifiers/lattice-optimiser/blob/master/src/

test/scala/lattopt/SquareTests.scala

https://github.com/uuverifiers/lattice-optimiser/blob/master/src/test/scala/lattopt/SquareTests.scala
https://github.com/uuverifiers/lattice-optimiser/blob/master/src/test/scala/lattopt/SquareTests.scala

38 OptiRica: Towards an Efficient Optimizing Horn Solver

0 implicit val randomData = new SeededRandomDataSource(123)

1

2 // The powerset of the set {0, ..., 16}; subsets that contain

3 // the square of any of their elements are infeasible

4 val latt = PowerSetLattice(0 to 16).

5 withScore(_.sum).

6 filter { s => !(s exists { x => s contains x*x }) }

7

8 // there are four maximal feasible objects

9 println(Algorithms.maximalFeasibleObjects(latt)(latt.bottom).size)

10

11 // and the optimum, maximizing the sum of its elements:

12 // {2, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}

13 println(Algorithms.optimalFeasibleObjects(latt)(latt.bottom))

Listing 1: An optimization problem over a powerset lattice.

3 Lattice-Based Optimization Modulo Horn Constraints

3.1 Parameterized Clauses

The optimization framework can immediately be used to derive solvers for MaxCHC, the maximum

satisfiability problem over Horn clauses. Given a set HC of constrained Horn clauses, consider the

powerset lattice P(HC), as well as the feasibility predicate F = {S ⊆ HC | S is satisfiable} that can be

implemented using an existing Horn solver. Appropriate timeouts have to be used when checking the sat-

isfiability of subsets of HC. Solutions of MaxCHC are then the maximal feasible elements of the induced

optimization lattice. Partial and weighted MaxCHC (including both hard and soft constraints, or giving

weights to clauses, respectively) can be modeled by choosing an appropriate objective function obj.

To compute minimally unsatisfiable sets (MUSes), we can construct the inverted (or dual) powerset

lattice induced by some set of clauses, and the feasibility predicate F = {S ⊆ HC | S is unsatisfiable}.
The challenge, of course, is to make such constructions efficient, since the exploration of the opti-

mization lattice will require many expensive satisfiability checks on subsets of HC. A practical imple-

mentation therefore requires an underlying incremental Horn solver that is tailored to the case of solving

many similar queries. We are in the process of extending our solver Eldarica [7] for this purpose, using

the following notion of parameterized clauses:

Definition 3 (Parameterized Clause Set) A parameterized clause is a constrained Horn clause over a

set R = Rsym∪Rpar of relation symbols, including a subset Rpar of relation symbols called parameters.

If m : Rpar → Constr is a function mapping every n-ary parameter to a formula/constraint over n free

variables, then the instance HC[m] of a parameterized clause set HC is obtained by substituting every

parameter p ∈ Rpar with the constraint m(p).

The incremental version of Eldarica is able to directly process parameterized clauses, and postpone the

instantiation of parameters as late as possible, thus minimizing the amount of work that has to be repeated

when solving different clause set instances. Eldarica can also reuse counterexamples and solutions. As a

future extension, we plan to add functionality to reapply CEGAR predicates across instances.

This yields the following recipe for defining optimization problems modulo Horn clauses: (i) define

a set HC of parameterized Horn clauses, such that the instances of the clauses cover the intended search

H. Hojjat & P. Rümmer 39

0 import [...]

1 SimpleAPI.withProver { p =>

2 import p._

3

4 val Inv = createRelation("I", Seq(Integer, Integer, Integer))

5 val Flag = for (i <- 0 to 3) yield createRelation("f" + i, Seq())

6

7 val Seq(x, y, n) = createConstants(3)

8

9 val clauses = List(

10 Inv(0, 0, n) :- (n > 0, Flag(0)()),

11 Inv(x + 1, y + 1, n) :- (Inv(x, y, n), y < n, Flag(1)()),

12 Inv(x + 2, y + 1, n) :- (Inv(x, y, n), y < n, Flag(2)()),

13 false :- (Inv(x, y, n), x >= 2*n, Flag(3)())

14)

15

16 def set2map(s : Set[Predicate]) =

17 (for (f <- Flag) yield (f -> if (s(f)) TRUE else FALSE)).toMap

18

19 val l1 = PowerSetLattice(Flag).withScore([...])).map(set2map(_))

20 val l2 = ClauseSatLattice(l1, clauses, Flag.toSet)

21

22 println(Algorithms.optimalFeasibleObjects(l2)(l2.bottom))

23 }

Listing 2: Definition of parameterized clauses, and the resulting optimization problem.

space; (ii) define a lattice 〈L,⊑L〉 representing the search space; each element o ∈ L is labelled with a

substitution mo; (iii) use one of the feasibility predicates Fsat = {o∈ L |HC[mo] is satisfiable} or Funsat =
{o ∈ L | HC[mo] is unsatisfiable}, implemented using an incremental Horn solver; (iv) choose a suitable

objective function on the lattice. The downward-closedness of the feasibility predicate can be ensured

syntactically, for instance by choosing a monotonic labeling function mo on the lattice, and restricting

parameters Rpar to the clause bodies.

3.2 Implementation

We are developing the integration of the lattice optimization library with Eldarica as a separate library

OptiRica.3 Parameterized clauses can in this setting either be created programmatically, or be read

from an SMT-LIB or Prolog file using the front-end of Eldarica. In Listing 2,4 the former approach

is chosen, and four clauses are defined over the relation symbols Rsym = {Inv} and parameters Rpar =
{Flag(0), . . . ,Flag(3)} (lines 4–14). Each of the four clauses is labeled with a parameter Flag(i),
which can be set to false to disable some of the clauses.

The system consisting of all four clauses is unsatisfiable. We can therefore solve a MaxCHC problem,

3https://github.com/uuverifiers/optirica
4Complete working example in https://github.com/uuverifiers/optirica/blob/main/src/test/scala/

optirica/ClauseSatTest.scala

https://github.com/uuverifiers/optirica
https://github.com/uuverifiers/optirica/blob/main/src/test/scala/optirica/ClauseSatTest.scala
https://github.com/uuverifiers/optirica/blob/main/src/test/scala/optirica/ClauseSatTest.scala

40 OptiRica: Towards an Efficient Optimizing Horn Solver

and compute maximum satisfiable subsets of the four clauses. The optimization lattice for this problem

has to provide the substitutions mo instantiating parameters with formulas. For this, in line 19 the power-

set lattice of the set of flags is created, equipped with some suitable objective function, and then labeled

with the functions computed by set2map. In line 20, the class ClauseSatLattice is used to define

those lattice nodes as feasible for which the set of instantiated clauses is satisfiable. ClauseSatLattice

receives as arguments the lattice l1 to be filtered, the parameterized clauses clauses, and the set Flag

of parameters.

Line 20 has the same effect as a direct call to the lattice filter function,

val l2 = l1 filter { m => isSat(clauses[m]) },

but ClauseSatLattice includes the optimizations discussed above, such as applying the Horn solver

Eldarica incrementally, caching results, and reusing solutions and counterexamples. The constructed

lattice l2 has three maximal feasible elements, corresponding to disabling the first, third, or fourth clause.

The OptiRica library also provides a class ClauseUnsatLattice, which declares those lattice nodes

as feasible for which some instantiated set of clauses is unsatisfiable. In combination with an inverted

powerset lattice (PowerSet.inverted(...)), this functionality can be used to compute MUSes.

4 A Case Study: Repair in Software-defined Networking

4.1 Overview

We have used an earlier, tailor-made implementation of an optimizing Horn solver in the domain of

repairing SDN configurations [8], and outline now how this case study can be mapped to our generic

framework. Consider Figure 2, which shows a three-layer topology in data centers. The network sends

the packets originating from a host upward and then back downward to the destination host. Assume the

host H1 sends traffic to H2 and H3, but this traffic should not reach H4. To implement this policy, the

operator installs, e.g., a forwarding rule at C1 to filter packets from H1 going towards A4 and also disable

the link A3−T4 for good measure (in the figure, this disabled link is indicated by a “ ” symbol.)

For maintenance, the network operator has turned off the core switch C2. When the network operator

brings back C2, it causes a safety violation, since there is a new path from H1 to H4. There are multiple

repair solutions to this violation: the repair engine may disconnect the links A1−C2 and A2−C2, or take

H1

T1

Host

A1Aggregation

T2ToR T3 T4

A3 A4

H2 H3 H4

Not safe

for H1.

A2

C1Core C2filter(H1)

Figure 2: Software-defined network [8]

(−∞,2]

[2,2]

(−∞,3]

[2,3]

(−∞,4]

/0

[3,3]

[2,4]

(−∞,+∞)

[3,4]

[2,+∞)

[4,4]

[3,+∞)

[4,+∞)

⊑

Figure 3: Inverted interval lattice [8]

H. Hojjat & P. Rümmer 41

0 val dstFilter = createRelation("dstFilter", Seq(Sort.Integer))

1 val typFilter = createRelation("typFilter", Seq(Sort.Integer))

2

3 val clauses = List(

4 [...]

5 t4(dst,typ) :- (a4(dst,typ), dst === 4,

6 dstFilter(dst), typFilter(typ))),

7 [...]

8)

9

10 // Possible dst filters. v(0) refers to the argument of dstFilter

11 val dstLatt = for (s <- PowerSetLattice(1 to 4))

12 yield disjFor(for (t <- s) yield v(0) === t)

13

14 // Possible typ filters. v(0) refers to the argument of typFilter

15 val typLatt = for (s <- PowerSetLattice(0 to 7))

16 yield disjFor(for (t <- s) yield v(0) === t)

17

18 val latt1 = for (c1 <- dstLatt; c2 <- typLatt)

19 yield Map(dstFilter -> c1, typFilter -> c2)

20 val latt2 = latt1 mapScore { p => p._1 + p._2 }

21 val latt3 = ClauseSatLattice(latt2 , clauses,

22 Set(dstFilter , typFilter))

23

24 println(Algorithms.optimalFeasibleObjects(latt3)(latt3.bottom))

Listing 3: Derivation of destination filters dstFilter and type filters typFilter for the link A4−T4.

C2 offline and return the network to its initial state, or rewrite the traffic from H1 to another type of

traffic by modifying packet headers, or add filters for H1 traffic on a number of links: {A1−C2,A2−C2},
{C2−A4,A4−T4}, {A4−T4}, etc.

To derive such possible repair strategies, we assume that the safety of the network has been mod-

elled as a set of Horn clauses [8]. This set includes clauses representing the topology and the con-

figuration of the network, for instance will the sending of packets from A4 to T4 be modelled as a

clause sT4
(pkt′, trc′)← sA4

(pkt, trc)∧ φ . Intuitively, a predicate sT4
(pkt, trc) expresses that packets pkt

can reach T4 via path trc. To search for repairs that involve filtering between A4 and T4, the clause can

be replaced with a parameterized clause sT4
(pkt′, trc′)← sA4

(pkt, trc)∧filter(pkt)∧φ . The relation sym-

bol filter ∈ Rpar is the parameter, and will be substituted with concrete constraints during optimization.

To search for repairs that will block packets to a certain port range, an interval lattice like in Figure 3

can be chosen, and the substitutions be defined as m[l,u](filter) = (pkt.port 6∈ [l,u]). Maximal feasible

elements in the lattice represent safe configurations in which a minimal range of ports is blocked; for

instance, the intervals (2,3) and [4,+∞). To model a larger space of possible repairs, multiple parame-

ters can be introduced, and a product optimization lattice be chosen. To express the preference of certain

kinds of repairs, an appropriate objective function can be added.

42 OptiRica: Towards an Efficient Optimizing Horn Solver

4.2 Implementation

A simple model of the network5 includes four clauses defining network ingress, 40 clauses for the net-

work, and property clauses (e.g., H1 traffic not reaching H4). This model enables us to compute different

kinds of repairs to eliminate the path from H1 to H4. Using a MaxCHC encoding, as in Section 3.2, it

can be derived that there are 12 different minimal sets of network clauses (i.e., maximal feasible lattice

nodes) that can be removed to re-establish a safe network; two of those only require to disable a single

link, namely either A4−T4 or C2−A4.

The derivation of more fine-grained filters is illustrated in Listing 3. We show a simplified setting

in which predicates only consider the destination and type of packets; type 0 is associated with packets

originating from H1. To infer filters for the link A4−T4, we rewrite the corresponding clause to include

predicates dstFilter and typFilter in its body (lines 5–6), and define lattices describing the pos-

sible choices of filtering. In lines 11–12, a destination filter is defined by choosing a subset s of the

set {1, . . . ,4}, and then constructing the formula
∨

i∈s x = i. In lines 15–16, similarly filters on type are

defined. Lines 18–19 create the product of the two lattices and define the resulting substitution. The

objective function is defined to be the total number of destinations and types that are not filtered out in

line 20. This optimization problem has two optimal solutions, namely to filter out either packets of type 0

or packets with destination H4 on link A4−T4.

5 Conclusions

We have outlined work towards optimizing Horn solvers. While the presented research is still work in

progress, we believe that the lattice-optimization libraries are already useful tools at this point. Next

steps in this project include the implementation of further types of lattices, an improved, more efficient

interface between the library and the Horn solver, and a more polished language (e.g., SMT-LIB-based)

for making optimization available to users.

Acknowledgments. We would like to thank the reviewers for helpful comments. Philipp Rümmer is

supported by the Swedish Research Council (VR) under grant 2018-04727, by the Swedish Foundation

for Strategic Research (SSF) under the project WebSec (Ref. RIT17-0011), by the Wallenberg project

UPDATE, and by grants from Microsoft and Amazon Web Services.

References

[1] Aws Albarghouthi, Isil Dillig & Arie Gurfinkel (2016): Maximal specification synthesis. In Rastislav Bodı́k

& Rupak Majumdar, editors: Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016, ACM,

pp. 789–801, doi:10.1145/2837614.2837628.

[2] Fahiem Bacchus, Matti Järvisalo & Ruben Martins (2021): Maximum Satisfiability. In Armin Biere, Marijn

Heule, Hans van Maaren & Toby Walsh, editors: Handbook of Satisfiability, 2 edition, Frontiers in Artificial

Intelligence and Applications, IOS PRESS, Netherlands, pp. 929 – 991, doi:10.3233/FAIA201008.

[3] Tewodros A. Beyene (2015): Temporal Program Verification and Synthesis as Horn Constraints Solving.

Ph.D. thesis, TU Munich.

5https://github.com/uuverifiers/optirica/blob/main/src/test/scala/optirica/NetworkTest.scala

https://doi.org/10.1145/2837614.2837628
https://doi.org/10.3233/FAIA201008
https://github.com/uuverifiers/optirica/blob/main/src/test/scala/optirica/NetworkTest.scala

H. Hojjat & P. Rümmer 43

[4] Tewodros A. Beyene, Corneliu Popeea & Andrey Rybalchenko (2013): Solving Existentially Quantified Horn

Clauses. In Natasha Sharygina & Helmut Veith, editors: Computer Aided Verification - 25th International

Conference, CAV 2013, Saint Petersburg, Russia, July 13-19, 2013. Proceedings, Lecture Notes in Computer

Science 8044, Springer, pp. 869–882, doi:10.1007/978-3-642-39799-8_61.

[5] Nikolaj Bjørner, Arie Gurfinkel, Kenneth L. McMillan & Andrey Rybalchenko (2015): Horn Clause Solvers

for Program Verification. In Lev D. Beklemishev, Andreas Blass, Nachum Dershowitz, Bernd Finkbeiner

& Wolfram Schulte, editors: Fields of Logic and Computation II - Essays Dedicated to Yuri Gurevich on

the Occasion of His 75th Birthday, Lecture Notes in Computer Science 9300, Springer, pp. 24–51, doi:10.

1007/978-3-319-23534-9_2.

[6] Nikolaj Bjørner, Kenneth L. McMillan & Andrey Rybalchenko (2013): On Solving Universally Quantified

Horn Clauses. In Francesco Logozzo & Manuel Fähndrich, editors: Static Analysis - 20th International

Symposium, SAS 2013, Seattle, WA, USA, June 20-22, 2013. Proceedings, Lecture Notes in Computer

Science 7935, Springer, pp. 105–125, doi:10.1007/978-3-642-38856-9_8.

[7] Hossein Hojjat & Philipp Rümmer (2018): The ELDARICA Horn Solver. In Nikolaj Bjørner & Arie

Gurfinkel, editors: 2018 Formal Methods in Computer Aided Design, FMCAD 2018, Austin, TX, USA,

October 30 - November 2, 2018, IEEE, pp. 1–7, doi:10.23919/FMCAD.2018.8603013.

[8] Hossein Hojjat, Philipp Rümmer, Jedidiah McClurg, Pavol Cerný & Nate Foster (2016): Optimizing Horn

solvers for network repair. In Ruzica Piskac & Muralidhar Talupur, editors: 2016 Formal Methods in

Computer-Aided Design, FMCAD 2016, Mountain View, CA, USA, October 3-6, 2016, IEEE, pp. 73–80,

doi:10.1109/FMCAD.2016.7886663.

[9] Jérôme Leroux, Philipp Rümmer & Pavle Subotic (2016): Guiding Craig interpolation with domain-specific

abstractions. Acta Informatica 53(4), pp. 387–424, doi:10.1007/s00236-015-0236-z.

[10] Sumanth Prabhu S, Grigory Fedyukovich, Kumar Madhukar & Deepak D’Souza (2021): Specification syn-

thesis with constrained Horn clauses. In Stephen N. Freund & Eran Yahav, editors: PLDI ’21: 42nd ACM

SIGPLAN International Conference on Programming Language Design and Implementation, Virtual Event,

Canada, June 20-25, 2021, ACM, pp. 1203–1217, doi:10.1145/3453483.3454104.

https://doi.org/10.1007/978-3-642-39799-8_61
https://doi.org/10.1007/978-3-319-23534-9_2
https://doi.org/10.1007/978-3-319-23534-9_2
https://doi.org/10.1007/978-3-642-38856-9_8
https://doi.org/10.23919/FMCAD.2018.8603013
https://doi.org/10.1109/FMCAD.2016.7886663
https://doi.org/10.1007/s00236-015-0236-z
https://doi.org/10.1145/3453483.3454104

	1 Introduction
	2 The Lattice-Based Optimization Framework
	2.1 The Framework
	2.2 Implementation

	3 Lattice-Based Optimization Modulo Horn Constraints
	3.1 Parameterized Clauses
	3.2 Implementation

	4 A Case Study: Repair in Software-defined Networking
	4.1 Overview
	4.2 Implementation

	5 Conclusions

