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A B S T R A C T   

Data-driven approaches have been revolutionizing materials science and materials discovery in the past years. 
Especially when coupled with other computational physics methods, they can be applied in complex high- 
throughput schemes to discover novel materials, e.g. for batteries. In this direction, the present work provides 
a robust AI-driven framework, to accelerate the discovery of novel organic-based materials for Li-, Na- and K-ion 
batteries. This platform is able to predict the open-circuit voltage of the respective battery and provide an initial 
assessment of the materials redox stability. The model was employed to screen 45 million small molecules in the 
search for novel high-potential cathodes, resulting in a proposed shortlist of 3202, 689 and 702 novel compounds 
for Li-, Na- and K-ion batteries, respectively, considering only the redox stable candidates.   

1. Introduction 

Data-driven methods, such as machine learning (ML), have been 
offering impactful innovation in the materials discovery landscape. The 
trained ML algorithms allow addressing fundamental questions on 
complex systems that were unfeasible, or very difficult, to tackle with 
standard methods. ML has been applied, for instance, to by-pass 
fundamental quantum mechanics calculations in the description of 
inter-atomic interactions or in the prediction of the materials properties 
[1–5]. In this context, novel energy-related materials have recently been 
explored by combinations of experimental-theoretical frameworks and 
machine learning [6–12]. In fact, such methodologies have been proven 
useful in identifying novel functional materials and uncovering different 
structure-property relationships [13–15]. Moreover, and in connection 
with the actual environmental hurdles the planet is facing, data-driven 
approaches have the potential to guide the development of greener 
and more sustainable technologies [16–20]. In general, the accelerated 
process offered by such methods can speed up the discovery, and sub
sequent manufacturing, of unexplored materials that could revolu
tionize the way energy is consumed, distributed and stored. 

Recently, several organic-based materials have been proposed as a 
feasible alternative for electrical energy storage (EES) by means of 
organic electrodes for lithium-ion batteries (LIBs) [21–29]. These 

compounds offer key features connecting energy storage and sustain
ability aspects, e.g. green chemistry synthetic routes, renewable re
sources and easier end-of-life treatments. However, there are 
fundamental issues related to volumetric energy density, rate capability 
and cycling stability that still need to be resolved before organic-based 
electrodes could be technologically competitive. For instance, the en
ergy density is given by the product between the volumetric charge 
storage capacity of the electrode materials and cell voltage. The latter is 
controlled by the electrochemical potential of the redox active moieties, 
while the former is given by the number of such moieties per unit of 
volume. Then, anode and cathode materials should display the lowest 
and highest electrochemical potentials, respectively, to achieve high cell 
voltage. To achieve such high potentials in n-type (as it will be defined 
below) organic materials is a challenging task. Therefore, this work 
aimed at developing efficient methodologies to predict redox potentials 
in order to facilitate the materials screening in large databases. 

In fact, another key feature of the organic electrode materials (OEMs) 
is the molecular versatility with a large possible variation of chemical 
compositions and structures. In fact, a materials library containing 
hundreds of billions of organic molecules can be feasibly obtained by 
considering a combination of atoms that appear in common organic 
compounds, such as C, N, O, S, F, Cl and Br [30]. Thereby, novel organic 
materials could be discovered and engineered to meet the requirements 
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for final technological applications and overcome the aforementioned 
hurdles. In this context, data-driven approaches play an important role 
to realistically screen such huge databases. An AI-driven platform was 
recently proposed and employed to screen a library of 20 million small 
molecules in the search for high-potential cathodes for Li-ion batteries 
[16]. This screening identified more than 400 molecules with remark
able gravimetric energy densities. It should be pointed out that OEMs 
undergo redox reactions during the battery cycling and depending on 
the corresponding charge states of such reactions they are grouped as p-, 
n- or bipolar-type materials [31]. More specifically, the n-type materials 
will change reversibly between the negatively charged and neutral states 
while the p-type ones change between neutral and positively charged 
states. The direction of such reactions during the battery charge/di
scharge process will determine whether they become anode or cathode 
active materials. The n-type materials have been the subject of our 
previous work [16] and they are the focus of the current study as well. 

Many OEMs degrade upon redox reactions (when they are either 
reduced or oxidized) leading to irreversible chemical bond breaking. We 
will refer to such molecules as the redox unstable ones. Another stability 
issue associated with the organic electrodes is the solubility of the 
organic active materials into the electrolyte, which is in turn the most 
common mechanism of capacity fading. The molecular stability in 
electrochemical systems is in fact a complex and multidimensional topic 
that requires detailed investigations, from both theoretical and experi
mental viewpoints. Our previously proposed AI framework did not 
include any aspect of such stability during reversible ion insertion/ 
deinsertion. To start tapping into this issue, the redox stability was 
investigated here as a first step into assessing the stability of these ma
terials from a data-driven perspective. To accomplish this, a graph 
neural network model fueled by molecular graphs has been designed to 
predict the redox stability of a given molecule, reducing the task to a 
classification problem. With a prediction accuracy of 74.4% in real data, 
this model can filter-out undesired, i.e., redox unstable, compounds 
during screening and, together with the previously described AI model, 
[16] significantly enhance the discovery of suitable materials. 

This AI-driven platform has been further developed to predict not 
only open-circuit voltages of Li-ion batteries, but also of Na- and K-ion 
batteries. In this context, several organic compounds have been reported 
to also work as electrodes for these different alkali-ion batteries [32–38]. 
Thus, by including these new methodologies, the AI model could be a 
powerful tool in the quest to discover alternative materials for greener 
batteries. As a first step in this direction, the framework was employed to 
screen 45 million molecules to identify possible candidates for 
high-potential cathodes for Li-, Na- and K-ion batteries. As a result, 
4047, 860 and 874 cathode candidates were identified for Li-, Na- and 
K-ion batteries, respectively. It is important to emphasize that these 
quantities represent less than 0.009% of the 45 million compounds 
screened, illustrating the enormous challenge of finding high-potential 
electrodes for these types of batteries. All these compounds have 
thereafter been further investigated by employing ab initio calculations, 
which also served the purpose of benchmarking the AI model. After a 
careful filtering process, a shortlist is here being proposed containing 
3202, 689 and 702 novel redox stable molecules for Li-, Na- and K-ion 
batteries, respectively. It should be emphasized that the ultimate vali
dation of the developed computational materials design framework will 
be the synthesis and the implementation of these proposed materials in 
the battery devices. Therefore, this work has the potential to inspire and 
guide future experimental activities in the field of organic batteries. 

2. Results & discussions 

In our previous work [16], we have reported a model capable of 
predicting the Li-ion insertion voltages (vs. Li/Li+) of organic-based 
electrodes by relying only on the molecular reduction potentials. The 
model was able to connect a molecular descriptor with a solid-state 
property, the battery open-circuit voltage (VOC), with good accuracy. 

In the present work, two other models have been designed, targeting Na- 
and K-ion batteries. Fig. 1 (a) and (b) shows the performance of the Na+

(vs. Na/Na+) and K+ (vs. K/K+) models, respectively, in evaluating the 
open-circuit voltages of a few organic electrodes reported in the litera
ture. A complete list of these compounds is included in Table S1 and 
Table S2 of the Supporting Information. The N-Linear Model (LM), with 
N = [Li, Na, K], being proposed is based on an ordinary least-square 
regression to estimate the α and β parameters of the linear function y =

αx+ β. In this model, x is the molecular reduction potential (PRed) 
and y the battery open-circuit voltage referred to the respective ion’s 
reference electrode, i.e., vs. Li/Li+, Na/Na+ and K/K+. Therefore, the 
presented voltages are going to follow this standard, and the reference 
electrodes will thus be omitted from the description. The resulting 
equation is also shown in Fig. 1(a) and (b) for the Na-LM and K-LM, 
respectively. Furthermore, these model parameters also appear to be 
connected with physical properties of the respective alkali metal. Fig. 1 
(c) shows the correlation between α and electron affinities, and Fig. 1(d) 
the correlation for β and Pauling electronegativities. Interestingly, a 
higher electron affinity presents a higher slope for the LM, i.e., higher 
voltages, while a larger electronegativity shows a more negative offset. 
Although those correlations are far from trivial to understand, they can 
be connected to different aspects of the insertion ions. For instance, the 
studied alkali-metal with the highest electronegativity (Li) shows the 
most negative offset, i.e., acting to reduce the final insertion voltage. 
This may be representing a balance between the molecule’s and the 
insertion material’s electronegativity. Similarly, the slope correlates to 
the electron affinity and may be balancing the difference between the 
reference electrode’s reaction and the molecule’s reduction potential. 

The ‘Organic Molecules for Energy Application Database’ (OMEAD) 
was here expanded from 26218, used in our previous work [16], to 
41800 unique molecules. The database contains several features 
extracted from density functional theory (DFT) calculations, further 
explained in the Computational Methods section. Correspondingly, the 
neural network model predicting the reduction potential, here called 
Reduction Potential Neural Model (RPNM), was retrained with more 
molecular samples. Specific details can be found in the Computational 
Methods section. Once more, the RPNM accesses the molecule’s SMILES 
[16,39] representation to predict its PRed through a complex natural 
language processing (NLP) and neural network architecture. The pre
dicted reduction potential then feeds the N-LM to evaluate the corre
sponding open-circuit voltage of the battery. These two models, LM and 
RPNM, work together to form the so-called AI model. This digital 
envelop predicts the compound’s VOC without any experimental input or 
demanding quantum mechanical calculations. However, it does not 
anticipate the material’s stability under battery operational conditions, 
i.e., molecular stability during redox reactions. The new Redox Stability 
Neural Model (RSNM) addresses this issue, adding a new functionality 
layer to the AI model. Fig. 2 (a) shows an overview of the final model. 
Firstly, any input molecule must pass through the redox stability layer 
(the RSNM) to check if it would be “suitable”, i.e. redox stable, for 
battery applications. Afterwards, the reduction potential of selected 
molecules is predicted in the reduction potential layer (the RPNM). With 
the PRed, the desired alkali-ion battery open-circuit voltage can be ob
tained in the ION layer (through the LM). 

The RSNM is based on a combination of Graph Neural Networks 
(GNNs) and Feed-Forward Neural Networks (FCNNs). The GNNs are 
required since in this model molecular graphs have been employed to 
represent the molecular entries, encoding information within the graph 
elements. In this model, embeddings were used to represent bonding 
types through the graph edges and atomic species within graph nodes. 
Moreover, the network architecture was obtained through a rational 
evolutionary process based on a differential evolution algorithm [40, 
41]. Fig. 2 (b) shows the overall network architecture, in which the 
evolutionary process was responsible to determine the amount of 
parallel-stacked structures called heads and serial-stacked network 
layers of different types. In this context, parallel means that the stacked 
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elements receive the same input data while serial stands for a sequential 
processing of data, i.e., a layer receives the output of its previous layer. 
The head structure itself is also a serial stacking of different network 
layers defined by the evolution mechanism. The final RSNM architecture 
was obtained after 397 network evaluations from the evolutionary 
scheme. This process is further detailed in the Computational Methods 
section and the Supporting Information. 

The final RSNM was trained on 15424 molecules and tested on 3856 
molecules, with a 0.5/0.5 ratio of redox stable/unstable samples. The 
final model accuracy on classifying molecules in redox stable/unstable 
was 80% and 72% for the training and testing dataset, respectively. It is 
important to note that, among other techniques, early stopping [41,42] 
was employed to avoid overfitting. Otherwise, the training performance 
would reach approximately 99% while the testing accuracy would drop 
to 68%. These accuracies prove the model’s overall performance, given 
the limitation imposed by such a small dataset. 

With the AI model settled, a high-throughput screening was per
formed on 45 million small molecules extracted from the GDB17 [30] 
dataset searching for high-potential cathodes for Li-, Na- and K-ion 
batteries. The GDB17 dataset is comprised of moieties with up to 17 
non-hydrogen atoms of C, O, N, S, F, Cl and Br. The reduction potential, 
open-circuit voltages and redox stability for all the 45 million molecules 
were assessed through the AI model, followed by a two-step filter pro
cess of voltages → capacities to select potential candidates. The storage 
capacities were determined by the following equation 

C =
nF

3.6M
, (1)  

where F is the Faraday constant, M the molecule’s molar mass and n the 
number of redox sites, anticipated by analyzing the possible reduction 
sites from the molecular units. The threshold of 100 mAh/g was 
considered for capacities while the voltage cutoff was of 3.0 V for Li+

and 2.6 V for Na+ and K+. The screening resulted in 4047, 860 and 874 
cathode candidates for the Li-, Na- and K-ions, respectively. 

For the molecules classified by the neural network model as redox 
stable, Fig. 3 (a) and (b) display, respectively, the occurrence (in %) and 
the selection ratio of atomic species (represented by their chemical 
symbols) together with the number of ring structures composed in the 
molecules (represented by integers). The occurrence is defined as the 
percentage of molecules containing the specific element or ring struc
ture in the respective sampling group (group1 containing the total 45M 
molecules and group 2 containing the molecules classified as redox 
stable). The selection ratio, in turn, is defined as the percentage of 
molecules classified as redox-stable which contains the specific element 
or ring structure. This analysis provides insights on which type of mo
lecular features that the AI recommended for generating higher redox 
stability. As can be seen, the selection ratio for the ring structures fol
lows the order 1(47.6%) > 2(39.1%) > 3(31.0%), indicating that the 
increase in the number of rings leads to an increase in the likelihood of 
the molecule to degrade upon the redox reaction. On the other hand, the 
halogens tend to favor redox stability with the selection ratio following 
the trend Br (51.4%) < Cl (52.9%) < F (78.9%). This trend correlates 
well with the variation of the electronegative, first ionization potential 
and atomic radius down the halogen group in the periodic table. In the 
case of the heteroatoms S, N and O, the following trend was found: S 
(45,5%) > N (41.9%) > O (39,6%). Thus, they tend to favor the redox 
instability since they display selection rates below 50%. 

After the high-throughput screening, DFT calculations were per
formed for all the selected compounds following the same procedure 
described for the OMEAD database (see the Supporting Information). 
The DFT-evaluated reduction potentials were employed to obtain the 
open-circuit voltages through the LM. Fig. 4 shows a collection of 
benchmarks evaluating the AI model performance, comparing AI- and 
DFT-based results through a probability density function (PDF). This 
PDF is a Gaussian fit to the respective data distribution, indicating the 
likelihood of observing a certain outcome. Fig. 4 (a), (b) and (c) shows 
the PDF of reduction potentials for the Na, Li and K cases, respectively. 
Similarly, Fig. 4 (d), (e) and (f) shows the open-circuit voltages’ PDFs for 

Fig. 1. The Linear Model (LM) performance in predicting the open-circuit voltages for (a) Na- and (b) K-ion batteries. Correlation plots between (c) α and electron 
affinities and (d) β and electronegativities, where α and β are parameters of the respective LM. 
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the same ion-type batteries. Overall, the DFT and AI values are in close 
agreement, with broader distributions and averages shifting to lower 
potentials for DFT results. This is due to the fact that the molecular 
geometry can change significantly after the relaxation step, especially 
for reduced phases, which largely contributes to the broader PDF dis
tributions and lower potentials. The AI, on the other hand, has no 
mechanisms to anticipate these molecular changes, which indeed re
quires a more sophisticated quantum mechanics-based approach. 
Nevertheless, the model was able to correctly identify high-potential 
electrodes for all three scenarios/ions. Finally, the RSNM accuracy in 

predicting the redox stability of the selected molecules was 74.4% when 
compared with the DFT findings, i.e., molecules that degraded during 
the DFT reduction reaction simulation. Fig. 4 (h) shows the confusion 
matrix for the Li+ case to further evaluate the model’s performance, 
from which it is possible to derive an F1-score of 83%, precision of 
88.3% and recall of 78% when classifying redox stable molecules. This 
metric represents a harmonic mean of the model’s precision and recall 
and is a traditional way to benchmark a classification model’s perfor
mance. In other words, it combines the likelihood of the model in 
correctly identifying true positives (precision) and in finding all the 

Fig. 2. (a) The AI model summarized in a flowchart, showing the different sub-layers and functionalities. (b) Schematics showing the overall Redox Stability 
Neural Model. 
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possible positives (recall). Therefore, the AI is shown to be useful for 
filtering most of the unsuited molecules for redox active applications, 
such as batteries, when screening large materials libraries. 

It should be highlighted that such redox stability neural model could 
be further optimized, to increase its accuracy, by using a significantly 
larger materials library (with a wider chemical diversity) in the training 
process. This type of models includes a large number of parameters to be 
optimized, and are therefore data hungry. However, the outcome ob
tained here is sufficient to prove the suitability of the developed model 
(including the criteria of classifying redox stability, the molecular 
graphs representation, the graph-based Neural Network and the evolu
tionary approach) to avoid redox unstable molecules during the high- 
throughput screening. 

Nonetheless, a list of 3202, 689 and 702 novel molecules for Li-, Na- 
and K-ion batteries, respectively, is here being proposed, considering the 
redox stable molecules that remained after the DFT filtering process. 
Fig. 4 shows some of these molecules, followed by their respective open- 
circuit voltages for K-, Na- and Li-ion batteries. Some of these com
pounds exhibit interesting working potentials with different redox sites, 
like carbonyl groups, for example. Moreover, molecules like G or J in 
Fig. 4 can offer high gravimetric energy densities if all the available 
redox sites would be electroactive. Furthermore, the AI model identified 
compounds containing electron-withdrawing groups such as -Cl, -Br, -F 
and ≡N, commonly employed as voltage enhancers, combined with 
electron-donating groups such as amines and methyl groups. This 
combination was pointed out in our previous work as a possible factor 
contributing to the higher insertion voltages displayed by these mole
cules. Interestingly, most of the compounds classified as redox stable by 
this approach contains one or more molecular rings. In fact, chain-based 
molecules have a higher rotational freedom than ring structures, which 
can facilitate the molecule to bend into a more favorable geometry for a 
given reaction to occur. In addition, p orbitals interacting in ring 
structures may also help to improve the overall stability of the molecule 
[41–46]. 

3. Conclusion 

In this work, an AI-driven framework was developed for discovery of 
organic battery cathode materials, greatly expanding from previously 
proposed methodology. This novel “AI model” has here proven to be a 
powerful tool for finding such novel organic-based materials not only for 
Li-ion, but also for Na- and K-ion batteries. The workflow consists in 
three steps: (i) evaluating the redox stability of candidate molecules 
through a complex graph neural network architecture (the RSNM); (ii) 
predicting the reduction potential of redox stable molecules through a 
combination of natural language processing and neural networks (the 
RPNM); (iii) using the predicted reduction potential to assess the open- 
circuit voltage of the respective ion insertion reaction. 

The framework was employed to screen 45 million small molecules 
in order to find novel cathode materials for Li-, Na- and K-ion batteries. 
From this step, 4047, 860 and 874 cathodes candidates, respectively, 
were identified by following voltage and capacity filters. All these 
molecules have been further analyzed through DFT calculations to 
better evaluate their properties and to benchmark the AI-driven method. 
From this step, it is possible to see the AI model overall performance. 
Additionally, the model has shown an accuracy of 74.4% and a F1-score 
of 83% when identifying redox stable compounds, showing its potential 
application in finding suitable molecules for redox-driven applications. 
Finally, a shortlist of 3202, 689 and 702 novel molecules for Li-, Na- and 
K-ion batteries is being proposed after considering the redox stable 
candidates (Fig. 5). 

4. Computational Methods 

Following the same methodology presented in our previous work, 
[16] the Organic Materials for Energy Applications Database (OMEAD) 
was expanded and now contains 41800 unique molecules and a list of 
high-level properties extracted from DFT simulations. Among these 
features, the redox potentials were obtained by evaluating the calcula
tions to obtain the Gibbs free energy and optimized molecular geome
tries of the neutral, reduced and oxidized phases. Specific details about 
this step can be found in the Supporting Information. Similarly, the 
Reduction Potential Neural Model (RPNM) follows the same architec
ture first introduced in our previous work [16,47], but was here 
retrained using 27866 unique molecules and tested on 3800. In Fig. S2, 
the training and testing results show that the model has similar perfor
mance as previously reported. 

The Linear Model (LM) for the Li-, Na- and K-ion open-circuit volt
ages were obtained following the same steps as presented in our previ
ous works, i.e., statistically testing the model: 

VIon
OC = αx + β , (X)

where VIon
OC is the open-circuit voltage of the respective ion insertion 

reaction happening in the electrode and x the independent variable 
representing the molecular reduction potential as obtained within the 
DFT calculation scheme. The parameters α and β were obtained through 
an ordinary least squares (OLS) regression. 

The Redox Stability Neural Model (RSNM) was developed to predict 
the so-called redox stability of the molecular compounds. This charac
teristic is here presented as a yes/no classification, and the ground truth 
to train the prediction model was obtained by following changes in the 
bond length of neighboring atoms upon redox reactions simulations 
(from OMEAD) within the DFT framework. If the bond length of any 
neighbors in a cutoff radius of 2.1 Å varies more than 30% upon 
oxidation or reduction reaction, the compound is classified as redox 
unstable (class no) and redox stable otherwise (class yes). The 30% limit 

Fig. 3. Occurrences (%) on the left representing the amount of molecules containing the referred element (or number of ring structures; 1, 2 or 3). On the right, 
selection ratios (%) representing how often those elements are found, normalized by their occurrences. The x-axes shows the chemical symbols and the number of 
ring structures within the molecule. 
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was considered a good choice as it covers variations on the average 
covalent radii of atoms present in our dataset for multiple bonds 
[48–51]. Following this tight threshold, 9640 molecules were consid
ered redox unstable. Furthermore, 9640 random redox stable molecules 
were extracted from OMEAD to form a well-balanced classification 
dataset for model training. 

The RSNM was developed based on molecular graphs as inputs to a 

Graph-based Neural Network. Graphs are mathematical structures 
encapsuling pairwise connections between different elements. These 
connections are often referred as edges and the elements as nodes. They 
are useful representation of molecules as there is a systematic way to 
encode information about the atoms as node elements and about the 
chemical bonds as edge elements. In this work, the information encoded 
in edges and nodes are embeddings [47] relative to the atom elements 

Fig. 4. Probability density function (PDF) plots of reduction potentials for the (a) Na-, (b) Li- and (c) K-ion cases comparing AI and DFT results. Similarly, PDF plots 
of open-circuit voltages for the (d) Na, (e) Li and (f) K ion insertion reaction. (h) Confusion matrix illustrating the classification model’s performance. 
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and bonding types, respectively. For example, the fragment C=C is 
represented by two different graph nodes storing the carbon embedding 
with a graph edge connecting them and storing the double bond embed
ding. However, when working with mathematical graphs a special type 
of neural networks is required, the Graph Neural Networks (GNNs) [52, 
53]. These are constructed to be compatible with graphs as inputs for the 
network and can work in conjunction with other types of neural net
works, like Fully-Connected, Recurrent, Convolutional, etc. In general, 
GNNs relies on a message passing (or neighborhood aggregation) 
scheme to convolute information from the graph nodes and edges. Eq. 2 
summarizes this message passing operation: 

x(l)
i = ϕ(l)

(
x(l− 1)

i ,∇j ∈N(i)ψ (l)
(

x(l− 1)
i , x(l− 1)

j , ej,i

))
, (2)  

in which x(l)i is the information (or features) of the node i in the l −
layer, ej,i the edge features between nodes j and i, ϕ and ψ are differ
entiable functions, usually a subclass of neural networks, and ∇ repre
sents an aggregation operation like a sum or a mean considering the N(i)
neighbors of the i-th node. In this work, we have employed the Graph 
Convolutional [53] (GC) and the Edge-Conditioned Convolutional [54, 
55] (ECC) layers, as shown in the Fig. 2, combined with a set of 
Fully-Connected (FC) layers. For the GC, Eq. 2 assumes the following 
form: 

Fig. 5. Lewis representations of a few predicted molecules and theirs respective open-circuit voltages for K-, Na- and Li-ion batteries as predicted by the AI model.  
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x(l)
i =

1
|N(i)|

∑

j ∈N(i)

(
Θ(l)⋅x(l− 1)

j

)
+ b(l), (3)  

where the fraction is a normalization factor that depends on the i-th 
node’s neighborhood, Θ and b the weight and bias parameters, respec
tively, similarly to a FC layer. The ECC, on the other hand, is given by: 

x(l)
i = Θ(l)⋅x(l− 1)

i +
∑

j ∈N(i)

x(l− 1)
j ⋅h

(
ei,j

)
+ b(l), (4)  

in which h is a FC layer and ei,j are features of the edge connecting i and j 
nodes. The network architecture, however, was obtained through an 
evolutionary approach by employing a differential evolution-based (DE) 
[40,41] code to find the optimal set of parameters for this network. The 
DE works by randomly initializing a group of different solution candi
dates, named population, and then evolving it through the mutation and 
recombination evolution operations. During the evolution, new candi
dates are created, potentially rendering better results. The resulting 
network prediction accuracy on a test dataset was chosen as the metric 
to evaluate the solution candidate fitness. A total of 397 network eval
uations were performed by this scheme to obtain the final RSNM, which 
was retrained one more time considering a dropout of 20% on all layers 
to avoid overfitting. The DE approach was chosen due to the challenging 
task of defining a suitable model architecture for this specific problem. 
In fact, other attempts resulted in poor accuracy models that were 
excluded from the present work. More details of this scheme can be 
found in the Supporting Information. It should be mentioned that 
methods like k-fold validation could further support the evaluation of 
our model. However, we here had to consider the additional computa
tional demands associated with the implementation of the DE approach. 
For instance, if a common 10-fold validation were to be employed, a 
total of 3970 trainings would be required. Although the data-driven 
approach is significantly faster than the quantum mechanics-based 
counterpart, it still relies on heavy computational resources. There
fore, having a training/testing split with the same examples made the 
comparison between the evolution scheme more consistent. Moreover, 
we have also carried out DFT-calculations for all molecules predicted by 
the AI model. This additional tier in the materials screening reduce our 
dependence on the accuracy of the NN-model. 
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