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1.  INTRODUCTION 

Habitat heterogeneity is the result of spatial and 
temporal variation in physical and biological factors, 
which creates a mosaic of encountered environmen-
tal quality for individuals and populations (Barry & 
Dayton 1991). As such, habitat heterogeneity is fun-
damental in shaping ecosystem structure and species 

distribution in both marine and terrestrial ecosys-
tems. The ability of species and individuals to adjust 
their distribution and behaviour in space and time, 
on both larger and finer scales, is beneficial since it 
allows optimized use of resources while reducing the 
risk of predation, which varies over both space and 
time (Stevick et al. 2002, Stephens et al. 2007). Most 
species are therefore not uniformly dispersed within 
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kilometres) is limited. To monitor harbour porpoise distribution and foraging activity on a micro-
scale, we deployed passive acoustic dataloggers, logging porpoise acoustic activity at 6 sites in a 
small, high porpoise-density area in southern Sweden. Data were collected for almost a year, giv-
ing detailed time series on porpoise activity. The time series were analysed using dynamic time 
warping to compare activity patterns between sites. Large differences were found between sites 
separated by only a few hundred meters, indicating micro-scale spatial preference. Spectral 
analysis for temporal cyclicity in activity revealed a dominant peak for 24 h cycles with higher 
activity at night for all sites. All sites also had a second peak for 29.5 d, linked to the lunar cycle 
with higher activity during full moon. Activity was overall highest during autumn and winter 
(September−December). Spatial and temporal patterns were linked to foraging, showing a posi-
tive correlation between porpoise presence and the percent of time present with detected forag-
ing. The study demonstrates that harbour porpoise spatial distribution on a micro-scale should be 
considered in e.g. behavioural, management and conservation studies and actions. In addition, we 
show that time series statistical methodology is informative and appropriate for analysis of 
acoustic temporal data.  
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their range of distribution, but instead aggregate 
spatio−temporally within certain areas which are often 
referred to as ‘hotspots’ (Myers 1988, Davoren 2013). 

Animal aggregations at foraging hotspots are 
likely based on individual foraging decisions made in 
response to environmental cues (Stephens & Krebs 
1986, Russell et al. 1992, Jones et al. 2014). For pred-
ators, a relationship between environmental cues 
and target prey species makes favourable foraging 
areas predictable as they signal the likelihood of 
encountering prey. Important environmental cues 
can be static and dynamic biological and physical 
variables, such as oceanographic features and hydro-
dynamics (e.g. Swartzman 1994, Thompson et al. 
2012, Jones et al. 2014) or cyclic changes in abiotic 
factors resulting in regular and recurrent variations 
in prey availability (e.g. Womble & Sigler 2006, Svee-
gaard et al. 2012b). Understanding patterns in pred-
ator distribution, density and behaviour requires 
knowledge on how they interact with their environ-
ment, including prey, at a range of spatio−temporal 
scales (Fauchald & Erikstad 2002, Embling et al. 
2012). For species that need conservation, such as the 
harbour porpoise Phocoena phocoena, this is espe-
cially important since it allows development of effi-
cient conservation actions (Jones et al. 2014, Pirotta 
et al. 2014, Gilles et al. 2016). 

The harbour porpoise is one of the smallest and 
most widely spread of the toothed whales, with a dis-
tribution covering coastal waters across the northern 
hemisphere (Read 1999). The porpoise’s small size 
and high metabolic rate requires a high and frequent 
rate of feeding (Wisniewska et al. 2016, Rojano-Doñate 
et al. 2018). The distribution and abundance of har-
bour porpoises is therefore strongly influenced by 
the availability and distribution of their prey (Svee-
gaard et al. 2012a,b, Lawrence et al. 2016). Harbour 
porpoises feed on a variety of small benthic and 
pelagic fish, although their diet is often dominated by 
a few species (Aarefjord et al. 1995, Börjesson et al. 
2003, Santos & Pierce 2003, Andreasen et al. 2017). 

Some harbour porpoises seasonally travel over 
hundreds to thousands of kilometres, presumably 
between foraging and reproduction habitats (John-
ston et al. 2005, Sveegaard et al. 2011b, Carlén et al. 
2018, Nielsen et al. 2018). In addition, for shorter 
periods of time, they sometimes remain in more 
restricted areas and move over much shorter dis-
tances (kilometres to tens of kilometres) (Johnston et 
al. 2005, Teilmann et al. 2022). The spatial distribu-
tion of porpoises is uneven on scales finer than tens 
of kilometres, most likely reflecting a corresponding 
fine-scale spatial distribution of suitable prey driven 

by oceanographic features (Booth et al. 2013, Brandt 
et al. 2014, Williamson et al. 2022). For example, 
large water movements can result in aggregations of 
prey, which in turn attract marine predators (All-
dredge & Hamner 1980, Wolanski & Hamner 1988). 
Therefore, regions where currents meet, like head-
lands and reefs with steep slopes or areas with strong 
tidal forces, sometimes represent important habitats 
for harbour porpoises (Johnston et al. 2005, Pierpoint 
2008, Skov & Thomsen 2008, Isojunno et al. 2012, 
Jones et al. 2014, IJsseldijk et al. 2015). On a fine 
temporal scale, differences in porpoise activity show 
links to the diel cycle (e.g. Carlström 2005, Schaffeld 
et al. 2016, Wisniewska et al. 2016, Benjamins et al. 
2017) and lunar cycle (Brennecke et al. 2021). These 
temporal patterns have been argued to reflect prey 
availability and light-dependent differences in the 
interactions between porpoises and prey, although a 
recent study on captive porpoises found the diel 
activity patterns to be independent of prey activity 
(Osiecka et al. 2020). 

Opportunistic mobile predators, such as the harbour 
porpoise, can be expected to adapt their distribution 
and behaviour to prey availability and specific forag-
ing scenarios. This allows them to move between for-
aging hotspots and target diverse prey resources 
(Stephens et al. 2007), and thereby optimize their for-
aging efficiency over varying scales. In this study we 
take advantage of the fact that harbour porpoises 
almost continuously emit high-frequency clicks to 
navigate, forage and communicate (Verfuß et al. 2005, 
Villadsgaard et al. 2007, Clausen et al. 2011, Amundin 
et al. 2022), and use passive acoustic monitoring data 
to investigate patterns in harbour porpoise presence 
and foraging. We do this on a spatial micro-scale, 
ranging from hundreds of meters up to a few kilome-
tres, as well as on a temporal scale, ranging from diel 
phases to seasons. We also examine the connection 
between harbour porpoise presence and foraging, 
with the aim of investigating if prey availability is 
potentially driving porpoise presence within the study 
area. We analyse the data applying dynamic time 
warping and spectral methodology, which are widely 
used in time series data analysis, but represent a novel 
approach for passive acoustic monitoring studies. 

2.  MATERIALS AND METHODS 

2.1.  Study area 

The Kullen peninsula is an accentuated mountain 
ridge located on the west coast of southern Sweden 
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at the northern inlet to Öresund, the sound between 
Denmark and Sweden (Fig. 1a). The narrow (3.5−
40 km) and shallow (≤50 m) sound has a sill with a 
maximum depth of only 10 m in the south and is char-
acterized by the meeting of salt water from the 
Skagerrak/North Sea (20−25‰) with brackish water 
from the Baltic Sea (7−10‰). Consequently, Öresund 
is stratified into 2 layers of water; a high-salinity bot-
tom layer with a predominant southward current 
direction and a low-salinity surface layer with a 
predominant northward current direction (Wändahl 
1980). The meeting of water bodies also generates a 
frontal area, with frequent downwelling events, 
especially at the tip of the Kullen headland, where 
there are strong currents (up to 5 knots) (SMHI 2021), 
zones of convergence and eddies, as well as oxy-
genated water and high nutrient concentrations (Wo -
lanski & Hamner 1988, Myrberg & Andrejev 2003). 
Changes in sea level amplitude are stochastic and 
dominated by weather events primarily driven by 
changes in air pressure (causing amplitude changes 
over 1 m), while the tidal amplitude is only a few cen-
timetres (SMHI 2014). 

The northern parts of Öresund, including the 
Kullen area, is a key habitat for harbour porpoises 
Phocoena phocoena belonging to the Belt Sea pop-
ulation. Adults and pairs of mothers and calves 
are frequently encountered around Kullen during 

the reproductive season in summer (Teilmann et 
al. 2008, 2022, Sveegaard et al. 2011a,b, J. Stedt 
pers. obs.). Anthropogenic activities in the Kullen 
area include small-scale fishing with static nets, the 
passing of a commercial shipping lane less than 
1 km from the headland area, and recreational boat 
traffic. 

2.2.  Logging harbour porpoise activity 

2.2.1.  Passive acoustic monitoring using C-PODs 

The acoustic activity of harbour porpoises was con-
tinuously logged at 6 sites in the study area from 
April 2014 to March 2015 using auto nomous passive 
acoustic data loggers (continuous-porpoise detectors, 
also known as C-PODs; Chelonia Ltd.). The duration 
of the time series of data collected varied between 
the survey sites due to differences in battery life of 
the C-PODs. The survey sites were located along the 
coastline, stretching from the tip of Kullen and along 
the northern side of the peninsula, at different bot-
tom substrates (Fig. 1b). The depth at the 6 survey 
sites ranged from 14 to 30 m (Site 1: 30 m, Site 2: 28 m, 
Site 3: 22 m, Site 4: 25 m, Site 5: 20 m, Site 6: 14 m). A 
minimum of 700 m was kept between survey sites to 
eliminate the risk of simultaneous detection of the 

145

a b

Fig. 1. Location and details of study area. (a) Study area, with (b) survey sites (Sites 1−6) and data on bottom substrate, along  
the coast of the Kullen peninsula in the northern part of Öresund, the sound between Denmark and Sweden
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same porpoise click event on multiple C-PODs. At 
each survey site, a C-POD was an chored with the 
hydrophone approximately 2 m above the seabed, 
following standard procedure for porpoise studies. 
All C-PODs were retrieved and serviced (change of 
batteries and memory cards) at least once during 
the  entire survey period and then re-deployed a 
few  hours or days later. To distribute potential 
instrumental variation individual C-PODs were ro -
tated between sites (Table S1 in the Supplement 
at  www.int-res.com/articles/suppl/m708p143_supp.
pdf). 

A C-POD is a self-contained archival data logger 
consisting of a hydrophone and electronics with a 
user-controlled firmware designed to detect and log 
a number of parameters of echolocation clicks of 
toothed whales. Data are saved on an SD card and 
uploaded upon retrieval of the C-POD. Using digital 
waveform analysis, the C-POD selects and logs ceta -
cean click events in the frequency range of 20−
160 kHz, including their time of occurrence, duration 
(5 μs resolution), amplitude, bandwidth and centre 
frequency (Chelonia Ltd. 2015). C-POD detection 
ranges for harbour porpoise clicks vary depending 
on environmental conditions but are typically consid-
ered to be approximately 200−300 m (Chelonia Ltd. 
2014, Amundin et al. 2022). Even within this range, 
only a smaller proportion of all clicks are detected 
(Amundin et al. 2022) due to the directionality of the 
beam of harbour porpoise clicks (Koblitz et al. 2012). 
However, due to the high vocalization rate of harbour 
porpoises (Wisniewska et al. 2016, Amundin et al. 
2022), a porpoise passing within the C-POD’s detec-
tion range is still likely to be detected. 

All C-PODs used in this study were calibrated in a 
circular wooden tank at the SDU Marine Biological 
Centre in Kerteminde, Denmark, prior to deployment 
to make sure that their detection thresholds were 
comparable. In these calibrations, porpoise-like clicks 
were transmitted in 31 trains of 10 clicks, each click 
containing 13 cycles of 130 kHz contained in a raised 
cosine envelope (Verfuß et al. 2013). The peak–peak 
amplitude was reduced by 1 dB from one train to the 
next. By rotating each C-POD, the threshold was 
measured at 4 angles of incidence (0°, 90°, 180° and 
270°) around the omnidirectional hydrophone in the 
horizontal plane. The sound level was measured 
using a calibrated Reson TC4014 hydrophone con-
nected via a custom-built amplifier to an oscilloscope 
and deployed prior to the C-POD measurements at 
the site of the C-POD hydrophone. By knowing the 
initial sound level of the first train (137 dB re 1 μPa pp 
at 1 m), the sound level threshold for each C-POD 

and angle could be established as the sound level 
at  which 50% of the clicks were detected (Dähne 
et al. 2013b). The variation in mean detection thresh-
old of the C-PODs used were in the range of ±3 dB 
(Table S1), which was considered an acceptable 
inter-instrumental variation (Dähne et al. 2013b). 

2.2.2.  Data extraction 

All C-POD data were analysed using the CPOD.exe 
software v. 2.044 (Chelonia Ltd.). The ‘KERNO’ clas-
sifier was used to identify the characteristic narrow-
band high-frequency (NBHF) click trains produced 
by harbour porpoises. For the click train classifica-
tion, KERNO uses several numerical descriptors of 
click trains, including click centre frequency, band-
width, duration, and inter-click interval. Using stan-
dard procedure for porpoise studies (e.g. Brandt et al. 
2014, Benjamins et al. 2017, Zein et al. 2019), only 
click trains assigned to the NBHF category with the 
2 highest levels of probability (‘Hi’ and ‘Mod’) were 
extracted and used in the subsequent analysis. 

The click train data from each logger were ex -
tracted as a text file from CPOD.exe and truncated 
by at least 1 h from deployment or retrieval of the C-
POD, to exclude data influenced by the deployment/
retrieval process. The text files were then imported 
into Matlab (ver. 2013a, MathWorks Inc.) and trans-
formed (according to variable descriptions below) 
into site-specific matrices containing (1) time, given 
as date and hour, (2) porpoise presence, given as 
detection positive minutes h−1 (DPM h−1, range 0−60), 
(3) percent of time present with detected foraging, 
given as foraging-to-presence percentage (FPP, range 
0−100%; see definition below), (4) hour of day, (5) 
lunar phase and (6) month. All data were presented 
as UTC+1, which is the standard time in Sweden (not 
using daylight saving time). 

To create full time series for all survey sites, all 
missing values for hours when C-PODs were serv-
iced (representing 0.7% of the data) were assigned 
with substituted values using imputation. Imputation 
is a prediction of a missing data point based on a gen-
eral context/pattern from neighbouring data points. 
Imputation is often done to satisfy assumptions of sta-
tistical methods. Several different im putation strate-
gies were tested and visually evaluated before 
identifying seasonally decomposed miss ing value 
imputation from the ‘imputeTS’ package (Moritz & 
Bartz-Beielstein 2017) in R version 4.1.1 (R Core Team 
2021) as the strategy providing highest resemblance 
of imputed values to surrounding data. 
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2.3.  Indicators of harbour porpoise activity 

Two different indicators of harbour porpoise acoustic 
activity were used: 

2.3.1.  Detection positive minutes (DPM) h–1,  
representing porpoise presence 

A DPM is defined as a minute during which at least 
1 porpoise click train — consisting of at least 5 consec-
utive clicks with a maximum inter-click-interval (ICI) 
of around 250 ms — has been detected according to 
the predefined criteria used by C-POD.exe. Conse-
quently, DPM is a binary measure which only gives 
porpoise detection (1) or no detection (0) in a given 
minute. DPM is one of the most frequently used vari-
ables when analysing harbour porpoise presence 
using passive acoustic monitoring (PAM, e.g. C-
PODs) and the raw binary data is often transformed 
into continuous data and given as the proportion of 
DPM per given unit of time (e.g. Simon et al. 2010, 
Williamson et al. 2016, Benjamins et al. 2017). In this 
study the variable DPM h−1 (range 0−60), describing 
the number of minutes in a given hour during which 
at least 1 porpoise click train is detected, was calcu-
lated and used as a measure of porpoise presence. 

2.3.2.  Foraging-to-presence percentage (FPP), 
representing foraging 

The proportion of DPM h−1 that included acoustic 
foraging behaviour was calculated as a modified ver-
sion of the term feeding buzz ratio (modified from 
Todd et al. 2009). Foraging was identified in the 
acoustic data by identification of so-called foraging 
buzzes. A foraging ‘buzz’ was defined as at least 5 
consecutive clicks with an ICI of <10 ms (Carlström 
2005, Todd et al. 2009, Zein et al. 2019) and used as a 
proxy for foraging behaviour. This measure is based 
on the observation that harbour porpoises decrease 
the ICI to <10 ms during prey capture attempts (Ver-
fuß et al. 2009). While searching for prey or navigat-
ing, the ICI normally varies between 30 and 100 ms, 
but when locked on a target fish the ICI becomes 
progressively shorter as the porpoise approaches the 
prey, sometimes down to 1 ms when the prey is only 
a few meters away (Koschinski et al. 2008, Verfuß et 
al. 2009, Miller & Wahlberg 2013). High-repetition 
rate click trains are also produced by porpoises while 
communicating, but the majority of click trains with 
high-repetition rates are buzzes associated with for-

aging (Sørensen et al. 2018). A buzz positive minute 
(BPM) was defined as a minute with at least 1 buzz 
(Zein et al. 2019). The raw BPM is thus, like DPM, a 
binary measure giving foraging detection (1) or no 
detection (0) in a given minute. The variable FPP was 
calculated as the ratio of BPMs to DPMs in each hour 
and multiplied by 100 to provide it as a percentage: 

                                                            (1) 

The variable FPP (range 0−100%) represents a 
proxy for the percentage of time harbour porpoises 
spend foraging while at a survey site, and it was used 
as a measure of foraging. 

2.4.  Temporal classification 

All data were finally given 3 different temporal 
classifications: (1) hour of day, (2) lunar phase and (3) 
month. The classification into lunar phase was made 
using lunar illumination data from NASA (https://
svs.gsfc.nasa.gov/4955). All data were classified into 
1 of 8 lunar phases (new, waxing crescent, first quar-
ter, waxing gibbous, full, waning gibbous, third 
quarter, waning crescent) based on the lunar illumi-
nation value and illumination progress (increasing/
decreasing illuminated surface; for definitions see 
Fig. S1 in the Supplement). 

2.5.  Statistical analysis 

All statistical analysis was performed on both vari-
ables of porpoise activity (DPM h−1 and FPP) using 
R version 4.1.1 (R Core Team 2021). 

2.5.1.  Spatial analysis 

Similarities in DPM h−1 and FPP patterns between 
survey sites were investigated using dynamic time 
warping (DTW). In time series analysis, DTW is 
widely used for pair-wise comparison of individual 
time series as it provides a normalized distance meas-
ure, which is insensitive to local compression and 
stretches of the times series, reflecting the similarity 
or dissimilarity of compared time series (Berndt & 
Clifford 1994, Giorgino 2009). Other standard distance 
metrics that are not specific to time series, such as Eu-
clidean distance, are not appropriate to use for estab-
lishing relations between time series trajectories as 
they assume independence of all data points. In con-

FPP = 
BPM
DPM( ) � 100
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trast, DTW takes into account that data points in a 
time series trajectory are typically correlated, i.e. not 
independent, as there is some sort of ‘memory’ propa-
gating between the data points. In this way, DTW 
pays attention to the overall shape of the trajectories 
rather than comparing the time series point-by-point 
with each other. For that reason, DTW has been demon-
strated to be optimal for discovering similarities in 
shapes of time series trajectories (Bagnall et al. 2017). 

Raw time series trajectories typically represent a 
complex mixture of periodic patterns and stochastic 
noise. Therefore, prior to DTW analysis, all hourly data 
for both variables and 6 survey sites were smoothened 
using simple moving average. We used a moving aver-
age in a sliding window strategy and examined a 
wide range of possible window sizes. A window size 
of 14 d was empirically determined as representing a 
good balance between over- and under fitting the time 
series trajectories. A risk of using too small window 
size, i.e. overfitting, is that the downstream analysis 
can potentially become too sensitive to the noise, while 
a large window size, i.e. underfitting, can potentially 
lead to removal of seasonal oscillations of interest. 

DTW analysis was then carried out for both vari-
ables and all possible pairs of survey sites using the 
‘dtw’ package in R (Giorgino 2009) with a symmetric 
step pattern. Normalized DTW distances for all pair-
wise time series comparisons were extracted into a 
distance matrix to investigate similarities and dissim-
ilarities between survey sites. This was done using 
hierarchical cluster analysis with complete linkage 
method. Finally, identified clusters were plotted as 
dendrograms, using the ‘ggtree’ package in R (Yu 
2020), to visualize hierarchical similarities between 
survey sites. 

2.5.2.  Temporal analyses 

Temporal patterns were investigated separately for 
each time series, i.e. variable and survey site. Pres-
ence of both high frequency cyclicity (short periods, 
e.g. diel cyclicity) and low frequency cyclicity (long 
periods, e.g. lunar cyclicity) were analysed using 
spectral analysis. In spectral analysis, data are trans-
formed from the time domain into the frequency 
domain using Fourier transform, allowing subse-
quent analysis for presence and strength of periodic 
components of a signal at different frequencies. 

Spectral analysis was performed on detrended 
time series. Detrending of time series data refers to 
the removal of potential changes in the mean value 
over time, with the purpose of removing a potentially 

distorting aspect from the data, and satisfy underly-
ing assumptions of the spectral analysis. In this study, 
detrending was done before investigating potential 
periodic frequencies to remove an overall monotonic 
change over time that can mask the presence of peri-
odic signals. The computed trend was subtracted 
from the raw time series. More specifically, detrend-
ing was performed using a moving average of 24 h 
for investigation of high frequency cyclicity. For 
investigation of low frequency cyclicity, detrending 
was performed on the time series already smoothened 
over 14 d using a moving average of 30 d. 

Using the function ‘spectrum’ in the ‘stats’ package 
in R (R Core Team 2021), the periodogram for each 
detrended time series was calculated and plotted 
against frequency, with the frequency axis converted 
to cycles per unit time. Each periodogram was visu-
ally inspected to identify detected peaks, which were 
several magnitudes higher than, and clearly distin-
guished from, noise in the periodograms. For each 
periodogram and time series, the dominant cyclic 
component (peak) and any other strong cyclic pat-
terns were identified, using the ‘photobiology’ pack-
age in R (Aphalo 2015). The peak search within ‘pho-
tobiology’ was performed by spline interpolation of 
data points in each periodogram with the consequent 
identification of local maxima present in the interpo-
lated curve. The local maxima (peaks) for each peri-
odogram and time series were extracted into a matrix 
and used to calculate the mean frequency ± SD of 
detected dominant cyclic components. 

Boxplots were computed to visualize the distribu-
tion of detected cyclic components in the low and 
high frequency range, respectively. This was done 
using the matrix with data on local maxima for each 
periodogram and time series. Boxplots were also cre-
ated to investigate the shape of the cyclic compo-
nents, i.e. to determine at what time DPM h−1 and 
FPP was highest or lowest. This was done using the 
full time series, including the imputed values for the 
servicing periods, for all survey sites. 

Monthly differences in DPM h−1 and FPP could not 
be analysed using spectral analysis, as this requires a 
longer time series covering repeated monthly cycles. 
Instead, differences between months were investi-
gated using boxplots. 

2.5.3.  Correlation between presence (DPM h−1)  
and foraging (FPP) 

The relation between DPM h−1 and FPP was ana-
lysed separately for each survey site with the Spear-
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man rank correlation test using the function ‘cor.test’ 
in the ‘stats’ package in R (R Core Team 2021). The 
results were visualized in scatter plots using the 
function ‘ggscatter’ in the ‘ggpubr’ package in R 
(Kas sam bara 2020). In addition, cross-correlation 
plots were computed using the function ‘ccf’ in the 
‘stats’ package in R (R Core Team 2021) to provide an 
in-depth visualization of correlation between the 
curves at different lags. This was done to address the 
strong temporal linkage (autocorrelation) between 
corresponding data points in 2 time series curves. 
The cross-correlation is calculated by gradual shift-
ing (lagging) of one time series curve with respect to 
the other and computing a correlation between the 
shifted curves at each lag. 

3.  RESULTS 

3.1.  Data availability 

The mean recording time for the 6 survey sites was 
303 d, minimum 240 d (Site 2) and maximum 342 d 
(Site 4), from April 2014 to March 2015. 

3.2.  Spatial differences 

There were large differences in both harbour por-
poise Phocoena phocoena presence (DPM h−1) and 
foraging (FPP) for some survey sites, while for other 
survey sites there were more similar activity levels 
(Fig. 2, Table 1). Site 1 had the highest DPM h−1 and 
FPP, followed by Sites 2, 3 and 4 with relatively inter-
mediate DPM h−1 and FPP, and Sites 5 and 6 with the 
lowest DPM h−1 and FPP (Fig. 2). 

From the cluster analysis, based on normalized 
pairwise DTW distances (Table 1), it was reasonable, 
and verifiable from visual inspection of the time series 
data, to conclude the presence of 3 main clusters: Site 
1 formed one cluster, Sites 2, 3 and 4 formed a second 
cluster, and Sites 5 and 6 formed a third cluster (den-
drograms in Fig. 2). Normalized DTW distances were 
used for relative comparisons be tween pairs of time 
series from different survey sites, with a low distance 
value indicating that the pair of time series have simi-
lar patterns, and a high distance value indicating that 
the pair of time series are different. Sites 5 and 6 had 
very low distance values (Table 1) and strong cluster-
ing structures (dendrograms in Fig. 2), indicating al-
most identical patterns of DPM h−1 and FPP. 

The large branching heights in the dendrograms at 
which the cluster with Sites 5 and 6 separates from 

the other survey sites reflects that DPM h−1 and FPP 
at these 2 survey sites were very different from the 
other survey sites. Sites 3 and 4 also had almost iden-
tical patterns in DPM h−1 and FPP, with almost as 
strong clustering structures as Sites 5 and 6. At Sites 
3 and 4, DPM h−1 and FPP was similar to Site 2, but 
this result must be interpreted with caution as the 
time series at Site 2 was about 3 mo shorter than 
those at Sites 3 and 4. 

The dendrograms for DPM h−1 and FPP are almost 
identical and show the same spatial pattern (dendro-
grams in Fig. 2). This pattern, with the same 3 clus-
ters of data and a striking similarity between the 2 
variables, is also very distinct in the time series plots 
(Fig. 2). It is also clear from the time series plots 
(Fig. 2) that Site 1 had a much higher DPM h−1 and 
FPP and periodically opposing pattern than the rest 
of the survey sites. In fact, DPM h−1 and FPP at Site 1 
was, for the majority of the study period, 2 to 4 times 
higher than that at the rest of the survey sites. In 
comparison, Sites 2, 3 and 4 had medium to high lev-
els of DPM h−1 and FPP for most of the time, while 
Sites 5 and 6 displayed much lower levels. There 
were, however, periods during the autumn and win-
ter (October−December), when the DPM h−1 and FPP 
at Sites 2−6 matched or even exceeded that of Site 1. 

3.3.  Temporal patterns 

There were strong cyclic components detected in 
the high and low frequency range for both variables 
and all 6 survey sites, correlated to diel and lunar 
cyclicity, respectively. 

3.3.1.  High frequency range: diel cyclicity 

In the high frequency range, there was a very 
strong and dominant cyclic component with a fre-
quency representing a diel pattern over 24 h for both 
variables and all survey sites (Table 2, Fig. 3). For 
some of the survey sites there were also other cyclic 
components, representing patterns over 12 and 8 h, 
several magnitudes weaker and less consistent than 
the diel pattern. When investigating the shape of the 
diel cyclicity, it was clear that both DPM h−1 and FPP 
were highest at night, with peaks around midnight, 
and lowest during the day (Fig. 4). Like the time 
series plots (Fig. 2), the diel cyclicity plots also show 
clear spatial differences between survey sites. The 
overall highest levels of DPM h−1 and FPP was found 
at Site 1, followed by Sites 2, 3 and 4, which had 
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DPM h−1 and FPP levels similar to each other but at a 
lower level than Site 1, and the lowest levels of DPM 
h−1 and FPP at Sites 5 and 6. In addition, the plots 
revealed a complete lack of FPP (i.e. foraging) during 
daytime at Site 6 (Fig. 4b). 

3.3.2.  Low frequency range: lunar cyclicity 

In the low frequency range, cyclic patterns over 
22−42 d could be detected for both response vari-
ables and all survey sites (Table 3). All detected 
cyclicities clearly overlapped with a periodic compo-
nent representing a complete lunar cycle of 29.5 d 
(Fig. 5). There was an indication of somewhat higher 
DPM h−1 and FPP during full moon at most of the 
survey sites (Fig. S2 in the Supplement). Similarly, 
DPM h−1 and FPP appear to be lowest during the 
phases adjacent to full moon, i.e. waning and wax-
ing gibbous as well as third and first quarter. How-
ever, the variation within lunar cycle and survey 
site was large, making it difficult to interpret cyclic 
patterns. 

3.3.3.  Monthly differences 

Large differences between different periods of the 
year were found in both variables, with a generally 
higher DPM h−1 and FPP at all survey sites during 
the  autumn and winter (in particular September−

December) than during the rest of the year (Fig. 6). In 
terms of periods with lower activity, the variation 
between variables and survey sites was greater, but 
for some survey sites (e.g. Sites 1 and 2) there was a 
clear period with much lower DPM h−1 and FPP dur-
ing the spring (April−May). For Sites 5 and 6, there 
was an interesting pattern with an almost complete 
lack of FPP during all months except during the 
autumn and winter (September−December) when 
the FPP suddenly became relatively high (Fig. 6b). In 
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Survey site                      1         2        3        4        5        6 
 
Presence (DPM h−1) 
1                                                 −        −        −        −        − 
2                                    1.99                −        −        −        − 
3                                    2.34    0.87                −        −        − 
4                                    1.90    1.19   0.36                −        − 
5                                    5.85    1.60   1.43   1.49               − 
6                                    5.67    2.34   1.90   2.20   0.37       

Foraging (FPP) 
1                                                 −        −        −        −        − 
2                                    1.61                −        −        −        − 
3                                    2.20    0.78                −        −        − 
4                                    2.13    1.26   0.46                −        − 
5                                    6.85    2.88   2.01   2.99               − 
6                                    8.61    4.58   3.35   4.31   0.35

Table 1. Normalized distance matrix from dynamic time 
warping (DTW)-analysis. Normalized distances for all pair-
wise comparisons between the 6 survey sites (Sites 1−6) in 
DTW-analysis on time-series representing presence (detec-
tion positive minutes, DPM h−1) and foraging (foraging-to- 

presence percentage, FPP)

Site            Cyclic component (mean h ± SD) 
                      Presence (DPM h−1)             Foraging (FPP) 
 
1                              24.0 ± 0.6                          24.0 ± 0.0 
2                              24.1 ± 0.5                          23.8 ± 0.3 
3                              24.0 ± 0.0                          24.0 ± 0.0 
4                              24.3 ± 0.3                          24.0 ± 0.0 
5                              24.0 ± 0.3                          23.8 ± 0.3 
6                              24.5 ± 0.3                          24.1 ± 0.5

Table 2. Temporal cyclicity in the high frequency range. 
Detected dominant cyclic component (h, mean ± SD) in the 
high frequency range from spectral analysis for both vari-
ables: presence (detection positive minutes, DPM h−1) and 
foraging (foraging-to-presence percentage, FPP) and all  

survey sites (Sites 1−6)
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Fig. 3. Temporal cyclicity in the high frequency range. De -
tected dominant cyclic component (h) from spectral analysis 
for presence (detection positive minutes, DPM h−1, 0−60) and 
foraging (foraging-to-presence percentage, FPP, %), and all 
survey sites (Sites 1−6). Lower and upper box boundaries: 
25th and 75th percentiles; lower and upper error lines: 10th 
and 90th percentiles. Black line inside each box: median 
value. Dotted line: diel cyclicity (cyclic component of 24 h) 
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Stedt et al.: Micro-scale spatio-temporal patterns in porpoise activity

general, the shape of the patterns in DPM h−1 and 
FPP at Sites 2−6 was very similar throughout the 
entire survey period. At Site 1, however, the patterns 
in DPM h−1 and FPP were somewhat different, with 
overall stable and high levels during all surveyed 
months, except during the spring (April−May) when 
they were distinctively lower. 

3.4.  Correlation between presence (DPM h−1)  
and foraging (FPP) 

A significant positive correlation between DPM h−1 
and FPP was found for all survey sites (Table 4; rho 
0.69−0.75; Fig. S3). The correlation was significant 
for almost all lags (Fig. S4), providing additional sup-
port for a strong correlation between DPM h−1 and 
FPP. In addition, the cross-correlation plots confirm 
the periodic signal in the DPM h−1 and FPP time 
series data as it has a clear maximum of correlation at 
lag = 24 h (Fig. S4). This implies that the temporal 
periodic pattern reflected by the correlations between 
DPM h−1 and FPP is repeated every 24 h. 

4.  DISCUSSION 

4.1.  Micro-scale spatial preference 

The results from this study demonstrate that the 
acoustic activity of harbour porpoises Phocoena pho-
coena, measured as both presence (DPM h−1) and for-
aging (FPP), can vary considerably and consistently 
over a fine spatial scale (hundreds of meters to a few 
kilometres). At these micro-scales we could identify 3 
spatial clusters for both DPM h−1 and FPP (dendro-
grams in Fig. 2). 

The survey sites were distributed between the 3 
clusters so that it also reflected their distance to the 
tip of the Kullen headland. Lowest DPM h−1 and FPP 
was found at the highly distinctive cluster formed 
by Sites 5 and 6 (Fig. 2), located furthest from the tip 
of the Kullen headland. These 2 sites, separated by 
1.5 km, had almost identical patterns in DPM h−1 and 
FPP, which were very different from the patterns at 
the other survey sites. The second highly distinctive 
cluster was formed by Sites 2, 3 and 4. The distance 
between any 2 of these 3 survey sites varies between 
less than 1 km to up to 2 km (Fig. 1). Like Sites 5 and 
6, these 3 survey sites had almost identical patterns 
in DPM h−1 and FPP. Highest DPM h−1 and FPP was 
found at Site 1 at the tip of the Kullen headland. This 
survey site represented a third distinctive cluster, 
with levels of DPM h−1 and FPP that often were sev-
eral times higher than those at the other survey sites 
(Fig. 2). This was particularly striking as Site 1 is 
located only about 700 m from Site 2. 

The differences in DPM h−1 and PPM between 
clusters could perhaps be linked to differences in 
depth and bottom substrate, as these variables differ 
between the tip of the Kullen headland (max depth: 
30 m, substrate: mud) and the area surrounding Sites 
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Site            Cyclic component (mean d ± SD) 
                       Presence (DPM h−1)             Foraging (FPP) 
 
1                             22.0 ± 14.9                        24.7 ± 15.1 
2                             22.9 ± 11.3                        20.8 ± 11.2 
3                             24.1 ± 15.0                           36.5 ± 9.1 
4                             32.7 ± 18.4                           32.4 ± 5.1 
5                             34.1 ± 19.6                        42.1 ± 16.2 
6                                29.0 ± 7.6                             29.0 ± 7.6

Table 3. Temporal cyclicity in the low frequency range. 
Detected dominant cyclic component (d, mean ± SD) in the 
low frequency range from spectral analysis for both vari-
ables: presence (detection positive minutes, DPM h−1) and for-
aging (foraging-to-presence percentage, FPP) and all survey  

sites (Sites 1−6)
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Fig. 5. Temporal cyclicity in the low frequency range. De -
tected dominant cyclic component (d) from spectral analysis 
for presence (detection positive minutes, DPM h−1, 0−60) 
and foraging (foraging-to-presence percentage, FPP, %), 
and all survey sites (Sites 1−6). Lower and upper box bound-
aries: 25th and 75th percentiles; lower and upper error lines: 
10th and 90th percentiles. Black dot: outlier. Black line in  side 
each box: median value. Dotted line: lunar cyclicity (cyclic  

component of 29.5 d) 
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Fig. 6. Monthly differences. Harbour porpoise activity for the different months of a year for both variables: (a) presence (detec-
tion positive minutes, DPM h−1, 0−60) and (b) foraging (foraging-to-presence percentage, FPP, %), and all survey sites (Sites 
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5 and 6 (max depth: 20 m, substrate: sand and 
gravel). The Kullen headland area is, given its posi-
tion at the inlet to Öresund, probably also character-
ized by more intense water movements, including 
stronger currents and frontal zones. These environ-
mental cues can be used by predators as signals of 
spatial predictability of prey. They may also indicate 
to porpoises that this is an area with increased likeli-
hood of encountering prey. Feeding in distinctive 
areas has also been hypothesized to be a beneficial 
foraging strategy for porpoises as it reduces their 
need for movement between foraging patches (Skov 
& Thomsen 2008). As such, the Kullen headland area 
could represent a favourable foraging location and 
distinct micro-scale hotspot for harbour porpoises 
within the already identified important key habitat 
around the Kullen peninsula in the northern part of 
Öresund (Teilmann et al. 2008, 2022, Sveegaard et 
al. 2011a,b). Contrary to what might be expected 
based on the high acoustic activity levels at Site 1, 
this site is most subjected to potential disturbance 
from boat traffic (including both recreational and 
commercial vessels). 

4.2.  Link between porpoise presence and foraging 

Predator density is known to be closely linked to 
prey density (Carbone & Gittleman 2002). In this study 
this is reflected in the strong correlation (Table 4, 
Fig. S3) and cross-correlation (Fig. S4) between DPM 
h−1 and FPP. These 2 variables have almost identical 
patterns and the same clustering structure (Fig. 2), 
demonstrating that the presence of harbour por-
poises is a strong indicator of an area’s importance 
for foraging. The most plausible explanation for 
the  positive correlation between DPM h−1 and FPP 
(Table 4) is that porpoise presence was driven by for-

aging opportunities. As FPP is calculated as a propor-
tion of DPM h−1, the positive correlation shows that 
harbour porpoises spend more time in areas with good 
foraging opportunity and use a higher proportion of 
the time foraging when being there. Conversely, in 
areas where porpoises are detected to a lesser extent 
of the time, they also spend a smaller proportion of 
the time present foraging. We interpret this as por-
poise presence being driven by foraging opportuni-
ties. This relates well to the metabolic needs of har-
bour porpoises which force them to forage frequently 
(Wisniewska et al. 2016, Rojano-Doñate et al. 2018). 
The link between DPM h−1 and FPP suggests that the 
micro-scale spatial heterogeneity within the study 
area was most likely caused by variations in foraging 
opportunities for harbour porpoises and that Site 1 is 
undoubtedly the most important foraging site for har-
bour porpoises within the study area. 

4.3.  Seasonal differences 

Two general conclusions can be made from the 
overall patterns in DPM h−1 and FPP for the different 
survey sites over the course of the full time series. 
First, Site 1 seems to be an important foraging habitat 
for harbour porpoises almost independently of sea-
son, with the only possible exception being late April 
and May when DPM h−1 and FPP is relatively lower 
(Fig. 6). Second, the remaining 5 sites are of less 
importance for all months except October−December 
(Fig. 6). This seasonal increase in porpoise presence 
was especially noticeable for Sites 5 and 6 (Fig. 6a), 
and together with Sites 3 and 4 these 2 survey sites 
also showed the most pronounced seasonal variation 
in foraging activity (Fig. 6b). In fact, Sites 5 and 6 dis-
played a shift from being practically unused as forag-
ing areas to quite high FPP during October−Decem-
ber. Interestingly, the peak in FPP at Site 6 in 
December is followed by a drastic decline in January, 
down to levels representing an almost complete lack 
of foraging (Fig. 6b). The seasonal use of the rather 
shallow bottoms with sand and gravel at Site 5 and 6 
might indicate seasonal variation in availability or 
quality of prey, or that porpoises were targeting a dif-
ferent prey species. It is also likely that the increase 
in FPP reflects the higher food intake of harbour por-
poises during late summer and autumn (mid-July to 
November/December) (Rojano-Doñate et al. 2018, 
Gallagher et al. 2021) and a corresponding increase 
in foraging rates during this time of year. 

Harbour porpoises have high metabolic costs of 
living correlating with a high diet quality need (Spitz 
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Site                 p-value            Correlation coefficient (rho) 
 
1                  <0.0001***                             0.75 
2                  <0.0001***                             0.69 
3                  <0.0001***                             0.73 
4                  <0.0001***                             0.72 
5                  <0.0001***                             0.71 
6                  <0.0001***                             0.75

Table 4. Results from Spearman’s rank correlation test 
between presence (detection positive minutes, DPM h−1) 
and foraging (foraging-to-presence percentage, FPP). Spear -
man p-value and Spearman correlation coefficient (rho) 
for each survey site (Sites 1−6). Asterisks indicate statistical  

significance
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et al. 2012). One of the most important prey species 
for harbour porpoises in the study area, both with 
regard to energy content and proportion of the diet, 
is Atlantic herring Clupea harengus (Börjesson et al. 
2003, Sveegaard et al. 2012a, Andreasen et al. 2017). 
The Rügen spring spawning stock of herring over-
winters in the Öresund area between August and 
February (Nielsen et al. 2001). Consequently, the pres-
ence of large numbers of herring might explain the 
high porpoise presence and foraging activity during 
the winter months, and perhaps also the high DPM h−1 
and FPP observed at Sites 5 and 6 in October−
December. 

On the population level, the best available data on 
spatio−temporal distributional patterns of Belt Sea 
harbour porpoises are based on individual movement 
data from satellite transmitters (Sveegaard et al. 
2011b, Teilmann et al. 2022). These studies have 
shown that harbour porpoises are present in the 
northern part of Öresund and at Kullen mainly dur-
ing March−November, with the highest abundance 
during spring and summer (March−August). Harbour 
porpoises have also been suggested to increase their 
acoustic activity during the mating season in the 
summer (Osiecka et al. 2020), which could be misin-
terpreted as an increased true presence if acoustic 
methods are used. Our results, however, reveal a 
completely opposing pattern for most of our survey 
sites (Sites 2−6) with the lowest levels of activity dur-
ing spring and summer (March−August) and highest 
porpoise presence during October−December (Figs. 2 
& 6). A likely explanation to this is the difference in 
scales. The time period for this study is much shorter 
since it only includes approximately 1 yr of data 
(2014−2015), while the satellite studies are based on 
data collected over almost 25 yr (1997−2021). Also, 
the spatial scales differ by several orders of magni-
tude, with this study focusing on spatio−temporal 
patterns over hundreds of meters to a few kilometres 
in a very limited area, while the satellite studies 
investigate movement patterns and distribution over 
a much larger spatial scale. As a strong spatial corre-
lation has been found between large-scale acoustic 
detections using a towed hydrophone array and den-
sity distribution from satellite tagged porpoises 
(Sveegaard et al. 2011a), the difference is not likely 
due to the different survey platforms. Rather it shows 
that satellite data provide us with representative 
general distribution patterns, while stationary acoustic 
monitoring is more suitable for studies of small-scale 
spatio−temporal heterogeneity and detection of micro-
scale hotspot areas, such as the one at the Kullen 
headland area. 

4.4.  Diel cyclicity 

The identification of a very strong and distinct peri-
odic component over 24 h for both variables and all 
6 survey sites (Table 2, Fig. 3) demonstrates the pres-
ence of diel cyclicity in harbour porpoise activity. The 
same periodic component over 24 h was found in 
the cross-correlation between DPM h−1 and FPP, pro-
viding further support for presence of diel cyclicity 
(Fig. S4). In line with previous studies (e.g. Carlström 
2005, Todd et al. 2009, Schaffeld et al. 2016, Wis-
niewska et al. 2016, Benjamins et al. 2017), DPM h−1 
was highest at night, with peaks around midnight, 
and lowest during the day (Fig. 4). The diel cyclicity 
in harbour porpoise presence has been proposed to 
be linked to increased foraging during nighttime, 
probably reflecting a higher availability of prey or 
diel differences in prey behaviour causing a higher 
echo location rate (e.g. Todd et al. 2009, Brandt et al. 
2014, Schaffeld et al. 2016). Also, harbour porpoises 
have higher respiration rates at night (Rojano-Doñate 
et al. 2018), which fits well with a nocturnal increase 
in foraging activity (Wisniewska et al. 2016). 

The strong correlation between DPM h−1 and FPP 
(Table 4) supports the hypothesis that the increase in 
acoustic detections at night is linked to an in crease in 
foraging-associated acoustic activity. As such, it indi-
cates that foraging behaviour is indeed a driver for 
the diel activity pattern in free-ranging harbour por-
poises, although this was refuted in a recent study on 
captive porpoises (Osiecka et al. 2020). The captive 
porpoises were considered to be largely unaffected 
by the presence of wild prey as they were provided 
sufficient food to cover their metabolic need during 
daytime. Instead, Osiecka et al. (2020) found that the 
clicking activity was best explained by light availabil-
ity, as the acoustic activity increased with de creasing 
light availability. An increase in echolocation rate to 
compensate for the loss of visual information during 
dark hours have also previously been suggested as 
an explanation for the increased acoustic activity 
during nighttime (e.g. Carlström 2005). This hypo -
thesis can however not explain the increase in FPP 
seen in this study, and together with the indications 
from our results that FPP was driving DPM h−1, we 
argue that the increase in FPP during nighttime was 
caused by an actual increased foraging. All 6 survey 
sites displayed the same diel pattern, but clear spa-
tial differences in levels of DPM h−1 and FPP was 
observed (Fig. 4). 

Interestingly, there was a complete lack of FPP 
during daytime at Site 6, but rather high levels of FPP 
between 18:00 and 07:00 h (Fig. 4b). One possible 
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explanation for the nighttime foraging at all survey 
sites might be the presence of prey only being avail-
able, either by means of actual presence or behav-
iour, to the porpoises to predate on during nighttime, 
such as young cod Gadhus morhua, herring and 
sprat Sprattus sprattus. These fish species express 
diel vertical movement patterns in response to the 
diel vertical migration of their prey species (e.g. 
planktonic crustaceans and mysids; Cardinale et al. 
2003, Axenrot et al. 2004, Espeland et al. 2010), 
resulting in a higher prey abundance in shallow 
waters and close to the surface during nighttime. 
Both cod and herring also reduce schooling and 
swimming speeds during nighttime due to relaxed 
predator avoidance mechanisms (Cardinale et al. 
2003, Anderson et al. 2007, Didrikas & Hansson 2009), 
making them energetically beneficial to prey upon 
during nighttime by predators that do not rely on 
their vision for foraging, such as harbour porpoises. 
In addition, nighttime darkness could further benefit 
porpoises if their target prey is dependent on visual 
information to detect and avoid predation. Other 
potentially important prey species for harbour por-
poises in the area include the sand goby Poma -
toschistus minutus and other gobiid species (Andrea -
sen et al. 2017). During the daytime in summer, the 
sand goby is buried in the muddy or sandy bottoms 
below the thermocline, i.e. below 10−15 m, but they 
actively swim and feed during the night (Ehrenberg 
& Ejdung 2008). During summer, predation on sand 
goby and other gobiids active at night may be one 
explanation for the higher DPM h−1 and FPP ob -
served during nighttime. 

4.5.  Lunar cyclicity 

In addition to the diel cyclicity in DPM h−1 and FPP, 
the temporal analysis also revealed a periodic com-
ponent corresponding to the lunar cycle at all 6 sur-
vey sites and in both variables (Table 3, Fig. 5). The 
lunar cyclicity was less distinct than the diel cyclicity 
and showed more variation, but the results still indi-
cate an effect of the lunar cycle on harbour porpoise 
activity in the Kullen area. Lunar phase effects, from 
associated variations in potential lunar illumination 
or tidal forces, influence the distribution and behav-
iour of a wide range of marine species, from plankton 
to seals (e.g. Benoit-Bird et al. 2009a,b, Mercier et al. 
2011, Fallows et al. 2016). For cetaceans, the lunar 
cycle affects the abundance of dusky dolphins Lage -
norhynchus obscurus and spinner dolphins Stenella 
longirostris (Benoit-Bird et al. 2009b), the diving be -

haviour and habitat use of short-finned pilot whales 
Globicephala macrorhynchus (Owen et al. 2019), and 
foraging behaviour of common dolphins Delphinus 
delphis (Simonis et al. 2017). 

In only a few studies have lunar phases been 
reported to impact harbour porpoise distribution (de 
Boer et al. 2014) and bycatch risk (Brennecke et al. 
2021), while others have studied potential effects of 
the lunar cycle on harbour porpoise behaviour with-
out finding any patterns (Osiecka et al. 2020). In 
addition, in regions where the lunar cycle creates 
strong tidal forces, these effects have been shown to 
influence harbour porpoise abundance and foraging 
behaviour (e.g. Pierpoint 2008, IJsseldijk et al. 2015, 
Holdman et al. 2019). However, to the best of our 
knowledge, the present study is the first to report 
lunar cycle effects on harbour porpoise foraging 
behaviour in an area without any notable tidal forc-
ing. These results suggest that, apart from the indi-
rect effects of the lunar cycle through tidal changes, 
harbour porpoises can be affected by the lunar cycle 
in other ways, such as through direct and indirect 
effects of varying light availability, which could influ-
ence predator−prey interactions and foraging effi-
ciency. The indication of a somewhat higher porpoise 
presence and foraging activity during full moon for 
most survey sites (Fig. S2) may be explained by 
increased light availability, although we did not 
account for variation in cloud cover. Increased lunar 
illumination could make it easier for harbour por-
poises to feed on prey species that normally use 
nighttime darkness as a predator avoidance tech-
nique, but with increasing light conditions would be 
more vulnerable to predation. 

4.6.  Implications for management 

Harbour porpoises are vulnerable to human activi-
ties through bycatch in fishing nets (ICES 2019), 
adverse health effects caused by environmental pol-
lutants (Siebert et al. 1999, Jepson et al. 2005, Mur-
phy et al. 2015), disturbance of underwater noise 
from e.g. windfarm constructions and nearby boat 
passages (Dähne et al. 2013a, Wisniewska et al. 
2018), and possibly also reduced access to high-qual-
ity prey (MacLeod et al. 2007). According to the EU 
Habitats Directive (Council Directive 92/43/EEC), 
Special Areas of Conservation (SACs) must be estab-
lished for harbour porpoises, with the aim of main-
taining or restoring the species at a favourable con-
servation status. By the end of 2021, the harbour 
porpoise was listed as a protected species in 253 
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SACs across European waters (European Environ-
ment Agency 2022). However, the designation of 
SACs does not protect the species in absence of 
appropriate management plans, and to do so multi-
faceted and adaptable conservation actions must be 
tailored to local conditions (Carlén et al. 2021, 
IAMMWG et al. 2015). 

Our findings of micro-scale differences in detected 
porpoise presence and foraging activity provides 
insights for the development of effective protective 
measures for the species. For example, knowledge of 
micro-scale patterns in presence is crucial for optimal 
zonation of human activities within protected areas, 
which may both improve the efficiency of conserva-
tion actions and ease up challenges with conflicting 
interests. The high correlation between presence 
and foraging shows that presence is a good indicator 
of areas of energy intake and reveals how tightly 
linked the species is to its foraging areas. A tight link 
signals that these areas cannot easily be replaced by 
other areas, stressing the importance of low levels of 
disturbance and other pressures in these areas, and 
the need for an ecosystem approach in the manage-
ment of local fish stocks. Further, the strong diel pat-
tern indicates that there might also be a diel variation 
in bycatch risk, a factor that has achieved little atten-
tion so far (Northridge et al. 2017) and could be worth 
investigating further. 

5.  CONCLUSIONS 

This study has revealed micro-scale variation in 
harbour porpoise Phocoena phocoena presence 
(DPM h−1) and foraging activity (FPP) within a highly 
spatially restricted key area for the species, with 
striking differences between survey sites separated 
by only a few hundred meters. Harbour porpoise 
presence seems to be mainly driven by foraging 
opportunities, and the more frequently a site is used, 
the higher degree of foraging occurs. This is impor-
tant information from a management point of view 
and for study design, as micro-scale spatial distribu-
tion needs to be considered in behavioural and con-
servation studies and actions. We conclude that time 
series analysis, including dynamic time warping and 
spectral analysis, seems to be a highly suitable 
method for analysis of acoustic time series data. 
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