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There is an increasing demand for using deep underground space at various scales, such as
small-scale geothermal wells and large-scale projects like tunnels or nuclear waste disposal.
The deep underground space in fractured rock is a heterogeneous and challenging medium.
Fractures have a significant impact on both the groundwater flow and the mechanical behavior.
This thesis aims to develop analytic element models that capture the behavior of fractured rock
for both groundwater flow and linear elasticity at different scales. Because these models are
analytic in their formulation, they can model with machine precision and investigate behavior
near singular points.

For groundwater flow, the thesis deals with two approaches to capture the groundwater
flow behavior in fractured rock: a continuum approach and a discrete fracture network
approach. The continuum approach considers the impact of fractures by varying the hydraulic
conductivity based on depth. This method allows for efficient modeling while still capturing the
depth-dependent behavior accurately. The discrete approach, in turn, implements the fractures
directly by embedding them in the continuum. Unlike previous models, this model implements
intersection without the need for approximations. The discrete model also demonstrates how
fractures with discontinuous transmissivity are connected to model a heterogeneous fracture
network.

For linear elasticity, the fractures and tunnels are modeled discretely in a plane strain
continuum as analytic elements. These elements possess degrees of freedom, and no theoretical
limitation exists on the number of elements. The execution of a model with 10,000 fractures
effectively demonstrates the speed and accuracy of this method. Integrating seepage forces into
the linear elastic model has improved the correlation between groundwater flow and linear
elasticity. This enhancement allows for a more precise analysis of the impact of seepage forces
near singular points. The solution's analytic formulation allows for the investigation of the
behavior of the seepage force as a continuous function.

To conclude, a comparison between the analytic element model and a range of numerical
methods reveals a strong agreement, with a mean error of less than 0.32%. The results
demonstrate that the developed models are highly accurate and valuable tools for modeling
fractured rocks.
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Part I:
Introduction





1. Background

There is an increased demand for using the deep underground space for infras-

tructure projects, nuclear waste disposal, energy recovery, and mining. The

underground space consists of highly heterogeneous rocks with fractures and

faults and artificial structures such as tunnels, wells, and underground con-

structions. Figure 1.1 shows an underground space with various distinctive

features.

The use of deep underground space ranges from, e.g., small-scale geother-

mal wells to large-scale, e.g., tunnels and nuclear waste disposal. There is an

increased demand for tunnels that serve as shortcuts for traffic, power lines,

and sewage disposal, and the tunnels provide a way of saving space in the

natural and urban environments. Groundwater inflow into a tunnel may in-

fluence the surface level regarding water drawdown and ground deformations.

To safeguard the surface from the harmful effects of a tunnel, it is crucial to

thoroughly understand and model the processes related to tunnel inflow and

its consequences in fractured rocks.

Utilizing the deep underground space is also essential for reaching the Sus-

tainable Development Goals. According to Goldstein et al. (2011) can geother-

mal energy provide a long-term energy resource that is not likely to be affected

by climate change. Sweden has more than 300,000 geothermal heat wells, ac-

cording to Svergie Geologiska Undersökning (2023). Although most of these

are for household production, geothermal energy has the potential even for

large-scale heat and electric power production.

For some, groundwater is an essential part of everyday life. According to

Livsmedelsverket (2023), more than one million people in Sweden use water

from household wells. In a constantly changing climate, handling shared re-

sources with care is essential. It is vital in areas with water scarcity, such as

islands, where managing groundwater carefully becomes even more critical.

In order to gain a better understanding of how to treat the bedrock environ-

ment, it is necessary to conduct an investigation. Investigations provide valu-

able insights into the best approach to managing and maintaining the bedrock

environment. Most of the information about the bedrock comes from drill

cores and boreholes, which in volume only represent a small fraction of the

space they investigate. Upscaling and extrapolating this data is a challenging

task. It requires, among other things, models to interpret data and make pre-

dictions about the present and possible future conditions. The rock itself is

a discontinuous, anisotropic, and inhomogeneous material. Jing (2003) adds

that the rock is also a fractured porous medium containing fluids and gases.
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Figure 1.1. An illustration of the underground space and how it connects to the surface

(Illustration printed with permission from Trafikverket).

Furthermore, a new ensemble of fractures emerges when excavating in rocks

due to the excavation process.

Fractures are a critical feature in fractured rocks as they are the main paths

for flow and transport and greatly influence mechanical behavior. These frac-

tures vary in geometry and break up the rock mass, causing unique rock and

groundwater mechanical properties. A large number of studies have addressed

the groundwater flow and solute transport as well as mechanical properties in

fractured rocks, e.g., (Nordqvist et al., 2008), (Zimmerman and Bodvarsson,

1996), (Kraemer, 1990), (Flemisch et al., 2018), (Hadgu et al., 2017), (Lei

et al., 2017), (Bonnet et al., 2001), (Lei and Wang, 2016), (Harrison et al.,

2002) and (Öhman and Niemi, 2003), to mention some.

One of the more significant challenges in fractured rocks is that the perme-

ability typically is orders of magnitude greater in the fractures than in the rock

mass. Thus, almost all groundwater flow is in the fracture network. Figure

1.2 illustrates how a fracture network may look at different scales, from the

larger scale, where it is challenging to observe single fractures, down to the

local scale, where the individual fractures are visible.
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Figure 1.2. A fractured rock mass on different scales, the boundary of each panel

corresponds to the box on the panel on its left.

Models are typically used to interpret the laboratory and field gap, and pre-

dict possible outcomes. As described by Jing (2003), going from the field to

a model will involve subjective judgments. Not only is the interpretation of

field data a source of uncertainty, but the choice of model will also have its

strengths and limitations. Models provide an essential tool for understanding

the deep underground space, and many different models and methods exist.

A significant challenge in the field is ensuring that the models represent

reality. As the complexity and size of the models grow, uncertainties grow

with them; there is a demand for a model with its accuracy independent of

growth. A model should be accurate in both the large scale and in the details,

as illustrated in Figure 1.2.
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2. Modeling groundwater flow and mechanical
processes in fractured rocks

Understanding fractured rocks and how to model them is a challenging task,

and one contributing factor is the natural heterogeneity of fractures and faults.

Another issue is that observations, e.g., boreholes, only cover parts of the

fracture network. Converting limited knowledge into a general conclusion

is difficult and often time-consuming. Models help with this challenging task

with both interpretation and estimation of uncertainties.

2.1 Numerical models

The engineering fields addressing groundwater flow and rock mechanics use

many numerical models. Standard numerical methods use approximate so-

lutions for the governing partial differential equation. There are two com-

mon approaches in the formulation of the solution; one is by meshing the

domain space, as in the Finite Element Method (FEM), Finite Volume Method

(FVM), and Finite Difference Method (FDM), while the other is to formulate

the boundary value problem on a boundary or particle, as in the Boundary Ele-

ment Method (BEM), Distinct Element Method (DEM) and Analytic Element

Method (AEM).

Using meshes FEM, FVM, and FDM can capture complex geometries and

non-linear behavior. The main principle of FEM, FVM, and FDM is to formu-

late the partial differential equation as a linear or quadratic equation within an

element or cell. As a result, the accuracy of the solution is dependent on the

grid size. Local areas of interest typically use a more refined grid. There exist

numerous textbooks on these methods, e.g., (Reddy, 2019), (Thomas, 2013),

and (Mazumder, 2015).

Numerical methods for fractured rocks can, according to Jing (2003), be

divided into three methods, continuum methods, e.g., FEM, FDM, and BEM,

discontinuum methods, e.g., DEM, Discrete Fracture Networks (DFN), and

hybrid continuum/discontinuum models, which are a combination of the two.

According to Jing and Hudson (2002), the choice of method will be deter-

mined by the problem scale and density of fractures. Jing (2003) argues that

the geometry of a rock mass can never be fully known, and thus, only part of

a model can be verified or validated. Therefore, it is the task of all models to

work with the uncertainties of the field data.
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A continuum model has the benefit of being efficient in its calculations and

suitable for larger domains. In a continuum model, the medium is described by

a representative elementary volume, indicating that the properties are uniform.

According to Bonnet et al. (2001), naturally fractured media may never fulfill

this condition, which limits the use of continuum models significantly.

As stated in Kachanov (1993), anisotropic fractures are challenging for as-

signing the effective parameters for a mechanical continuum model. A sig-

nificant challenge is that the displacements are discontinuous across fractures.

The effective parameters are often estimated using empirical formulas, e.g.,

(Hoek and Brown, 1997) and (Sitharam et al., 2001). Singh (1973a,b) pre-

sented a mechanical continuum characterization method for fractured rocks.

Singh (1973b) could show that the predicted values from the FEM model were

in good agreement with the continuum model, except in areas with a steep

stress gradient. Additionally, the model result showed that anisotropy has a

more substantial impact when the shear modulus is low. Other techniques for

continuum estimation are also discussed in Zimmerman (1990).

Fractures not only disrupt the displacements but also the groundwater flow.

Although continuum models are efficient in modeling groundwater flow, they

sometimes have difficulty meeting the requirements of a model, especially on a

very local scale. A DFN model performs better for cases with a high demand

for local variability. Niemi et al. (2000) showed that the continuum model

can significantly underestimate the conductive characteristics and groundwa-

ter flow, which illustrated the need for DFN models. Not only may the con-

tinuum representation miss the local flow patterns, but it may also, in some

instances, result in an incorrect flow. Öhman and Niemi (2003) addressed this

issue by studying under which conditions a stochastic continuum approach,

(Neuman, 1987), is applicable and introduced an oriented permeability cor-

relation structure. Öhman and Niemi (2003) showed that it is possible to get

accurate results using a continuum approach, but only for some cases. This

technique was also later used in Öhman et al. (2005b). Another issue related

to upscaling, raised by Öhman et al. (2005a), is that typically a vertical bore-

hole is biased towards horizontal fractures. Öhman et al. (2005a) proposed a

model incorporating the anisotropic rock stress in interpreting and scaling the

borehole data.

In contrast to continuum models, a discrete model handles fractures accu-

rately. However, the limitation is, according to Lei et al. (2017), the increased

complexity of the models and the extensive data needs. The data available

for the construction of these models are uncertain and limited. Consequently,

there needs to be more certainty about whether the generated fracture network

is a good representation of reality.

For many DFN models, the intact rock matrix is considered an imperme-

able boundary, e.g., (Neuman, 2005) and (Berkowitz, 2002). This assump-

tion is often reasonable, especially when dealing with crystalline rocks, as in

Nordqvist et al. (2008) and Zimmerman and Bodvarsson (1996). For a re-
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view and comparison of numerical methods, see Flemisch et al. (2018) and

Berre et al. (2021), who presents a collection of two-dimensional and three-

dimensional DFN models.

The fracture network properties in fractured rocks are fundamentally three-

dimensional. A challenge is that the measurements are often in one or two

dimensions. For a deterministic fracture network model, it is challenging

to accurately capture the geometry and connectivity of fractures when their

properties are specifically assigned. A technique for dealing with this issue is

the stochastic DFN approach, where the fractures and their properties follow

some probabilistic distributions. Stochastic DFN approaches are well stud-

ied, e.g., concerning their connectivity (Bour and Davy, 1998) and (Bour and

Davy, 1997), and effective parameters (Zimmerman and Bodvarsson, 1995)

and (Min et al., 2004a). Niemi et al. (2000), Öhman and Niemi (2003), Öh-

man et al. (2005a), Huang et al. (2021) and Lei et al. (2017) provide many

references for the stochastic approach.

Numerical methods can deal with the heterogeneity of fractured rocks, and

there are many advances in numerical modeling of complicated geometries

and fracture load conditions, e.g., (Kuna, 2013) and (Mohammadnejad et al.,

2021). The continuum grid-based models, e.g., FEM, can deal with a vary-

ing continuum medium at a much higher frequency (cell-to-cell) than grid-

less models such as BEM and AEM. However, as described by Banks-Sills

(1991), one of the difficulties with grid-based numerical methods is to capture

the singular behavior near fracture tips. Furthermore, grid-based models have

difficulty handling different scales within the model, so it is difficult to con-

sider both the regional scale of fractured rocks and the behavior near fracture

tips simultaneously.

2.2 Analytic solutions

Engineering modeling heavily relies on different properties, usually based

on analytic solutions, often simplifying geometries but providing precise an-

swers. Although they are highly accurate solutions, their usefulness could be

improved. Nonetheless, they offer valuable insights into the factors that affect

the solution’s behavior, which other methods may not reveal.

The flow in a single fracture is typically represented by the flow between

two parallel plates per unit width given by the cubic law, presented in Snow

(1969). This solution is idealized and does not consider variation in aperture

or surface roughness. Although many have developed different methods to

deal with this, e.g., (He et al., 2021) and summarized by De Marsily (1986),

the simplified geometries limit the use of the cubic law.

Examples of methods for upscaling and obtaining average properties for

fractured rocks without explicitly modeling the fractures include the methods

of Snow (1965) and Oda (1985). Snow (1965) derived a general permeability
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tensor for a fracture network by adding the permeability tensors for each frac-

ture. Oda’s method is analytic and computes the equivalent permeability of

fractures with arbitrary orientation; see Oda (1985). A significant limitation

of these methods is that they assume that all fractures are connected.

To further improve the continuum model, Kitterød (2004), Şen (2014), and

Şen (1989) use a varying continuum that accounts for the variation in hy-

draulic properties due to fractures. This variation can, for example, be depth-

dependent, as shown in Ericsson and Ronge (1986). Such an adaptation limits

the need for different layers to represent the changes in hydraulic properties

and increases the efficiency and accuracy of the model.

A common approach when modeling rock mechanics is to assume that the

rock is linearly elastic. A linearly elastic model is a mathematical model of

how the stresses deform a solid object, and the stresses and strain are lin-

early dependent on each other. In linear elasticity, numerous analytic solutions

exist for different features, e.g., (Muskhelishvili, 1953) and (Griffith, 1921).

Muskhelishvili (1953) present the Muskhelishvili-Kolosov functions’ which

relate the stresses and strains in a general form for linearly elastic plane strain

media. Griffith (1921) developed the exact solution for a pressurized fracture

in an elastic medium under plane strain. Later, Irwin (1957) studied the behav-

ior at crack tips closely based on the work by Inglis (1913), Griffith (1921),

and Westergaard (1939). As explained in Perez (2017), studying fractures in

rock mechanics is essential as they can lead to catastrophic failure without

warning. This failure is sometimes desirable, as in hydraulic fracturing, but

often undesirable and weakens the strength of the rock mass. These analytic

solutions describe a simplified geometry and a single feature, e.g., fracture or

tunnel.

Since Griffith (1921), the solution for a single fracture was later extended

to other variations of fracture set-ups, e.g., (Westergaard, 1939), (Sneddon,

1946), (Sneddon and Elliot, 1946), (Sih, 1966) and (Gerolymatou, 2019), and

a set of multiple fractures, e.g., (Benthem and Koiter, 1973), (Sneddon, 1973),

and (Kachanov, 1993). Helsing (2000) presents a solution to many fractures,

where the stress state of a medium containing 10,000 fractures is solved with

high accuracy using the Fredholm integral equation.

There also exist fracture models using polynomials, like the method of

pseudotraction, which were developed by Chudnovsky and Kachanov (1983),

Horii and Nemat-Nasser (1985), Hori and Nemat-Nasser (1987), and Chud-

novsky et al. (1987). The method of pseudotraction involves using truncated

Taylor series to estimate the tractions on each fracture. This approach is inac-

curate if the fractures are close to each other, particularly near the fracture tip.

To overcome this limitation, Benveniste et al. (1989) proposed an approach

to approximate polynomials using various base functions. They also approx-

imated the fracture solved for as a single fracture within an infinite space,

which was loaded by a specific traction. This specific traction included the

contributions of all fractures.
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One technique to solve linearly elastic boundary problems is the complex

variable method. The principle of the complex variable method is to formu-

late the solution and boundary conditions in terms of complex variables, which

enables the use of powerful mathematical techniques, e.g., series expansions

and conformal mapping. These methods have been applied to both fractures,

e.g., (Kusumoto et al., 2013), (Kusumoto and Gudmundsson, 2014) and (Leit-

man and Villaggio, 2005), and cavities, e.g., (Verruijt, 1997), (Zeng et al.,

2019), (Strack and Verruijt, 2002), (Yu et al., 2014), (Fu et al., 2015) and

(Fang et al., 2015), a general description is given in, e.g., (Muskhelishvili,

1953), and (Sadd, 2014). Common for these solutions is that they give an

exact solution to a specific boundary value problem.

Even though analytic solutions are limited to simplified geometries, they

still provide a good reference. For example, the equation for tunnel inflow

from Gustafson (2009) is widely used in tunneling projects in Sweden, e.g.,

(Berzell, 2011), (Lissel, 2016), and (Svensson and Lissel, 2017, 2019). These

projects use analytic solutions to first, in a simple and fast way, get a rough

estimate of the tunnel inflow. The Gustafson (2009) method is a variation of

Goodman et al. (1964) and calculates the inflow considering the damaged rock

mass and the injection thickness. As shown by Svensson and Lissel (2017),

this analytic solution tends to overestimate the inflow compared to numerical

models. Stochastic calculations can help interpret the results by giving differ-

ent probabilities of different cases, as demonstrated in Lissel (2016).

2.3 Analytic element models

This thesis will only briefly cover the background and theory (see chapter 4) of

the Analytic Element Method. The interested reader can find more in the sum-

mary paper by Strack (2003) or in numerous textbooks, e.g., (Strack, 1989),

(Haitjema, 1995), and (Strack, 2017).

The Analytic Element Method was first developed in the late 1970s and

published in the early 1980s; see Strack and Haitjema (1981a), Strack and

Haitjema (1981a), and Strack (1982). The first comprehensive summary of

the method was given in the book Strack (1989). The method initially dealt

with regional two-dimensional flow. However, it was later extended to tran-

sient flow, e.g., (Haitjema and Strack, 1985), (Zaadnoordijk, 1990), (Zaadno-

ordijk and Strack, 1993) and (Bakker, 2004), and three-dimensional flow, e.g.,

(Haitjema, 1985), (Fitts, 1989), (Jankovic et al., 2006) and (Fiori et al., 2006).

It was also applied to large-scale models, such as the national groundwater

model of the Netherlands, (De Lange, 1996, 2006), and the Yucca Mountain

model in the US, (Bakker et al., 1999). Because the AEM is mesh-free, the

model domain can grow without losing accuracy. Beginning with the textbook

Strack (2020) and the articles in this thesis, AEM was also extended to linear

elasticity.
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The building blocks of the AEM are analytic elements. These elements are

analytic functions that possess degrees of freedom. Many analytic elements

can be combined using the principle of superposition to create more complex

models where each element makes it possible to enforce a specific boundary

condition, e.g., a constant hydraulic head or a discontinuity in the stream func-

tion.

Each analytic element expresses an analytic function typically as an infinite

power series. This formulation means that the solution meets the differential

equation exactly everywhere in the domain; the power series coefficients are

determined to satisfy the condition on the element’s boundary. Finding the

coefficients is usually done using integrals, e.g., the Fourier or the Cauchy

integral, or by solving linear equations. The truncation of the number of coef-

ficients determines the degrees of freedom of the element.

A fundamental benefit of the AEM is that it does not discretize the domain,

only along the element boundary. This property means that the solution is

scale-independent. For instance, one model can accommodate numerous ele-

ments and be used on both micro and macro scales, as shown in Barnes and

Janković (1999) and Strack and Toller (2022).

The AEM was previously used to model fracture flow with the first solu-

tion presented by Strack (1982). Steward (2015) presented a solution using

thin inhomogeneities to model a large assembly of slits. Based on AEM van

Harmelen and Weijermars (2018) present a solution for intersecting fractures.

A key component for modeling fractures using AEM is the limitless analytic

element developed by Strack (2018), which can handle a discontinuous behav-

ior at the tip of a line element.

Strack (2020) first presented the analytic element for linearly elastic media

based on a closed-form solution for gravity acting on a half-space. The pa-

pers attached to this thesis introduce the more general analytic element that

introduces degrees of freedom. The AEM is similar to the complex variable

method, which presents many closed-from solutions.

Jing (2003) writes that no closed-form solution exists for the geometries of

the rock in Earth’s upper crust. Although AEM is not a closed-form solution

due to its infinite series, it comes close to it as it uses an analytic expression

with infinite degrees of freedom. That is why AEM is helpful for benchmark-

ing and validation.

2.4 Comparison of methods

Many modeling methods exist for both groundwater flow and linear elasticity.

In Figure 2.1 are some of the most common numerical methods presented in

terms of the number of publications per year that has the method as a key-
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Figure 2.1. Number of publications in log10-scale per keyword for groundwater (left)

and linear elasticity (right) between 2015 and 2022.

word1. This simple comparison illustrates that FEM dominates the scientific

output for groundwater and linear elasticity. Kraemer (2007) also found a

similar result when he studied groundwater models.

By examining Figure 2.1, it is clear that AEM has a lower publication rate

than other methods. This result is likely because the community researching

and using AEM is smaller than that for other numerical methods, and its mod-

els are not as widely utilized, resulting in smaller output. It is important to note

that a higher output does not necessarily mean a better method but rather one

that is more easily applicable. Nevertheless, the data suggest that numerical

methods other than AEM have a faster pace of development.

When considering the applicability of the different methods, Craig and

Read (2010) presents a helpful scale. This scale ranges from analytical to

numerical solutions. The methods close to the analytical side indicate that

they are mathematically more accurate, while those close to the numerical side

provide a more flexible and adaptable method. This scale emphasizes that the

capability to handle complex geometries is often a limiting factor for AEM.

Although there has been some significant development in this, e.g., Strack

(2018) enabled the creation of intersecting and connected features with higher

accuracy. Nevertheless, AEM will always emphasize accuracy rather than de-

tailed local variability. For situations where the variation is on the cell level,

the FEM or other approximative methods are much better suited.

Omar et al. (2019) did a comparison study between the AEM, using the soft-

ware AnAqSim, and FDM, using MODFLOW. The test case was the Lower

Ganga River basin, where both models were set up and calibrated to the same

data. Omar et al. (2019) found that the AEM model was more efficient and

less difficult to set up. The AEM model also gives a more flexible approach to

1Source: , search with keywords: (numerical method) +

"groundwater" or "linear elasticity", 2023-05-24
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not well-defined boundary problems. On the other hand, the FDM approach is

better if the problem has non-horizontal layers and heterogeneous permeabil-

ity. Again, accuracy and speed must come at the cost of the need for model

heterogeneity.

2.5 Coupled hydro-mechanical models

Natural phenomena are frequently a function of many different interacting

processes. For rocks, these processes are, e.g., hydrological, mechanical, ther-

mal, chemical, and more. These processes also depend on each other. For

example, a stress change affects the aperture of a fracture and, thus, the per-

meability. Presented by Tsang (1987), sometimes a single process can answer

a problem statement, while some problems require a coupled treatment of the

processes. These coupled processes are either coupled one way or two ways.

In this thesis, the coupling concerns the hydro-mechanical in one way.

A hydro-mechanical coupling is a link between the hydrological and me-

chanical processes of a fluid and a solid. According to Rutqvist and Stephans-

son (2003) and Wang (2000) there exist four different couplings:

1. A solid-to-fluid coupling occurs when a change in applied stress pro-

duces a change in fluid pressure or fluid mass.

2. A fluid-to-solid coupling occurs when a change in fluid pressure or fluid

mass produces a change in the volume of the porous medium.

3. A solid-to-fluid coupling occurs when applied stress changes hydraulic

properties.

4. A fluid-to-solid coupling occurs when a change in fluid pressure pro-

duces a change in mechanical properties.

The first two are direct couplings, and the last two are indirect couplings. In

the case of fractured rocks, indirect couplings are the most common ones.

Rutqvist and Stephansson (2003) provides an in-depth review on the topic of

hydro-mechanical coupling in fractured rocks.

Many have studied the hydro-mechanical coupling for rocks. Some of these

studies look at the effect the stresses have on the permeability of fractures and

groundwater flow, e.g., (Tsang et al., 2018), (Figueiredo et al., 2015), (Fu et al.,

2013) and (Ivars, 2006). Carlsson and Olsson (1977) showed the dependence

between the hydraulic pressures and the stress state, as did Min et al. (2004b)

and Zhang and Sanderson (1996). Min et al. (2004b) showed that permeability

is more sensitive to stress change at low-stress levels than at high-stress levels.

When groundwater flows in a rock, it exerts a seepage force proportional to

its gradient of the hydraulic head on the rock mass. In most cases, the seepage

force is much weaker than the forces caused by pore or confining pressures,

which typically leads to it being neglected. For some cases, however, it is

crucial to consider. Lee and Nam (2001) demonstrates that it is essential to

consider the pressures caused by the seepage force on a tunnel under a lake.
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Previous studies have focused on investigating the impact of seepage forces

on the stability of rock masses. Anagnostou and Kovári (1996) and Perazzelli

et al. (2014) studied the tunnel face stability under a seepage force, a typical

application. Pan and Dias (2018) and Lee and Nam (2001) examined the tun-

nel wall. Park et al. (2008) presented an analytic solution where the tunnel

in a half-space is mapped to a disk in another plane; the solution included

functions for both zero pressure and constant head.

Minkoff et al. (2003), studied fractures subjected to a seepage force and

included only the flow in the fractures. Yan and Zheng (2017) presented a

further development that also included the flow in the rock mass. Zhao et al.

(2021) looked at the propagation of seepage forces in a water-injected frac-

tured system. They showed that the seepage force increases close to fractures

that draw water from the rock matrix.

A major gap in the current state-of-the-art is that no model can combine

regional and small scale with analytic accuracy that extends beyond the model

capacity of an exact solution. Although it is possible to determine the relative

importance of seepage forces for a tunnel prior to this thesis, it is not pos-

sible to determine this with the same level of accuracy when combined with

fractures.
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3. Objective of the Thesis

This thesis aims to develop methods for understanding groundwater flow and

stresses/deformations in fractured rocks. Developing analytic element mod-

els allows challenging geometries to be constructed and solved with machine

precision. Due to their precision, they can be used as reference solutions and

for investigating the influence of fractured rock properties. The ambition is to

have a scale-independent fractured rock model with machine precision accu-

racy and no theoretical limit on the number of elements that could be included.

The thesis aims to create a model that analyzes groundwater flow and linear

elasticity in fractured rocks using an analytic element model approach. The

focus is on crystalline rocks with fractures embedded in the rock mass. This

case requires accurate treatment of the rock mass and the discrete fractures,

where the fractures include singularities at their tips. An analytic element

model accurately handles the behavior along the fracture and at their tips.

The aim is to create several models that can either independently, or in com-

bination, model the groundwater flow and certain rock mechanical processes

on a large variety of scales, from the neighborhood of individual fractures to

the combined effect of thousands of fractures. These models provide a tool

that is a continuous link between the different scales; the objectives are to

develop models that:

• efficiently consider the effect of fractures on regional groundwater flow

(Paper I),

• provide an exact representation of fracture intersections (groundwater

flow in Paper II, linear elasticity in Paper III), and

• can investigate the relative importance of seepage forces in a fractured

medium (Paper IV).

Meeting all objectives, the project yields models helpful for understanding

groundwater flow and rock mechanics in a fractured medium at both a regional

and local scale.

The thesis follows a structured approach. Firstly, the theory is presented

that is the foundation of the models. Next, the research results are presented,

specifically the development of different models. The first two models are

for groundwater flow, while the latter are for linear elasticity. A comparison

is made and discussed to demonstrate how the developed models compare to

existing ones.
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Part II:
Theory Development





4. The Analytic Element Method

This chapter reviews some basic functions and theorems used in the Analytic

Element Method. More detailed descriptions can be found in Strack (2020)

and Strack (2003). The Analytic Element Method uses complex variable anal-

ysis, where the Cartesian (x1,x2)-space is written in terms of a single complex

variable

z = x1 + ix2. (4.1)

A function that is a function of only this complex variable f (z) is holomorphic.

A holomorphic function is infinitely differentiable at each point z, except at

singular points, and is also locally equal to its own Taylor series.

The functions presented in this thesis are either holomorphic inside or out-

side the unit circle. A function that is holomorphic inside the unit circle can

be expanded into a Taylor series about the origin of the complex χ-plane:

f (χ) =
∞

∑
n=0

anχn (4.2)

If a function is holomorphic outside the unit circle, it can be expanded into an

asymptotic expansion about infinity, χ = 0,

f (χ) =
∞

∑
n=0

bnχ−n. (4.3)

For practical reasons, the series is truncated at a value N, which also represents

the element’s degrees of freedom. The boundary conditions determine these

series’ coefficients an and bn.

A powerful mathematical technique in complex variables is conformal map-

ping. By using conformal mapping, a boundary in the z-plane can be mapped

onto a boundary in another plane, where the boundary has a simpler shape,

e.g., the unit circle. A common mapping is that of a circle in the z-plane onto

the unit circle in the Z-plane, Z = X + iY , which is given by:

Z =
z− zc

rc
(4.4)

where zc and rc are the center and radius of the circle. Another common

mapping is a line between z1 and z2 in the z-plane onto a unit circle in the

χ-plane defined by χ = ℜχ + iℑχ . First, the line is mapped to the Z-plane as:

Z =
2z− z1 − z2

z2 − z1
(4.5)
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Figure 4.1. The mapping of a line in the z-plane to the unit circle in the χ-plane via

the Z-plane.

where it maps onto a line of length two oriented along the X-axis. The map-

ping to the χ-plane is given by:

χ = Z +
√

Z −1
√

Z +1 (4.6)

with two square roots. As explained in Strack (2020), two square roots are

necessary. The inverse mappings are

Z =
1

2

(
χ +

1

χ

)
(4.7)

and

z =
1

2
[Z(z2 − z1)+ z1 + z2] (4.8)

or in terms of the length, angle, and center point

z =
1

2
LZeiγ + z0 (4.9)

where L is the length of the line, γ is its angle to the x1-axis and z0 its center

point. This mapping is illustrated in Figure 4.1.

This thesis has developed methods and solutions for the AEM for fractured

rocks, focusing on groundwater flow in fractures, represented as a continuum

and discrete fractures. It also presents a novel application of AEM for linear

elasticity and the first coupled model for AEM. The models use superposition-

ing of analytic elements to create complex solutions, accurately handling the

boundary conditions.

4.1 Groundwater flow

This thesis follows the formulation of Strack (2017). The equations consider

flow in the plane defined by the Cartesian (x1,x2)-space. The continuum rep-

resents a rock with an isotropic hydraulic conductivity, governed by Darcy’s
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law such that

q̃x1
=−k̃

∂ φ̃
∂x1

q̃x2
=−k̃

∂ φ̃
∂x2

(4.10)

where q̃x1
and q̃x2

are the components of the specific discharge vector, k̃ is

the hydraulic conductivity and φ̃ the hydraulic head. The complex discharge

function W̃ is

W̃ = Q̃x1
− iQ̃x2

=−dΩ̃
dz

(4.11)

where Q̃x1
and Q̃x2

are the two components of the discharge function, and Ω̃
is the complex potential, which is holomorphic and a function of z only. The

real and imaginary parts of the complex potential are the discharge potential

Φ̃ and the stream function Ψ̃

Ω̃ = Φ̃+ iΨ̃. (4.12)

The discharge potential in terms of the hydraulic head for flow in the vertical

plane is

Φ̃ = k̃B̃φ̃ (4.13)

where B̃ is the width of the aquifer normal to the vertical plane.

For shallow unconfined flow Dupuit (1863) and Forchheimer (1886) pro-

posed an approximation, the Dupuit-Forchheimer approximation, where the

vertical variation of the hydraulic head φ̃ is neglected, which implies that the

vertical component of flow q̃x3
is neglected too. Somewhat similarly, Strack

(1984) proposed that the vertical component q̃x3
exists but does not depend on

the vertical variation of φ̃

q̃x3
�= 0

∂ φ̃
∂x3

= 0. (4.14)

Another way of approximating the total flow over the saturated thickness is by

vertical integration:

Q̃x1
=

h̃∫
0

q̃x1
dx3 =−k̃

h̃∫
0

∂ φ̃
∂x1

dx3 (4.15)

Q̃x2
=

h̃∫
0

q̃x2
dx3 =−k̃

h̃∫
0

∂ φ̃
∂x2

dx3, (4.16)

where h̃ is the saturated thickness. The vertically integrated discharge and the

Dupuit-Forchheimer approximation are equal for some boundaries. Charny

(1951) showed that this is the case for a dam with vertical faces and a well in

an unconfined aquifer. Paper I uses vertically integrated flow to model regional

groundwater flow on a fractured bedrock with a saltwater interface.
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Figure 4.2. Flow around draining fractures (left) and blocking fractures (right), the

blue lines with arrows represent the streamlines and the solid red lines the equipoten-

tials.

4.1.1 Fracture flow

The rock may include discrete fractures, and then the flow in the fractures re-

lates to the flow in the typically far less permeable rock mass. The fracture

causes a jump in the hydraulic conductivity between the hydraulic conduc-

tivity in the continuum, k̃, and that of the fracture, k̃∗. This jump can either

cause the fracture to draw water when k̃∗ > k̃, which is called a draining frac-

ture, or divert the groundwater flow when k̃∗ < k̃, which is called a blocking

fracture. Flow nets for draining fractures and blocking fractures in a field of

uniform flow are shown in Figure 4.2. For this and all other flow nets, the

blue lines with arrows represent the streamlines, and the solid red lines are the

equipotentials.

A draining fracture causes a discontinuity in the stream function Ψ̃; the

discontinuity equals the flow Q̃ in the fracture

Ψ̃+− Ψ̃− =−Q̃ Φ̃+ = Φ̃− (4.17)

where the + and − denote the two sides of the fracture. The stream func-

tion jumps, but the discharge potential is continuous across the fracture. For

a blocking fracture, the discharge potential Φ̃ is discontinuous across the frac-

ture, but the stream function is continuous

Φ̃+− Φ̃− = λ̃ Ψ̃+ = Ψ̃−. (4.18)

A key component for using the AEM for modeling fracture flow is the lim-

itless analytic element developed by Strack (2018). The element is written

either in terms of the line-doublet

Ω̃
db

=
1

2πi

∞

∑
n=0

anFn (4.19)
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which has a real part that jumps and an imaginary part that is constant, or as

the line-dipole

Ω̃
d p

=
1

2π

∞

∑
n=0

bnFn (4.20)

which has an imaginary part that jumps and a constant real part. The function

Fn is given by:

Fn =

[
χn +

1

χn

]
ln

χ −1

χ +1
+ pn(χ) (4.21)

where pn(χ) is the far-field correction polynomial. The complex discharge

functions of the line-doublet and line-dipole are

W̃
db

=−
dΩ̃

db

dz
=− 2χ2e−iγ

πL(χ2 −1)

∞

∑
n=0

anF ′
n (4.22)

and

W̃
d p

=−
dΩ̃

d p

dz
=− 2χ2e−iγ

πL(χ2 −1)

∞

∑
n=0

bnF ′
n. (4.23)

The jump across the analytic element is given by the jump of the function

Fn(χ)

ΔFn = Fn(χ)−Fn(χ̄) = (4.24)[
χn +

1

χn

]
ln

χ −1

χ +1
+ pn(χ)−

[
χ̄n +

1

χ̄n

]
ln

χ̄ −1

χ̄ +1
− pn(χ̄)

or

ΔFn = 2iπ cos(nθ) χ = eiθ . (4.25)

The jump is non-zero at the tip of the element, i.e., θ = 0,π , meaning it can

handle the discontinuous behavior at the tip of the element. Paper II uses

this property of a non-zero jump at the tips to model the intersection of the

fractures by using multiple limitless analytic elements that meet at the point

of intersection.

4.2 Linear elasticity

Linear elasticity relates the stresses to the strains and applies to many materi-

als, e.g., rock, soil, and steel. In three dimensions, the strain and stresses are

completely described for a point with the displacement vector and the stress

tensor, given as:

ux j = [ux1
,ux2

,ux3
] (4.26)
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Figure 4.3. The components of the stress tensor in three dimensions.

and

σx jxl =

⎡
⎣σx1x1

σx1x2
σx1x3

σx2x1
σx2x2

σx2x3

σx3x1
σx3x2

σx3x3

⎤
⎦ . (4.27)

The stress tensor components can be seen in Figure 4.3. Hooke’s law, in com-

bination with the equilibrium equations, gives a solution for the relation be-

tween the stresses and strains. Strack (2020) presents a general solution for

the complex displacement vector and the two components of the stress tensor.

Strack (2020) developed a formulation for the complex displacements op-

erating on a plane angled at an angle ζ to the x1-direction as:

w = ux1
− iux2

=
eiζ

4G

{−z̄Φ′(z)+κΦ̄(z̄)+Ψ(z)−2(1−2ν)B̄2

}
(4.28)

where ux1
and ux2

are the components of the displacement vector in Cartesian

(x1,x2)-space, Φ and Ψ are complex functions and B2 is the second integral of

the body force. Furthermore, Strack (2020) express the contra-variant compo-

nents of the stress tensor in non-Cartesian (z̄,z)-space as:

τ11 = z̄Φ′′(z)−Ψ′(z) (4.29)

and

τ12 =−Φ′(z)− Φ̄′(z̄)+ B̄1 +B1. (4.30)

The expressions of τ11 and τ12 in terms of the Cartesian components, σx1x1
,

σx2x2
, and σx1x2

, of the stress tensor are

τ11 = σx1x1
−σx2x2

−2iσx1x2
(4.31)

and

τ12 = σx1x1
+σx2x2

. (4.32)
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Figure 4.4. Contours of the major principal stress (right) and the minor principal stress

(left) for a single fracture in a linearly elastic medium.

The complex form of the traction operating on a plane angled at an angle ζ
to the x1-direction is given by:

T = ts − itn =−1

2
i(τ11e2iζ − τ12) (4.33)

where ts and tn are the shear and normal components of the traction. The

traction, or stress vector, is the force per unit area acting on a plane.

4.2.1 Pressurized fractures

Fractures cause a discontinuity in the stress and displacement field. A pres-

surized fracture creates a pressure that acts normal to the fracture surface. A

fracture subjected to a normal force causes a Mode I stress intensity factor;

see Irwin (1957) and Rice et al. (1968). Such fractures cause a square root

singular behavior near the tip of the fracture, as shown in Figure 4.4.

AEM initially provided a solution for a uniformly pressurized fracture ori-

ented along the x1-axis in Strack (2020). It assumes normal pressure to the

fracture surface and zero shear component. In terms of traction, this is

T = ts − itn = ip (4.34)

and the tractions are continuous across the fracture. Paper III uses this con-

dition to develop an analytic element model for a highly fractured elastic

medium.

4.2.2 Seepage force

This thesis studies the effect of seepage forces on the stress tensor. Flowing

groundwater exerts a seepage force on the medium due to the pressure gradient
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and is proportional to it. Large gradients occur, for example, around tunnels

and near highly conducting fractures; Paper IV illustrates this.

The seepage force is a body force that affects both the complex displace-

ments (4.28) and the isotropic stress tensor (4.30). The seepage force in com-

plex form is

S = sx1
− isx2

= 2ρwg
∂ φ̃
∂ z

(4.35)

where sx1
and sx2

are the components of the seepage force in Cartesian (x1,x2)-
space, ρw is the density of water and g is the gravitational constant. The body

force B0, in this thesis, is a combination of the seepage force and gravity:

B0 = ρg
[

ρw

ρ
1

k̃
dΩ̃
dz

+ i

]
(4.36)

where ρ is the density of rock and Ω̃ is the complex potential for groundwater

flow. The two integrals of the body force in τ12 (4.30) and w (4.28) are

B1 = ρg
[

ρw

ρ
1

k̃
Ω̃+ iz

]
(4.37)

and

B2 = ρg
[

ρw

ρ
1

k̃

∫
Ω̃dz+

iz2

2

]
. (4.38)

The body force will represent the effect of seepage and gravity in the lin-

early elastic model. This thesis only considers a fluid-to-solid coupling and

assumes that the steady-state groundwater model is unaffected by the linearly

elastic model. Paper IV uses the body force to develop a model that accounts

for seepage force and gravity in tunnels and fractures.
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Part III:
Results





5. Interface flow with vertically varying
hydraulic conductivity (Paper I)

Toller, E.A.L., & Strack, O.D.L. (2019). Interface flow with vertically varying hy-

draulic conductivity. Water Resources Research, 55(11):8514-8525.

Paper I, Toller and Strack (2019), regards the development of a continuum

model for fractured rocks. Rather than modeling the fractures discretely, the

hydraulic conductivity continuously varies with depth. This approach cap-

tures some general properties of fractures, such as the closing of fractures with

depth, the distribution of fracture density, and the related decrease in hydraulic

conductivity. This property is crucial for islands with a saltwater interface and

large head gradients close to the coast. It is possible to model the aquifer as a

multilayer, e.g., (Strack and Ausk, 2015). That approach would require many

layers for cases with considerable variation, increasing the computational cost.

The function of the vertically varying hydraulic conductivity in Paper I is

k̃(x3) = k̃0ex3/ξ̃ (5.1)

where x3 is the vertical coordinate, positive upward, of an (x1,x2,x3) Carte-

sian coordinate system, k̃0 is the hydraulic conductivity at sea level, and ξ̃ is

a parameter of dimension length. Ericsson and Ronge (1986) showed that this

expression for the hydraulic conductivity matched well with the field measure-

ments in crystalline rocks.

Following Strack et al. (2006), the discharge potential is expressed as the

integral of the discharge vector, defined as the vertically integrated specific

discharge. The vertically integrated flow is

Q̃x j =−
h̃ f∫

h̃s

k̃(x3)
∂ φ̃(x1,x2,x3)

∂x j
dx3 (5.2)

where j = 1,2 and h̃s and h̃ f are the bottom and top of the saturated freshwater

zone measured from sea level. Using Leibniz’s rule for differentiation, this
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expression becomes

Q̃x j =− ∂
∂x j

h̃ f∫
h̃s

k̃(x3)φ̃(x1,x2,x3)dx3 (5.3)

+ k̃(h̃ f )φ̃(x1,x2, h̃ f )
∂ h̃ f

∂x j
− k̃(h̃s)φ̃(x1,x2, h̃s)

∂ h̃s

∂x j
.

The integration gives the discharge potential for unconfined flow:

Φ̃ =

h̃ f∫
0

k̃(x3)φ̃(x1,x2,x3)dz− 1

2
K̃(h̃ f ) (5.4)

where

K̃(x3) = 2x3

x3∫
0

k̃(x3)dx3 −2

x3∫
0

x3∫
0

k̃(x3)dx3dx3. (5.5)

For a saltwater interface flow, the discharge potential also includes the lower

boundary of the saturated zone and is

Φ̃ =

h̃ f∫
h̃s

k̃(x3)φ̃(x1,x2,x3)dx3 − 1

2

[
K̃(h̃ f )+

1

α̃
K̃(h̃s)

]
(5.6)

where

α̃ =
ρ̃ f

ρ̃s − ρ̃ f
. (5.7)

Using (5.1) the function K(x3) is

K̃(x3) = 2x3

x3∫
0

k̃0ex3/ξ̃ dx3 −2

x3∫
0

x3∫
0

k̃0ex3/ξ̃ dx3dx3 (5.8)

or

K̃(x3) = 2k̃0(x3 − ξ̃ )ξ̃ ex3/ξ̃ +2k̃0ξ̃ 2. (5.9)

In Paper I, a comparison is made between the depth of the saltwater inter-

face for a varying hydraulic conductivity and a constant one. It shows that

the interface always will be higher with a vertically varying hydraulic con-

ductivity where the hydraulic conductivity decreases with depth, meaning a

higher risk for saltwater contamination. The results emphasize the importance

of accurately capturing the vertical variation of the hydraulic conductivity for

interface flow.
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Paper I presents a case study involving the rocky island Brattö, fed by rain-

fall, and an analytic element model that considers the island’s varying hy-

draulic conductivity. Figure 5.1 displays the resulting steady state hydraulic

head for Brattö. The investigated problem was finding the maximum pumping

rates of a set of wells with the condition that they do not draw salt water. All

the wells were assumed to pump at a discharge such that the saltwater inter-

face was just beneath the bottom of the well. It is evident from the results

that the maximum pumping rate depends on the initial groundwater head and

topography.

Figure 5.2 presents both a cross-section of Brattö and the hydraulic conduc-

tivity as a function of depth. Observing the two plots, it is noticeable that a

large portion of the freshwater body is in a low hydraulic conductivity zone,

where x2 <−500 m. Flow in a low conductivity zone further emphasizes the

need for properly implementing the variation of the hydraulic conductivity as

it will significantly impact the availability of fresh water.

The results demonstrate that it is possible to include the effect of fracture be-

havior with depth within a continuum model. Identifying the precise location

of fractures can be challenging, making excluding this information helpful.

However, using this approach, the model still considers the overall behavior

of fractures even if we do not know their specific properties.
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Figure 5.1. Hydraulic head over the island Brattö where the filled rectangle indicates

the cross-section displayed in Figure 5.2.
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Figure 5.2. Cross section of the simulated hydraulic head and saltwater interface for

Brattö (corresponding to surface indicated in Figure 5.1) (left) and the variation of

hydraulic conductivity with depth (right).
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6. An analytic element model for intersecting
and heterogeneous fractures in groundwater
flow (Paper II)

Toller, E.A.L. (2022). An analytic element model for intersecting and heterogeneous

fractures in groundwater flow. Water Resources Research, 58(5):e2021WR031520.

Paper II, Toller (2022), contains the development and application of an ana-

lytic element model for intersecting and heterogeneous fractures in ground-

water flow. A limiting factor in earlier AEM models of fractured rocks has

been that the fractures were not allowed to intersect without approximating

the intersection, e.g., (Strack, 1982) and (Steward, 2015). Paper II provided

the necessary development for a more accurate model of intersections in AEM

without approximations. The same approach is also applicable to model jumps

in transmissivity along fractures.

Multiple papers have studied analytic models for groundwater flow in in-

tersecting fractures, e.g., (van Harmelen and Weijermars, 2018), (Khanal and

Weijermars, 2019, 2020) and (Weijermars and Khanal, 2019). Flemisch et al.

(2018) presents a benchmark study of numerical models, and the approach

presented in Paper II is compared to this benchmark study later in this thesis

(chapter 9).

The methodology presented in Paper II uses limitless analytic elements, see

Strack (2018), and formulates the boundary conditions for both draining and

blocking fractures. The fracture is represented by a line in the z-plane at an

angle γ to the x1-axis and length L, which is mapped onto the unit circle in

the χ-plane via the Z-plane, see (4.5) and (4.6). The draining fracture uses the

line-dipole (4.20) and the blocking fracture the line doublet (4.19).

The boundary condition for a draining fracture is derived by expressing

Darcy’s law in terms of the tangential component of the complex discharge

vector, ℜ{W̃eiγ}, along the fracture. Similarly, the boundary condition for a

blocking fracture is derived by expressing Darcy’s law in terms of the normal

component of the complex discharge vector, ℑ{W̃eiγ}, to the fracture. The

boundary conditions are expressed in terms of the variables shown in Figure

6.1 where k̃∗ is the hydraulic conductivity of the fracture, b∗ is the fracture

width, ds is an incremental step along the fracture, φ̃1 and φ̃2 are the hydraulic

heads at a distance ds from each other within the fracture, φ̃+ and φ̃− are the

hydraulic heads on the two sides of the fracture, Q̃ is the flow in the fracture

and q̃n is the flow through the fracture.
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The total flow in a fracture is calculated using Darcy’s law (4.10) with

Q̃ =−k̃∗b∗
dφ̃
ds

(6.1)

and expressed in terms of the discharge potential

Q̃ =− k̃∗b∗

k̃
dΦ̃
ds

. (6.2)

This expression, combined with (4.17) and in terms of the complex discharge

function, gives the boundary condition for a draining fracture as:

ℜ{W̃eiγ}=− k̃
k̃∗b∗

(Ψ̃+− Ψ̃−). (6.3)

Similarly, the flow through a blocking fracture, q̃n, is

q̃n =
k̃∗

b∗
(φ̃+− φ̃−) (6.4)

or expressed in terms of the discharge potential

q̃n =
k̃∗

k̃b∗
(Φ̃+− Φ̃−). (6.5)

This expression, combined with (4.18) and in terms of the complex discharge

function, gives the boundary condition for a blocking fracture as:

ℑ{W̃eiγ}= k̃∗

k̃b∗
(Φ̃+− Φ̃−). (6.6)

Paper II uses the line-dipole function (4.20) to model the draining fracture.

The jump in the imaginary part (4.25) combined with the boundary condition

gives:

ℜ{W̃eiγ}=− k̃
k̃∗b∗

∞

∑
n=0

bn cos(nθ) χ = eiθ . (6.7)

The total complex discharge function is

W̃ = W̃
d p

+ W̃
others

(6.8)

where W̃
d p

is the element that is being solved for and W̃
others

is the contribution

from all other elements. Using (4.23), the expression for the unknown coeffi-

cients for a draining fracture is

∞

∑
n=0

bn

[
ℜ
{

2χ2

πL(χ2 −1)
F ′

n

}
− k̃

k̃∗b∗
cos(nθ)

]
= ℜ

{
W̃

others
eiγ

}
(6.9)

46



Figure 6.1. Illustration of the boundary conditions for a draining (left) and blocking

fracture (right) (modified from Toller (2022)).

Similarly, the expression for the unknown coefficients for a blocking fracture

is

∞

∑
n=0

an

[
ℑ
{

2χ2

πiL(χ2 −1)
F ′

n

}
+

k̃∗

k̃b∗
cos(nθ)

]
= ℑ

{
W̃

others
eiγ

}
(6.10)

where they are models using the line-doublet (4.19).

Rather than having continuous elements, an intersection uses four elements

that meet at the point of intersection. For a draining fracture, the condition

for the intersection is continuity of flow, while for a blocking fracture, it is

continuity of the hydraulic head. These conditions are illustrated in Figure 6.2

and are expressed for t = 1, . . . ,T elements meeting at the intersection as:

T

∑
t=1

(Φ̃
t

+− Φ̃
t

−
) =

T

∑
t=1

λ̃t = 0 (6.11)

for blocking fractures where λ̃ is the jump in potential across the fracture and

T

∑
t=1

(Ψ̃
t

+− Ψ̃
t

−
) =−

T

∑
t=1

Q̃t = 0 (6.12)

for draining fractures.

The same approach can be used to model jumps in transmissivity, where a

jump will separate the fracture into two elements. The conditions are the same

as for the intersection, but only two elements meet at the intersection point

rather than four. The condition is defined by (6.11) and (6.12).

The method uses over-specification to solve for the unknown coefficients

and implements the intersection conditions in the same solver. The solution

takes into account the conditions both along the element and at the intersection

at the same time.
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Figure 6.2. The intersection condition for draining (left) and blocking fractures (right)

(modified from Toller (2022)).

Unlike many numerical DFN models, in this AEM model, the fractures are

embedded in the continuum (rock matrix) and interact with the flow within the

continuum. As a result, the continuum can host flow between the fractures,

and between fractures and other elements, such as tunnels. Also, because the

model gives all the local variables at every point, it provides an excellent tool

for investigating the influences from fractures and fracture intersections.

Figure 6.3 presents the pressure contour for a fractured rock with a tunnel

in a uniform flow field. This model combines both discontinuities in transmis-

sivity in the fractures and at the intersection of fractures. The tunnel drains

water and has zero pressure on the tunnel wall. The tunnel’s drainage affects

the pressure contours, and the surrounding fracture network affects the extent

of the pressure drop. The presence of steep gradients reveals the effect of dis-

continuities in transmissivity, and the continuous contour lines demonstrate

the continuity of the hydraulic head.
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Figure 6.3. Fracture network surrounding a tunnel where the circles mark the end-

points of the elements (left) and the pressure contour (right) (reprint from Toller

(2022)).
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7. An analytic element model for highly
fractured elastic media (Paper III)

Strack, O.D.L., & Toller, E.A.L. (2022) An analytic element model for highly frac-

tured elastic media. International Journal for Numerical and Analytical Methods in
Geomechanics, 46(2):297-314.

Paper III, Strack and Toller (2022), presents the development of an analytic

element model for highly fractured elastic media. An extensive background

on linear elasticity and AEM can be found in the textbook by Strack (2020).

The functions presented in Paper III allow the fractures to intersect and have

degrees of freedom. The equations used in this paper are equivalent to the

Muskhelishvili-Kolosov functions’; see Muskhelishvili (1953). The fractures

are assumed to have constant pressure, length L, angle γ to the x1-axis, plane

strain conditions, and maps to the unit circle in the χ-plane.

The fracture is expressed in terms of the components of the stress tensor,

(4.29) and (4.30) excluding the body force, using (4.9) as:

τ11 =
1

2
Le−iγ Z̄Φ′′(z)+ z̄0Φ′′(z)−Ψ′(z) (7.1)

and

τ12 =−Φ′(z)− Φ̄′(z̄). (7.2)

Two new functions, ψ and φ , are introduced, defined by:

Ψ(z) =
1

2
Le−iγZΦ′(z)+ z̄0Φ′(z)+ e−iγψ(z) (7.3)

and

φ = e−iγΦ (7.4)

with the derivative

Ψ′(z) = e−iγφ ′(z)+
1

2
LZφ ′′(z)+ z̄0eiγφ ′′(z)+ e−iγψ ′(z) (7.5)

such that τ11 becomes

τ11 =−1

2
L(Z − Z̄)φ ′′(z)− e−iγφ ′(z)− e−iγψ ′(z) (7.6)
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which results in a function where the dependence on the two complex variables

Z and Z̄ vanishes along the fractures. The traction expressed in terms of these

functions are

ts − itn = (7.7)

− 1

2
i

{
−1

2
Le2iγ(Z − Z̄)φ ′′(z)− eiγ [φ ′(z)+ψ ′(z)]+ eiγφ ′(z)+ e−iγ φ̄ ′(z̄)

}

=
1

2
i

{
1

2
Le2iγ(Z − Z̄)φ ′′(z)+ eiγψ ′(z)− e−iγ φ̄ ′(z̄)

}
.

The traction along the element becomes

ts − itn =
1

2
i
{

eiγψ ′(z)− e−iγ φ̄ ′(z̄)
}
. (7.8)

The two functions φ and ψ represent the analytic element. These functions

are holomorphic outside the unit circle with the asymptotic expansions:

φ =
∞

∑
n=1

αnχ−n, (7.9)

and

ψ =
∞

∑
n=1

βnχ−n. (7.10)

These equations are valid for a fracture with a discontinuity of the displace-

ment. The benefit of these elements is the correct handling of both the bound-

ary conditions along the fracture and the singularity at the tip. The derivatives

of these functions are

φ ′ =
dφ
dz

=−
∞

∑
n=1

nαn
χ−(n−1)

χ2 −1

4

L
e−iγ , (7.11)

ψ ′ =
dψ
dz

=−
∞

∑
n=1

nβn
χ−(n−1)

χ2 −1

4

L
e−iγ (7.12)

and

φ ′′ =
d2φ
dz2

=
∞

∑
n=1

nαn
16

L2
e−2iγ χ2−n

(χ2 −1)3

[
(n+1)χ2 −n+1

]
. (7.13)

The unknown coefficients αn and βn are related to each other via the condi-

tion of continuity of tractions, which gives

t+s − it+n − (
t−s − it−n

)
= (7.14)

− 2i

L

[
χ

χ2 −1

∞

∑
n=1

n(βnχ−n + ᾱnχn)− χ̄
χ̄2 −1

∞

∑
n=1

n(βnχ̄−n + ᾱnχ̄n)

]
= 0
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With χχ̄ = 1 along the boundary, this simplifies to

χ
χ2 −1

∞

∑
n=1

[nβn(χn +χ−n)+nᾱn(χn +χ−n)] = 0 (7.15)

which gives

αn =−β̄n. (7.16)

The expressions of the shear and normal components of the traction along the

unit circle in the χ-plane, where χ = eiθ , gives the coefficients βn as:

ts =− 2

Lsin(θ)

∞

∑
n=1

nℑβn sin(nθ) (7.17)

and

tn =− 2

Lsin(θ)

∞

∑
n=1

nℜβn sin(nθ). (7.18)

The expression for ts and tn guarantees that all elements’ contributions to the

traction along the fracture give ts = 0 and tn =−p.

The analytic element model allows extensive fracture sets in a linearly elas-

tic medium. Paper III presents the stress trajectories for 10,000 fractures under

a uniform horizontal stress field, Figure 7.1 and 7.2. Because of the formula-

tion of the analytic element, the solution is valid for any point in the medium.

This method opens up the possibility of looking at the combined effect from

a theoretically unlimited number of fractures while also being able to look at

the stresses at machine precision close to the singular tip. Figure 7.1 and 7.2

also demonstrate that it is possible to model intersecting fracture, as is seen as

we zoom in to the intersecting fracture set in Figure 7.2.
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Figure 7.1. Trajectories of the major principal stresses (blue lines) and the minor

principal stresses (red lines), for 10,000 cracks in a linearly elastic medium (reprint

from Strack and Toller (2022)).

Figure 7.2. Principal stress trajectories for the box marked in Figure 7.1 (left) and the

principal stress trajectories for the box marked in the left panel (right) (reprint from

Strack and Toller (2022)).
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8. An analytic element model for seepage
forces in fractured media (Paper IV)

Toller, E.A.L., & Strack, O.D.L. (2023). An analytic element model for seepage forces

in fractured media. International Journal for Numerical and Analytical Methods in
Geomechanics, (submitted).

Paper IV, Toller and Strack (2023), covers the inclusion of seepage forces in

the linearly elastic model for fractured media. While Paper III treated fractures

in elasticity without including the body forces, Paper IV included the body

force due to seepage and gravity.

The initial part of Paper IV involves the development of the analytic ele-

ment for a tunnel, including the seepage forces. The solution for the analytic

element uses (4.37) and expresses the traction components along the unit cir-

cle in the Z-plane. The tensor components for the tunnel element are given

by:

τ11 = rt

(
Z̄ − 1

Z

)
Φ′′(z)−ψ ′(z) (8.1)

and

τ12 =−Φ′(z)− Φ̄′(z̄)+ B̄1(z̄)+B1(z). (8.2)

The traction is expressed along the unit circle in the Z-plane and two new

holomorphic functions, P and Q, are introduced that relate to Φ′, ψ ′ and the

traction as:

Φ′ = Q−P, (8.3)

ψ ′ = 2PZ−2, (8.4)

ℑP = ts ZZ̄ = 1 (8.5)

and

ℜQ = tn +
1

2
[B1(z)+ B̄1(z̄)] ZZ̄ = 1. (8.6)

The new functions are expanded in terms of the asymptotic series

P =
∞

∑
n=0

anZ−n (8.7)

and

Q =
∞

∑
n=0

bnZ−n. (8.8)
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By utilizing holomorphic matching, similar to Strack (2009), and expand-

ing the tunnel element’s function into an asymptotic expansion, the following

Cauchy integrals provide solutions for the unknown coefficients:

an =− i

π

π∫
−π

tseinθ dθ (8.9)

and

b̄n =− 1

π

π∫
−π

(tn +ℜB1)einθ dθ . (8.10)

Paper IV also presents an analytic element for a fracture with the body

forces. The solution is similar to that in Paper III, except that the normal

traction component is also a function of the body force (4.37)

τ11 =−1

2
L(Z − Z̄)φ ′′(z)− e−iγφ ′(z)− e−iγψ ′(z) (8.11)

and

τ12 =−e−iγφ ′(z)− e−iγ φ̄ ′(z̄)+ B̄1(z̄)+B1(z). (8.12)

The traction along the element is

ts − itn =
1

2
i
[
eiγψ ′(z)− e−iγ φ̄ ′(z̄)+ B̄1(z̄)+B1(z)

]
. (8.13)

The functions for φ and ψ are written as asymptotic expansions

φ =
∞

∑
n=1

αnχ−n (8.14)

and

ψ =
∞

∑
n=1

βnχ−n. (8.15)

The relationship between αn and βn is based on the continuity of tractions,

similar to (7.14), and is identical to that given in Paper III. Because the real

part of the body force is constant across the fracture, it vanishes from the ex-

pression. Hence, the solution for the coefficients of the asymptotic expansions

is identical, except for the body force term.

The contribution of the two components of the body force to the isotropic

stress mainly depends on the hydraulic head and the elevation, as seen in

(4.37). Because the density of rock is higher than that of water, ρ > ρw,

the contribution due to gravity will, in many cases, dominate, especially at

depth, given that the groundwater level is on or below the surface. Figure 8.1

presents the flow net for a tunnel in a uniform flow field and the contribution to
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Figure 8.1. The flow net for a tunnel in a field of uniform flow (left) and the two body

force components (right), seepage force (blue), and gravity (red), contribution to the

isotropic stress as a function of depth (reprint from Toller and Strack (2023)).

the isotropic stress τ12 of the two components of the body force. The discon-

tinuity in the stream function in the flow net is due to the branch cut from the

tunnel element. A branch cut is a jump in the imaginary part of the complex

potential over a line caused by the jump in the argument of the logarithm.

A case where the seepage force is higher than the contribution from gravity

is when the complex potential has an additional hydraulic head added, e.g., a

fracture beneath a lake or under artesian pressure. Presented in Figure 8.2 is

the flow net of a single fracture in a field of uniform flow and the contribution

of the seepage and gravity to the isotropic stress as a function of distance

from the upper fracture tip projected along the x1-axis. The figure shows that

the influence on the isotropic stress from seepage decreases as a function of

distance away from the fracture.

A key advantage of the analytic element model is that it allows for any

combination of analytic elements. Unlike other analytical solutions, e.g., (Park

et al., 2008), this model can combine both tunnels and fractures. Figure 8.3

presents the log10 contour of the deviatoric stress for a combined model with

both a tunnel and a fracture set in a field of uniform flow under a constant

hydraulic head. As shown in Figure 8.3, the influence of the fractures on the

deviatoric stress is significant and important to consider.
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Figure 8.2. The flow net for a fracture in a field of uniform flow (left) and a plot of the

contributions to the isotropic stress form the two components of the body force (right),

seepage force (blue) and gravity force (red), as a function of distance computed along

a line parallel to the x1-axis beginning at the upper right fracture tip (reprint from

Toller and Strack (2023)).

Figure 8.3. Contour of the deviatoric stress in log10 scale for a tunnel and a fracture set

in a field of uniform flow under a constant hydraulic head, the boundary of the right

panel corresponds to the box on the left panel (reprint from Toller and Strack (2023)).
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9. Benchmark study

This chapter compares the developed AEM model to a published benchmark

study by Flemisch et al. (2018) where a number of numerical models for frac-

ture flow were compared to each other and against reference benchmark cases.

The benchmark 3 for intersecting fractures is modeled here. The model con-

sists of ten fractures, involving draining and blocking fractures, inside a box

where two sides are impermeable, and two sides have a constant hydraulic

head. The geometry of the problem is presented in Figure 9.1 and is a replica

of Benchmark 3 from Flemisch et al. (2018). The red lines (1-3,6-10) are

draining fractures, the blue lines (4-5) are blocking fractures, the solid black

lines are impermeable boundaries, the dotted black lines are constant head

boundaries, and the dashed black line is the arc where the hydraulic heads are

compared between the models. In one case, the flow goes from top to bottom;

in the other, the flow is from left to right.

Because the boundaries of AEM are at infinity, the treatment of boundary

conditions differs from other numerical methods. The reference solution uses

the Mimetic Finite Differences (MFD), see Brezzi et al. (2005) and Flemisch

and Rainer (2008), with a fine grid for the fractures and the continuum. The

reference solution, in this case, is a numerical simulation. Following the prob-

lem definition, the AEM model uses the parameters given in Table 9.1. The

results are presented in terms of hydraulic head and hydraulic conductivity.

Figure 9.2 compares results from the AEM model and those of other meth-

ods as presented in Flemisch et al. (2018) for benchmark 3 in terms of the

hydraulic head along the arc shown in Figure 9.1. Flow is from left to right.

The result of the AEM model fall within the range of the other models and

is actually closer to the reference solution than most of the other models in

the case of flow from left to right. The most significant discrepancy between

the reference solution and the AEM model is the handling of the discontinuity

when crossing the blocking fractures in the case of flow from left to right.

The two solutions closest to the reference solution are the Flux-Mortar

and the Two-Point Flux Approximation (TPFA). The Flux-Mortar models the

fractures as interfaces between the cells and mixes the FEM with the Mor-

tar method, see Boon et al. (2018). The mortar space, or the space between

non-matching elements, allows Darcy flow and is coupled with the surround-

ing flow. More on mortar space can be read in Arbogast et al. (2000). The

TPFA, see Karimi-Fard et al. (2004), is an FDM that uses a two-point flux

approximation. It evaluates the fluxes between cells based on the cells’ center

pressure and the face transmissibility. The TPFA∗ in Flemisch et al. (2018) is a

modification of the TPFA where the fracture intersection cells are kept intact.
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Figure 9.1. The model set-up for Benchmark 3, flow left to right (left) and flow top

to bottom (right), the red lines are draining fractures, and the blue lines are blocking

fractures (modified from Flemisch et al. (2018)).

k̃ = 1 hydraulic conductivity (continuum)

k̃∗ = 104 hydraulic conductivity (draining fractures)

k̃∗ = 10−4 hydraulic conductivity (blocking fractures)

b∗ = 10−4 aperture of fractures

m = 20 number of coefficients (blocking fractures)

m f ar = 600 number of far-field coefficients (blocking fractures)

m = 10 number of coefficients (draining fractures)

m f ar = 200 number of far-field coefficients (draining fractures)

m = 20 number of coefficients (constant head elements)

m f ar = 600 number of far-field coefficients (constant head elements)

Table 9.1. The input data for the AEM model.
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Figure 9.2. Comparison of the AEM model results to results of the methods presented

in benchmark 3 in Flemisch et al. (2018), where the flow is from left to right. The

right panel’s boundary corresponds to the black box’s boundary on the left panel.

The solution most similar to AEM, in Figure 9.2, is the D-XFEM which is

dual extended FEM, see D’Angelo and Scotti (2012). Like the Flux-Mortar

method, it also deals with the fracture flow by including it in a mortar space.

The D-XFEM, however, allows for the fractures and porous mesh to be non-

matching, and a cell intersected by a fracture divides it into smaller compo-

nents.

The ability to model flow through a blocking fracture is visible in the other

part of Benchmark 3, flow from top to bottom. Figure 9.3 compares the AEM

model to the other methods in this case. The hydraulic head jump vastly differs

between AEM and all other methods when crossing the blocking fracture on

the right (see arc length 0.7 to 0.75). The difference is that in the AEM model,

the draining fracture transfers the flow through the fractures and discharges it

on the other side of the blocking fracture, while the numerical methods take

the harmonic average of the transmissivity at the intersection.

Figure 9.4 presents the difference in head between the reference solution

and the AEM model for the two cases. The difference between the AEM

model and the reference model is calculated at each point using

Δφ̃ =

∣∣∣∣ φ̃AEM − φ̃MFD

φ̃MFD

∣∣∣∣ . (9.1)

The reference solution was interpolated to a matching grid of the AEM model

to compare the two models. When comparing contours, it is clear that the

largest difference in hydraulic head is around the intersection of a blocking

and draining fracture.

All numerical methods in Flemisch et al. (2018) that can explicitly account

for the effect of fracture transmissivity at the intersection of the draining and
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Figure 9.3. Comparison of the AEM model results to results of the methods presented

in benchmark 3 in Flemisch et al. (2018), where the flow is from top to bottom. The

right panel’s boundary corresponds to the black box’s boundary on the left panel.

Figure 9.4. Contour of hydraulic head difference, Δφ̃ , between reference solution and

the AEM model for flow left to right (left) and flow top to bottom (right).
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Figure 9.5. Comparison of the modified AEM model results to results of the methods

presented in benchmark 3 in Flemisch et al. (2018), where the flow is from top to

bottom. The right panel’s boundary corresponds to the black box’s boundary on the

left panel.

blocking fracture do so by taking the harmonic average of the transmissivity.

This assumption differs from the AEM model, described in Toller (2022). In

the AEM model, the draining and blocking fractures are treated separately

instead of taking the harmonic average for the intersection.

A modified version of the AEM model was developed to replicate better the

intersection behavior of the models presented in Flemisch et al. (2018). In this

modified model, a small segment with lower transmissivity replaces part of the

draining fracture before the intersection with a block fracture. The solutions

are presented in Figure 9.5 and 9.6. This AEM model and the reference solu-

tion are almost identical, with a mean difference of 0.32% (flow left to right)

and 0.14% (flow top to bottom); the difference between the AEM model and

the reference solution is negligible. The most significant difference is now at

the fracture tip of a draining fracture, which might be due to the large gradient

there.

An issue when comparing the reference solution to the AEM model and the

other methods is that the reference solution is also an FDM model, even though

with high precision. A more accurate comparison would be to compare to an

exact solution where the result is precisely determined. Such a comparison is,

however, not possible for such complex fracture networks as no exact solutions

are available.

This comparison shows that it is possible to get almost the same result with

an AEM model as an FDM with a very high resolution. A benefit of the AEM
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Figure 9.6. Contour of hydraulic head difference, Δφ̃ , between reference solution and

the modified AEM model for flow left to right (left) and flow top to bottom (right).

model is that it is fast. As a reference, the AEM model took 15 seconds1 to

solve the simulation and 35 seconds to plot the flow net and the hydraulic head

contour on a 400× 400 grid. The time it takes to plot the solution linearly

depends on the number of grid points used for the contour. The model is

parallelized, which reduces computational time on processors with multiple

cores. The solution and the resolution of the plot are independent of each

other.

This comparison demonstrates that the AEM is an excellent benchmarking

tool that efficiently gives a precise solution. Because the resolution of the

flow net and hydraulic head contours are independent of the accuracy of the

solution, the user can reiterate many models for calibration before producing

high-resolution plots.

1On a HP Z2 Tower G4 Workstation with 32 GB RAM and an Intel(R) Core(TM) i7-9700K

CPU @ 3.60GHz, 3600 Mhz, 8 cores, 8 logical processors
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Part IV:
Summary and Conclusions





10. Discussion

This work has developed several AEM models for fractured rocks dealing with

groundwater flow, linear elasticity, and a combination of the two. The benefits

of these models are that they are both very accurate, up to machine precision,

and computationally effective.

In summary, major contributions are in the form of four new analytic ele-

ment models, which are:

• an analytic element model that incorporates the fractures properties in a

continuum as a vertically varying hydraulic conductivity,

• an analytic element model for intersecting and heterogeneous fractures

in groundwater flow,

• an analytic element model for intersecting fractures in a linearly elastic

plane strain medium, and

• an analytic element model that includes seepage forces in a linearly elas-

tic plane strain medium.

The most important benefits of these analytic element models are that they:

• are written in terms of analytic solutions,

• have no theoretical limitation on the number of elements in a model,

• give machine precision accuracy at every point in the domain, and

• are computationally efficient.

The papers presented in this thesis model a fractured rock using AEM for

groundwater flow and linear elasticity. There are closed-form solutions for

both of these cases. They are, however, limited to elementary and predeter-

mined geometries, limiting the capabilities of these models. The AEM model

developed here allows for a more flexible geometry while providing solutions

up to machine precision. This means that the entire fractured rock mass can

be modeled with the same model, from the regional to local scale. This is

demonstrated by modeling all the different scales presented in Figure 1.2 as

a linearly elastic medium in Figure 7.1 and 7.2. The model is also very fast,

as demonstrated in the benchmarking example, where it only took the AEM

model 50 seconds to solve the problem and plot the results with an averaged

difference of 0.32% and 0.14% compared to the reference solution.

Papers I and II give two new ways of modeling the groundwater flow in

fractured rocks. Paper I includes the fracture properties in a continuum, while

Paper II allows for a discrete representation of the fractures. The continuum

representation is better suited for more regional models, while a discrete rep-

resentation is preferable on the local scale. In comparison, previous analytic

models are limited to simple geometries, e.g., (Kitterød, 2004), (Şen, 1989)
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and (Şen, 2014), the presented model includes interface flow, wells, lakes,

and recharge, which further expand the applicability. Papers I and II provide

groundwater flow analysis models for precisely representing flow near singu-

lar points, such as wells, with machine precision and an accurate path line

determination. This also applies to the intersections of fractures where previ-

ous analytic element models, e.g., (Strack, 1982) and (Steward, 2015), cannot

handle intersections without approximations.

Paper III provides the first large-scale model for AEM in linearly elastic

media. The possibility of a theoretically unlimited number of fractures com-

bined with the analytic representation of the tips is valuable. As demonstrated,

it is possible to model the combined effect from 10,000 fractures and to deter-

mine the variables at every point in the domain. This property helps to vali-

date numerical models and model laboratory experiments where a high degree

of accuracy is required. Although analytic models exist for fractured media,

e.g., (Chudnovsky and Kachanov, 1983), (Hori and Nemat-Nasser, 1987) and

(Helsing, 2000), they do not possess the same number of degrees of freedom

as the proposed model. As in Paper IV, the analytic element for a fracture pre-

sented in this thesis may also be combined with other analytic elements, e.g.,

tunnels, further extending its applicability.

Paper IV summarizes the findings by combining the groundwater flow with

the linearly elastic model. By including the seepage force as a body force,

the effect of seepage can be modeled near singular points. Determining the

seepage effect at a fracture tip is difficult as stresses go to infinity. The AEM

model in Paper IV makes the modeling of these points possible. Although

seepage forces often are neglected when gravity is considered, knowing when

this assumption is possible is essential. Paper IV provides the necessary func-

tions to determine this. Unlike Park et al. (2008), this analytic method models

fractures and tunnels and provides a more flexible tool to investigate seepage

forces in fractured rocks.

One of the significant disadvantages of AEM is that it is not well suited for

highly heterogeneous domains, where the medium varies significantly locally.

Because AEM is meshless and constructed with elements, each heterogeneity

must use at least one element. This property is unlike in meshed models,

not naturally embedded in the models but will require the addition of many

elements. In contrast, a meshed model already has a mesh of cells that can

individually assign parameters.

Naturally, the construction and assumptions limit analytic element models.

The geometry must be simplified to represent the solution using an analytic

function. Although line elements can create any polygon, the number of el-

ements will increase the computational time. Generally, AEM models are

high-speed, and speed is seldom an issue. However, limiting the number of

elements is always better for speed and control. For fractured rocks, AEM

provides a valuable screening tool; even though it has some simplification, it

provides a fast, accurate, and quick set-up model.
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11. Outlook

Another natural next step would be to create a hydro-mechanical coupling that

enables the linearly elastic model to impact groundwater flow or even one that

functions in both directions through an iterative process. This coupling could

be achieved by developing a function that links the aperture of a fracture to

the stress state. This relationship has been extensively studied, e.g., (Malama

and Kulatilake, 2003), (Bandis et al., 1983) and (Barton et al., 1985), and

an empirical formula that translates the normal stress to a deformation in the

fracture aperture is relatively straightforward to implement.

Another potential advancement in developing AEM for fractured rocks is

to expand the fracture flow to three dimensions. The fundamentals already

exist, where a circular or elliptical enclosing analytic element, (Ausk, 2018),

can create an impermeable boundary. The solution is almost identical to that

in Ausk (2018); the only difference is that the Cauchy integral is changed to

produce the coefficients for a constant stream function boundary instead of a

constant equipotential.

What remains is the development of an analytic element for the intersec-

tion of these three-dimensional fractures. If each fracture is considered a fully

defined system, the flow between fractures would only discharge through an

analytic element for intersections. Figure 11.1 presents two intersecting frac-

tures with an inflow from a point source in one and an outflow in a line element

in the other.

A great benefit of a three-dimensional analytic element model for fractures

is that a superblock approach is built-in to the formulation. Superblocks are

very useful for computational speed, as demonstrated in Craig et al. (2006).

Because each fracture is connected to the intersection once via an intersection

element, the effect from all other fractures also comes through that intersec-

tion element. Thus, the element solved for will get the combined effect from

all fractures while only considering the fractures with shared intersections.

The superblock combined with an efficient and parallelized scheme, e.g., in

FORTRAN or C++, provides a fast and accurate model.
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Figure 11.1. Two intersecting elliptical fractures in a three-dimensional space.
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13. Sammanfattning på svenska

Det finns ett stort behov och intresse av att använda berg som en potentiell

plats för viktiga framtida investeringar, såsom byggandet av infrastruktur, lag-

ring av kärnavfall, energiutvinning och gruvdrift. För att projekt i berg ska vara

kostnadseffektiva och säkra måste bergets egenskaper karakteriseras samt dess

påverkan på grundvattnet och det mekaniska tillståndet undersökas. Att fånga

bergets egenskaper är svårt, i synnerhet eftersom berget typiskt är mycket he-

terogent och kännetecknas av olika attribut. Dessa attribut kan till exempel

utgöra sprickor, sprickzoner, tunnlar, bergrum och brunnar som alla påverkar

grundvattenflödet och mekaniken i olika omfattning. Sambanden mellan dem

är komplexa och kan därmed vara svåranalyserade.

Nyttjandet av berg spelar en avgörande roll i övergången till en mer håll-

bar miljö och för att mildra klimatförändringarna. Genom att flytta transporter

och infrastruktur under jord frigörs istället utrymme ovan jord, vilket ökar

förutsättningarna för att nå de globala hållbarhetsmålen, till exempel hållbart

nyttjande av ekosystemen och ökad biologisk mångfald. Dessutom kan berget

användas för energiproduktion. Enligt Goldstein et al. (2011) är energibrun-

nar redan en betydande bidragsgivare till fossilfri el- och energiproduktion. I

Sverige finns för närvarande över 300 000 energibrunnar (Svergie Geologiska

Undersökning, 2023) och ett ständigt växande behov. För att kunna tillgodose

det växande behovet är det viktigt att kartlägga hur de påverkar varandra och

hur de påverkas av andra anläggningar.

Förutom brunnar för energiproduktion är även brunnar för dricksvattenför-

sörjning viktiga och enligt Livsmedelsverket (2023) använder idag över en

miljon svenskar privata brunnar för sin dricksvattenförsörjning. Dessa brun-

nar riskerar att påverkas av både klimatförändringar och byggprojekt. Därför

är det betydelsefullt att övervaka brunnarnas kvalitet och kapacitet, framförallt

i känsliga miljöer med ont om grundvatten såsom öar. Det finns även ett be-

hov av att kartlägga hur befintliga och planerade byggprojekt kan påverka eller

skada dagens och framtidens dricksvattenförsörjning.

För att förstå hur grundvatten och berg påverkas av befintliga och planerade

byggprojekt är det avgörande att berget studeras och dess egenskaper karak-

teriseras. I Sverige är det vanligt med sprickigt kristallint berg som har di-

stinkta egenskaper i både den intakta bergmassan och sprickorna. Den intakta

bergmassan har en mycket låg permeabilitet och är relativt homogen. Spric-

korna fungerar å andra sidan som den primära vägen för grundvattentransport

och diskontinuiteter i spännings- och deformationstillståndet. Modellerna som

används för att studera dessa bergarter måste således på lämpligt sätt beakta
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förekomsten av sprickor. En utmaning är att merparten av informationen om

berget och dess sprickor hämtas från borrhål som endast representerar en liten

del av den totala bergmassan. Det är då hjälpsamt med en modell som effektivt

kan simulera många olika uppsättningar med tänkbara egenskaper och ge ett

spektrum av möjliga utfall.

Huvudsyftet med denna avhandling är att utveckla analytiska elementmo-

deller för att simulera sprickigt berg som ett linjärt elastiskt material och stu-

dera grundvattenflödet genom det. Fokus ligger på att matematiskt noggrant

hantera sprickorna genom att formulera dem i termer av så kallade analytiska

element. Dessutom kombineras bergmekaniska processer och grundvattenflö-

det genom att inkludera strömningskraften från grundvattnet i den mekaniska,

linjära och elastiska modellen.

Den analytiska elementmetoden (Analytic Element Method, AEM) utgör

grunden för att utveckla dessa modeller. AEM introducerades ursprungligen

av Strack (1989) under 80-talet. Den kombinerar en uppsättning analytiska

lösningar för att bygga modeller med hög precision. Dessa modeller har flera

fördelar, vilka bland annat är att de:

• är skrivna i termer av analytiska lösningar,

• har ingen teoretisk begräsning i sin storlek eller detaljrikedom,

• genererar lösningar med maskinprecision, och

• är beräkningseffektiva.

Metoden är dock inte lämplig för att modellera mycket heterogena ytor ef-

tersom det kräver att en stor mängd analytiska element används. Tekniken är

inte heller lika välutvecklad eller kommersiellt tillgänglig som andra numeris-

ka modeller.

Vid modellering av sprickor i berg finns tre alternativ: att behandla dem

som ett kontinuum, som diskreta sprickor eller som en kombination av de två.

Artikel I i denna avhandling introducerar en modell som inkluderar sprickorna

som ett kontinuum, med hjälp av en hydraulisk konduktivitet som varierar

med djupet för att bättre representera sprickornas egenskaper. Den hydrauliska

konduktiviteten varierar fritt med djupet. Som exempel presenteras en modell

över en ö där saltvatteninträngning i brunnar övervakas. Modellen kan snabbt

och noggrant beräkna villkoren för pumpkapacitet till en uppsättning brunnar

på ön. Trots sin enkelhet inkluderar modellen effekterna av vertikal variation

av hydraulisk konduktivitet, vilket gör den användbar för flöden i sprickigt

berg, där variationen i hydraulisk konduktivitet med djupet är betydande.

Den andra artikeln, Artikel II, presenterar en modell för grundvattenflöde

i diskreta sprickor inom ett kontinuum. Modeller för både flödesblockeran-

de och dränerande sprickor utvecklas. Genom att modellera korsande sprickor

med flera element som möts i skärningspunkten behövs inga approximationer,

vilket gör metodiken exakt. Samma metodik kan användas för att modelle-

ra heterogenitet i enskilda sprickors transmissivitet genom att modellera en

spricka med flera sammansatta element. Randvillkoren för dessa element är

att kontinuitet i grundvattennivå och flöde uppfylls längs hela sprickan samt
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vid alla mötespunkter mellan elementen. Artikeln visar bland annat hur en en-

semble av sprickor med olika transmissivitet påverkar grundvattenflödet runt

en tunnel.

Artikel III beskriver den första modellen for linjär elasticitet inom AEM.

Linjär elasticitet beskriver hur berget deformeras på grund av spänningsför-

hållanden. Denna modell bygger på att varje spricka representeras av ett ana-

lytiskt element. Dessa element tillåts att korsa varandra. Randvillkoren är for-

mulerade i termer av spänningsvektorer och det analytiska elementet uttrycks

i form av en asymptotisk serie. En simulering konstruerades med 10 000 spric-

kor i ett uniformt spänningsfält. I modellen påverkas varje enskild spricka av

bidraget från alla andra sprickor. Lösningen har samma precision i både den

större skalan, som tar till hänsyn alla sprickor i domänen, och den mindre ska-

lan, där närområdet för enskilda sprickor studeras.

I Artikel IV kombineras grundvatten och linjärelasticitet genom att grund-

vattenflödet ingår som en strömningskraft i den linjärelastiska modellen. Bå-

de strömningskrafterna och gravitationen är integrerade i den linjära elastiska

lösningen. Artikeln presenterar lösningen för både sprickor och tunnlar. Kopp-

lingen mellan grundvattenmodellen och den linjära elastiska modellen är en-

kelriktad på det sättet att grundvattenmodellen påverkar spänningstillståndet

men antas vara oförändrad av det. Modellen visar att strömningskrafterna blir

högre med djupet och att om det finns ett artesiskt tryck kan strömningskraf-

terna överstiga krafterna från gravitationen.

I slutet av avhandlingen genomförs en jämförelsestudie mellan en av de

utvecklade modellerna och en tidigare studie (Flemisch et al., 2018) med en

uppsättning av flera befintliga numeriska modeller. Resultaten visar att AEM-

modellen är kapabel att generera en lösning med en felmarginal på mindre än

en halv procent jämfört med referenslösningen från den tidigare studien. Detta

är bättre än alla de andra numeriska modeller som presenterades i studien. Re-

sultaten motiverar att använda AEM-modellen som en benchmarking-modell.

AEM-modellen är förutom att vara snabb också giltig i olika skalor, vilket

skapar möjligheter inom dess tillämpningsområden.

Sammanfattningsvis fokuserar denna avhandling på modellering av grund-

vattenflödet och linjär elasticitet i sprickigt berg med hjälp av AEM. Två mo-

deller har utvecklats för grundvattenflödet, varav den ena behandlar sprickor

genom att summera dess djupberoende egenskaper i ett kontinuum och den

andra behandlar diskreta sprickor i ett kontinuum. Dessutom har två model-

ler för linjär elasticitet utvecklats, varav den ena beskriver diskreta sprickor

i en bergmassa och den andra beskriver sprickor och tunnlar i en bergmassa

utsatt för strömningskrafter och gravitation. Alla dessa modeller bidrar till att

öka förståelsen för hur sprickigt berg beter sig med avseende på grundvatten-

flöde och bergmekanik. Eftersom de är formulerade som analytiska funktio-

ner begränsas resultatet endast av maskinprecisionen, vilket gör att resultatet

är exakt och kan till exempel simulera förhållanden med extrema gradienter.

Dessa egenskaper är användbara för att till exempel validera numeriska model-
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ler. Modellerna är även beräkningseffektiva och kan snabbt simulera problem,

vilket är fördelaktigt i olika typer av förstudier.
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