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CHC-COMP-211 is the fourth competition of solvers for Constrained Horn Clauses. In this year, 7
solvers participated at the competition, and were evaluated in 7 separate tracks on problems in linear
integer arithmetic, linear real arithmetic, arrays, and algebraic data-types. The competition was run in
March 2021 using the StarExec computing cluster. This report gives an overview of the competition
design, explains the organisation of the competition, and presents the competition results.

1 Introduction

Constrained Horn Clauses (CHC) have over the last decade emerged as a uniform framework for rea-
soning about different aspects of software safety [3, 1]. Constrained Horn clauses form a fragment of
first-order logic, modulo various background theories, in which models can be constructed effectively
with the help of techniques including model checking, abstract interpretation, or clause transformation.
Horn clauses can be used as an intermediate verification language that elegantly captures various classes
of systems (e.g., sequential code, programs with functions and procedures, concurrent programs, or re-
active systems) and various verification methodologies (e.g., the use of state invariants, verification with
the help of contracts, Owicki-Gries-style invariants, or rely-guarantee methods). Horn solvers can be
used as off-the-shelf back-ends in verification tools, and thus enable construction of verification systems
in a modular way.

CHC-COMP-21 is the fourth competition of solvers for Constrained Horn Clauses, a competition
affiliated with the 8th Workshop on Horn Clauses for Verification and Synthesis (HCVS) at ETAPS 2021.
The goal of CHC-COMP is to compare state-of-the-art tools for Horn solving with respect to performance
and effectiveness on realistic, publicly available benchmarks. The deadline for submitting solvers to
CHC-COMP-21 was March 18 2021, resulting in 7 solvers participating, which were evaluated in the
second half of March 2021. The 7 solvers were evaluated in 7 separate tracks on problems in linear
integer arithmetic, linear real arithmetic, the theory of arrays, and theories of algebraic data-types. The
results of the competition can be found in Section 6 of this report, and were presented at the (virtual)
HCVS workshop on March 28 2021.

1.1 Acknowledgements

We would like to thank the HCVS chairs, Bishoksan Kafle and Hossein Hojjat, for hosting CHC-COMP
also in this year!

CHC-COMP-21 heavily built on the infrastructure developed for the previous instances of CHC-
COMP, run by Arie Gurfinkel, Grigory Fedyukovich, and Philipp Rümmer, respectively. Contributors to
the competition infrastructure also include Adrien Champion, Dejan Jovanovic, and Nikolaj Bjørner.

Like in the first three competitions, CHC-COMP-21 was run on StarExec [20]. We are extremely
grateful for the computing resources and evaluation environment provided by StarExec, and for the fast

1https://chc-comp.github.io/
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and competent support by Aaron Stump and his team whenever problems occurred. CHC-COMP-21
would not have been possible without this!

Philipp Rümmer is supported by the Swedish Research Council (VR) under grant 2018-04727, by
the Swedish Foundation for Strategic Research (SSF) under the project WebSec (Ref. RIT17-0011), and
by the Knut and Alice Wallenberg Foundation under the project UPDATE.

2 Brief Overview of the Competition Design

2.1 Competition Tracks

Three new tracks were introduced in CHC-COMP-21 (namely, LIA-nonlin-arrays, LRA-TS-par, ADT-
nonlin), leading to altogether 7 tracks:

• LIA-nonlin: benchmarks with at least one non-linear clause, and linear integer arithmetic as back-
ground theory;

• LIA-lin: benchmarks with only linear clauses, and linear integer arithmetic as background theory;

• LIA-nonlin-arrays: benchmarks with at least one non-linear clause, and the combined theory of
linear integer arithmetic and arrays as background theory;

• LIA-lin-arrays: benchmarks with only linear clauses, and the combined theory of linear integer
arithmetic and arrays as background theory;

• LRA-TS: benchmarks encoding transition systems, with linear real arithmetic as background the-
ory. Benchmarks in this track have exactly one uninterpreted relation symbol, and exactly three
linear clauses encoding initial states, transitions, and error states;

• LRA-TS-par: same selection of benchmarks as in LRA-TS, but 2x4 CPU cores were reserved for
each task, and the evaluation was done with wall-clock time limit; this yields a setting benefiting
parallel solvers;

• ADT-nonlin: benchmarks with at least one non-linear clause, and the algebraic data-types as
background theory.

2.2 Computing Nodes

Two separate queues on StarExec were used for the competition, one queue with 15 nodes for the track
LRA-TS-par, and one with 20 nodes for all other tracks. Each node had two quadcore CPUs. In LRA-
TS-par, each job was run on its own node during the competition runs, while in the other tracks each
node was used to run two jobs in parallel. The machine specifications are:

Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz (2393 MHZ)

10240 KB Cache

263932744 kB main memory

# Software:

OS: CentOS Linux release 7.7.1908 (Core)

kernel: 3.10.0-1062.4.3.el7.x86_64

glibc: glibc-2.17-292.el7.x86_64

gcc-4.8.5-39.el7.x86_64

glibc-2.17-292.el7.i686

https://www.starexec.org
https://www.starexec.org/starexec/public/machine-specs.txt
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2.3 Test and Competition Runs

The solvers submitted to CHC-COMP-21 were evaluated twice:

• in a first set of test runs, in which (optional) pre-submissions of the solvers were evaluated to
check their configurations and identify possible inconsistencies. For the test runs a smaller set of
randomly selected benchmarks was used. In the test runs, each solver-benchmark pair was limited
to 600s CPU time, 600s wall-clock time, and 64GB memory.

• in the competition runs, the results of which determined the outcome of CHC-COMP-21. The
selection of the benchmarks for the competition runs is described in Section 4, and the evaluation
of the competition runs in Section 2.4. In the competition run of LRA-TS-par, each job was limited
to 1800s wall-clock time, and 64GB memory. In the competition runs of all other tracks, each job
was limited to 1800s CPU time, 1800s wall-clock time, and 64GB memory.

2.4 Evaluation of the Competition Runs

The evaluation of the competition runs was in this year done using the summarize.py script available
in the repository https://github.com/chc-comp/scripts, and on the basis of the data provided
by StarExec through the “job information” data export function. The ranking of solvers in each track
was done based on the Score reached by the solvers in the competition run for that track. In case two
solvers had equal Score, the ranking of the two solvers was determined by CPU time (for LRA-TS-par,
by Wall-clock time). It was assumed that the outcome of running one solver on one benchmark can only
be sat, unsat, or unknown; the last outcome includes solvers giving up, running out of resources, or
crashing.

The definition of Score, CPU time, and Wall-clock time are:

• Score: the number of sat or unsat results produced by a solver on the benchmarks of a track.

• CPU time: the total CPU time needed by a solver to produce its answers in some track, including
unknown answers.

• Wall-clock time: the total wall-clock time needed by a solver to produce its answers in some track,
including unknown answers.

In addition, the following feature is included in the results for each solver and each track:

• #unique: The number of sat or unsat results produced by a solver for benchmarks for which all
other solvers returned unknown.

We decided to not include the Space feature, specifying the total maximum virtual memory con-
sumption, in the tables, since this number is less telling for solvers running in a JVM.

3 Competition Benchmarks

3.1 File Format

CHC-COMP represents benchmarks in a fragment of the SMT-LIB 2.6 format. The fragment is defined
on https://chc-comp.github.io/format.html. The conformance of a well-typed SMT-LIB script
with the CHC-COMP fragment can be checked using the format-checker available on https://

github.com/chc-comp/chc-tools.

https://github.com/chc-comp/scripts
https://www.starexec.org
https://chc-comp.github.io/format.html
https://github.com/chc-comp/chc-tools
https://github.com/chc-comp/chc-tools
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3.2 Benchmark Processing in Tracks other than ADT-nonlin

All benchmarks used in CHC-COMP-21 were pre-processed using the format.py script available in the
repository https://github.com/chc-comp/scripts, using the command line

> python3 format.py --out_dir <outdir> --merge_queries True <smt-file>

The script tries to translate arbitrary Horn-like problems in SMT-LIB format to problems within the
CHC-COMP fragment. Only benchmarks processed in this way were used in the competition.

The option --merge_queries has the effect of merging multiple queries in a benchmark into a
single query by introducing an auxiliary nullary predicate. This transformation was introduced in CHC-
COMP-20, and is discussed in [18].

After processing with format.py, benchmarks were checked and categorised into the four tracks
using the format-checker scripts available on https://github.com/chc-comp/chc-tools.

Benchmarks that could not be processed by format.py were rejected by the format-checker.
Benchmarks that did not conform to any of the competition tracks, were not used in CHC-COMP-21.

3.3 Benchmark Processing in ADT-nonlin

Benchmarks used in the ADT-nonlin track were preprocessed by eliminating all theory constraints and
recursively-defined functions. The transformation was performed using the feature of the RINGEN

tool [13]. This way, we were able to satisfy the input-language constraints for all four tools entering
the competition in this track. In the future, we, however, plan introducing other ADT-related tracks with
benchmarks over ADT and linear arithmetic and/or arrays.

3.4 Benchmark Inventory

In contrast to most other competitions, CHC-COMP stores benchmarks in a decentralised way, in mul-
tiple repositories managed by the contributors of the benchmarks themselves. Table 1 summarises the
number of benchmarks that were obtained by collecting benchmarks from all available repositories us-
ing the process in Section 3.2 and Section 3.3. Duplicate benchmarks were identified by computing a
checksum for each (processed) benchmark, and were discarded.

The repository chc-comp19-benchmarks of benchmarks selected for CHC-COMP-19 was included in
the collection, because this repository contains several unique families of benchmarks that are not avail-
able in other repositories under https://github.com/chc-comp. Such benchmarks include problems
generated by the Ultimate tools in the LIA-lin-arrays track.

From jayhorn-benchmarks, only the problems generated for sv-comp-2020 were considered, which
subsume the problems for sv-comp-2019.

For ADT-nonlin, benchmarks originate from the TIP suite (originally, designed for theorem-proving)
and verification of programs in functional languages.

4 Benchmark Rating and Selection

This section describes how the benchmarks for CHC-COMP-21 were selected among the unique bench-
marks summarised in Table 1. For the competition tracks LIA-lin-arrays, LRA-TS, and ADT-nonlin, the
benchmark library only contains 488, 498, and 506 unique benchmarks, respectively, which are small

https://github.com/chc-comp/scripts
https://github.com/chc-comp/chc-tools
https://github.com/chc-comp
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Repository LIA-nonlin LIA-lin LIA-nonlin-arrays LIA-lin-arrays LRA-TS ADT-nonlin

adt-purified 67 / 67
aeval 54 / 54
eldarica-misc 69 / 66 147 / 134
extra-small-lia 55 / 55
hcai 135 / 133 100 / 86 25 / 25 39 / 39
hopv 68 / 67 49 / 48
jayhorn 5138 / 5084 75 / 73
kind2 851 / 738
ldv-ant-med 79 / 79 10 / 10
ldv-arrays 821 / 546 3 / 2
llreve 59 / 57 44 / 44 31 / 31
quic3 43 / 43
ringen 439 / 439
sally 177 / 174
seahorn 68 / 66 3396 / 2822
synth/nay-horn 119 / 114
synth/semgus 5371* / 4839*
tricera 4 / 4 405 / 405
vmt 905 / 802 99 / 98

chc-comp19 271 / 265 325 / 313 15 / 15 290 / 290 228 / 226
sv-comp 1643 / 1169 3150 / 2932 855 / 779 79 / 73

Total 8425 / 7763 8705 / 7768 7166 / 6283 495 / 488 504 / 498 506 / 506

Table 1: Summary of benchmarks available on https://github.com/chc-comp and in the StarExec
CHC space. For each collection of benchmarks and each CHC-COMP-21 track, the first number gives
the total number of benchmarks, and the second number the number of contributed unique benchmarks
(after discarding duplicate benchmarks). In the benchmark family synth/semgus, only 2357/2331 bench-
marks were taken into account for the competition, as processing of the other benchmarks (according to
Section 3.2) was incorrect due to inconsistent filename conventions. This mistake was only discovered
after the main competition runs were finished, and could not be corrected in time.

enough sets to use all benchmarks in the competition. For the tracks LIA-nonlin, LIA-lin, and LIA-
nonlin-arrays, in contrast, too many benchmarks are available, so that a representative sample of the
benchmarks had to be chosen.

To gauge the difficulty of the available problems in LIA-nonlin, LIA-lin, LIA-nonlin-arrays, a simple
rating based on the performance of the CHC-COMP-20 solvers was computed. The same approach was
used in the last competition, CHC-COMP-20, using solvers from CHC-COMP-19. In this year, the
two top-ranked competing solvers from CHC-COMP-20 were run for a few seconds on each of the
benchmarks:2

• For LIA-nonlin and LIA-lin: Spacer (timeout 5s) and Eldarica-abs (timeout 10s);

• For LIA-nonlin-arrays: Spacer (timeout 5s) and Ultimate Unihorn (timeout 10s). Since LIA-
nonlin-arrays was not evaluated at CHC-COMP-20, the top-ranked solvers from the track LIA-lin-
arrays were chosen.

All solvers were run using the same binary and same options as in CHC-COMP-20. For the JVM-based
tools, Eldarica-abs and Ultimate Unihorn, the higher timeout was chosen to compensate for the JVM

2Run on an Intel Core i5-650 2-core machine with 3.2GHz. All timeouts are in terms of wall-clock time.

https://github.com/chc-comp
https://www.starexec.org/starexec/secure/explore/spaces.jsp?id=73700
https://www.starexec.org/starexec/secure/explore/spaces.jsp?id=73700
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LIA-nonlin LIA-lin LIA-nl-arrays
Repository #A / #B / #C #A / #B / #C #A / #B / #C

aeval 11 / 15 / 28
eldarica-misc 35 / 4 / 27 105 / 20 / 9
extra-small-lia 21 / 24 / 10
hcai 74 / 44 / 15 73 / 8 / 5 14 / 6 / 5
hopv 60 / 7 / 47 / 1 /
jayhorn 2688 / 769 / 1627 73 / /
kind2 250 / 455 / 33
ldv-ant-med / 25 / 54
ldv-arrays / 127 / 419
llreve 35 / 13 / 9 37 / 5 / 2
seahorn 38 / 19 / 9 977 / 985 / 860
synth/nay-horn 46 / 30 / 38
synth/semgus 282 / 768 / 1281
tricera 4 / / 28 / 14 / 363
vmt 85 / 616 / 101

chc-comp19 144 / 80 / 41 80 / 101 / 132 / 7 / 8
sv-comp 1013 / 144 / 12 2801 / 17 / 114 258 / 268 / 253

Total 4387 / 1565 / 1811 4338 / 1806 / 1624 554 / 1201 / 2020

Table 2: The number of unique benchmarks with ratings A / B / C, respectively.

start-up delay.
The outcomes of those test runs gave rise to three possible ratings for each benchmark:

• A: both tools were able to determine the benchmark status within the given time budget.

• B: only one tool could determine the benchmark status.

• C: both tools timed out.

The number of benchmarks per rating are shown in Table 2. As can be seen from the table, the
simple rating method separates the benchmarks into partitions of comparable size, and provides some
information about the relative hardness of the problems in the different repositories.

From each repository r, up to 3 ·Nr benchmarks were then selected randomly: Nr benchmarks with
rating A, Nr benchmarks with rating B, and Nr benchmarks with rating C. If a repository contained
fewer than Nr benchmarks for some particular rating, instead benchmarks with the next-higher rating
were chosen. As special cases, up to Nr benchmarks were selected from repositories with only A-rated
benchmarks; up to 2 ·Nr benchmarks from repositories with only B-rated benchmarks; and up to 3 ·Nr

benchmarks from repositories with only C-rated benchmarks.
The number Nr was chosen individually for each repository, based on a manual inspection of the

repository to judge the diversity of the contained benchmarks. The chosen Nr, and the numbers of
selected benchmarks for each repository, are given in Table 3.

For the actual selection of benchmarks with rating X, the following Unix command was used:

> cat <rating-X-benchmark-list> | sort -R | head -n <num>

The final set of benchmarks selected for CHC-COMP-21 can be found in the github repository
https://github.com/chc-comp/chc-comp21-benchmarks, and on StarExec in the public space
CHC/CHC-COMP/chc-comp21-benchmarks.

https://github.com/chc-comp/chc-comp21-benchmarks
https://www.starexec.org
https://www.starexec.org/starexec/secure/explore/spaces.jsp?id=442514
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LIA-nonlin LIA-lin LIA-nl-arrays LIA-lin-arrays LRA-TS ADT-nonlin
Repository Nr #Sel Nr #Sel Nr #Sel #Selected #Selected #Selected

adt-purified 67
aeval 10 30
eldarica-misc 10 30 15 39
extra-small-lia 10 30
hcai 20 55 15 28 5 15 39
hopv 10 17 10 11
jayhorn 30 90 10 10
kind2 30 90
ldv-ant-med 20 60 10
ldv-arrays 30 90 2
llreve 15 37 10 17 31
quic3 43
ringen 111
sally 174
seahorn 15 39 30 90
synth/nay-horn 20 60
synth/semgus 20 60 45 135
tricera 1 1 20 60
vmt 30 90 98

chc-comp19 30 90 30 90 5 15 290 226
sv-comp 30 72 30 90 45 135 73

Total 581 585 450 488 498 178

Table 3: The number of selected unique benchmarks for the CHC-COMP-21 tracks.

5 Solvers Entering CHC-COMP-21

In total, 7 solvers were submitted to CHC-COMP-21: 6 competing solvers, and one further solver (El-
darica, co-developed by one of the competition organisers) that was entering outside of the competition.
A summary of the participating solvers is given in Table 4.

More details about the participating solvers are provided in the solver descriptions in Section 8.
The binaries of the solvers used for the competition runs can be found in the public StarExec space
CHC/CHC-COMP/chc-comp21-benchmarks.

6 Competition Results

The winners and top-ranked solvers of the seven CHC-COMP-21 tracks are:

LIA-nonlin LIA-lin
LIA-nl-
arrays

LIA-lin-
arrays LRA-TS

LRA-TS-
par

ADT-
nonlin

Winner Spacer Spacer Spacer Spacer Spacer Spacer Spacer
Place 2 Ultimate

Unihorn
Golem Ultimate

Unihorn
Ultimate
Unihorn

Golem Golem RInGen

Place 3 PCSat Ultimate
Unihorn

Ultimate
TreeAu-
tomizer

Ultimate
TreeAu-
tomizer

Ultimate
TreeAu-
tomizer

Ultimate
TreeAu-
tomizer

PCSat

Detailed results for the seven tracks are provided in the tables on page 108.

https://www.starexec.org
https://www.starexec.org/starexec/secure/explore/spaces.jsp?id=442514
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Solver LIA-
nonlin

LIA-lin LIA-
nonlin-
arrays

LIA-lin-
arrays

LRA-TS LRA-TS-
par

ADT-
nonlin

Golem — LIA-Lin — — LRA-TS LRA-TS —
PCSat pcsat_-

tb_-

ucore_ar

pcsat_-

tb_-

ucore_ar

— — — — pcsat_-

tb_-

ucore_-

reduce_-

quals

Spacer LIA-

NONLIN

LIA-LIN LIA-

NONLIN-

ARRAYS

LIA-LIN-

ARRAYS

LRA-TS LRA-TS ADT-

NONLIN

Ultimate
TreeAu-
tomizer

default default default default default default —

Ultimate
Unihorn

default default default default default default —

RInGen — — — — — — default

Eldarica
(Hors
Concours)

def def def def — — def

Table 4: The submitted solvers, and the configurations used in the individual tracks.

6.1 Observed Issues and Fixes during the Competition Runs

Fixes in Spacer: During the competition runs, it was observed that Spacer, in the version submitted
by March 18, did not run correctly on StarExec and did not produce output for any of the benchmarks.
Since this issue was discovered soon after the start of the competition runs, the organisers decided to let
the Spacer authors submit a corrected version. The problem turned out to be compilation/linking-related,
and the results presented in this report were produced with the fixed version of Spacer. To ensure fairness
of the competition, all teams were given time until March 20 to submit revised versions of their tools.

Fixes in Golem: One case of inconsistent results was observed in the competition runs in the track
LIA-lin. For the benchmark chc-LIA-Lin_502.smt2, the tool Golem reported unsat, while Spacer
and Eldarica reported sat. The author of Golem confirmed that the inconsistency was due to a bug in
the loop acceleration in Golem, and could provide a corrected version in which loop acceleration was
switched off. The results presented in this report were produced with this fixed version of Golem.

To ensure fairness of the competition, we provide the following table comparing the results of the
two versions of Golem in track LIA-lin. The table shows that the fix in Golem led to marginally worse
performance of the solver, and therefore did not put the other solvers at an unfair disadvantage:

#sat #unsat
Golem (original) 185 133
Golem (fixed) 179 133

https://www.starexec.org
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7 Conclusions

The organisers would like to congratulate the general winner of this year’s CHC-COMP, the solver
Spacer, as well as all solvers and tool authors for their excellent performance! Thanks go to everybody
who has been helping with infrastructure, scripts, benchmarks, or in other ways, see the acknowledge-
ments in the introduction; and to the HCVS workshop for hosting CHC-COMP!

The organisers also identified several questions and issues that should be discussed and addressed in the
next editions, in order to keep CHC-COMP an interesting and relevant competition:

• Models and counterexamples (as already discussed in [18]). A concern brought up again at the
HCVS workshop is the generation of models and/or counterexample certificates, highlighting the
user demand for this functionality. Since at the moment many tools do not support certificates yet,
this could initially happen in the scope of a new track, or by awarding a higher number of points
for each produced and verified model/counterexample.

• Multi-query benchmarks (as already discussed in [18]). We propose to extend the CHC-COMP
fragment of SMT-LIB to include also problems with multiple queries. This would leave the deci-
sion how to handle multi-query benchmarks to each solver. For solvers that can only solve prob-
lems with a single query, a script is available to transform multi-query problems to single-query
problems.

• The LRA-TS track. This restricted track was created to enable also solvers that only support
traditional transition systems to enter. However, no such solver was submitted to CHC-COMP-
21 (in contrast to CHC-COMP-20), which means that the results presented in this report do not
fully reflect the state of the art for such problems. For future instances of CHC-COMP, it can be
considered to replace LRA-TS with a general LRA track, dropping the restriction to problems in
transition system form.

• ADT-nonlin: As mentioned in Sect. 3.3, the syntactic restrictions on the ADT tasks were needed
to let more solvers participate in the competition. Thus, we had only “pure ADT” problems.
However, as the technology evolves, we expect more solvers to participate in the next editions
of the competition. Thus, ADT tasks that also use constraints in other theories (if collected in
sufficient amounts) could form new tracks.

• A bigger set of benchmarks is needed, and all users and tool authors are encouraged to
submit benchmarks! In particular, in the LIA-nonlin, LRA-TS, and ADT-nonlin tracks, the com-
petition results indicate that more and/or harder benchmarks are required.
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8 Solver Descriptions

The tool descriptions in this section were contributed by the tool submitters, and the copyright on the
texts remains with the individual authors.

GOLEM

Martin Blicha
Università della Svizzera italiana, Switzerland

Algorithm. GOLEM is a new CHC solver, still under active development. It can solve systems of
linear clauses with Linear Real or Integer Arithmetic as the background theory and it is able to provide
witnesses for both satisfiable and unsatisfiable systems.

Its current reasoning engine is a re-implementation of the IMPACT algorithm [15] and thus falls into
the category of interpolation-based model-checking approaches.

Architecture and Implementation. GOLEM is implemented in C++ and built on top of the interpolat-
ing SMT solver OPENSMT [9] which is used for both satisfiability solving and interpolation. The only
dependencies are those inherited from OPENSMT: Flex, Bison and GMP libraries.

Configuration in CHC-COMP-21. GOLEM was run with its default settings, except that its experi-
mental loop acceleration module had to be disabled, because it contained a bug in the submitted version.
Note that the SMT theory needs to be specified.

$ golem --logic QF_LRA --accelerate-loops=false

$ golem --logic QF_LIA --accelerate-loops=false

http://verify.inf.usi.ch/golem

MIT LICENSE

PCSat

Yu Gu
University of Tsukuba, Japan

Hiroshi Unno
University of Tsukuba, Japan

Algorithm. PCSat is a solver for a general class of second-order constraints. Its applications include
but not limited to branching-time temporal verification, relational verification, dependent refinement type
inference, program synthesis, and infinite-state game solving.

PCSat is based on CounterExample-Guided Inductive Synthesis (CEGIS), with the support of mul-
tiple synthesis engines including template-based [21], decision-tree-based [14], and graphical-model-
based [19] ones.

Architecture and Implementation. PCSat is designed and implemented as a highly-configurable
solver, allowing us to test various combinations of synthesis engines, example sampling methods, tem-
plate refinement strategies, and qualifier generators. This design is enabled by a powerful module system
and metaprogramming features of the OCaml functional programming language. PCSat uses Z3 as the
backend SMT solver.

http://verify.inf.usi.ch/golem
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News in 2021. We supported the theory of algebraic datatypes and implemented a preprocessor for
eliminating irrelevant arguments of predicates.

Configuration in CHC-COMP-21. PCSat is run with the solver configuration file “pcsat tb ucore -
ar.json” in the LIA-Nonlin and LIA-Lin tracks and “pcsat tb ucore reduce quals.json” in the ADT-
Nonlin track. Both configurations enable the template-based synthesis engine.

https://github.com/hiroshi-unno/coar

Apache License 2.0

RINGEN v1.1

Yurii Kostyukov
Saint Petersburg State University, JetBrains Research, Russia
Dmitry Mordvinov
Saint Petersburg State University, JetBrains Research, Russia

Algorithm. RINGEN stands for a Regular Invariant Generator, where regular invariants [13] are repre-
sented by finite tree automata. While invariant representations based on first-order logic (FOL) can only
access finitely many subterms, regular invariants have an ability to “scan” an ADT term to the unbounded
depth via automaton rules. Tree automata also enjoy useful decidability properties and the corresponding
regular tree languages are closed under all set operations, which makes regular invariants a promising
alternative to FOL-based invariant representations.

RINGEN rewrites a system of CHCs over ADTs into a formula over uninterpreted function symbols
by eliminating all disequalities, testers, and selectors from the clause bodies. Then the satisfiability
modulo theory of ADTs is reduced to satisfiability modulo theory of uninterpreted functions with equality
(EUF). After that, an off-the-shelf finite model finder is applied to build a finite model of the reduced
verification conditions. Finally, using the correspondence between finite models and tree automata, the
automaton representing the safe inductive invariant of the original system is obtained. Full algorithmic
details of the RINGEN can be found in [13].

Architecture and Implementation. RINGEN accepts input in the SMTLIB2 format and produces
CHCs over pure ADT sorts in SMTLIB2 and Prolog. It takes conditions with a property as input and
checks if the property holds, returning SAT and a safe inductive invariant, or terminates with UNSAT
otherwise. We exploit CVC4 (using cvc4 --finite-model-find) at the backend to find regular
models. Besides regular models, a finite model finding approach of CVC4 [16] v1.8 based on quantifier
instantiation provides us with sound satisfiability checking.

Configuration in CHC-COMP-21. The tool is built and run with the following arguments:
solve --timelimit $tlimit --quiet --output-directory "$dir" cvc4f "$input".

https://github.com/Columpio/RInGen/releases/tag/v1.1

BSD 3-Clause License

https://github.com/hiroshi-unno/coar
https://github.com/Columpio/RInGen/releases/tag/v1.1
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Algorithm. SPACER [12] is an IC3/PDR-style algorithm for solving linear and non-linear CHCs. Given
a set of CHCs, it iteratively proves the unreachability of false at larger and larger depths until a model is
found or the set of CHCs is proven unsatisfiable. To prove unreachability at a particular depth, SPACER

recursively generates sets of predecessor states (called proof obligations (POBs)) from which false can be
derived and blocks them. Once a POBs is blocked, SPACER generalizes the proof to learn a lemma that
blocks multiple POBs. SPACER uses many heuristics to learn lemmas. These include interpolation, in-
ductive generalization and quantifier generalization. The latest version of Spacer presents a new heuristic
for learning lemmas [10, 11].

The current implementation of SPACER supports linear and non-linear CHCs in the theory of Ar-
rays, Linear Arithmetic, FixedSizeBitVectors, and Algebraic Data Types. SPACER can generate both
quantified and quantifier free models as well as resolution proof of unsatisfiability.

Architecture and Implementation. SPACER is implemented on top of the Z3 theorem prover. It uses
many SMT solvers implemented in Z3. Additionally, it implements an interpolating SMT solver.

Configuration in CHC-COMP-21. SPACER has several configurations. The following options are
common to all configurations:

fp.xform.tail_simplifier_pve=false fp.validate=true

fp.spacer.mbqi=false fp.spacer.use_iuc=true

To activate global guidance [10], we use the following options:

fp.spacer.global=true fp.spacer.concretize=true

fp.spacer.conjecture=true fp.spacer.expand_bnd=true

To activate quantifier generalization [4], we use:

fp.spacer.q3.use_qgen=true fp.spacer.q3.instantiate=true

fp.spacer.q3=true fp.spacer.ground_pobs=false

In the arithmetic tracks (LRA-TS, LIA-LIN, LIA-NONLIN), we ran two threads in parallel. The first
thread ran SPACER with global guidance. The second thread ran Z3’s BMC engine:

fp.engine=bmc

In the array tracks (LIA-LIN-ARRAYS, LIA-NONLIN-ARRAYS), we again ran two threads in parallel.
The first thread had both global guidance and quantifier generalization. The second thread had only quan-
tifier generalization. In the ADT tracks (ADT-LIN, ADT-NONLIN), we ran one thread which used only
global guidance. Additionally, for the ADT tracks, we turned off one of the optimizations in SPACER:

fp.spacer.use_inc_clause=false

https://github.com/Z3Prover/z3

MIT License

https://github.com/Z3Prover/z3
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Algorithm. The ULTIMATE TREEAUTOMIZER solver implements an approach that is based on tree
automata [2]. In this approach potential counterexamples to satisfiability are considered as a regular set
of trees. In an iterative CEGAR loop we analyze potential counterexamples. Real counterexamples lead
to an unsat result. Spurious counterexamples are generalized to a regular set of spurious counterexamples
and subtracted from the set of potential counterexamples that have to be considered. In case we detected
that all potential counterexamples are spurious, the result is sat. The generalization above is based on
tree interpolation and regular sets of trees are represented as tree automata.

Architecture and Implementation. TREEAUTOMIZER is a toolchain in the ULTIMATE framework.
This toolchain first parses the CHC input and then runs the treeautomizer plugin which implements
the above mentioned algorithm. We obtain tree interpolants from the SMT solver SMTInterpol3 [7]. For
checking satisfiability, we use the Z3 SMT solver4. The tree automata are implemented in ULTIMATE’s
automata library5. The ULTIMATE framework is written in Java and build upon the Eclipse Rich Client
Platform (RCP). The source code is available at GitHub6.

Configuration in CHC-COMP-21. Our StarExec archive for the competition is shipped with the
bin/starexec_run_default shell script calls the ULTIMATE command line interface with the
TreeAutomizer.xml toolchain file and the TreeAutomizerHopcroftMinimization.epf settings
file. Both files can be found in toolchain (resp. settings) folder of ULTIMATE’s repository.

https://ultimate.informatik.uni-freiburg.de/

LGPLv3 with a linking exception for Eclipse RCP

3https://ultimate.informatik.uni-freiburg.de/smtinterpol/
4https://github.com/Z3Prover/z3
5https://ultimate.informatik.uni-freiburg.de/automata_library
6https://github.com/ultimate-pa/

https://ultimate.informatik.uni-freiburg.de/
https://ultimate.informatik.uni-freiburg.de/smtinterpol/
https://github.com/Z3Prover/z3
https://ultimate.informatik.uni-freiburg.de/automata_library
https://github.com/ultimate-pa/


104 Competition Report: CHC-COMP-21

Ultimate Unihorn 0.1.25-6b0a1c7

Matthias Heizmann
University of Freiburg, Germany

Daniel Dietsch
University of Freiburg, Germany

Jochen Hoenicke
University of Freiburg, Germany

Alexander Nutz
University of Freiburg, Germany

Andreas Podelski
University of Freiburg, Germany

Algorithm. ULTIMATE UNIHORN reduces the satisfiability problem for a set of constraint Horn clauses
to a software verfication problem. In a first step UNIHORN applies a yet unpublished translation in which
the constraint Horn clauses are translated into a recursive program that is nondeterministic and whose
correctness is specified by an assert statement The program is correct (i.e., no execution violates the assert
statement) if and only if the set of CHCs is satisfiable. For checking whether the recursive program
satisfies its specification, Unihorn uses ULTIMATE AUTOMIZER [5] which implements an automata-
based approach to software verification [6].

Architecture and Implementation. ULTIMATE UNIHORN is a toolchain in the ULTIMATE frame-
work. This toolchain first parses the CHC input and then runs the chctoboogie plugin which does
the translation from CHCs into a recursive program. We use the Boogie language to represent that
program. Afterwards the default toolchain for verifying a recursive Boogie programs by ULTIMATE AU-
TOMIZER is applied. The ULTIMATE framework shares the libraries for handling SMT formulas with
the SMTInterpol SMT solver. While verifying a program, ULTIMATE AUTOMIZER needs SMT solvers
for checking satisfiability, for computing Craig interpolants and for computing unsatisfiable cores. The
version of UNIHORN that participated in the competition used the SMT solvers SMTInterpol7and Z38.
The ULTIMATE framework is written in Java and build upon the Eclipse Rich Client Platform (RCP).
The source code is available at GitHub9.

Configuration in CHC-COMP-21. Our StarExec archive for the competition is shipped with the
bin/starexec_run_default shell script calls the ULTIMATE command line interface with the
AutomizerCHC.xml toolchain file and the AutomizerCHC_No_Goto.epf settings file. Both files can
be found in toolchain (resp. settings) folder of ULTIMATE’s repository.

https://ultimate.informatik.uni-freiburg.de/

LGPLv3 with a linking exception for Eclipse RCP

7https://ultimate.informatik.uni-freiburg.de/smtinterpol/
8https://github.com/Z3Prover/z3
9https://github.com/ultimate-pa/

https://ultimate.informatik.uni-freiburg.de/
https://ultimate.informatik.uni-freiburg.de/smtinterpol/
https://github.com/Z3Prover/z3
https://github.com/ultimate-pa/
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Algorithm. Eldarica [8] is a Horn solver applying classical algorithms from model checking: predi-
cate abstraction and counterexample-guided abstraction refinement (CEGAR). Eldarica can solve Horn
clauses over linear integer arithmetic, arrays, algebraic data-types, and bit-vectors. It can process Horn
clauses and programs in a variety of formats, implements sophisticated algorithms to solve tricky systems
of clauses without diverging, and offers an elegant API for programmatic use.

Architecture and Implementation. Eldarica is entirely implemented in Scala, and only depends on
Java or Scala libraries, which implies that Eldarica can be used on any platform with a JVM. For com-
puting abstractions of systems of Horn clauses and inferring new predicates, Eldarica invokes the SMT
solver Princess [17] as a library.

News in 2021. Compared to the last competition, Eldarica now uses a new array solver in the tracks
LIA-nonlin-arrays and LIA-lin-arrays.

Configuration in CHC-COMP-21. Eldarica is in the competition run with the option -abstractPO,
which enables a simple portfolio mode: two instances of the solver are run in parallel, one with the default
options, and one with the option -abstract:off to switch off the interpolation abstraction technique.

https://github.com/uuverifiers/eldarica

BSD licence

https://github.com/uuverifiers/eldarica
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Table 5: Solver performance on the 581 benchmarks of the LIA-nonlin track
Solver Score #sat #unsat CPU time/s Wall-clock/s #unique
Spacer 550 352 198 70325 35613 80
Eldarica 461 285 176 252300 120997 5
U. Unihorn 295 175 120 562355 471683 0
PCSat 280 172 108 555680 553500 0
U. TreeAutomizer 56 21 35 463165 433393 0

Table 6: Solver performance on the 585 benchmarks of the LIA-lin track
Solver Score #sat #unsat CPU time/s Wall-clock/s #unique
Spacer 484 310 174 196494 98301 41
Eldarica 397 258 139 367839 200046 27
Golem 312 179 133 475962 481432 2
U. Unihorn 301 175 126 498519 410585 0
PCSat 278 181 97 570522 538048 1
U. TreeAutomizer 207 106 101 580853 547293 0

Table 7: Solver performance on the 450 benchmarks of the LIA-nonlin-arrays track
Solver Score #sat #unsat CPU time/s Wall-clock/s #unique
Spacer 379 224 155 117861 62320 135
Eldarica 225 135 90 415182 200473 10
U. Unihorn 205 108 97 312415 250274 0
U. TreeAutomizer 88 21 67 299039 273337 1

Table 8: Solver performance on the 488 benchmarks of the LIA-lin-arrays track
Solver Score #sat #unsat CPU time/s Wall-clock/s #unique
Spacer 288 214 74 353882 177769 89
Eldarica 225 149 76 441240 208321 11
U. Unihorn 219 146 73 462492 402093 1
U. TreeAutomizer 147 100 47 387636 369112 0

Table 9: Solver performance on the 498 benchmarks of the LRA-TS track
Solver Score #sat #unsat CPU time/s Wall-clock/s #unique
Spacer 311 228 83 364422 188832 51
Golem 276 200 76 416173 416193 11
U. TreeAutomizer 169 132 37 632058 606468 15
U. Unihorn 160 103 57 646526 545329 1

Table 10: Solver performance on the 498 benchmarks of the LRA-TS-par track
Solver Score #sat #unsat CPU time/s Wall-clock/s #unique
Spacer 335 250 85 642476 329157 61
Golem 276 200 76 416152 416229 6
U. TreeAutomizer 169 132 37 652793 626474 14
U. Unihorn 166 109 57 804867 630927 1

Table 11: Solver performance on the 178 benchmarks of the ADT-nonlin track
Solver Score #sat #unsat CPU time/s Wall-clock/s #unique
Spacer 83 30 53 173478 173499 10
Eldarica 77 38 39 182413 87101 8
RInGen 71 26 45 194180 194199 6
PCSat 64 33 31 209696 209725 6
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