
Uppsala universitets logotyp 

UPTEC IT 23037 

Examensarbete 30 hp 
 Oktober 2023 

User Preference-Based 
Evaluation of Counterfactual 
Explanation Methods 
Muhammad Zain Akram 

Våra program civil- och högskoleingenjörsprogram (Klicka och välj program) 

Civilingenjörsprogammer i informationsteknologi 





Uppsala universitets logotyp 

User Preference-Based Evaluation of Counterfactual 
Explanation Methods 
Muhammad Zain Akram 

Abstract 

Explainable AI (XAI) has grown as an important field over the years. As more complicated AI 
systems are utilised in decision-making situations, the necessity for explanations for such 
systems is also increasing in order to ensure transparency and stakeholder trust. This study 
focuses on a specific type of explanation method, namely counterfactual explanations. 
Counterfactual explanations provide feedback that outlines what changes should be made to 
the input to reach a different outcome. This study expands on a previous dissertation in which a 
proof-of-concept tool was created for comparing several counterfactual explanation methods. 
This thesis investigates the properties of counterfactual explanation methods along with some 
appropriate metrics. The identified metrics are then used to evaluate and compare the desirable 
properties of the counterfactual approaches. The proof-of-concept tool is extended with a 
properties-metrics mapping module, and a user preference-based system is developed, 
allowing users to evaluate different counterfactual approaches depending on their preferences. 
This addition to the proof-of-concept tool is a critical step in providing field researchers with a 
standardised benchmarking tool.
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Sammanfattning

Förklarbar AI (XAI) har vuxit som ett viktigt område under åren. Eftersom mer kompli-
cerade AI-system används i beslutsfattande situationer ökar också behovet av förklaringar
till sådana system för att säkerställa transparens och intressenternas förtroende. Denna
studie fokuserar på en specifik typ av XAI-metoder, nämligen kontrafaktiska förklaringsmetoder.
Kontrafaktiska förklaringsmetoder ger feedback som beskriver vilka förändringar bör
göras till inputen för att nå ett annat resultat. Denna studie utvidgar en tidigare av-
handling där ett proof-of-concept-verktyg skapades för att jämföra flera kontrafaktiska
förklaringsmetoder. Denna avhandlingsstudien undersöker de egenskaperna hos kontra-
faktiska förklaringsmetoder tillsammans med några lämpliga mått. De identifierade måtten
används sedan för att utvärdera och jämföra de önskvärda egenskaperna hos de kontra-
faktiska metoder. Proof-of-concept-verktyget utökas med en egenskaps-metrics mapp-
ningsmodul, och ett användarpreferensbaserat system utvecklas, vilket gör det möjligt
för användare att utvärdera olika kontrafaktiska metoder beroende på deras preferenser.
Detta tillägg till proof-of-concept-verktyget är ett viktigt steg för att förse fältforskare
med ett standardiserat benchmarkingverktyg.
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1 Introduction

1 Introduction

Over the last decade, technological advancements have resulted in enormous growth
in the Artificial Intelligence (AI) sector, with AI now being used in various sectors
of our society, from self-driving cars [36, 9] in the transportation industry to disease
prediction [20] in the healthcare industry. The performance of AI systems has greatly
improved as a result of these advancements, but the systems have also become more
complex and difficult to interpret, and are now considered black boxes [16]. This has
given rise to research into the trustworthiness of AI systems, with the goal of designing
systems that are more transparent and human interpretable [40]. For simple tasks, this
can be accomplished by employing simple models that are simple to interpret and pro-
duce satisfactory results. However, tasks requiring complex models will face the issue
of explainability.

Model understanding is not required for all applications, such as recommendation sys-
tems or settings that do not require human intervention [9]. In certain circumstances,
there may be minimal or no consequences for unacceptable outcomes [9]. It is also
probable that the problem has been thoroughly researched, or the models used have
been extensively validated in real-world applications. The emphasis is placed in higher
stakes settings where the models’ decisions will have an impact on people’s lives, such
as in medical applications [10]. Auxiliary criteria such as model fairness become more
important in these high stakes use cases [9]. This is why explainable AI has grown in
importance as a research field.

Explainable AI (XAI) is a field which focuses on explaining to the users why and how an
AI system makes decisions [40]. The goal of XAI is to increase transparency, trust and
accountability in AI systems by allowing humans to comprehend the reasoning behind
the decisions made by AI models. There are numerous explanation methods available
to users that provide merely the why, i.e. the reason for a certain outcome, however this
is not always sufficient to comprehend how to alter the outcome [15]. Counterfactual
explanation methods are a type of explanation method that provides users with feedback
on how the outcome of an AI system might be modified to achieve a more desirable
result [15].

1.1 Motivation

Given that XAI is being used to explain a variety of complicated models in high-stakes
domains [26], it is vital to verify that the explanations given by these approaches are
trustworthy. While the purpose of explanation techniques is to give insights into the
decision-making process of complicated models, their inner workings may not always
be entirely interpretable. This brings the issue of believing the explanations. Using
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1 Introduction

numerous methods to generate explanations for the same situation is one solution to
this challenge. However, while AI practitioners can get a cohesive understanding of
model behaviour if various approaches give consistent explanations, this is not always
the case. There may be times when explanations given by different methods contradict
one other [26]. As a result, there is a significant demand for a standardised benchmark-
ing platform that assures approaches can be compared in a transparent and meaningful
setting [42]. Researchers must be able to quickly compare their suggested techniques
to the vast array of currently accessible methods, and ensure that they are utilising the
correct method for the situation at hand.

1.2 Objectives

This thesis study builds on a previous dissertation [52] in which a proof of concept
(POC) tool was designed to perform a specific task: comparison of counterfactual ex-
planation methodologies.

The purpose of this thesis is first to identify what properties exist for counterfactuals.
This requires studying literature to determine what properties may be associated with
counterfactual explanation approaches and whether there are any desirable properties.
The term “properties” refers to the particular characteristics that these counterfactual
explanations should possess in order to be considered effective and informative for their
intended purpose. The next step is to determine how these desirable properties might be
evaluated. This involves reviewing literature to see what different measures are available
for evaluating counterfactual explanation methods. Therefore, it is critical to understand
how counterfactual methods differ in terms of how they are generated and what specific
properties they take into account. Following the selection of desirable properties and
metrics, the task at hand is to specify mapping rules, i.e. which property could be
evaluated by which measure. This mapping can subsequently be used to expand the
flexibility of the POC tool by introducing an automated module of property and metric
mapping. Another goal is to transform the POC into a user preference-based system,
which will result in an updated output format for the POC.

Another aspect of this thesis study is to explore similar tools to the POC and identify the
benefits and drawbacks of such tools, as well as whether or not the studied tools could
be merged with the existing POC.

2



1 Introduction

1.3 Limitations

The project is limited by its focus on explanations for machine learning models while
excluding machine reasoning. The goal of the POC tool is to be able to compare dif-
ferent explanation methods for the same model and present the result in a more human
understandable manner, so either machine learning or machine reasoning models could
have been used, but machine learning models were deemed comparatively easier to inte-
grate into the system pipeline, being readily available as off-shelf libraries. The dataset
used for this work is publicly available and is a tabular dataset. This is due to a variety
of factors, including the dataset’s simplicity and interpretability, which requires signif-
icantly less pre-processing than more complex datasets and is also easier to explain to
non-experts. Another reason is computational efficiency, which means that running ex-
periments and training models necessitates fewer computational resources. Along with
publicly available datasets, the experimentation was carried out on the 5G-Slicing use
case, and the general nature of the data was tabular, thus the emphasis was on datasets
with similar modalities as the telecom use case.

For this work, metrics for different types of explanation methods are investigated, namely
attributive explanation methods and contrastive explanation methods, with an empha-
sis on counterfactual explanation methods, which are a type of contrastive explanation
method. This is because the existing implementation of POC tool is based on metrics
and properties for counterfactual explanations. Furthermore, the evaluation of expla-
nation methods is limited by a sole focus on statistical methods. Statistical methods
provide means to objective analysis to an extent, without the need for extensive domain
knowledge as may be the case with other techniques that could be based on building
knowledge graphs, etc. Also, it is easier to interpret for non-expert users, as general
form of representation is quantifiable and discrete in nature.

1.4 Disposition

The report is divided into 8 sections. The Introduction section offers an overview of
the project and introduces the project objectives and limitations. Section 2 provides
a detailed background information for Explainable AI and counterfactuals explanation
methodologies, laying the groundwork for the subsequent sections. The following sec-
tion exclusively contains material deemed relevant for this project that was discovered
during the project’s literature review phase.

The theoretical foundation for the project is detailed in the 3rd and the 4th section. This
comprises a summary section for the current components as well as theory for the com-
ponents that are implemented. The related works are presented in section 5 where a
comparable tool is discussed in detail. The 6th section includes an overview of the
system design as well as an implementation part that details thoroughly how the new
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module was developed. This part expands on the theory offered in the 4th section by pre-
senting the implementation components and methods. Section 7 presents the findings
of the experimentation for the new module. It also explains why the various tests were
conducted and what the results mean. Finally, section 8 provides concluding notes that
summarise the important results. Additionally, future research proposals and prospec-
tive areas for development are suggested.
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2 Literature Review

Explainable Artificial Intelligence (XAI) has become an increasingly important field of
research as the need for transparent and trustworthy AI systems grows [4], with many
approaches and methodologies being investigated to make AI more interpretable. Some
researchers are interested in varied approaches concerning the models, whereas others
are interested in various forms of explanations. This section will provide background
information on XAI and its importance. The definitions and methods used in XAI re-
search will be explored. Furthermore, this section will delve into the specific area of
counterfactual explanations and their potential benefits and challenges. Overall, this
literature review aims to provide a thorough overview of the topic of XAI, with a par-
ticular emphasis on counterfactual explanations and their desirable characteristics, that
could be quantified.

2.1 Background

This section establishes the groundwork for an extensive understanding of XAI by pro-
viding the necessary material needed to comprehend this thesis work. The key terms
and concepts of XAI are addressed briefly. The categorisation of XAI approaches found
in literature is also presented.

2.1.1 Black-box vs White-box Models

The demands for transparency in AI systems are increasing from different stakeholders
as more black-box machine learning models are being used to make predictions for
critical situations [46]. Although what exactly do black-box models imply?

In engineering and computing, a black-box is a device or system that, given an in-
put, produces some output without exposing any information about its underlying func-
tions [24]. Black-box machine learning models are those that are complicated in nature
and whose internal logic is difficult for humans to grasp [3]. By not having any in-
sights on the internal workings, it creates uncertainty regarding the decisions made by
such models. One such example of these black-box models is Deep Neural Networks
(DNNs), as they are complex in nature with huge parametric space.

White-box models are the opposite of black box models, which are transparent in na-
ture [30]. The domain experts can usually understand these models as they have knowl-
edge of models internal working through some way, it can be gradients or weights.
Models that are based on patterns, rules, and decision trees are labeled as white-box
models [32].

5
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2.1.2 Explainable AI

Different researchers have discussed explainable AI in different ways. It has been de-
scribed as a branch of AI, as well as a property of AI systems. As stated in the pre-
ceding section, there is inconsistency in the definitions of the terms explainability and
interpretability, where they are sometimes used interchangeably and sometimes defined
separately. As a result, several definitions of explainable AI exist.

D. Gunning in [17] defines explainable AI as systems that have the ability to explain
their logic to users, allowing the user to obtain a grasp of the system’s behaviour and
offers awareness of its strengths and weaknesses. The author further claims that XAI
will create a set of machine learning techniques, that will allow the users to comprehend
and trust the systems [17]. This includes any strategy that minimises the complexity of
the model and simplifies its outputs [4].

The focus of such AI systems is the end users since they rely on the predictions pro-
vided by these AI systems and hence need to understand the results generated by these
systems. For self-driving cars, for example, the operator has to comprehend the au-
tonomous vehicle’s decision-making system in order to effectively deploy for future
systems [17]. Depending on the target audience the requirement from such explainable
systems might differ, for instance in the definition presented by D. Gunning, brings con-
cepts such as trust and understandability but that might not be the only purposes for such
systems for an audience, there can be fairness or even confidence [4]. If the intended
audience includes domain specialists, they must be able to trust the model and derive
insights from it, whereas end users may simply need to know if the predicted outcome
by the model is fair. Keeping the audience in focus, Arrieta et al. [4] define XAI as
one that produces insights or reasoning to make its work more transparent or easier to
understand for a specific audience.

2.1.3 Key Terminology in XAI

The words explainability and interpretability are frequently used interchangeably in
the literature on XAI. When it comes to model interpretability, different authors have
related the word with various aspects of the model. For example, interpretability has
been promoted as a condition for trust. According to Ribeiro et al. [48], an interpretable
model is one that provides a qualitative understanding of the input and result. Whereas
Arrieta et al. [4] define interpretability as a passive feature of a model that relates to the
degree to which models are intelligible to people. Explainability relates to providing
an explanation, which in the literature is characterised as an interface between people
and the model, and offers an accurate approximation of the decision-making model that
is understandable to humans [16].
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Other terms used in the literature in the XAI sector include understandability and trans-
parency. Understandability refers to the property of a model that is humanly com-
prehensible without the need for any understanding or explanation of its internal work-
ings [4]. The term transparency relates to understandability and requires a model that
can be understood on its own [4]. A model can have varying degrees of transparency. It
can be considered at the model’s overall level, at the level of individual components, or
at the algorithm level [30].

2.1.4 Classification of XAI Methods

Over the years, the researchers have investigated and created a diverse range of XAI
methodologies for various objectives and target audiences. According to the litera-
ture [58], there are five major groups into which XAI techniques may be classified.
These include stage, scope, problem types, input and output formats. Figure 1 depicts a
hierarchical design that divides the XAI approaches into distinct groups. This overview
is based on Vilone and Longo’s review research [58].

Figure 1 Classification of XAI methods based on [58].

Stage
The stage of explainability refers to the period in the process at which the model gener-
ates the explanation for the decision it provides [19]. The XAI methods considering the
stage of explainability are divided into 2 categories; ante-hoc and post-hoc. Ante-hoc
methods consider the explainability of the model during the design and development
of the machine learning model itself [58]. These methods focus on creating inherently
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interpretable models or designing features that facilitate explanation generation, even
before the model is deployed. Post-hoc methods consist of an external model which is
used to generate an explanation for the base model. The base models are often black-
boxes [52], where explanations are generated by post-hoc methods once the predic-
tions are made [19]. Furthermore, post-hoc approaches are classified as model-agnostic
or model-specific. Model-specific methods can only be used for certain ML models,
whereas model-agnostic methods can be applied to any sort of model.

Scope
The scope of explainability specifies the extent of an explanation that is produced by
some XAI method [19]. In terms of explainability scope, the methods are divided into
three categories, namely local, cohort, and global. The XAI methods that explain a
single prediction instance of a model are referred to as local explanation methods. The
methods that consider a sub-group of predictions to explain are cohort methods. The
goal of global explanation methods is to make a model’s complete inferential process
transparent [58], allowing for interpretation of the full set of predictions.

Problem Types, Input and Output Formats
XAI methods might differ depending on the underlying problem, such as classification
or regression. In terms of input data, the explainable models differ as well. Because
the technique used by a model to categorise images might differ significantly from
textual data, this can play a key role in the development of explainable methods al-
gorithms. Similarly, various target audiences and situations may need distinct output
formats from these methodologies. The most common forms of output for explanation
methods recognised by Vilone and Longo [58] are numeric, rules, textual, visual and
mixed.

2.1.5 Post-hoc Explanation Methods

As previously stated, post-hoc techniques can be either model-specific or model-agnostic.
Post-hoc model-agnostic methods refers to explanation methods that can be applied to
any type of machine learning model and provide explanations after the model has been
trained. Furthermore, model-agnostic techniques can be divided into three categories:
model simplification, feature importance, and local explanations [4, 57]. Feature impor-
tance methods identify the most important features that influence a particular decision.
Shapley Values (SHAP) [34] is one example of such a methods. Local explanations
methods only explain a single prediction of a model. Local explanation methods can
further be divided into approximation and example-based methods. Lets take x as an
example of prediction from the model that needs to be explained. Approximation-based
methods sample new datapoints in the proximity of x and then can either fit a linear
model or derive a rule set from them [57]. Local Interpretable Model Agnostic Ex-
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plainer (LIME) [48] is an example of method that fits linear model and Anchors [49]
are example of rule-based methods. Counterfactual explanation is an example-based
technique that looks for data points around x that have a different prediction than x.
The subsequent section presents counterfactual explanations in-depth, delving into spe-
cific details, methodologies and findings related to it.

2.2 Counterfactual Explanations

Counterfactual explanations have arisen as a significant approach in XAI because they
provide a unique way of presenting explanations. These methods present alternative
scenarios that result in a different outcome, giving information on the factors that in-
fluence the model’s decision-making process. Counterfactuals have been in psychology
for a long time. Lewis proposed a theoretical definition in 1973 [57, 28]. Wachter et
al. [60] were among the first to propose the use of counterfactuals in machine learning.

A counterfactual is the smallest change in the input features that changes the prediction
to another outcome. There are other terms used interchangeably for counterfactuals in
the literature [57], such as contrastive explanation [7] and algorithmic recourse [23].
Other explanation methods, such as SHAP [34], provide feature importance, which
states which features contribute the most to a specific outcome, whereas counterfac-
tual explanations provide actionable feedback [57] that when applied to the features,
can result in desired outcome.

2.2.1 Example Scenario

Let’s consider an example case to better understand the counterfactual explanations.
Consider a hospital that uses a machine learning model to predict the possibility of
post-operative problems. This model is designed to predict if a certain patient will have
an elevated risk of complications if they undergo a given procedure. The model takes
as input certain patient information, in this example {age, gender, BMI, blood glucose
levels, and blood pressure}, and outputs a binary classification,{high risk, low risk},
indicating whether the patient is at high or low risk of post-op problems. One of the
hospital’s doctors, John, applies this model to one of his patients and receives high risk
as the model’s output. Now John is wondering, 1) What features contributed to this par-
ticular outcome? 2) What should he advise his patient to do in order to get the desired
result? In this scenario, the intended goal is that his patient has a low risk of problems
following surgery. The first question can be addressed using any explanation technique
that outputs the feature importance, such as ”Blood sugar levels are too high,” however
this does not solve the issue at hand. Counterfactual explanations can be used to acquire
a better understanding of the model’s prediction. The aim is to find actionable insights
and strategies that can help reduce John’s patient’s anticipated risk of problems. Multi-
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ple counterfactuals are possible [60] as various factors may impact the outcome, leading
to multiple ways to obtain the desired outcome. A few examples of hypothetical coun-
terfactuals created by counterfactual explanation methods may be as follows: ”Reduce
blood sugar levels by 5%” or ”Reduce BMI by 10%.” This is illustrated by Figure 2.
This form of explanation not only offers a notion of which variables are contributing
to the projected outcome, but it also provides actionable feedback that John can use
to recommend to his patient so that the probability of difficulties post-op is minimal.
The counterfactual explanation methods guarantee that if the recommended changes are
implemented, the intended outcome will be obtained, provided that the model used for
prediction has not changed [57].

Figure 2 Counterfactual explanation examples for the patient with high-risk scenario.

2.2.2 Counterfactual Explanation Methods & their Desired Properties

The literature specifies certain desirable properties that a counterfactual should have in
order to achieve its purpose [57, 60, 39] . Research in the development of counterfactual
explanation methods has focused on generating counterfactuals that ensure some of
these properties [15]. These methods consider the different needs and requirements of
various applications. Molnar [38] refers to such properties as “requirements” that a
counterfactual should fulfill.

As previously stated, Wachter et al. [60] proposed counterfactual explanations as an op-
timisation problem. There the objective is to minimise the distance between the coun-
terfactual and the original data point given the counterfactual belongs to the desired
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label class. Verma et al. [57] states that a counterfactual classified in the desired class
is a valid counterfactual, resulting in the property validity for counterfactuals. Higher
validity value is preferred [57]. Another property induced from the Wachter et al. [60]
is of proximity. This property implies that the counterfactual should suggest a relatively
small change to input features, that results in the desired outcome [57]. Referring back
to the example shown in Figure 2, the two generated counterfactuals are on the correct
side of the decision boundary, since the desired label class is {low risk}. This meets the
validity requirement for both counterfactuals. For proximity, for example, the suggested
change is to reduce sugar levels by 5%. However, reducing it by 10% may also work,
but it is practical to make the smallest possible change. Lower proximity values are
preferred [57]. Proximity is often referred to as similarity in literature.

Another desirable quality for counterfactuals is sparsity also referred to as minimal-

ity [15]. According to research, people prefer simple explanations over complicated
ones [37]. Sparsity captures this and implies that counterfactuals should ideally suggest
a change in only a few features. For example, a counterfactual can prescribe making
small alterations to three feature inputs to reach the desired outcome, but this is not
optimal when compared to a counterfactual that only suggests one small change.

When one feature in the dataset has a direct impact on another, then a causal relationship
exists among those feature. Hence, one event causes another to occur [51]. A counter-
factual should adhere to any established causal relations between input features in order
to be practical [57]. This results in the property called causality for counterfactuals.
Mahajan et al. [35] presented a method to generate counterfactuals using causal models
which took into consideration the causal relationships among input features.

In their publication, Poyiadzi et al. [45] propose FACE: Feasible and Actionable Coun-
terfactual Explanations, a counterfactual generating method with the aim to provide
feasible and actionable counterfactuals. This method considers the underlying data dis-
tribution and use high-density pathways specified by density-weighted metrics. The
paper [45] discusses state-of-the-art counterfactuals generation methods and presents
the shortcomings of these methods. It also specifies two more counterfactual proper-
ties: feasibility and actionability. According to Verma et al. [57], input features can
be mutable or immutable. The term actionability refers to the fact that the counterfac-
tual suggests changes that are achievable, i.e. the immutable features are not modi-
fied. Consider the example presented in section 2.2.1, the immutable attributes are age
and gender, implying that changes to these features are not actionable. The authors of
FACE [45] refer to the property feasibility as to revealing feasible paths based on the
shortest path between the counterfactual and the original instance. Mahajan et al. [35]
introduce feasibility as a causal term and argue that it cannot be handled just through
statistical restrictions. The authors consider a counterfactual feasible if the changes ful-
fill the causal model’s constraints. Another criterion of counterfactual is that it should
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be close to the training data and conform to observable correlations between the fea-
tures [57]. This is known as data manifold closeness. A counterfactual should not be
unreasonable, which means it should not be an outlier.

There are several methods that can generate multiple counterfactuals for a single in-
stance. One such example of method is Diverse Counterfactual Explanations (DiCE) [39].
Mothilal et al. [39] emphasise diversity for counterfactuals as a crucial component for
actionable counterfactuals. When presented with a wide range of alternatives, it be-
comes easier for the user to pick the action [57]. Consider the example scenario from
section 2.2.1 once more. If the proposed counterfactuals were both similar, such as ”de-
crease blood sugar levels by i) 5% ii) 10%,” it would be less helpful than presenting
”decrease blood sugar levels by 5%” and ”decrease BMI by 10%.” Because the second
group is more diversified, it provides more options for changing the outcome.

The Figure 3 illustrates an overview of the desirable properties for counterfactuals dis-
cussed in this section.

Figure 3 Desirable Properties of Counterfactual Explanation Methods.
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2.2.3 Evaluation of Counterfactual Explanation Methods

The majority of counterfactual generating methods are evaluated based on the desirable
properties of counterfactuals [57, 15]. To be able to compare different approaches and
measure the quality of the explanations, counterfactual explanations must be evaluated.
There are numerous metrics used in the literature to evaluate counterfactual explanations
with respect to the desirable properties. Distance metrics like L1 norm, L2 norm, Ma-
halanobis distance, and so on are often used for evaluating properties that involve calcu-
lating the distance between counterfactuals and the original instance [57, 15]. Different
papers, for example, use various forms of these distance metrics for proximity [57],
such as computing the average weighted sum or dividing the distance by the median
absolute deviation [57, 39, 60]. This is done for a variety of reasons, one of which is
to deal with the diversity in range among different features. These distance measures
are also used to assess sparsity [57, 15], where they may be utilised to quantify the
magnitude with which features change. Metrics distance may also be used to assess the
diversity of counterfactuals [57, 39]. There are also several scoring metrics developed
to analyse counterfactuals, with Mahanjan et al. [35] proposing one to assess feasibil-
ity. This work [35] also discusses a metric for causality that measures whether or not
changes in the counterfactual meet the causal relationship between features. Actionabil-
ity and closeness to data can be captured for instance by measuring the average distance
to the k-nearest data points [57] or measuring local outlier factor [22]. The number of
counterfactuals in the desired class is frequently used to calculate validity [57, 15].

2.3 Summary

The literature review section provides a comprehensive overview of the relevant re-
search papers and literature, establishing the basis for understanding the theoretical
components and objectives of the project. The section begins by explaining various
terms that are often utilised in the context of XAI. Terms like black-box and white-
box models are defined, as are other terms like understandability, transparency, and
interpretability, which are frequently cited in XAI literature. Different definitions of
explainable AI found in the literature are described, with Arrieta et al. [4] presenting the
concept of XAI with an emphasis on the target audience.

In addition, the section presents the categorisation of XAI approaches. The literature has
a wide range of XAI approaches and methodologies, which has led to the categorisation
of XAI methods into five broad groups [58]. These include stage, scope, problem types,
input and output formats, and are discussed in further detail. Among them, the focus
of this work is on counterfactuals explanation techniques, which fall under the wider
category of post-hoc explanation methods.

Counterfactual explanation approaches provide users with actionable feedback [39] that,
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when implemented, produces the desired result. An example scenario is presented in
Section 2.2.1 to demonstrate the application and significance of counterfactual explana-
tion approaches. The Sections 2.2.2 and 2.2.3 then go on to discuss the desired proper-
ties of counterfactuals as well as how to assess them. According to the literature [57, 60],
counterfactuals must have particular properties in order to serve their purpose. Figure 3
shows the properties that are described in detail. To assess the quality of explanations
and the effectiveness of such methods, desired properties of counterfactual explanation
methods must be evaluated. The evaluation techniques can then be used to compare
different explanation methods. The different evaluation metrics used in the literature to
evaluate counterfactual explanation methods are also mentioned.
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3 Description of the Existing Proof of Concept

The purpose of this section is to summarise the components of the existing POC and
discuss the theoretical notions necessary to comprehend it. There are some differences
between the pipeline implemented in the previous dissertation (version 1) [52] and the
pipeline used as a starting point (version 2) for this study. This section will discuss the
key components of both versions that are identical. The version 2 mentioned in this
part does not include the new module added for this study, which is described in further
detail in Section 6.

The existing POC was built as a pipeline comprised of four major building stages. These
components include selecting a dataset, training a machine learning model, deploying
counterfactual explanation methods, and analysing the results against the metrics of
choice.

3.1 The Dataset Stage

In practice, any classification dataset may be used. For that the dataset must be pre-
processed, which commonly includes data normalisation, data cleaning, feature selec-
tion, and so on. The datasets used for both version of the pipeline consisted of categor-
ical and numerical tabular data. The dataset is split into training and testing datasets in
an 80:20 ratio. After that, the dataset is used to train a classifier model.

3.2 The Machine Learning Model Stage

The machine learning (ML) model block in pipeline version 2 includes four classifiers:
1) Logistic Regression, 2) Random Forest Classifier,3) Decision Tree Classifier, and 4)
XGBoost. Convolution Neural Networks (CNN) were also used in the pipeline version
1. For version 2 however, the CNN model was deemed unnecessary for two reasons: i)
no image dataset was utilised for the experiments, and ii) the focus was not on compar-
ing different classifier performances. All three machine learning models are supervised
learning methods [29]. Logistic regression is used for binary or multi-class classifica-
tion tasks. It fits a logistic function to input features and predicts using the calculated
coefficients [29]. Decision tree is a rule-based method that uses a series of if-else condi-
tions [29] depending on the feature values and makes predictions. It creates a tree-like
model. Random forest is an ensemble method [29] which can be used for both clas-
sification and regression. This model combines output of multiple decision trees to
reach a single result. XGBoost [6] is a gradient boosting algorithm that predicts using
an ensemble of decision trees by minimising the objective function using boosting and
regularisation strategies.
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3.3 The Counterfactual Explanation Methods Stage

The pipeline version 1 employed four counterfactual explanation methods, which are as
follows:

i) Counterfactual generation method proposed by Wachter et al. [60]. This is referred
to as the baseline method in the dissertation.

ii) Diverse Counterfactual Explanations (DiCE) by Mothilal et al. [39].

iii) Contrastive Explanation Method (CEM) proposed by Dhurandhar et al [8].

iv) Counterfactual Explanations Guided by Prototypes proposed by Looveren [31].

The current explanation methods provide explanation for tree-based models, whereas
the other two methods explain models that are primarily differential. This situation
would result in an unfair comparison of all four methods. As a result, only i) and ii) are
employed in pipeline version 2, since they were deemed sufficient for experimentation
and testing the extended module.

3.3.1 Baseline Method

The method proposed by Wachter et al. [60] has laid the foundation for several addi-
tional counterfactual generating methods. The authors present this as an optimisation
problem shown in Equation 1. The objective is to minimise the distance between the
counterfactual represented as x

0 and the original instance xi to the point where f!(x0)
equals the new target y0. The first term drives the classifiers output to be near the target
class , while the second term pushes the counterfactual to be near the original instance.
The d(, ) denotes a distance function, and the proposed function is the Manhattan dis-
tance weighted by the inverse Median Absolute Deviation (MAD). To find a close solu-
tion, x0 is solved iteratively by maximising the parameter �.

argmin
x0

max
�

�(f!(x
0)� y

0)2 + d(xi, x
0) (1)
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3.3.2 DiCE

DiCE is a counterfactual explanation method proposed by Mothilal et al. [39]. The sug-
gested method aims to generate counterfactuals that are both feasible and diversified.
This approach also introduces an optimisation problem with various constraints. Equa-
tion 2 presents the objective function described by Mothilal et al. [39]. Where f(.) is
the ML model, k denotes the total number of counterfactuals to be created, ci is the
counterfactual example and x denotes the original instance. The yloss is a modified
loss term from the Wachter method [60] that encourges f(.) output to be as near to the
desired class y as possible. dist is a distance function that is similar to the Wachter
method. It is defined as the mean of feature-wise L1 distances between x and ci divided
by MAD.The dpp diversity is the diversity metric. Furthermore, the loss function is
balanced using the hyper-parameters �1 and �2

arg min
c1,...ck

1

k

kX

i=1

yloss(f(ci), y) +
�1

k

kX

i=1

dist(ci, x)� �2 dpp diversity(c1, ...ck) (2)

3.4 The Result stage

A wide range of metrics are implemented in the pipeline’s version 1 to evaluate the
counterfactuals. Counterfactuals are evaluated based on four separate characteristics:
whether they belong to the intended class, prediction probability, proximity, and direct
and indirect path assessments. These are evaluated in relation to the counterfactual
and the original instance. Different distance functions, such as L1 norm, L2 norm,
Mahalanobis distance, and so on, are employed to measure proximity. Different scoring
metrics, such as feature value score, change count score, and neighbourhood score, are
also implemented. Some of the above mentioned metrics are also employed in pipeline
version 2. Section 4 presents all of the metrics implemented in pipeline version 2 as
well as the theory to understand them.
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Figure 4 System Design pipeline based on [52].

Once the required metrics are chosen, the outcome is displayed to the user in a tabular
style, with each metric used to assess each counterfactual created by different methods.
Furthermore, the properties for the various approaches are inferred manually based on
the metrics. Figure 4 shows the high-level system design for the pipeline. The main
stages are shown and their details are summarised.
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4 Evaluation Metrics

There are many metrics for evaluating counterfactual explanations. Section 2.2.3 dis-
cusses these. All of these metrics are used to evaluate some desirable property of
counterfactual explanations. Different authors have employed different metrics to mea-
sure the same property, for example, different distance metrics for evaluating proxim-
ity [57], and they also used the same metric to measure different properties, for example,
Mothilal et al [39] used feature wise distances using L1-norm for both proximity and
diversity with some other constraints.

This section will focus on the metrics utilised in this work to assess counterfactual ex-
planations for some desirable features. Section 6.1.2 presents the mapping of properties
and measures. The purpose is to introduce the metrics so that the mapping of properties
with metrics as well as the application of the mapping as a new module in the pipeline
becomes easier to understand.

4.1 Distance metrics

Distance metrics are applied in all aspects of machine learning, whether it be computer
vision and clustering tasks. In both supervised and unsupervised learning, distance mea-
sures are used to quantify similarity or assess proximity between datapoints. According
to research [62, 63], an appropriate distance metric can help improve the trained model’s
performance. The following distance measurements were used in this study: L1-norm,
L2-norm, Hamming distance and Cosine similarity.

Consider two vectors x = (x1, ..., xn) and y = (y1, ..., yn), then the mentioned metrics
are calculated as following:

Manhattan Distance/ L1-norm

D(x, y) =
nX

i=1

|xi � yi| (3)

Euclidean Distance/ L2-norm

D(x, y) =

vuut
nX

i=1

(xi � yi)2 (4)
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Hamming Distance

D(x, y) =
nX

i=1

�(xi, yi) where �(xi, yi) =

(
0, if xi = yi

1, if xi 6= yi

(5)

Cosine Similarity

Cosine distance is represented as Dcos and Cosine similarity as Dsim.

Dcos(x, y) = 1�Dsim(x, y) (6)

Dsim(x, y) =

Pn
i=1 xi · yipPn

i=1 x
2
i

pPn
i=1 y

2
i

(7)

4.2 Other Metrics

This section presents metrics that are not distance metrics and are used for evaluating
counterfactuals for some desirable properties. These include the Local Outlier Factor
(LOF), the Validity Score, and the Median Absolute Deviation (MAD). It is important
to point out that MAD is not employed as an evaluating measure on its own, but rather
in conjunction with L1-norm for this work.

Local Outlier Factor (LOF)

Outliers are data objects that stand out from the rest of the dataset and do not follow the
typical behaviour of the dataset. The process of identifying outliers in a dataset is known
as anomaly detection [25]. The local outlier factor is a density-based anomaly detection
technique. Breunig et al [5]. proposed LOF, which overcomes a major difficulty with
other density-based outlier detection methods: finding outliers in variable density [25].
To thoroughly understand how the Local outlier factor is calculated for an object or a
point, a few things must be addressed. The detailed explanation can be obtained by
referring to the following resource [5]. These are as follows:

K-Distance and K-Neighbours:

Consider a point x; the k-distance is the distance between the point and its kth nearest
neighbour. Either Euclidean or Manhattan distance functions can be used. Every point
whose distance from x is less than k-distance is considered a K-neighbour. The set of
such points is denoted as Nk(x)
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Reachability distance:

The reachability distance of the point x with respect to point o is defined as:

RDk(x, o) = max{k-distance(o), d(x, o)}

The distance function is denoted as d(, ).

Local Reachability Density:

The local reachability density is the inverse of the average reachability distance of x
from its neighbours.

LRDk(x) = 1/

"P
o2Nk(x)

RDk(x, o)

|Nk(x)|

#

Local Outlier Factor:

The density of x can be determined by comparing it to the density of all datapoints in
the neighbourhood.

LOFk(x) =

P
o2Nk(x)

LRDk(o)
LRDk(x)

|Nk(x)|
(8)

Assuming the point x is an outlier, then its LRD will be less than its neighbour’s average
LRD, resulting in a high LOF value. In contrast if x is not an outlier the LOF will be
close to 1 since the average of LRD of neighbours will roughly equal to LRD of x.

Validity Score

A counterfactual is said to be valid if it changes its classification from the original class
to the desired one, provided that the desired class is not the same as the original class.
Validity score determines the fraction of counterfactuals that are classified in the desired
class. Suppose K is the total number of counterfactuals generated by a method then the
validity score is:

Validity-Score =
# of CFs in desired class

K
(9)

The number of counterfactuals in desired class can be determined by using the model
and predicting the class probabilities for each counterfactual.

Median Absolute Deviation (MAD)

The Median Absolute Deviation (MAD) is a scale metric that can be used to summarise
data variability. It is a robust measure of variability since it uses the median as an
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estimate of the distribution’s centre and the absolute difference rather than the squared
difference [50]. It is calculated by taking the median of all absolute distances from the
sample median.

Consider a dataset X = {x1, x2, ..., xn} with sample median as X̃ = median(X), then
MAD can be calculated as follows:

MAD = median(|xi � X̃|) (10)

4.3 User Preferences

In utility theory, assumptions regarding a user’s preferences over specific choice pos-
sibilities are established, which results in numerical values expressing the subjective
preference ordering [11]. Utility functions can be used to mathematically model pref-
erences and capture the user’s preference among many options [59]. Utility theory has
established a framework for modeling user preferences by assigning distinct choices a
numerical value [12] termed utility. Preferences are divided into two types: ordinal

preferences and cardinal preferences.

Consider an end user to be a decision-maker (DM) who states preferences among three
choices, {A,B,C}. Preference information can be expressed in both cardinal and ordinal
forms.

Ordinal Preferences

Ordinal preferences use a linear order to rank options in order of preference from best to
worst, without any further information [14], such as assigning utility to distinct choices.
If the DM picks A over C and C over B, then a utility function u can be represented as
follows:

u(A) = 5, u(C) = 3, u(B) = 1

However, the above DM preferences can be represented equally effectively with another
function v as long as the order of the preferences is the same; the numbers assigned are
meaningless. The functions u and v are ordinally equivalent. As for ordinal preferences,
only the order u(A) > u(C) > u(B) is important.

In applied literature, ordinal information on preferences is derived from one of two
sources: directly from DM or indirectly from cardinal information [14].

Cardinal Preferences

Cardinal preferences assign a numerical value to the options, allowing for quantitative
evaluation of the preferences [14]. In contrast to ordinal, the numerical value assigned
to preferences represents strength, therefore considering u and v as utility functions, if
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u is defined as prior and v is defined as follows:

v(A) = 8, u(C) = 7, u(B) = 1

The difference between the assigned numbers is important as the difference between C

and B for both functions varies by a lot, the functions are not cardinally equivalent.
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5 Related Work

This section introduces tools for benchmarking evaluation methods that are compara-
ble to the existing POC. OpenXAI [1] is an open-source framework for evaluating and
benchmarking post hoc explanation methods. The OpenXAI tool aims to assess ex-
planation methods based on properties: faithfulness, stability, and fairness. The tool
includes both a synthetic dataset generator and a collection of real-world datasets. It
also includes pre-trained models and twenty-two quantitative metrics for evaluating the
properties listed above.

CARLA (Counterfactual And Recourse Library) [42] is a Python library that was cre-
ated to provide baselines for comparing counterfactual explanation methods. The aim
was to create a transparent and coherent framework for researchers to compare counter-
factual explanation approaches on various datasets.

The library CARLA is investigated in more detail since the current POC also focuses
on counterfactual explanation methods. The goal was to acquire insights from CARLA,
identify its advantages and disadvantages, and decide whether any components can be
integrated with the existing POC.

5.1 CARLA: Counterfactual And Recourse Library

As previously mentioned, CARLA is an open-source tool for benchmarking counter-
factual explanation methods. It allows for a transparent and extensive comparison of 13
counterfactual methods with built-in machine learning models, and a standardised set
of integrated evaluation measures and datasets. Furthermore, CARLA enables users to
integrate new methods as well as plug in their custom black-box models into the tool.

Pawelczyk et al. [42] distinguish between independence,dependence and causal-based
counterfactual explanation methods that are implementing in CARLA. The input fea-
tures of the prediction model are assumed to be independent in independence-based
methods and dependent in dependent methods. In causal-based approaches, the causal
relationship between input features is considered, and such methods include causal mod-
elling using structural equations or graphs [42].

Table 1 shows the methods implemented in CARLA that can be evaluated and used for
benchmarking.
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Independent Dependent Causal

AR (Actionable Recourse) [56] C-CHVAE [43] CR (Casual Recourse) [23]

CEM [7] CLUE [2] ROAR [55]

DiCE [39] FACE [45]

Growing Spheres [27] REVISE [21]

Wachter [60]

FeatureTweak [54]

FOCUS [33]

Table 1: Counterfactual explanation methods implemented in CARLA [42].

Since the provided methods vary in their characteristics and focus on distinct qualities, a
diverse set of assessment metrics is required to analyse the various approaches. CARLA
offers six baseline assessment metrics. Table 2 briefly outlines the various measures.

Metrics Description

Costs The distance of the original instance to the counterfactual.
L0, L1, L2, L-infinity distance measures.

Constraint Violation Counts the number of times the counterfactual explanation
method violates user-defined constraints.

yNN Computes the y-Nearest-Neighbours for the given counter-
factuals.

Redundancy Calculates the number of unnecessary proposed changes.

Success Rate Measures the fraction of correctly classified counterfactuals
with respect to the desired class.

Average Time The average time counterfactual explanation method needs
to generate its result.

Table 2: Description of evaluation metrics implemented in CARLA [42].
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To assess the library CARLA, four main factors are closely examined: documentation,
dependencies, stability, and usability. The documentation helps the tool’s accessibil-
ity by providing information about the tool so that users may understand and use it as
efficiently as possible. The dependencies of a tool are critical in determining any com-
patibility difficulties. So that users can run the tool on their machines as intended. The
tool’s stability will be evaluated in order to identify its dependability and robustness in
various circumstances. Finally, the tool’s usability is assessed in relation to the existing
POC to determine whether the tool or components of the tool can be integrated with the
POC and what benefits and drawbacks this would entail.

5.1.1 Documentation

CARLA provides extensive documentation to users to be able to understand the library.
A summary page in the documentation provides a brief overview of the library. It in-
cludes an installation guide, full component documentation, tutorial notebooks, etc. The
documentation is simple to understand and provides a great basis for users. It also in-
cludes references to the counterfactual explanation methods implemented in the library.
This is required since the tool has been updated with newer methods compared to the
version mentioned in the original paper [42].

However, the documentation is not updated as frequently as the changes that can be
tracked on the library’s github. There is also no version guide available, which is nec-
essary if the library is updated on regular basis. Not all tutorials could be replicated
while testing the library. For example, following the benchmarking tutorial notebook,
which used CCHVAE method to generate counterfactuals, resulted in internal errors.
For testing, CARLA version 0.0.5 was used. The installation instructions available in
the documentation and github differs as well. CARLA installation might require the
installation of external libraries.

In summary, CARLA offers good and substantial documentation that can be improved
with regular updates and the inclusion of a more comprehensive installation guide.

5.1.2 Dependencies

Given the various functions that CARLA provides, the library CARLA has a large num-
ber of dependencies. It is dependent on other libraries such as Tensorflow, Pytorch,
Sklearn, and others because there are various machine learning models available for
the user to train their data on. Users can employ neural networks, linear models, and
tree-based algorithms. Although providing customers with a diverse set of models is
beneficial, it introduces dependency requirements on other libraries. It is sometimes
preferable to have few dependencies to facilitate smooth integration with different envi-
ronments.
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The dependency issue with CARLA is largely related to the installation. CARLA re-
quires users to use Python version 3.7, and any newer version will cause installation
issues. This is because the Tensorflow and Pytorch libraries used in the application
require that specific version of Python. This may cause compatibility issues because
dependant libraries, such as Pytorch, release new versions on a regular basis, and prior
versions could be missing maintenance and upgrades, leading in performance issues.

The library was tested on Windows, and no major compatibility difficulties occurred.
Running the application on macOS may necessitate the installation of additional exter-
nal libraries in order to install Pytorch for CARLA.

5.1.3 Stability and Usability

The CARLA library is mostly stable since it includes extensive documentation and ro-
bust test suites to assure proper functionality and reliability. However, as previously
stated, the library lacks versioning methods. As anybody may contribute to CARLA,
the library also adheres to typical quality assurance standards such as code reviews via
pull requests and issues on github for tracking new development.

CARLA is a great standalone library for researchers wishing to benchmark counterfac-
tual explanation systems. CARLA’s API allows users to use their custom datasets and
machine learning models. If the library does not have a counterfactual method, it can
be added through github. Using CARLA with another library, on the other hand, can be
difficult. Utilising libraries that rely on newer Python versions will cause compatibility
issues with CARLA.

5.2 Tool Comparison and Integration Decision

In terms of functionality, CARLA is quite similar to the existing POC. The user selects
a dataset, machine learning model, explanation method, and metrics for evaluation. Be-
sides the distance measures, the other evaluation metrics differ from the existing POC.
CARLA’s output format is also similar to the existing POC in that it displays the output
to the user in a tabular style.

Due to the issues raised in the preceding sections about the tool’s dependencies, docu-
mentation, and stability, it was decided not to integrate any CARLA components with
the existing POC. Since it is heavily reliant on other libraries, it is difficult to estab-
lish seamless interaction with different environments. Furthermore, CARLA, like the
current version of POC, generates output in tabular format, which is considered a short-
coming of the tool as it is harder to interpret. As a result, the existing POC has been
expanded for this project by adding an automated module of properties and metrics and
presenting the output to the user in a different format.
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6 System Design & Implementation

This section introduces the extended pipeline’s components. The system design for the
pipeline version 2 is provided. The user preference-based system is also discussed, as
is the mapping of properties to metrics. The implementation of the pipeline version 2 is
also detailed, along with two algorithms.

6.1 System Design

The pipeline version 1 was divided into four major sections: the dataset stage, the ML
model stage, the counterfactual explanation methods stage, and the result stage. The
objective of the extension was to add an automatic inference of properties module to the
prior version, which will map properties and metrics together and can be used to evalu-
ate the explanation approach. Furthermore, the pipeline’s entire process was expanded
to make it more user-driven. As a result, the end-user is involved in the selection pro-
cess of datasets, machine learning models, and properties. Making the extended pipeline
(pipeline version 2) into a user preference-based system. Table 3 lists the pipeline ver-
sion 2’s built-in features for datasets, ML models, and counterfactual explanation meth-
ods. Figure 5 depicts the system design for the pipeline’s extended version, which in-
cludes automated inference of properties module. This figure is comparable to Figure 4,
which depicts the pipeline version 1. However, the user preference-based approach is
not evident from Figure 5, and it will be discussed in further detail in the following
section.

Categories Values

Datasets iris, diabetes, telecom

ML-models
logistic regression, random forest,

decision trees, XGBoost

Counterfactual explanation methods DiCE and Wachter method

Table 3: Built-in Features of the Tool: Datasets, ML-Models and Methods.
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Figure 5 System Design of pipeline version 2.

6.1.1 User Preference-Based System

The user preference-based system implies that the system output is tailored to the user’s
individual demands by utilising the user preferences across many alternatives and sce-
narios. In the context of the extended pipeline, this means that the user is requested to
choose between a number of datasets, ml-models, and features in order to evaluate and
compare the counterfactual explanation. The process of this preference-based system is
depicted in Figure 6.

First, the user is requested to select a dataset from the three options indicated in Table 3.
After selecting the dataset, the user is prompted to select the original instance class from
the dataset’s class labels. If the dataset has multi-class classification, the user is then re-
quested to select the desired class. This option is not presented to users for binary clas-
sification problems because the opposite of the original instance class is automatically
selected. Following that, the user is presented with the dataset’s features and requested
to select sensitive features. The sensitive features in this scenario are those that are
immutable and for which the counterfactual explanation methods should not suggest a
change. This input is later utilised to compute a property. The user is subsequently
asked to choose a ml-model to train the dataset on, and the implemented counterfactual
methods are utilised to generate counterfactuals for a random instance from the original
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class. The user is next presented with six desirable properties for counterfactuals that
can be used to evaluate the counterfactual explanation methods. The user can select
one or more properties. It is worth noting that when multiple properties are selected, a
weighted sum is calculated. The weighted sum is computed for metrics results that are
mapped to the selected properties. The order in which the user selects the properties
determines the weight. To compare methods, the specified properties metric is applied
to counterfactuals of one method and the result is saved. The procedure is then repeated
for the other method. Once the outcomes for both approaches have been saved, they
are compared, and the user is given an output indicating which explanation method best
satisfies those properties.

6.1.2 Properties & Metrics Mapping

The mapping of properties chosen to evaluate the counterfactual explanation methods
with the metrics is presented in this section. Section 2.2.2 goes into greater depth about
these properties, while Section 4 goes into greater detail about the metrics. Table 4
depicts the mapping of properties and metrics.

Propeties Metrics

Proximity Feature-wise L1 distance divided by MAD

Validity Ratio of correctly classified counterfactuals

Sparsity L2 distance and Hamming distance

Diversity Cosine Similarity

Actionability Number of sensitive features violated

Data Manifold Closeness LOF (Local Outlier Factor)

Table 4: Properties & Metrics Mapping.

6.2 Implementation

In this section, we will discuss what libraries were used for what reasons, how metrics
functions were created, and present algorithms for non-trivial functions. The pipeline is
written in Python and makes use of widely used libraries such as Numpy [18], Scikit-
learn [44], and Pandas [61].
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6.2.1 Datasets

There are three datasets that have been added. The Iris dataset [13], provided by scikit-
learn, is used. The dataset is made up of three target classes, four features, and 150
samples in total.

The diabetes dataset provided on Kaggle [41] is used. This is a binary classification
dataset. It has 9 features and 100000 samples. The dataset is loaded and pre-processed
using Pandas. The ”gender” feature column is binary encoded with pre-processing,
while the ”smoking history” column is not used.

The third dataset is a telecom domain dataset that was presented in the paper [53]. This
binary classification dataset has 13 features and around 10000 samples.

The datasets are split using scikit-learn’s train test split method, with a test size of 20%.

6.2.2 ML-Models and Counterfactual Explanation Methods

Four machine learning models have been added. The scikit-learn library is used to
import logistic regression, random forest, and decision trees. The XGBoost is taken
from the XGBoost library [6]. All of the models are built with the default parameters.

There are two counterfactual explanation approaches employed. The DiCE library [39]
is imported to implement DiCE method. The Wachter method is implemented with the
mlxtend [47] package, and counterfactuals are generated with the create counterfactual

method.

6.2.3 Metrics Functions

Most metric functions require an original instance as well as a list of counterfactuals.
Other input may be required depending on the need; for example, the model is required
for the validity metric. The list of counterfactuals belongs to a single counterfactual
method and is used to select the best counterfactual of that method so that it can be
compared to the others. For example, if two methods each generate three counterfactu-
als, the best counterfactual of each method defined by the property metric is compared to
each other, also determined by the property metric. The user selects the original instance
class, and a random instance is chosen from that class to generate counterfactuals.

The feature-wise L1 distance divided by MAD is used to calculate proximity. The idea
behind this is that literature [39] suggests that deviation from the median gives a robust
measure of a feature’s variability, and therefore dividing by the MAD reflects the relative
prevalence of witnessing the feature at a specific value. For validity, a ratio of correctly
classified counterfactuals is determined. Algorithm 1 shows the process for calculating
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this ratio.

Algorithm 1: Compute Validity ratio
Input : desired class label, list cfs,model

Output: validity ratio

Function ComputeValidityRatio(desired class label, list cfs,model):
count = 0

foreach counterfactual in list cfs do
class prob = model.predict proba(counterfactual)
max idx = argmax(class prob)

if desired class == max idx then
count += 1

end
end
validity ratio = count/n

return validity ratio

Two separate things are measured when it comes to sparsity. The hamming distance is
used to calculate how many features are modified, and L2 distance is used to measure
the magnitude of the feature change. Cosine similarity is used to assess how different in
nature the generated counterfactuals are. The comparison of counterfactual explanation
methods is based on the number of distinct counterfactuals produced by the methods.
If both methods generate three counterfactuals, cosine similarity is used to determine
which method generates the most distinct counterfactual out of the three. Actionability
is measured by calculating constraint violations. The sensitive features are chosen by
the user, and the generated counterfactuals are examined to see if any of the sensitive as-
pects are suggested to change by the methods. Each modification in a sensitive feature is
counted as a separate violation, and the total number of violations is compared amongst
counterfactual explanation approaches. Scikit-learn’s LOF is utilised for outlier detec-
tion for the data manifold closeness attribute. The LocalOutlierFactor estimator is fitted
to the data, and the outlier scores are produced based on the local density of each sam-
ple. The fit predict method is used which provides an array of outlier scores, with 1
indicating an inlier and -1 indicating an outlier. The procedure for detecting outliers is
shown in Algorithm 2.
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Algorithm 2: Compute Outlier count
Input : data, list cfs
Output: count
Function ComputeOutlierCount(data, list cfs):

n = len(data)
combined data = data+ list cfs

lof = LocalOutlierFactor()
outlier labels = lof.fit predict(combined data)

outlier flags = [label == �1 for label in outlier labels[n :]]

count = sum(outlier flags)

return count

6.2.4 Weights Calculation

When multiple properties are selected, then a weighted sum is used to calculate the
metric’s result. Each property is assigned a weight, and the order user chooses the prop-
erties determines it. Ordinal preferences determine the weight calculation. Section 4.3
includes more details regarding ordinal preferences. Assuming the index of properties
ranges from 0 to n-1, where n is the number of properties selected by the user, then the
weightage is calculated as:

weightsi = (n� i)/


n(n+ 1)

2

�
(11)
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7 Results And Discussion

In this section, the outcomes of the experiments are presented and discussed. Exper-
iments are conducted to investigate how various properties can be used to compare
counterfactual explanation methods. All of the different implemented datasets and ml-
models are utilised for testing in order to acquire a more thorough understanding of the
method comparison and demonstrate how user preferences might affect the outcomes.

7.1 Experiments

The experiments are carried out by adding an experiment module to the pipeline. The
only difference between this module and the original pipeline is that instead of choosing
a random instance from the original class that the user has chosen, all instances from
the original class are chosen to run experiments for a particular property. The metric
functions described in Table 4 are used for testing different properties. Different datasets
are used to conduct tests for different properties. However, not all datasets and ML-
models are utilised for evaluating all possible properties.

Validity

The iris dataset is used to evaluate the validity property.

Original class: setosa
Desired class: versicolor

For each instance, DiCE generates three counterfactuals while the Baseline method gen-
erates one. The DiCE method generated valid counterfactuals for each instance, indi-
cating that the counterfactual belonged to the versicolor class, whereas the Baseline
method was unable to generate a single valid counterfactual for any instance. All coun-
terfactuals generated by the Baseline method belonged to the original class: setosa. The
Table 5 displays the outcome of a counterfactual generated and its predicted class using
the decision tree method for one instance.
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Instance
petal

length

petal

width

sepal

length

sepal

width
Predicted Class

Original instance 5.5 3.5 1.3 0.2 Setosa (0)

DiCE 1 5.5 3.5 4.1 0.2 Versicolor (1)

DiCE 2 7.7 3.5 3.8 0.2 Versicolor (1)

DiCE 3 5.5 4.4 3.7 0.2 Versicolor (1)

Baseline Method 5.5 3.6 1.3 0.2 Setosa (0)

Table 5: Feature values for generated counterfactuals.

Figure 6 Class probabilities for DiCE & Baseline method from different ML-models.

Figure 6 depicts the class probabilities obtained from several ML-models when ap-
plied to counterfactuals generated using the DiCE and Baseline approaches. The mean

35



7 Results And Discussion

of class probabilities is used since counterfactuals for all original class instances were
generated and class probabilities for all such counterfactuals were predicted. DiCE
produces valid counterfactuals with 100% accuracy whereas Baseline method does not
produce a single valid counterfactual.

Proximity & Validity

The diabetes dataset is used to evaluate proximity and validity properties combined. The
validity property was selected first to give it a larger weightage in the weightage sum
computation.

Original class: 1 (Have diabetes)
Desired class: 0 (No diabetes)

Since the dataset is fairly large , a random sample of 1000 instances from the original
class are chosen to run tests on. The DiCE method generates three counterfactuals for
each instance, while the Baseline method generates one. The metric associated with the
proximity property is calculated for each counterfactual created by DiCE. To compare
with the Baseline counterfactual, the DiCE counterfactual with the closest proximity to
the original instance is chosen.

Figure 7 Distribution of minimum distance for DiCE & Baseline methods.

Figure 7 depicts the distribution of minimum distances obtained when the proximity
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metric function is employed to analyse various DiCE and Baseline counterfactuals. Lo-
gistic Regression when used as the training model for this experiment. The distribution
of minimum distances for both methods is quite similar, with DiCE having an average
minimum distance of 41.33 and Baseline having 41.64. Since the experiment was de-
signed to examine both proximity and validity, validity was given a greater emphasis.
i.e. it was chosen first in order to give it a greater weightage for the weighted sum cal-
culation. Figure 8 presents a graph that shows how many valid counterfactuals were
created by each approach when employed with different ML-models. Taking into ac-
count the results of logistic regression, where all counterfactuals created by DiCE were
valid, i.e. 1000, while Baseline provided 990 valid counterfactuals out of 1000. This
finding demonstrates that DiCE generated better counterfactuals that fulfilled the two
criteria.

Figure 8 Number of valid counterfactuals generated by method based on different ML-
models.
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Sparsity & Actionability

The telecom and diabetes datasets are used to test the properties sparsity and action-
ability. The actionability property was selected first to give it a larger weightage in the
weightage sum computation.

Telecom dataset
Original class: 1 (Violation)
Desired class: 0 (No violation)

Diabetes dataset
Original class: 1 (Have diabetes)
Desired class: 0 (No diabetes)

Dataset Total features
Sensitive

features

Constraint

Violations

DiCE

Features

change

DiCE

Constraint

Violations

Baseline

Features

change

Baseline

Diabetes 9 2 0 1.2 1.59 4.9

Telecom 13 3 0 1.2 2.8 11.8

Table 6: Average Features change suggested & Constraint violations by DiCE and Base-
line methods.

To assess Actionability, it was decided to analyse how many sensitive attributes spec-
ified by the user are violated by each counterfactual method. Sparsity is assessed by
counting the number of features proposed to modify by each generated counterfactual.
For DiCE three counterfactuals were generated for each instance and for baseline 1.
Table 6 displays the results of an experiment conducted on two datasets: diabetes and
telecom. For diabetes, two sensitive features were chosen: age and gender, while for
telecom, three random features were chosen as sensitive. This was done due to lack of
domain knowledge.

When tested on these properties, DiCE outperformed the baseline method by a wide
margin. Table 6 displays the average results for diabetes and telecom datasets which
was conducted on 1000 randomly selected instances. This was done to save time, as
both datasets were rather large and the counterfactual generation is a time-consuming
process. The DiCE method did not violate any constraints in either dataset, but the
baseline method violated on average 1.59 features out of 2 sensitive features in the
diabetes dataset and 2.8 out of 3 sensitive features in the telecom dataset. For both
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datasets, baseline method suggested significantly more feature changes than the DiCE
method.

Data manifold closeness

The iris dataset is used to evaluate the Data manifold closeness property for DiCE and
Baseline methods.

Original class: 0 (setosa)
Desired class: 1 (versicolor)

The counterfactuals were generated for ten instances of the original class, 0 (setosa).
For each instance, both methods produced one counterfactual. For each counterfactual
of both approaches, the metric function for data manifold closeness property was run
using all four ML-models.

Figure 9 Scatter plot illustrating the decision boundaries and outliers obtained using
different ML-methods for DiCE.

Figures 9 and 10 depict the end outcome of the experiment. Figure 9 depicts the con-
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clusion of how DiCE-generated counterfactuals were labeled as outliers or not. It is
illustrated that each DiCE-generated counterfactual was categorised as an outlier by all
ML-models. For logistic regression, all counterfactuals were categorised in the desired
class, 1 (versicolor), and can be considered outliers when compared to class 1 (versi-
color) datapoints. However, the results for the other three Ml-models are inconsistent.
Some counterfactuals are invalid, i.e. they are not categorised correctly, and some coun-
terfactuals are false positive outliers. In Figure 9, the Decision Tree plot shows that
two counterfactuals are incorrectly labeled as outliers because they are located in dense
clusters of datapoints.

Figure 10 Scatter plot illustrating the decision boundaries and outliers obtained using
different ML-methods for Baseline.

Figure 10 shows that when using the Baseline method, only one counterfactual has
been classified as an outlier for each ML-model. It is also worth noting that the same
counterfactual is identified as an outlier in all Ml-models. The outlier is also an invalid
counterfactual for all ML-models since it does not belong to the desired class.
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7.2 Discussion

One of the primary objectives of this thesis was to develop a properties metric mapping
module that could be used to better compare the implemented counterfactual explana-
tion techniques. The experimentation’s aim was to test this module in numerous ways
and determine whether a useful comparison between different techniques could be ac-
complished.

The validity property was examined twice, once by itself and once combined with the
proximity property. This is a crucial property for counterfactuals because if the gen-
erated counterfactual does not belong to the intended class, the other counterfactual
properties such as proximity, sparsity, and so on become insignificant. As mentioned in
Section 2.2.2 a higher validity is preferred. The results of the first experiment are shown
in Figure 6, where DiCE outperformed the baseline method for generating valid coun-
terfactuals. The baseline method was unable to generate a single valid counterfactual
for any instance. The reasoning for this can be the implementation used for the base-
line method is incapable of handling multiple classes, as the iris dataset was used for
this experiment which is a multiclass classification problem. This was determined after
reviewing the findings of the second experiment, which are depicted in Figure 8. The
diabetes dataset was used for this experiment which is a binary classification problem.
DiCE produced more valid counterfactuals than the baseline method for this experiment
as well but only by a small margin. The weighted sum was used to determine whether
counterfactual methods achieved both properties in the second experiment, where prox-
imity was also considered in conjunction with validity. The use of a weighted sum
proved to be an efficient and comprehensive approach, yielding a well-represented out-
come that reflects the collective insights from the chosen metrics. DiCE had a higher
weighted sum because it was slightly better than the baseline technique in producing
both valid and closer counterfactuals.

The properties of sparsity and actionability were examined collectively, and the weighted
sum of the metrics results was calculated. As seen in Table 4, the sparsity property is
associated with two separate metrics. It can be used to determine the amount of the
suggested modification as well as the number of suggested feature changes. It was de-
termined that testing the number of feature changes in combination with actionability,
which determines the number of constraint violations, was sufficient for this purpose.
For this experiment, two separate binary classification datasets were utilised. Table 6
shows that DiCE performed much better than the baseline method for both properties in-
dependently. In this instance, user preferences for assigning weight to different proper-
ties is inconsequential considering any ordering of properties will have DiCE satisfying
both properties better than the baseline method for this particular setup.

The data manifold closeness property was tested using the iris dataset. The property’s
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outlier detection metric was utilised to identify whether the created counterfactuals were
outliers or not. All four ML-models were utilised for both counterfactual approaches,
and the associated findings are displayed in Figures 9 and 10. Baseline fared signif-
icantly better than DiCE in that it produced just one counterfactual, which was con-
sidered to be an outlier. Figure 10 shows that the counterfactual was appropriately
categorised as an outlier since it was distant from the desired class versicolor cluster
and belonged to the original class cluster. Figure 9 reveals that numerous DiCE coun-
terfactuals are incorrectly labelled as outliers since they are near or in the cluster of the
desired class (1). It is crucial to note that in Figures 9 and 10, the scatter plots with de-
cision boundaries use only features: petal length (cm) and petal width (cm) from the iris
dataset to simplify the plot. These features are labelled as feature 3 and 4 respectively
in Figures 9 and 10. By concentrating primarily on these two features, there is a risk
of oversimplifying the underlying categorisation process and perhaps neglecting vital
information conveyed by the other two features. Consequently, the decision boundary
depicted in the scatter plot may not precisely represent the real decision boundary when
all four features are considered. Feature 3 and 4 were chosen because counterfactuals
showed the most variation in these two attributes.

The diversity property was not included in the experimentation module. It was deter-
mined that comparing DiCE with the baseline method for diversity property was not fair
since the baseline method is unable to generate different counterfactuals for the same
instance. In every scenario, DiCE will outperform the baseline method in terms of diver-
sity. Other counterfactuals methods capable of generating multiple counterfactuals for
the same instance need to be implemented in the pipeline to test the diversity property.

The user preferences were a crucial component of the new pipeline module. Few ran-
dom user preferences scenarios were built for testing. However, user evaluation on the
new module can be beneficial. The user assessment was considered challenging due to
time constraints as it would require to organise many evaluation sessions and work on
the interface of the pipeline for presenting the results to the users. These were not part
of the project’s scope and may have caused delays.
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8 Conclusions

To summarise, this research project was successful in extending the existing POC by
improving its modularity by adding a new mapping module for properties and metrics.
This addition is an important step toward offering a standardised benchmarking tool for
field researchers. The substantial literature research (described in Section 2) done as part
of this project was critical in the development of the new module. A thorough examina-
tion of existing literature yielded a thorough grasp of the many properties and metrics
associated with counterfactual explanation approaches. This aided in determining the
most appropriate properties and evaluation metrics, which were then included into the
new module. Furthermore, the insights gained from the literature research contributed
in defining the mapping for the properties with the metrics. The result stage indicated
in Section 3.4 was redefined to incorporate the new mapping module of properties and
metrics after examining various perspectives and approaches from the literature.

The user-preference-based method, which provided a dynamic and individualised way
of assessing counterfactual explanations, was a key component of the new module. It
empowered users by allowing them to choose a specific dataset, ml-models, and prop-
erties on which they would evaluate counterfactuals, enabling them to personalise the
analysis to their own needs. The user preference system’s increased flexibility encour-
ages transparency and inclusiveness, since diverse target audiences such as researchers,
stakeholders, and domain experts can utilise this tool based on their requirements.

8.1 Challenges & Limitations

The mapping of properties to suitable evaluation metrics for counterfactual explana-
tions presented a significant challenge due to several factors. Firstly, counterfactual
explanation comprises a wide range of desired features, each of which provides a dis-
tinct aspect of the explanation. This necessitates a variety of evaluation methodologies.
Second, the relation between properties and metrics is complex. It is not trivial since
it is not necessarily a one-to-one mapping. For example, properties such as proxim-
ity have well-defined measurements, and any of these distinct distance metrics may be
employed to measure based on the need. In contrast, there are no universally accepted
measuring metrics for properties such as validity and diversity.

A further challenge was establishing the user’s role. Considering this is a user-preference
based system, it was necessary to analyse how various audiences would approach the
solution. This entailed estimating how much domain knowledge the user would need
to use this application. As the sensitive features were chosen by the user, they needed
to some knowledge about the datasets. It was also difficult to identify how the output
should be presented to the user so that it could be easily interpreted.
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The following are some of the tool’s limitations. As previously stated, one of the con-
straints is that users must have prior knowledge of datasets in order select the sensitive
features. In terms of comparing the counterfactual methods, the diversity property can-
not be evaluated fairly. Since the baseline method is incapable of generating several
counterfactuals for the same instance. When a user chooses the original class, a random
instance from that class is picked to produce counterfactuals for. It would be preferable
to allow the user to manually specify an instance for which counterfactuals should be
created.

8.2 Future Work

There are various routes to pursue in order to scale and improve the POC’s capabilities.
To begin, the POC can be expanded by including a broader range of datasets. Currently,
only tabular datasets are implemented, however image datasets can be added in the fu-
ture. More complicated tabular datasets with more features and a wider range of feature
types can also be included. Furthermore, other machine learning models could be in-
corporated to handle varied kinds of datasets, such as convolutional neural networks
for image datasets. The POC can further be expanded by including more properties for
counterfactual explanation methods as well as other metrics for evaluating them.

The tool is currently terminal-based. To make the tool more user-friendly and easier to
use, a GUI (Graphical User Interface) can be included. Once the tool has a GUI, user
evaluations can be used to enhance the output format, i.e. what information is helpful
to the users and what is not.
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