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A B S T R A C T   

Rooftop photovoltaic panels (RPVs) are being increasingly used in urban areas as a promising means of achieving 
energy sustainability. Determining proper layouts of RPVs that make the best use of rooftop areas is of impor
tance as they have a considerable impact on the RPVs performance in efficiently producing energy. In this study, 
a new spatial methodology for automatically determining the proper layouts of RPVs is proposed. It aims to both 
extract planar rooftop segments and identify feasible layouts with the highest number of RPVs in highly irra
diated areas. It leverages digital surface models (DSMs) to consider roof shapes and occlusions in placing RPVs. 
The innovations of the work are twofold: (a) a new method for plane segmentation, and (b) a new method for 
optimally placing RPVs based on metaheuristic optimization, which best utilizes the limited rooftop areas. The 
proposed methodology is evaluated on two test sites that differ in urban morphology, building size, and spatial 
resolution. The results show that the plane segmentation method can accurately extract planar segments, 
achieving 88.7% and 99.5% precision in the test sites. In addition, the results indicate that complex rooftops are 
adequately handled for placing RPVs, and overestimation of solar energy potential is avoided if detailed analysis 
based on panel placement is employed.   

1. Introduction 

Cities are increasingly turning to renewable energy as a means of 
reducing greenhouse gas emissions and satisfying their high energy 
needs (REN21, 2018). Among the various renewable energy technolo
gies, rooftop photovoltaic panels (RPVs) are the most feasible in urban 
areas (Aslani & Seipel, 2022a; Bódis, Kougias, Jäger-Waldau, Taylor, & 
Szabó, 2019; Gernaat, de Boer, Dammeier, & van Vuuren, 2020; Joshi 
et al., 2021; Yang, Campana, Stridh, & Yan, 2020). This is because they 
lower congestion in urban energy networks as a result of self- 
consumption without requiring any ground-level land. They can also 
make a significant contribution to achieving nearly net-zero energy 
buildings (Attia, 2018). 

RPVs, however, cannot be installed on an entire rooftop area. This is 
because the roof shape, roof objects (ranging from a big dormer to a 
small plumbing vent), and uneven distribution of solar irradiation 
restrict areas suitable for RPVs placement. And installing RPVs on un
suitable rooftop areas may reduce their cost-effectiveness. Indeed, roof 
multiplanarity, roof objects, and partial topographic shadows make 
finding the optimal placement of RPVs complicated, particularly when 

applied on a district scale. Thus, identifying a feasible layout of RPVs 
that best uses the limited space of the roof in terms of energy production 
is crucial and challenging (Gassar & Cha, 2021). 

This study proposes a new spatial methodology for analyzing rooftop 
areas and automatically identifying the layout of RPVs that leads to 
efficient energy production. The methodology includes a new plane 
segmentation method to extract planar segments of rooftops from digital 
surface models (DSMs), as RPVs are installed based on planar segments. 
The plane segmentation method has a low risk of under-segmenting roof 
objects that affect RPVs placement, and it uses new planarity analysis to 
improve segmentation accuracy. The methodology also contains a new 
scalable method for placing RPVs over the derived planar segments in an 
optimal way. This placement method identifies a layout of RPVs that 
best uses planar segments while avoiding low-irradiated areas. In 
addition, it mitigates overestimating RPVs potential as it considers roof 
objects and shadow impacts. 

The proposed methodology is especially beneficial for dense urban 
areas with complex polyhedral roof shapes and high obstructions. It uses 
DSMs for various purposes, namely plane segmentation, solar irradia
tion modeling, and placement of RPVs. The salient features of the 
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proposed methodology are as follows:  

• Taking into account roof shapes, roof objects, and occlusions (i.e., 
shadows) in finding the optimal layout of RPVs.  

• Determining the optimal RPVs layout using three dimensions rather 
than only 2D planar roof coordinates.  

• Offering a realistic assessment of RPVs potential of buildings as 
discrete numbers of RPVs are estimated rather than raw areas.  

• Scalability to large regions as RPVs configurations are optimized 
independently for each planar segment. 

• Applicability to various rooftop geometries and solar energy pro
duction scenarios. 

The remainder of the paper is organized as follows. Section 2 gives an 
overview of relevant literature about roof plane segmentation and 
optimization of RPVs placement. The proposed methods for roof plane 
segmentation and RPVs placement are explained in Section 3. Section 4 
describes the test sites. The results of the proposed methods are pre
sented and discussed in Section 5. Finally, in Section 6, the paper is 
concluded, and some directions for future work are proposed. 

2. Related work 

Identifying efficient layouts of RPVs requires consideration of roof 
shape, roof objects, and occlusions. This is because they have significant 
impacts on both the number of RPVs and how they receive solar irra
diation (Sánchez-Aparicio, Martín-Jiménez, Del Pozo, González- 
González, & Lagüela, 2021; Aslani, 2022). Within such a context, point 
clouds and DSMs, acquired by LiDAR or stereophotogrammetry, enable 
analyzing the feasibility and potential of RPVs layout in three di
mensions (Salim et al., 2023; Schunder, Yin, Bagchi-Sen, & Rajan, 2020; 
Sredenšek, Štumberger, Hadžiselimović, Mavsar, & Seme, 2022). Their 
combinations with geospatial information systems (GIS) allow for the 
automatic extraction of roof shapes, their subtle objects, and shadow 
modeling, which are indispensable for assessing RPVs arrangements and 
predicting their power generations in a detailed manner (Yildirim, 
Büyüksalih, & Şahin, 2021; Zhu et al., 2023). LiDAR point clouds and 
DSMs are often accessible, quickly processed, and widely regarded as 
reliable data sources for spatial applications requiring height data 
(Gawley & McKenzie, 2022; Lingfors et al., 2017). 

2.1. Roof plane segmentation 

Roof modeling from DSMs or LiDAR datasets is mainly performed by 
two families of methods: parametric and generic methods. Parametric 
methods choose a roof model from a predefined model library that best 
fits the DSM. First, a hypothetical model library consisting of common 
roof forms, such as flat, gable, hip, and shed, is defined. Then a roof form 
that best fits the DSM is chosen, during which the associated parameters 
are also computed (Coiffier, Basselin, Ray, & Sokolov, 2021; Wang, 
Peethambaran, & Chen, 2018). Gooding, Crook, and Tomlin (2015) used 
a parametric method to model the roof forms of buildings for photo
voltaic potential estimation in Leeds, UK. Lingfors et al. (2017) 
compared low and high-resolution LiDAR datasets to evaluate the ability 
of a parametric method to model the roof shapes for use in assessing 
RPVs potential of buildings. The results suggest that the high-resolution 
LiDAR dataset is better suited to modeling roofs with more complexity. 
While these methods always generate topologically correct and well- 
shaped roofs, they cannot accurately identify complex roof forms that 
are not in the specified library. Additionally, roof objects (e.g., chimneys 
and small dormers), which play an essential role in RPVs placement, 
might be missed in parametric methods (Mohajeri et al., 2018). 

In contrast, generic methods are not restricted to any primitive 
shapes, and they reconstruct roofs by assembling planar patches ob
tained via a plane segmentation procedure (Wang et al., 2018; Wang 
et al., 2020). They have a high potential for modeling all polyhedral 
buildings of any arbitrary shape with different roof objects, making 
these methods well-suited for analyzing RPVs placement (Gilani, 
Awrangjeb, & Lu, 2018; Li et al., 2020). As the central core of generic 
methods, plane segmentation procedures group points (pixels) into 
several homogeneous planar regions by applying methods including 
clustering, region growing, and model fitting (Xu & Stilla, 2021). In all 
methods, DSM spatial resolution (or point cloud density) has a consid
erable impact on plane segmentation, and high-resolution DSMs are 
needed if small roof objects are to be distinguished. 

In plane segmentation using clustering, planar patches are identified 
based on specific predetermined points attributes. Normal vectors are 
the most common attribute used in this group of methods, as points in 
the same plane have similar normal vectors (Xie, Tian, & Zhu, 2020; Xu 
& Stilla, 2021). Planarity analysis, which separates planar from non- 
planar points, may also be incorporated to provide robust solutions 
(Sampath & Shan, 2010). In the context of RPVs, Lukač, Špelič, 
Štumberger, and Žalik (2020) segmented roof planes from DSMs using 
density-based spatial clustering of applications (DBSCAN) (Ester, Krie
gel, Sander, & Xu, 1996) to determine the optimal placement of RPVs. In 
their method, multiple clustering attributes, namely position, slope, 
azimuth, and shadow values of pixels, are employed to obtain reliable 
results. The major shortcomings of clustering-based segmentation 
methods are computational costs and inadaptability to new datasets. To 
address these issues, a novel plane segmentation method based on an 
adaptive and time-efficient clustering algorithm was developed by 
Aslani and Seipel (2022b). The time complexity of the clustering algo
rithm is linear with respect to the number of data points, making it 
suitable to handle large datasets. Moreover, the adaptability of the al
gorithm enables automatic identification of the shape and number of 
clusters in data without necessitating complex tuning of the parameters, 
simplifying the process of applying it to new datasets. The results show 
that their method leads to reliable outcomes. 

Plane segmentation based on region growing consists of a sequential 
process that uses local surface attributes to merge close points or regions 
with comparable attributes (Vo, Truong-Hong, Laefer, & Bertolotto, 
2015). Seed regions, the origins of the growing process, are first selected 
to initialize planar segments, and then each region grows by checking its 
surrounding points according to given similarity criteria (Araújo & 
Oliveira, 2020; Dong, Yang, Hu, & Scherer, 2018). To assess RPVs po
tential, Huang et al. (2015) and Jochem, Höfle, Rutzinger, and Pfeifer 
(2009) used region growing to segment rooftops into planar patches. 
Despite the ease of implementation, the segmentation quality of these 
methods depends strongly on both the location of seeds and the 
sequence in which seeds grow (Xie et al., 2020). 

Model-fitting-based methods group points at a local or global level 
based on matching them to different geometric models (Nguyen & Le, 
2013). Several geometric models are fitted to points, and the model that 
best fits is selected. The points that suit the chosen model are then 
grouped as a single segment. Random sample consensus (RANSAC) is 
one of the most common robust estimators that has been widely used for 
plane segmentation in the category of model-fitting-based methods (Xu 
& Stilla, 2021). It picks a definitive model from a number of candidates 
(e.g., planes), each generated from the smallest possible subsets of points 
(e.g., three points for planes). RANSAC has been initially designed for 
single-model problems, i.e., there is only one model that should be 
identified (Fischler & Bolles, 1981). Different variants of single-model 
RANSAC have been developed to achieve better performance, such as 
locally optimized RANSAC, maximum a posterior estimation sample 

M. Aslani and S. Seipel                                                                                                                                                                                                                        



Computers, Environment and Urban Systems 105 (2023) 102026

3

consensus (MAPSAC), and maximum likelihood estimation sample 
consensus (MLESAC) (Raguram, Chum, Pollefeys, Matas, & Frahm, 
2013; Xie et al., 2020). Roof plane segmentation using RANSAC is a 
multi-model fitting problem in the sense that there might be multiple 
planes to be detected rather than only one plane. A straightforward 
generalization to multi-model fitting problems is to sequentially use 
single-model RANSAC as López-Fernández, Lagüela, Picón, and 
González-Aguilera (2015) used. However, this strategy, i.e., sequential 
RANSAC, alone may produce spurious planes. Spurious planes refer to 
the planes that do not represent actual surfaces in the scene. 

To overcome some of the stated limitations, this study contributes to 
a new plane segmentation method that integrates multi-model fitting 
and region growing. It includes a new planarity analysis method to 
accurately recognize and exclude non-planar pixels from the multi- 
model fitting procedure to circumvent the creation of spurious planes. 
Normal vectors are also incorporated to ensure roof topologies are 
correctly identified. Modified region growing is used to accurately 
assign the excluded non-planar pixels to the initially identified planes 
and avoid the issue of over-segmentation. Seeds significantly affecting 
region (segment) growing performance are determined based on locally 
optimized RANSAC to warrant robust solutions. 

2.2. RPVs placement 

After roof plane segmentation, appropriate areas of roof segments for 
installing RPVs should be identified. Small segments and those with low 
solar irradiation along with panel setback areas (i.e., the margin be
tween the edges of RPVs and roof faces) are removed as they are not 
suitable for accommodating RPVs. Buffer analysis and some thresholds 
(e.g., area threshold) determined from local regulations of RPVs in
stallations can be used to remove unsuitable areas from planar segments 
(Huang et al., 2015; Nelson & Grubesic, 2020). 

The next step is to design proper RPVs layouts on the determined 
suitable segments. Automatic design is preferred over human design at 
this point as it can potentially improve RPVs efficiency while decreasing 
design costs. In this regard, Jung, Jeoung, Kang, and Hong (2021) 
developed a method based on reinforcement learning for optimal 
placement of RPVs in the Nonhyeon district, South Korea. In their 
method, reinforcement learning is used to optimize the long-term eco
nomic return of RPVs while taking the uncertainty of simulation into 
account. However, roof forms and structural details are ignored, and all 
roofs are assumed to be flat. Udell and Toole (2019) used mixed-integer 
linear programming to identify the optimum placement of RPVs by 
considering roof shapes. Their method requires a detailed 3D model of 
buildings as an input, which is not always available. 

Zhong and Tong (2020) developed a method that does not rely on 
detailed 3D building models. A DSM, instead, is used to provide a 2.5D 
spatial profile of roofs and their surrounding environment. The optimal 
placement of RPVs is treated as a maximal covering problem in which 
some facilities are expected to satisfy demands. Facilities are defined as 
RPVs, and demands are defined as suitable rooftop locations that meet 
slope, azimuth, and sunlight requirements. The RPVs location and 
orientation (landscape and portrait) are determined such that the 
maximum area of suitable regions (demand) is covered by RPVs (facil
ities). This method allows RPVs to be placed on dividing lines between 
neighboring roof planes, which are typically unsuitable for RPVs. 
Sánchez-Aparicio et al. (2021) developed a web-based application for 
automatically designing RPVs layouts and estimating their energy 
output. It considers the overall form of roofs (called a LoD2 model), 
acquired from the integration of LiDAR and aerial images, in placing 
RPVs. However, it places RPVs without regard to roof features (e.g., 
chimneys and vents) and shadow effects, which significantly impact 

RPVs placement in practice. Indeed, RPVs might be placed over chim
neys or vents, unsuitable for mounting RPVs. Similarly, in the method
ology proposed by Yildirim et al. (2021), RPVs layouts are automatically 
designed on a LoD2 model of roofs regardless of roof objects. 

In Mainzer, Killinger, McKenna, and Fichtner (2017), a procedure to 
automatically place photovoltaic panels was developed. It considers 
planar segments and roof objects without detailed 3D models and only 
uses publicly accessible building footprint maps and orthophotos. The 
procedure starts with isolating rooftops in orthophotos using building 
footprint maps. Next, planar segments are extracted by applying a Canny 
edge detection algorithm followed by the Hough transformation on 
orthophotos of rooftops. Roof objects are then derived through contour 
detection and polygon approximation techniques. Finally, usable areas 
are identified by subtracting roof objects from planar segments, and an 
algorithm that progressively iterates over usable areas is employed to fit 
as many solar panels as possible within each rooftop. However, this 
approach exhibits some limitations. As no elevation datasets are used, 
tilts of roof segments are randomly assigned, leading to inaccurate re
sults for each building individually. Furthermore, while planar segments 
and roof objects are taken into account when placing RPVs, solar irra
diation and shadow—both of which are critical to the efficiency of 
RPVs—are disregarded in the placement procedure. 

de Vries et al. (2020) integrated elevation data (LiDAR) with ortho
photos to identify major planar segments and roof objects necessary for 
placing RPVs. In the proposed methodology, the optimal layouts are 
determined using a brute-force search such that the highest number of 
RPVs can be placed on each identified segment by considering roof ob
jects. Shadow effects are ignored in the optimization of RPVs layout. Their 
methodology requires aerial images and LiDAR point clouds, which may 
not be accessible in all areas. Moreover, effectively using both datasets 
requires accurate reference frame alignment. Lukač et al. (2020) proposed 
a new method independent of orthophotos and relying only on DSMs. 
Differential evolution, instead of a brute-force search, is used to determine 
the optimal layout of RPVs. Although their method considers shadow, it 
ignores the alignment of RPVs with edges of roof segments as well as the 
distance between edges of roofs and RPVs (setback area). 

Most of the stated studies disregard shadow effects (de Vries et al., 
2020; Mainzer et al., 2017), roof objects (Jung et al., 2021; Yildirim 
et al., 2021), or even installation constraints (Sánchez-Aparicio et al., 
2021; Zhong & Tong, 2020) in determining the optimal layout of RPVs. 
And they usually employ an inefficient brute-force search (de Vries 
et al., 2020; Mainzer et al., 2017). To address some of the mentioned 
issues, this work presents a novel solution based on metaheuristic 
optimization for automatically optimizing the layout of RPVs. It con
siders various parameters of RPVs layout, such as direction, orientation 
(portrait or landscape), and row distance, as well as the shape of roof 
segments, solar irradiation, occlusion, and installation constraints. More 
specifically, the method searches for a feasible layout aiming to avoid 
low-irradiated areas and maximize total energy production using a 
metaheuristic optimization algorithm. The layout that has the maximum 
number of RPVs in the regions with high solar irradiation is identified. 

3. Proposed methodology 

In this section, a new spatial methodology for identifying and 
analyzing roof shapes and roof objects with the goal of optimizing RPVs 
layout is presented. Roofs are decomposed into their planar segments, 
and each planar segment is analyzed in terms of solar energy and shape 
to determine an efficient layout. The proposed methodology consists of 
two primary components: roof plane segmentation and RPVs layout 
optimization, detailed in the following subsections. 
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3.1. Roof plane segmentation 

DSMs provide 2.5D representations of areas, but they do not distin
guish between buildings and other objects. Building footprint maps are 
used to separate surface models of individual buildings. However, the 
resulting models still do not differentiate between roof faces (planar 
segments), which play a critical role in the context of RPVs installation. 
Plane segmentation is thus required to separate planar segments of 
roofs. The major steps of the proposed roof plane segmentation are 
shown in Fig. 1. In the first step, a new planarity analysis is performed to 
exclude pixels located on ridges or edges of roofs. Then, the remaining 
pixels are segmented based on locally optimized RANSAC. Finally, the 

excluded pixels are assigned back to the best-fitting segments, and over- 
segmented patches are merged using segment growing. 

3.1.1. Identification of non-planar pixels 
Using RANSAC to successively extract planar segments often creates 

spurious planes across borders between two roof faces, such as roof 
ridges. This is because pixels in these regions, called non-planar pixels, 
contribute to the process of hypothesis generation in RANSAC and result 
in narrow segments forming over the vicinity of two roof faces. To 
prevent creating these spurious planes, it is first necessary to exclude 
non-planar pixels from RANSAC. 

A typical method to check the planarity of a point and its neighbors is 
based on fitting a plane using principal component analysis (PCA) and 
comparing the magnitude of the resulting eigenvalues (Li et al., 2017; 
Limberger & Oliveira, 2015). However, PCA generates inconsistent 
normal vectors that are considerably sensitive to changes in their 
neighborhood, making the identification of non-planar pixels problem
atic. To overcome this problem, we propose a simple yet effective 
method for the planarity test. In this method, PCA normal vectors are 
robustly re-estimated, and the original and re-estimated normal vectors 
are compared to identify non-planar pixels. The pseudocode of the 
method is shown in Algorithm 1. It employs the pre-computed normal 
vectors by PCA, LN, as prior knowledge and uses the median estimator to 
generate new normal vectors (line 3 in Algorithm 1). As the median 
estimator is robust, the resulting normal vectors are more consistent and 
less affected by changes in their local neighborhood, facilitating the 
recognition of non-planar pixels. To check planarity, the difference be
tween the normal vector direction of each pixel and those of its neigh
bors is measured. A pixel is deemed non-planar if the angle between its 
normal vector N and any of its nearby PCA’s normal vectors LNp is 
greater than the predefined angle threshold θ (lines 5–10 in Algorithm 
1). It is based on the fact that planar pixels have a neighborhood with 
relatively similar normal vectors, while non-planar pixels have hetero
geneous normal vectors in their neighborhoods.  

Fig. 1. Workflow of the proposed plane segmentation method.  
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3.1.2. Multi-model fitting 
The identified planar pixels are segmented into non-overlapping 

segments by fitting multiple planes based on RANSAC. However, the 
classical form of RANSAC is not utilized for model fitting. Classical 
RANSAC might not be able to correctly group all pixels of a segment 
even though hypothesized planes are not contaminated by outliers. In 
other words, a random plane produced by the pixels from the same 
segment may not lead to a discovery of its entire pixels in classical 
RANSAC. This is because classical RANSAC uses the minimum required 
number of samples (3 points) to estimate the final model and may thus 
produce a plane that is not the best representative of the planar segment. 
To address this issue, we use locally optimized RANSAC (Lebeda, Matas, 
& Chum, 2012) instead of classical RANSAC. It enhances classical 
RANSAC by performing a local optimization step on the so-far-the-best 
plane. Indeed, the local optimization step is carried out iteratively 
using least-squares refitting inside an inner classical RANSAC. In this 
manner, the resulting plane better represents the segment, increasing 
the possibility of satisfactorily recognizing it.  

Algorithm 2 shows the pseudocode for the multi-model fitting al
gorithm. It is based on a combination of Euclidean clustering (Rusu, 
2009) and locally optimized RANSAC applied to the planar pixels suc
cessively in a subtractive manner. First, locally optimized RANSAC 
(Lebeda et al., 2012) is executed to obtain a planar segment. In locally 
optimized RANSAC, both the point-plane distance and the angle be
tween the point normal vector and the plane normal vector are 
considered to maintain the topology of the segments and avoid the 
creation of meaningless segments (spurious patches). A pixel is an inlier 
if its distance from the plane is less than v and the angle between its 
normal vector and the plane normal vector is less than θ. These 
thresholds should be determined based on the DSM accuracy and the 
rooftops geometry. The resulting segment may include multiple un
connected sub-regions as spatial connectivity of pixels is not considered 
in locally optimized RANSAC. Thus, the next step applies Euclidean 
clustering to separate the unconnected sub-regions as independent 
segments. Then, small segments with less than 3 pixels are discarded as 
they may not produce accurate planes. Afterward, the pixels belonging 
to the identified segments are removed from the planar pixel set S. The 
mentioned steps continue on the remainder of the planar pixels until no 
acceptable segments are found. The pixels that cannot be assigned to any 
segments are added to the non-planar pixel set Q. 
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3.1.3. Segment growing 
This step refines the multi-model fitting results and decides on the 

non-planar pixels using a segment growing-based procedure (Algorithm 
3). The designed segment growing procedure uses the obtained seg
ments as seeds, obviating the need for seed selection in classical segment 
growing. Given a list of initial segments PS acquired from the previous 
step, the segment growing procedure starts from the largest segment SE 

and proceeds by examining its neighbors. Adjacent segments in PS and 
non-planar pixels are added to segment SE if they are accurately esti
mated by its plane ψ (lines 9–16 and 18–27 in Algorithm 3). Point-to- 
plane distance and normal consistency are two criteria applied for 
growing. Particularly, the point-to-plane distance threshold v and the 
angle threshold θ are used to identify the pixels and segments coplanar 
with plane ψ . After the segment is grown, its plane ψ is updated using all 
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its pixels. The neighbors of the grown segment are examined in further 
iterations until no new neighboring pixel or segment can be merged. 
Once the expansion of segment SE is complete, SE and all merged seg
ments are labeled (excluded from the list PS) so that they can no longer 
be used and initiate another segment. However, the merged non-planar 
pixels become unallocated (non-labeled), and as a result, they can be 
used by more than one segment to mitigate the effects of the growing 
order of segments on results. The next segment is grown using the largest 
segment in PS and following the same procedure described above. The 
iterative procedure continues until no more segments are left in PS. 

After all segments have been grown, the best-fitting segment for each 
non-planar pixel needs to be determined. The non-planar pixels should 
be attached to the segments so that the segmentation accuracy is pre
served while borders of segments are not distorted. To this end, the best 
segment for a non-planar pixel is chosen based on its proximity to the 
segments to which it could be assigned during the segment growing 
procedure. The distances between a non-planar pixel and its corre
sponding segments are first determined, and the segment that is closest 
to the non-planar pixel is picked as the most appropriate segment. The 
non-planar pixels that cannot be assigned to any segments are consid
ered outliers (e.g., antenna and vegetation points). 

3.2. RPVs layout optimization 

After plane segmentation, the optimal layout of RPVs is determined 
for each acquired roof face (planar segment) independently. RPVs are 
placed based on installation constraints, roof face geometry, and solar 
irradiation. Fig. 2 depicts the workflow of the proposed method for RPVs 
placement, which comprises two major phases. The information 
required for designing RPVs layouts is obtained in the first phase, such as 
shrunken boundaries of roof faces satisfying installation constraints and 
a solar irradiation map. In the second phase, the RPVs optimal layouts 
and their energy yields are determined. This work considers only typical 
installations in which RPVs are directly attached to roofs. 

3.2.1. Phase 1: initial processes 
Achieving the optimal layout of RPVs requires having solar irradia

tion distribution over roof faces. This is because the performance of 

photovoltaic panels is a function of the amount of solar irradiation they 
receive. The solar irradiation incident on a roof face in a given period 
depends on the tilt, aspect, location, and surrounding objects of the roof 
face as well as the metrological conditions, all of which should be 
considered for a reliable estimate of solar irradiation. We use the solar 
model in ArcGIS Desktop to estimate solar irradiation because of its 
thoroughness and computation efficiency (Fu & Rich, 2000; Rich, 
Dubayah, Hetrick, & Saving, 1994). It has been broadly applied to many 
solar studies, showing its good performance (Kausika & van Sark, 2021; 
Radosevic, Duckham, Liu, & Sun, 2020; Zhu et al., 2022). The model 
considers occlusion, atmospheric effects, site topography, and variations 
in the sun position in global solar irradiation estimation. It includes 
efficient occlusion analysis to account for shadows cast by buildings, 
vegetation, and structural elements. The atmospheric effects estimation 
relies on two parameters: transmittance and diffuse proportion. Trans
mittance represents the ratio of solar irradiation reaching the earth 
surface by the shortest path to solar irradiation received at the atmo
sphere’s upper edge. Diffuse proportion denotes the fraction of global 
normal irradiation flux that reaches the ground after being dispersed by 
atmospheric molecules. These two parameters should be adjusted to 
reflect the weather conditions of the geographic region, ranging from 
very clear skies to overcast. The model can compute solar irradiation at 
different spatio-temporal granularities, specified by zenith divisions, az
imuth divisions, hour interval, and day interval parameters. Parameters 
zenith divisions and azimuth divisions are used to discretize the sky-dome, 
and parameters hour interval and day interval are used to discretize the 
sun path. These parameters are independent of the DSM spatial resolu
tion. A higher spatial resolution of the DSM and a finer granularity of the 
model enable a more detailed estimation of solar irradiation, albeit at 
the expense of longer computation time. Thus, when using high- 
resolution DSMs, the solar model parameters should be set such that 
the computation cost does not hinder obtaining the results. 

After computing solar irradiation, the extent of each roof face 
satisfying RPVs installation regulations should be determined. To this 
end, the following steps are suggested for each roof face. Firstly, the 
boundary points of the roof face are extracted (Fig. 3a) (Gonzalez, 
Woods, & Eddins, 2020). They are then projected onto the roof face to 
eliminate their small vertical distances from the roof face. Afterward, 

Fig. 2. Workflow of the proposed method for RPVs placement on a planar segment.  
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the projected points are converted to 2D using Eq. (1). In this equation, λ 
and ω are the azimuth and tilt of the normal vector of the roof face (in 
degree), P→ is a 3D boundary point projected on the roof face, h is the 
intercept of the roof face, and T is the transpose operator. This equation 
transforms the coordinate system such that its Z-axis becomes parallel to 
the normal vector of the roof face. As all points are on the same planar 
segment, their new Z coordinates become equal and can be skipped in 
the optimization step. This transformation, i.e., from 3D to 2D, reduces 
the computational complexity and simplifies the RPVs placement com
putations while considering the effect of the third dimension. A new 

planar polygon PG is obtained by connecting the resulting points P′→

(Fig. 3b). 

P′→= Rz(λ)
(

Ry(ω − 90)Rz( − λ)P→+ [0 0 h]T
)

Rz( − λ) =

⎡

⎢
⎢
⎣

cosλ sinλ 0

− sinλ cosλ 0

0 0 1

⎤

⎥
⎥
⎦

Ry(ω − 90) =

⎡

⎢
⎢
⎣

sinω 0 − cosω

0 1 0

cosω 0 sinω

⎤

⎥
⎥
⎦

Rz(λ) =

⎡

⎢
⎢
⎣

cosλ − sinλ 0

sinλ cosλ 0

0 0 1

⎤

⎥
⎥
⎦

(1) 

RPVs can only be placed on specific areas of a roof face due to some 
restrictions, which are mainly imposed to facilitate accessibility and 
avoid wind uplift on modules. Typically, these restrictions prohibit 
placing RPVs too close to roof edges, adjacent roof segments, and ob
structions. There should be space between the edges of RPVs and the 
edges of roof faces, called setback areas. Setback areas are excluded from 
polygon PG using buffer analysis, which shrinks the polygon by the 
requested width Wsb (Fig. 3c). The value of Wsb, setback area width, 
depends on local regulations of RPVs installation. 

3.2.2. Phase 2: RPVs placement and energy estimation 
For each polygon obtained from the previous step, the optimal layout 

of RPVs is determined. In this study, the optimal layout is defined as one 
that receives the highest amount of solar irradiation and does not deploy 
any of its RPVs in areas with low solar irradiation. According to this 
definition, the optimal layout is an efficient layout in the sense that it 
includes the highest number of RPVs placed in highly irradiated areas 
and hence has high efficiency in energy production. Identifying the 
optimal layout requires parameterization of RPVs placement (i.e., 
parametric modeling of RPVs layout) and defining an objective function. 
Given a shrunk roof face RF, a layout of RPVs is defined using the 
following variables:  

• O
(
Ox,Oy

)
: starting point for RPVs placement.  

• β: direction of RPVs rows.  
• j: orientation of RPVs, landscape or portrait.  
• d: distance between two consecutive rows of RPVs.  
• k: distance between two consecutive RPVs in rows. 

Fig. 4a illustrates these variables. In this figure, the RPVs orientation 
j is landscape. All RPVs of a layout are placed based on the same value of 
the variables; thus, they are always aligned and have the same orien
tation and direction on a roof face. Although having different values of 
the variables for each RPV may increase flexibility in the placement 
procedure, it creates a huge search space that is dependent on the 
number of RPVs. Moreover, mounting RPVs with various directions, 
orientations, and distances on the same roof face is not common in 
practice due to installation costs. Thus, in this study, the variables have 
identical values for all RPVs on each roof face. In addition to these 
variables, the length and width of RPVs are assumed constant in the RPVs 
placement procedure as RPVs are typically standardized in size. 

The following steps are taken to produce a layout of RPVs on a 
shrunk roof face RF. Firstly, the bounding box of RF is computed. Then, 
O
(
Ox,Oy

)
is selected inside the bounding box. The location of point O is 

constrained not to be any further than the length of an RPV away from 
the smaller edge of the bounding box. Indeed, the distance between 
point O and the shorter edge of the bounding box should not exceed the 
length of an RPV. Applying this constraint prevents the generation of 
layouts that are unlikely to be (near)-optimal and can accelerate 
convergence. Next, variables β, j, k, and d are set, and the coordinates of 
RPVs nodes that fall inside the bounding box are calculated. For 
instance, the coordinates of node 1 of panel A, node 2 of panel B, and 
node 3 of panel C in Fig. 5 are calculated according to Eq. (2), where 
RPVL and RPVW denote the length and width of an RPV, respectively. 

A1 = O +

[
− 0.5RPVW cosβ

0.5RPVW sinβ

]

B2 = A1 +

[
(2RPVL + k)sinβ

(2RPVL + k)cosβ

]

C3 = B2 +

[
− (d − RPVW)cosβ

(d − RPVW)sinβ

]

(2) 

To ensure that RPVs are arranged with no overlap, two constraints 
are applied according to Eq. (3). Afterward, RPVs that are not entirely 
inside polygon RF are eliminated (Fig. 4b). Finally, the average solar 
irradiation over each RPV is computed by combining it with the solar 
irradiation map, and RPVs with the average solar irradiation above a 
specific threshold ST are considered efficient and preserved (Fig. 4c). 
Indeed, this step removes inefficient RPVs that are not sufficiently 
exposed to the sun due to azimuth, tilt, or occlusion. The threshold ST 

shows the minimum acceptable average solar irradiation for installing 
RPVs, and it should be set to a value that leads to adequate efficiency. 

Fig. 3. Converting a sample roof face (a) into 2D (b) and excluding the setback area (c).  
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k ≥ 0

d ≥ (1 − j)RPVL + jRPVW

j =

{
1 landscape

0 portrait

(3) 

An objective function should be defined to evaluate a produced 
layout. Depending on the aim of RPVs installation, different objective 
functions can be defined. In this study, the layout of RPVs that receives 
the highest solar irradiation is desired. Thus, the objective function is 
defined according to Eq. (4), where SIc is the average global solar irra
diation over the c-th RPV, and N is the number of produced RPVs. 

f =
∑N

c=1
SIc (4) 

The layout that maximizes the objective function is chosen as the 
optimal layout. One strategy to find the optimal layout is to discretize 

the search space, produce all possible layouts, and select the one that 
maximizes the objective function. Although this strategy, termed brute- 
force, is straightforward, it is computationally demanding as all possible 
candidates for layouts must be systematically checked. A genetic algo
rithm, metaheuristic optimization, is employed to circumvent this issue. 
It is a general-purpose optimization algorithm that relies on principles 
inspired by natural selection (Holland, 1992). In genetic algorithms, 
solutions evolve using a randomized but structured information ex
change, leading to controlled variations and guided searches. There are 
many other optimization algorithms with different variants (e.g., Bat, 
Whale, and Bee algorithms) that can be used instead of a genetic algo
rithm in this phase. However, determining which optimization algo
rithm best fits the problem is out of the scope of this work, and a genetic 
algorithm is utilized only as a proof of principle. 

In the RPVs placement procedure, the genetic algorithm first 
randomly creates a set of layouts (solutions). Then, the produced layouts 
evolve using selection, crossover, and mutation, which are biologically 
inspired operators (Fig. 6). Selection guides the algorithm toward lay
outs more similar to the optimal layout. Crossover generates valid novel 
layouts by combining the properties of the previous set of layouts. 
Mutation introduces diversity among layouts and prevents converging 
toward local optima. The evolution procedure repeats until a stopping 
criterion, such as no improvement in the best layout performance during 
multiple iterations, is satisfied. Please refer to Haupt and Haupt (2004) 
for more details on genetic algorithms. Placing RPVs in this way is 
scalable as they are independently set for each roof face. The time 
complexity of the employed genetic algorithm for each roof face mainly 
depends on the number of iterations G, the number of solutions gener
ated in each iteration P, and the objective function. The time complexity 
of the objective function depends on the number of RPVs that can be 

Fig. 4. Illustration of RPVs placement. A layout of RPVs is first produced inside the bounding box of the planar segment (a). RPVs outside of the segment boundary 
are eliminated (b). RPVs with low solar irradiation are removed (c). 

Fig. 5. Placement of RPVs. Blue rectangles represent RPVs. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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placed on the roof face N and the number of rows of the solar irradiation 
map included in the roof face RO. Thus, the final time complexity for 
determining the optimal layout on each roof face is O(G × P × N × RO). 

After optimization, the corresponding 3D coordinates of the resulting 
RPVs are computed using Eq. (5), where xRPV and yRPV are the co
ordinates of a node of an RPV, λ and ω are the azimuth and tilt of the 
normal vector of the roof face (in degree), h is the intercept of the roof 
face, and T is the transpose operator. RT

z ( − λ), RT
y (ω − 90), and RT

z (λ) are 
the transpose of Rz( − λ), Ry(ω − 90), and Rz(λ), as defined in Eq. (1). 

V→= RT
z ( − λ)RT

y (ω − 90)
(
RT

z (λ)[ xRPV yRPV 0 ]T − [ 0 0 h ]T
)

(5) 

Lastly, the energy production of the obtained RPVs is estimated using 
a linear model, shown by Eq. (6). In this equation, Ec and SIc are the solar 
electricity yield (kWh) and average global solar irradiation (kWh/m2) of 
the c-th RPV, and βpr, βe, and ARPV are the performance ratio, efficiency, 
and area of the RPV. The performance ratio indicates how close the actual 
performance of an RPV is to its ideal performance. It quantifies the total 
impact of losses (e.g., temperature and dirt) on the energy production of 
the RPV. The efficiency of an RPV shows the relationship between its 
output electric power and its input solar power relative to its area. And it 
depends on the employed technology of the RPV (Green et al., 2023). 

Ec = βpr⋅βe⋅ARPV ⋅SIc (6)  

4. Test sites and data 

The proposed methodology is evaluated in two areas in Gothenburg 
and Uppsala, Sweden. Both Gothenburg and Uppsala are among the 
most environmentally friendly cities in Sweden, with a steady increase 
in RPVs deployment. The selected test sites have different urban 

densities and morphologies, affecting RPVs placement. Additionally, 
their DSMs were produced using different approaches, making the 
assessment of plane segmentation more comprehensive and credible. 

The Gothenburg test site is located in the city center and features a 
variety of architectural styles. It is characterized by densely clustered 
buildings with complex roof shapes composed of many roof planes. The 
DSM has a spatial resolution of 10 cm, and it was produced through 
image matching of aerial images captured by the Swedish mapping, 
cadastral, and land registration authority1 in 2018 (Fig. 7a). The test site 
in Uppsala is about five kilometers from the city center, and it is entirely 
residential, with detached buildings of different orientations. The DSM 
of the Uppsala test site was created from a high-density LiDAR point 
cloud produced by Uppsala municipality2 in 2020. The point cloud 
density was heterogeneous, but its average density of 67 pts./m2 was 
sufficient to create a DSM with 15 cm spatial resolution (Fig. 7b). Ac
cording to the descriptions (metadata) of the acquired datasets, the DSM 
of Gothenburg has a lower height accuracy than the Uppsala LiDAR 
dataset. The updated building footprint maps of both areas, showing the 
extent of roofs (not plinths), were produced based on the property maps 
provided by the Swedish mapping, cadastral, and land registration au
thority. The ground truth planar segments of the rooftops were manually 
produced to assess the performance of plane segmentation (Fig. 7c and 
d). All spatial datasets were prepared using the same projection system 
and reference ellipsoid to prevent potential inconsistencies. 

5. Results and discussion 

The outputs of plane segmentation and RPVs placement on the test 
sites are presented and discussed. In Section 5.1, the results of the pro
posed plane segmentation method and an assessment of their accuracy 
when compared with the ground truth datasets are presented. Moreover, 
the performance of the method is benchmarked against that of classical 
RANSAC. In Section 5.2, the results of RPVs placement are analyzed. All 
algorithms related to plane segmentation and RPVs placement were 
implemented in MATLAB 2021.3 

5.1. Roof plane segmentation 

To evaluate the performance of the proposed plane segmentation 
method, it is applied to the DSMs of the test sites. The angle threshold θ 
is set to 7◦ for both test sites, and the point-to-plane distance threshold v 
is set to 10 cm for the Uppsala test site and 15 cm for the Gothenburg test 
site. A trial-and-error procedure, applied on small parts of the test sites, 
was used to determine these values. It should be noted that the sensi
tivity of the results to θ and v depends on the geometry of rooftops and 
the accuracy of the DSM. 

A visualization of the segmentation results on some buildings in the 
test sites is displayed in Fig. 8. As observed from the figure, most of the 
segments are identified successfully. Moreover, non-planar pixels, 
especially over ridgelines, are satisfactorily segmented. This is because 
non-planar (e.g., boundaries) and planar pixels are separated and 
treated independently during the segmentation procedure. The holes in 
the roof faces are due to groups of pixels that the plane segmentation 
method can neither assign to the existing segments nor produce separate 
suitable planar segments for. Indeed, they contain roof objects (e.g., 
small chimneys) that do not consist of planar segments sufficiently large 
to be captured by the proposed method. To be suitable for RPVs place
ment, the method recognizes only planar segments, whereas non- 
polyhedral or very small rooftop features are not captured. It is worth 
noting that omitting non-polyhedral or small rooftop features does not 
affect the placement of RPVs as they are not practically suitable to 

Fig. 6. System diagram of the optimization of RPVs layout using the genetic 
algorithm. A set of layouts, randomly generated at first, evolves using selection, 
crossover, and mutation operators until a stopping criterion is satisfied. 

1 www.lantmateriet.se/  
2 www.uppsala.se/  
3 www.mathworks.com 
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accommodate solar panels. 
To quantitatively assess the performance of the plane segmentation 

method, its outputs are compared with the ground truth data (see Sec
tion 4), and three metrics are computed: recall, precision, and quality. 
Recall indicates the proportion of pixels in the ground truth that are 
correctly identified. Precision that evaluates the exactness of the method 
represents the percentage of correctly segmented pixels in the resulting 
planes. Quality is the compound of recall and precision, and it serves as 
an overall measure of performance. All three measurements are calcu
lated based on true-positive TP, false-positive FP, and false-negative FN 
according to Eqs. (7)–(9) (Awrangjeb & Fraser, 2014; Cai, Shi, Miao, & 
Hao, 2018). 

Recall =
TP

TP + FN
(7)  

Precision =
TP

TP + FP
(8)  

Quality =
TP

TP + FP + FN
(9) 

TP denotes correctly segmented pixels, FP denotes incorrectly 

segmented pixels, and FN denotes falsely unsegmented pixels. Table 1 
shows the evaluation results of the roof plane segmentation method in 
the test sites, and it suggests that most of the roof planes are successfully 
identified. According to Rottensteiner et al. (2014), the method is 
effective as all measures are greater than 80% in both test sites. It is also 
observed that the method has better performance in the Uppsala test site 
than in the Gothenburg test site, which is attributed to the complexity of 
roofs and the accuracy of DSMs. Indeed, this is because the roofs of the 
Gothenburg test site are more complex than those of the Uppsala test 
site, and the DSM of Gothenburg has a lower height accuracy than that of 
Uppsala. 

While the method performs well, there are still some plane seg
mentation errors. Fig. 9 illustrates two cases where the method is unable 
to segment the roof faces appropriately. In both examples (Fig. 9a and 
b), the roof faces occluded by tree canopies cannot be completely 
identified (under-segmentation). However, in Fig. 9a, there are also 
some spurious planes identified above the tree, which can be attributed 
to the flat local surfaces of the tree. 

The effectiveness of the proposed method is verified by bench
marking it against RANSAC, a commonly utilized plane segmentation 
method (López-Fernández et al., 2015; Xie et al., 2020). The point-to- 

(a) (b)

(c) (d)

Fig. 7. DSMs of the Gothenburg (a) and Uppsala (b) test sites. Manually established ground truth planar segments of the Gothenburg (c) and Uppsala (d) test sites.  
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plane distance threshold v of RANSAC is set to 15 cm and 10 cm for the 
Gothenburg and Uppsala test sites, respectively. Table 2 shows the 
assessment results of RANSAC in terms of recall, precision, and quality. 
Comparing Tables 1 and 2 indicates that the proposed plane segmen
tation method outperforms RANSAC in both test sites. 

5.2. RPVs layout optimization 

Placing RPVs involves estimating solar irradiation over rooftops, 

allowing for quantification of the amount of energy collected by each 
RPV. In the employed solar model, the diffuse proportion and trans
mittance parameters used in modeling atmospheric effects have signifi
cant impacts on solar irradiation estimates. These parameters were 
calibrated using the monthly global horizontal irradiance acquired from 
NASA surface meteorology and solar energy database4 to achieve ac
curate solar irradiation estimates (Table 3). Fig. 10 shows the estimated 
annual global solar irradiation in some scenes from the test sites. The 
solar irradiation intensity across the rooftops is greater than across the 

Fig. 8. Roof plane segmentation results of some buildings in the Gothenburg (first row) and Uppsala (second row) test sites.  

Table 1 
Assessment results of the proposed method in the test sites.  

Test site Recall (%) Precision (%) Quality (%) 

Gothenburg 89.75 88.69 80.53 
Uppsala 100 99.52 99.52  

(a) (b)

Fig. 9. Some plane segmentation errors. Spurious planes identified over a tree 
that partly covers a building in the Gothenburg test site (a) and a partially 
detected roof face of an occluded building in the Uppsala test site (b). True 
orthophotos are utilized only for the purpose of visualization (not processing). 

Table 2 
Evaluation results of RANSAC in the test sites.  

Test site Recall (%) Precision (%) Quality (%) 

Gothenburg 50.75 71.33 42.16 
Uppsala 96.93 97.34 94.43  

Table 3 
Calibrated values of diffuse proportion and transmittance.  

Month Gothenburg Uppsala 

Diffuse 
proportion 

Transmittance Diffuse 
proportion 

Transmittance 

January 0.4 0.7 0.5 0.7 
February 0.5 0.6 0.6 0.6 
March 0.4 0.6 0.2 0.7 
April 0.3 0.6 0.3 0.6 
May 0.6 0.4 0.2 0.6 
June 0.4 0.5 0.7 0.3 
July 0.6 0.4 0.4 0.5 
August 0.3 0.6 0.2 0.6 
September 0.7 0.4 0.7 0.4 
October 0.5 0.6 0.7 0.5 
November 0.4 0.7 0.5 0.7 
December 0.5 0.7 0.6 0.7  

4 https://power.larc.nasa.gov/data-access-viewer/ 
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ground surfaces, owing to the impact of partial occlusion of the ground 
by the built-up structures. South-facing roof faces offer the highest po
tential for solar irradiation, followed by east- and west-facing roof faces. 

To have a better understanding of the impact of spatial resolution 
and shadow on solar irradiation estimates, we compare the modeled 
outputs with the estimated solar irradiation values obtained from the 
European Commission Joint Research Center (PVGIS)5 and the National 
Renewable Energy Laboratory (NREL).6 PVGIS and NREL are publicly 
available web applications that enable users to obtain solar irradiation 
data for vast regions of the globe. Fig. 11 compares the monthly average 
solar irradiation of PVGIS, NREL, and our modeled outputs in the test 
sites. The figure suggests that PVGIS and NREL overestimate solar 
irradiation. This is because the solar irradiation modeling in PVGIS and 
NREL is simplified, and they do not consider high levels of detail in their 
estimations. For instance, the spatial granularity for modeling occlusion 
in PVGIS is 90 m, rendering it incapable of modeling the impact of 
shadows cast by nearby objects in a detailed manner. In our modeling, 
however, the spatial resolutions of the DSMs are 10 cm and 15 cm; thus, 
a high level of detail is considered for shadow modeling. Moreover, the 
simplifications used in PVGIS and NREL lead to the solar irradiation 
profiles (blue and red curves in the figure) with almost the same range in 
both test sites, 10–170 kWh/m2/month. However, the solar irradiation 
profiles based on our outputs (green curves in the figure) have different 
ranges, 10–115 kWh/m2/month in Gothenburg and 10–75 kWh/m2/ 
month in Uppsala. 

RPVs are placed using the pre-computed solar irradiation maps and 
planar segments of rooftops. Table 4 lists the parameters, variables, and 
their values for placing RPVs. The width of setback areas Wsb, margins 
between the edges of RPVs and roof faces, is set to 0.5 m, which is ac
cording to the local regulations of RPVs installation in the test sites. The 
solar irradiation threshold ST specifies the minimum amount of irradi
ation required for an RPV to be worth considering, and its value is 
technology- and location-dependent (Compagnon, 2004; Kanters & 
Wall, 2014; Thopil, Sachse, Lalk, & Thopil, 2020). Based on experts’ 
recommendations and in accordance with several recent studies (Ling
fors et al., 2017; Mohajeri et al., 2018; Thebault, Clivillé, Berrah, & 
Desthieux, 2020), parameter ST is set to 1000 kWh/m2/year. Moreover, 
the size of RPVs is set to 1.7 m × 1.0 m, which is the typical size of 
commercial rooftop photovoltaic panels. 

As detailed in Section 3.2.2, in the optimization, layout variables (O, 
j, β, d, k) are determined to maximize the objective function. To inves
tigate the effect of some layout variables, two different scenarios are 
designed in RPVs layout optimization. In the first scenario, variables k 
and d, distances between RPVs, are assumed to be constant and not 
optimized, and they are set to their minimum values (see Table 4). 
Moreover, variable β, the direction of RPVs rows, is limited to only four 
possible values for practical and esthetical reasons. It can take on 
{γ, γ + 90,γ − 90,γ + 180}, where γ is the azimuth (aspect) of the longest 
edge of the roof face, parallel or perpendicular to the nearest edge of its 
building footprint. In this manner, RPVs are aligned with the longest 
edge of the roof face, which is common in practice. The results of layout 
optimization in scenario 1 over some buildings in the test sites are shown 
in Fig. 12. 

As is evident from Fig. 12, roof shapes and roof objects are consid
ered in placing RPVs. Additionally, the proposed methodology avoids 
mounting RPVs over areas with low solar irradiation. For instance, no 
RPVs are mounted over the lower part of the roof face in the bottom left 
scene due to the shadow cast by surrounding trees. As expected, north- 
facing roof faces do not have sufficient suitability for RPVs. There is no 
space between two adjacent rows or columns as parameters k and d are 
set to their minimum values and are excluded from optimization. Rows 
of RPVs are aligned with the roof faces, parallel or perpendicular to the 
longest edge of the roof faces, which is because of limiting variable β to 
some specific directions. 

In the second scenario, all layout variables are optimized, and no one 
is set as a constant. There is no restriction on the direction of RPVs or the 
distance between them. Thus, the degree of freedom of the placement of 
RPVs increases while the search space becomes bigger compared with 
the first scenario. Scenario 2 leads to different results than scenario 1 on 
some roof faces. Fig. 13 illustrates the differences between the outputs of 
scenarios 1 and 2. In all scenes of the figure, the number of RPVs and, 
thus, the total solar irradiation (i.e., the objective function) in scenario 2 
is greater. In scenario 2, the optimal values of variables d and k on almost 
all tilted roof faces in the test sites are found to be their minimum 
possible values: (1 − j)RPVL + jRPVW for variable d and zero for variable 
k (see Eq. (3)). However, in general, there might be some cases where 
the optimal values of k and d are larger than their minimum values. 
Fig. 14 shows a sample planar segment where k > 0 is optimal. In this 
example, the shape of the planar segment, when considering roof objects 
that appeared as rectangular holes, makes k = 0 non-optimal. 

Note that in the genetic algorithm for both scenarios, the number of 
solutions generated in each iteration is set to 50. The optimization is 
terminated when the so-far-the-best solution is not improved within 5 
iterations. The convergence speed of the genetic algorithm depends on 
the complexity of the objective function. Finding the optimal point in a 
complex objective function might be more difficult and require more 
trials than finding the optimal point in a simple objective function. The 
complexity of the objective function itself depends on the shape of the 
roof face, the number and shape of roof objects included in the roof face, 
and the shadow pattern across the roof face. Thus, the convergence 
speed of the genetic algorithm may vary for different roof faces. More
over, the stochasticity of the genetic algorithm can cause variations in 
the convergence speed for the same roof face in different runs. To ensure 
that the optimization parameters are suitable for converging to the 
optimal solutions, the optimization was repeated five times, and the 
deviations of the best fitness values became less than 1%. 

Table 5 compares the extracted roof faces and the acquired RPVs 
from scenarios 1 and 2 in terms of total area and annual energy yield. In 
this table, RF means all extracted roof faces, and RPVSC1 and RPVSC2 
denote all RPVs placed by scenarios 1 and 2. To estimate the energy 
yield, RPVs efficiency and performance ratio, as explained in Section 
3.2.2, are respectively set to 0.16 and 0.75 that are in line with Romero 
Rodríguez, Duminil, Sánchez Ramos, and Eicker (2017). In the Goth
enburg test site, scenario 2 results in more RPVs and more energy pro
duction in comparison to scenario 1. However, both scenarios in the 

Fig. 10. Estimated annual global solar irradiation in some scenes from the 
Gothenburg and Uppsala test sites, shown in the first and second rows, 
respectively. 

5 https://re.jrc.ec.europa.eu/pvg_tools/en/tools.html  
6 https://pvwatts.nrel.gov/ 
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Uppsala test site lead to similar results (similar layouts of RPVs). Indeed, 
the additional degree of freedom in scenario 2 of the Uppsala test site 
cannot help achieve more efficient layouts of RPVs. This is because all 
roof faces in the Uppsala test site are tilted and have rectangular shapes 
with minimal roof details. The more complex the geometry of a roof face 
and its overall occlusion pattern, the more likely the layouts vary be
tween scenarios 1 and 2. RPVs cover around 17% and 13% of roof faces 
in the Gothenburg and Uppsala test sites, respectively, which is still a 
significant proportion on urban scales. Comparing the energy yield of RF 
and RPVSC shows that using the entire rooftop areas for energy yield 
calculation leads to a 5–6 fold overestimation of the solar energy po
tential of buildings. This illustrates the importance of the proposed 
methodology in estimating the solar energy potential of buildings. 

We compare our results to those obtained using the method proposed 
in Aslani and Seipel (2022b). The method identifies RPV-utilizable 
segments by spatially analyzing each roof face. It ensures that seg
ments suitable for installing RPVs have an appropriate size, satisfy 

installation regulations, and are sufficiently exposed to the sun. It uses 
morphological erosion and opening operations to exclude setback areas 
and geometrically unsuitable parts of roof faces. Roof faces with low 
solar irradiation are eliminated by defining a solar irradiation threshold. 

Table 6 quantitatively compares the resulting layouts of scenario 2 
with the RPV-utilizable segments. Scenario 2 was chosen for the com
parison as it produces more RPVs than scenario 1. RFUT denotes utiliz
able segments, and RPVSC2 represents the RPVs derived in scenario 2. As 
the table shows, the utilizable segments are overestimating RPVs po
tential by 52% in Gothenburg and 18% in Uppsala. This is because the 
method in Aslani and Seipel (2022b) considers suitable areas based on 
the cross average of solar irradiation of the entire roof face rather than 
on the panel level, which leads to less spatial sensitivity to variations of 
irradiation caused by shadows. Instead, in this work, areas that cannot 
accommodate RPVs and those parts of the roof faces with low solar 
irradiation are not taken into account. The analysis based on panel 
placement provides the flexibility to scrutinize roof faces for their suit
ability in much more spatial detail. Visual comparisons reveal that the 
more complex the geometry of a rooftop is, the greater the difference 
between RPVSC2 and RFUT is. 

6. Conclusion and future work 

RPVs provide great potential to satisfy the increasing energy demand 
in urban areas. On roofs where suitable areas are limited, proper 
placement of RPVs is indispensable for achieving efficient energy pro
duction. In this study, a new spatial methodology based on DSMs that 
takes the most advantage of limited rooftop areas in placing RPVs was 
proposed. Planar segments of rooftops are first identified by a new plane 
segmentation method. The method is based on model fitting, segment 
growing, and planarity analysis to achieve reliable results. In the next 
step, an efficient layout of RPVs is determined for each identified planar 
segment. The proposed method for RPVs placement looks for a layout 
with maximum energy production. It also ensures that the placed RPVs 
satisfy geometric, solar, and regulatory constraints. That is, it averts 
placing RPVs near edges or in areas that are either small or have a small 
amount of solar irradiation. 

The proposed methodology was evaluated on two test sites in 
Gothenburg and Uppsala. The results showed that the proposed plane 
segmentation method has satisfying performance with 89.7% recall and 

(a) (b)

Fig. 11. Comparing the monthly average solar irradiation of PVGIS, NREL, and our modeled outputs in the Gothenburg test site (a) and Uppsala test site (b).  

Table 4 
Summary of the parameters and variables for placing RPVs.  

Parameters Description Value 

Wsb Setback area width 0.5 (m) 
ST Solar irradiation threshold 1000 (kWh/m2/year) 
RPVL Rooftop photovoltaic length 1.7 (m) 
RPVW Rooftop photovoltaic width 1.0 (m)   

Variables  Scenario 1 Scenario 2 

O
(
Ox,Oy

)
Starting point for placement Optimized Optimized 

j Orientation of RPVs Optimized Optimized 
β Direction of RPVs rows Optimized* Optimized 
d Distance between two rows 

of RPVs 
(1 − j)RPVL + jRPVW 
(m) 

Optimized 

k Distance between two RPVs 
in a row 

0.0 (m) Optimized  

* Best value from {γ, γ + 90,γ − 90,γ + 180}, where γ is the azimuth of the roof 
face (in degree)  
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88.7% precision in the Gothenburg test site and 100% recall and 99.5% 
precision in the Uppsala test site. Furthermore, our method demon
strated higher viability than RANSAC in both test sites. The proposed 
method can generally work with DSMs at different spatial resolutions. 
However, spatial resolution affects the method’s ability to delineate roof 
faces and their objects (e.g., chimneys). Small roof faces cannot be 
extracted from DSMs with a coarse spatial resolution, and a roof face 
should be covered by a sufficient number of pixels—at least three pixels 
as the minimum required points to define a plane—so that its planar 
segment can be extracted. The accuracy of the DSM is another factor that 
affects the performance of the method. DSMs with higher accuracy may 
lead to more accurate segmentation results, which is why the method 
showed better performance in the Uppsala test site, as its DSM has better 
accuracy. The solar irradiation estimation is also affected by spatial 
resolution, especially when shadow effects are essential to be taken into 
account. Higher spatial resolution offers the potential for a more 
detailed estimation of solar irradiation but requires a longer processing 
time. That is the reason why the comparative results showed that PVGIS 
and NREL overestimate solar irradiation. Their modeling is simplified, 
and they do not account for occlusion in a detailed manner. 

According to the results of layout optimization, roof shapes, roof 
objects, and occlusions are adequately considered in placing RPVs, 
which allows for a realistic estimate of the solar energy potential of 
rooftops. Detailed analysis based on panel placement avoids over
estimating solar energy potential. It should be noted once again that 
spatial resolution is important for RPVs placement and can affect the 
identification of occlusions. A statistical summary of the RPVs layouts 
indicated that less than one-fifth of the rooftop areas are used for RPVs in 
both test sites. The proposed methodology can provide an accurate un
derstanding of rooftop solar potential, which can be useful for adopting 

solar energy as a key component for moving toward sustainable cities. It 
can help evaluate the extent to which solar energy can offset fossil fuel 
use. The proposed methodology is also valuable for solar energy prac
titioners (e.g., installers) and municipalities as it enables the generation 
of efficient RPVs configurations in an automated manner. In addition, 
the methodology can be beneficial for informed planning of RPVs con
tributions to local urban networks and facilitating decisions about in
vestments in RPVs as it provides the possibility of a proper assessment of 
RPVs potential in large-scale areas. Indeed, it can provide policymakers 
with a future distribution of RPVs and a realistic estimate of their energy 
generation, which are necessary for developing local schemes and 
making informed decisions for the transition to renewable energies. It 
can help efficiently manage growing energy consumption in urban 
areas, which is one of the goals of sustainable cities. Moreover, the 
proposed plane segmentation method can help construct 3D building 
models that have many applications in the development of sustainable 
cities, including energy demand estimation and noise propagation 
estimation. 

Although the proposed methodology has shown remarkable perfor
mance, there is still room for further development. In this study, the 
methodology is compatible with only DSMs as input, and any LiDAR 
point clouds would need to be converted to DSMs before being used. 
This conversion simplifies neighborhood definition and results in easy- 
to-use data, but it may induce smoothing effects at sharp edges. There
fore, one further development is to enhance the methodology so that it 
becomes compatible with LiDAR point clouds as well. Another poten
tially important area for development is considering the energy demand 
of buildings when placing RPVs. The proposed layout optimization does 
not match the energy production of RPVs with the building energy 
consumption, which may result in an undesired power flow between the 

Fig. 12. Layout optimization results for some buildings in the test sites. The first row corresponds to the Gothenburg test site, and the second row corresponds to the 
Uppsala test site. Aerial photos are used only for the sake of visualization. 
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building and the grid. Any discrepancy between the daily electricity 
consumption profile and the energy generation profile of a building 
necessitates either importing energy from the grid or exporting a part of 
the produced energy back to the grid. Both situations might be unfa
vorable for owners, particularly if the price of importing energy exceeds 
that of exporting energy—considering investment costs for RPVs. Thus, 
further work includes the development of a method that maximizes the 
self-consumption of buildings with the fewest possible RPVs. This results 
in a decrease in operational energy costs and contributes to the 

development of sustainable cities. Moreover, the proposed methodology 
does not consider rooftop materials. For instance, glass roofs or large 
skylight windows might be recognized as utilizable areas for RPVs, 
which is not common in practice. The methodology should be developed 
such that it considers rooftop materials in the placement procedure. In 
this context, a combination of DSMs with multispectral aerial images 
might be necessary, as DSMs alone do not provide any spectral infor
mation required for identifying rooftop materials. 
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Lukač, N., Špelič, D., Štumberger, G., & Žalik, B. (2020). Optimisation for large-scale 
photovoltaic arrays’ placement based on light detection and ranging data. Applied 
Energy, 263, Article 114592. 

Mainzer, K., Killinger, S., McKenna, R., & Fichtner, W. (2017). Assessment of rooftop 
photovoltaic potentials at the urban level using publicly available geodata and image 
recognition techniques. Solar Energy, 155, 561–573. 

Mohajeri, N., Assouline, D., Guiboud, B., Bill, A., Gudmundsson, A., & Scartezzini, J.-L. 
(2018). A city-scale roof shape classification using machine learning for solar energy 
applications. Renewable Energy, 121, 81–93. 

Nelson, J. R., & Grubesic, T. H. (2020). The use of LiDAR versus unmanned aerial systems 
(UAS) to assess rooftop solar energy potential. Sustainable Cities and Society, 61, 
Article 102353. 

Nguyen, A., & Le, B. (2013). 3D point cloud segmentation: A survey. In 6th IEEE 
conference on robotics, automation and mechatronics (RAM) (pp. 225–230). IEEE: 
Manila, Philippines.  

Radosevic, N., Duckham, M., Liu, G.-J., & Sun, Q. (2020). Solar radiation modeling with 
KNIME and Solar Analyst: Increasing environmental model reproducibility using 
scientific workflows. Environmental Modelling and Software, 132, Article 104780. 

Raguram, R., Chum, O., Pollefeys, M., Matas, J., & Frahm, J. (2013). USAC: A universal 
framework for random sample consensus. IEEE Transactions on Pattern Analysis and 
Machine Intelligence, 35, 2022–2038. 

REN21. (2018). Renewables 2018 global status report, renewable energy policy network for 
the 21st century. Technical Report Paris, France. 

Rich, P., Dubayah, R., Hetrick, W., & Saving, S. (1994). Using Viewshed models to 
calculate intercepted solar radiation: Applications in ecology. American Society of 
Photogrammetry and Remote Sensing, 524–529. 

Romero Rodríguez, L., Duminil, E., Sánchez Ramos, J., & Eicker, U. (2017). Assessment 
of the photovoltaic potential at urban level based on 3D city models: A case study 
and new methodological approach. Solar Energy, 146, 264–275. 

Rottensteiner, F., Sohn, G., Gerke, M., Wegner, J. D., Breitkopf, U., & Jung, J. (2014). 
Results of the ISPRS benchmark on urban object detection and 3D building 
reconstruction. ISPRS Journal of Photogrammetry and Remote Sensing, 93, 256–271. 

Rusu, R. B. (2009). Semantic 3D object maps for everyday manipulation in human living 
environments. Ph.D. thesis. Germany: Technical University of Munich Munich. 

Salim, D. H. C., de Sousa Mello, C. C., Franco, G. G., de Albuquerque Nóbrega, R. A., de 
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