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ABSTRACT
◥

Background: Observational studies have suggested that the gut
hormone ghrelin is an early marker of future risk of developing
gastrointestinal cancer. However, whether ghrelin is a causal risk
factor remains unclear. We conducted a genome-wide association
study (GWAS) of plasma ghrelin and usedMendelian randomization
(MR) to investigate the possible causal association between ghrelin
and gastrointestinal cancer risk.

Methods: Genetic variants associated with plasma ghrelin were
identified in a GWAS comprising 10,742 Swedish adults in the
discovery (N ¼ 6,259) and replication (N ¼ 4,483) cohorts. The
association between ghrelin and gastrointestinal cancer was exam-
ined through a two-sample MR analysis using the identified genetic
variants as instruments and GWAS data from the UK Biobank,
FinnGen, and a colorectal cancer consortium.

Results:GWAS found associations between multiple genet-
ic variants within �200 kb of the GHRL gene and plasma

ghrelin. A two-sample MR analysis revealed that genetically
predicted higher plasma ghrelin levels were associated with
a lower risk of gastrointestinal cancer in UK Biobank and
in a meta-analysis of the UK Biobank and FinnGen studies.
The combined OR per approximate doubling of genet-
ically predicted plasma ghrelin was 0.91 (95% confidence
interval, 0.85–0.99; P ¼ 0.02). Colocalization analysis reveal-
ed limited evidence of shared causal variants for plasma
ghrelin and gastrointestinal cancer at the GHRL locus (pos-
terior probability H4 ¼ 24.5%); however, this analysis was
likely underpowered.

Conclusions: Our study provides evidence in support of a
possible causal association between higher plasma ghrelin levels
and a reduced risk of gastrointestinal cancer.

Impact: Elevated plasma ghrelin levels might reduce the risk of
gastrointestinal cancer.

Introduction
Ghrelin is a 28 amino acid peptide produced by the enteroendocrine

cells of the gastrointestinal tract, particularly in the stomach (1–3). In
addition to its growth hormone-releasing activity (1), ghrelin regulates
appetite, energy homeostasis, gastric acid secretion, and gut
motility (4–6). Accumulating evidence further indicates that ghrelin
modulates cell proliferation and apoptosis and may affect the devel-
opment of gastrointestinal cancer (3, 5, 7, 8). Several observational
studies have found that low circulating levels of ghrelin are associated
with an increased risk of esophageal (9–11), stomach (10, 12, 13), and
colorectal cancers (in the years approaching diagnosis; ref. 14). In
contrast, other observational studies reported that low ghrelin levels
were associated with a reduced risk of esophageal cancer (13) but were

not clearly associated with colorectal cancer (15, 16). Given the
observational design of the available studies on ghrelin levels and
gastrointestinal cancer, it remains unknown whether the reported
associations are causal or driven by biases inherited in observational
studies, such as confounding and reverse causation.

Mendelian randomization (MR) is an increasingly exploited study
design that can improve causal inference in observational studies by
leveraging genetic variants that are strongly associated with exposure
(e.g., ghrelin) as instruments to decipher the causal effect of exposure
on the outcome (e.g., due to the unchangeable nature of genetic
variants and the randomallocation of alleles at conception). Compared
with classical observational studies, MR studies are less susceptible to
reverse causation bias and confounding from self-selected behaviors
and environmental factors.

First, we conducted a genome-wide association study (GWAS) to
identify genetic variants associated with ghrelin. Second, we used
genetic variants identified through the two-sample MR framework
to investigate the association between lifelong higher ghrelin levels and
the risk of gastrointestinal cancer.

Materials and Methods
Participants in GWAS analysis

The GWAS was based on data from the Swedish Infrastructure for
Medical Population-Based Life-Course and Environmental Research
(SIMPLER; https://www.simpler4health.se/), comprising two large
longitudinal cohorts and a biobank. In addition, SIMPLER encom-
passes two clinical sub-cohorts, each with participants born between
1920 and 1952 from neighboring Swedish counties. Participants in the
clinical subcohorts were randomly chosen from two larger cohorts (i.e.,
the Swedish Mammography Cohort and Cohort of Swedish Men) and
invited to participate in a health examination. Participants from the
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clinical sub-cohorts with accurate GWAS, of European descent
according to GWAS results, and with protein data, were eligible for
inclusion in the present GWAS, which encompassed a discovery
cohort of 6,259 women and men who resided in V€astmanland County
and provided a blood sample between 2010 and 2019, and a replication
cohort of 4,483 women who lived in Uppsala County and provided a
blood sample between 2003 and 2009.

Ghrelin measurement
Blood samples were collected in the morning after 12 hours of

overnight fasting. After 5 to 10 minutes of storage at room tem-
perature, the samples were centrifuged at room temperature at 310 g
for 11 minutes, after which the buffy coat was extracted. The
samples were immediately centrifuged at 1,615 g for 11 minutes
at 4�C. Subsequently, the plasma samples were aliquoted into
multiple tubes and stored at �80�C until analysis. The samples
were light-protected from the time of blood collection and sample
preparation until freezing.

Total plasma ghrelin concentration (UniProt Q9UBU3) was mea-
sured using a high-throughput multiplex immunoassay (Olink Pro-
seek Multiplex CVD II; Olink Bioscience, Uppsala, Sweden), which
runs normalized protein expression values on a log2 scale standardized
for each analysis plate. Olink’s proximity extension assay technology
uses pairs of antibodies equipped with DNA reporter molecules to
produce DNA amplicons, which are subsequently quantified using the
Fluidigm BioMark HD real-time polymerase chain reaction plat-
form (17, 18). As only correctly matched antibody pairs produce a
signal, the proximity extension assay technique has an accuracy
advantage over the conventional multiplex immunoassays. OlinkNPX
Manager software was used for data analysis. A one-unit increment in
NPX corresponds to an approximate doubling of measured plasma
ghrelin levels. The within- and between-run precision coefficients of
variation were 9% and 16%, respectively. More details on the protein
analyses have been reported previously (19).

Genotyping and GWAS analysis
Details of genotyping and GWAS quality control for the discovery

and replication cohorts have been previously described (19). The
genetic dataset comprised of �7.8 million DNA markers. The GWAS
analysis was conducted using linear regression in SNPTEST (20),
assuming an additive genetic model and with adjustment for age, sex,
and five genetic principal components. Genetic variants associated
with plasma ghrelin at P < 5�10�8 in the discovery cohort were tested
in the replication cohort. SNP associated with plasma ghrelin in the
same direction (P < 0.05) in the replication cohort were considered
replicated.

Two-sample MR analysis
The SNPs identified in the GWAS were used as instrumental

variables for plasma ghrelin levels. Two sets of genetic instruments
were used in this study. We selected SNPs with low LD (R2 < 0.1) and
within �200 kb of the GHRL gene for the first genetic instrument.
SNPs with low LD were identified by clumping (based on Europeans
from the 1000 genomes reference panel) implemented using the
TwoSampleMR package in R (21). We applied the multiplicative
random effects inverse-variance weighted method and adjusted for
correlations between SNPs (22). The correlation matrix was obtained
from 367,643 unrelated adults of European descent in the UK
Biobank. As a second genetic instrument, we selected the cis-SNP
with the strongest association (lowest P value) with plasma ghrelin,
and the MR estimate was computed by dividing the beta coefficient

for the SNP-outcome association by the beta coefficient for the
SNP-ghrelin association.

We used the two-sample MR design to examine the associations of
plasma ghrelin proxied by the four and one SNP instruments with any
gastrointestinal cancer (primary outcome) and specific cancers in the
gastrointestinal tract (ancillary outcomes) using outcome data from
the UK Biobank (as described previously; ref. 23) as well as publicly
available summary genetic data from the FinnGen study (release R8;
refs. 24, 25). The association estimates were adjusted for age, sex, and
the 10 principal genetic components. The outcome classification is
provided in Supplementary Table S1 and the number of cases for
each outcome is shown in Supplementary Table S2. In the UK
Biobank there were 11 952 individuals diagnosed with gastrointes-
tinal cancer, and in FinnGen, there were 9,822 such cases. For
colorectal cancer, we additionally used summary-level data from a
meta-analysis of 16 GWASs, comprising 73,673 cases and 86,854
controls of European ancestries (26). Studies included in the
colorectal cancer meta-analysis dataset used in the present study
are presented in Supplementary Table S3.

An online tool was used to calculate the statistical power of the MR
analysis (27). MR associations with P value < 0.05 were regarded as
statistically significant. MR analyses were performed using the Men-
delianRandomization (28) and TwoSampleMR (21) packages in R.
Meta-analysis of results from the UK Biobank and FinnGen studies
was conducted using the metan command in Stata (College Station,
Texas), and heterogeneity between the two studies was quantified
using the I2 statistic (29).

Colocalization analysis
Colocalization analysis, using the coloc package in R (30), was

conducted as a sensitivity analysis to evaluate whether plasma ghrelin
and gastrointestinal cancer share the same causal genetic variant at the
GHRL locus (�200 kb windows around GHRL gene). Such an analysis
can indicate whether the phenotypes are influenced by different causal
genetic variants that are in LD, indicative of horizontal pleiotropy (i.e.,
when a genetic variant affects the outcome through a pathway that
does not involve the studied exposure) and violation of the exclusion
restriction assumption (31). H4 > 50% was considered supportive of
colocalization of the two phenotypes.

Ethics approval and consent to participate
The studies included in this study were approved by a relevant

ethical review authority, and the participants provided written
informed consent. The Swedish Ethical Review Authority approved
the analyses for this study. All methods were performed in accordance
with the relevant guidelines and regulations.

Data availability
Summary statistics for the genetic variants used in this study are

shown in Table 1. Data from the UK Biobank is accessible upon
application (https://www.ukbiobank.ac.uk/). Data from the FinnGen
study is publicly available (https://finngen.gitbook.io/documenta
tion/). Colorectal cancer summary-level data were obtained from a
colorectal cancer GWAS consortium (26).

Results
Gwas

The mean (� standard deviation) age of participants in the dis-
covery cohort (34.7% women) and replication cohort (100% women)
was respectively 73.8 (5.3) and 67.1 (6.8) years and the corresponding
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body mass index was 26.6 (4.0) kg/m2 and 25.9 (4.3) kg/m2. In the
replication cohort, 28 SNPs around theGHRL locus (within�200 kb of
the gene) on chromosome 3 were associated with plasma ghrelin at P <
5�10�8 (Table 1). These SNPs were all associated with plasma ghrelin
in the same direction in the replication cohort (P < 0.001) as well as in
both cohorts combined (P < 9�10�11; Table 1).

Selection and performance of the two genetic instruments
The first genetic instrument was based on SNPs in low LD and

within �200 kb of the GHRL gene. The instrument explained 4.6% of
the variance in plasma ghrelin levels in the UK Biobank study when
accounting for the correlations among SNPs. The inclusion of more
SNPs [in modest to high LD (R2 > 0.1)] as instrumental variables did
not increase the phenotypic variance when accounting for the correla-
tions. Power was high (≥99% to detect a significant OR of 0.8 or 1.2) in
MR analysis of any gastrointestinal cancer and colorectal cancer, but
low in MR analysis of other specific gastrointestinal cancers (Supple-
mentary Table S2). The strongest SNP (smallest P value), rs34911341
in GHRL, was used as a secondary genetic instrument.

Two-sample MR analysis
Higher plasma ghrelin levels proxied by the four genetic variant

instruments were associated with a statistically significant reduction

in the risk of gastrointestinal cancer in the UK Biobank and in a
meta-analysis of the two studies; the association was inverse
but non-significant in FinnGen (Fig. 1). The OR per approximate
doubling of genetically predicted plasma ghrelin was 0.91 [95%
confidence interval (CI), 0.85–0.99; P ¼ 0.02] in the meta-analysis,
without evidence of heterogeneity between studies (I2 ¼ 0%).
No significant association was observed between the genetically
predicted plasma ghrelin levels and any specific gastrointestinal
cancer (Fig. 1).

The single genetic variant instrument was associated with any
gastrointestinal cancer in the UK Biobank but not in FinnGen or in
the meta-analysis of both studies (Supplementary Fig. S1). The OR per
approximate doubling of genetically predicted plasma ghrelin was 0.89
(95% CI, 0.78–0.98; P ¼ 0.02) in the UK Biobank and 0.99 (95% CI,
0.93–1.05; P ¼ 0.62) in the meta-analysis.

Colocalization analysis
Colocalization analysis provided limited evidence of shared causal

variants of plasma ghrelin and gastrointestinal cancer in the UK
Biobank at the GHRL locus (posterior probability H4 ¼ 24.5%;
Supplementary Table S4 and Supplementary Fig. S2). There was little
evidence to suggest the presence of distinct causal variants (posterior
probability H3 ¼ 2.3%).

Table 1. SNPs associated with plasma ghrelin in GWAS analysis of the discovery and replication cohorts and in both cohorts combined.

Discovery cohort
(N ¼ 6,259)

Replication cohort
(N ¼ 4,483)

Combined cohorts
(N ¼ 10,742)

SNP Chr:position EA OA EAF Beta� SE P value Beta� SE P value Beta� SE P value

rs34911341a 3:10331519 T C 0.005 1.35 0.07 3.07E-76 1.56 0.09 2.83E-68 1.434 0.056 1.03E-142
rs143729751 3:10330266 T G 0.005 1.24 0.07 9.33E-68 1.47 0.09 2.73E-60 1.328 0.056 5.04E-126
rs150429746 3:10483812 T C 0.000 1.09 0.08 8.84E-38 NA NA NA 1.086 0.085 1.23E-37
rs4684677b 3:10328453 A T 0.066 �0.32 0.03 2.02E-23 �0.30 0.04 2.56E-14 �0.316 0.025 6.41E-36
rs56284847b 3:10512641 T C 0.051 0.46 0.05 2.60E-17 0.60 0.07 4.69E-18 0.517 0.043 3.93E-33
rs4684676 3:10323108 A G 0.121 �0.19 0.02 2.53E-16 �0.18 0.03 1.06E-10 �0.186 0.018 2.10E-25
rs2287544 3:10316762 T C 0.121 �0.19 0.02 3.14E-16 �0.18 0.03 2.32E-10 �0.184 0.018 6.77E-25
rs3774203 3:10317489 A G 0.121 �0.19 0.02 3.14E-16 �0.18 0.03 2.06E-10 �0.184 0.018 6.77E-25
rs17032621 3:10325638 G A 0.121 �0.19 0.02 4.12E-16 �0.18 0.03 7.85E-11 �0.186 0.018 2.10E-25
rs715827 3:10311773 G A 0.121 �0.19 0.02 4.66E-16 �0.18 0.03 2.34E-10 �0.183 0.018 1.21E-24
rs55821288 3:10330822 T C 0.111 �0.19 0.02 6.10E-16 �0.18 0.03 8.75E-10 �0.185 0.018 7.34E-24
rs34892 3:10525646 A G 0.939 �0.34 0.04 2.73E-15 �0.35 0.06 3.34E-10 �0.345 0.034 5.97E-24
rs34884 3:10523188 C T 0.924 �0.33 0.04 2.30E-14 �0.35 0.05 3.72E-11 �0.336 0.033 4.00E-24
rs73026596 3:10271502 C A 0.116 �0.20 0.03 1.01E-11 �0.18 0.04 1.10E-06 �0.193 0.022 1.40E-18
rs11707451 3:10308772 G T 0.051 �0.25 0.04 2.70E-10 �0.26 0.05 1.93E-08 �0.257 0.030 2.55E-17
rs173359b 3:10317277 A G 0.530 �0.11 0.02 6.53E-10 �0.12 0.02 1.03E-08 �0.112 0.013 3.10E-17
rs4462945 3:10271265 T C 0.116 �0.20 0.03 1.11E-11 �0.18 0.04 1.12E-06 �0.193 0.023 4.24E-17
rs35682 3:10328782 A G 0.545 �0.11 0.02 7.98E-10 �0.11 0.02 5.19E-08 �0.109 0.013 5.39E-17
rs168529 3:10314153 G A 0.530 �0.11 0.02 3.67E-10 �0.12 0.02 4.11E-08 �0.111 0.013 5.88E-17
rs35680 3:10330564 T C 0.545 �0.11 0.02 1.21E-10 �0.11 0.02 2.28E-07 �0.110 0.013 1.11E-16
rs35683 3:10328250 C A 0.556 �0.11 0.02 7.64E-10 �0.12 0.02 2.58E-08 �0.110 0.013 1.11E-16
rs1063429 3:10320968 A T 0.470 0.10 0.02 1.51E-09 0.12 0.02 1.31E-08 0.110 0.013 1.11E-16
rs35681 3:10329377 C T 0.545 �0.11 0.02 4.61E-10 �0.11 0.02 1.56E-07 �0.108 0.013 3.91E-16
rs171407 3:10326169 A G 0.571 �0.09 0.02 4.30E-08 �0.12 0.02 3.23E-09 �0.106 0.013 1.34E-15
rs164938 3:10315103 T G 0.424 �0.10 0.02 1.27E-08 �0.10 0.02 1.54E-06 �0.101 0.014 8.02E-14
rs2241308 3:10295883 A G 0.222 �0.13 0.02 9.66E-10 �0.11 0.03 2.67E-05 �0.124 0.017 1.78E-13
rs4684040b 3:10379623 G A 0.086 0.19 0.04 4.03E-08 0.21 0.04 9.47E-07 0.201 0.028 2.98E-13
rs111796905 3:10210142 A G 0.126 �0.15 0.03 1.12E-08 �0.11 0.03 1.08E-03 �0.134 0.021 8.88E-11

Abbreviations: Chr, chromosome; EA, effect allele; EAF, effect allele frequency in the discovery cohort; OA, other allele; SE, standard error.
�Beta coefficients represent the change inplasmaghrelin levels per additional effect allele. TheOlinkNPXManager softwarewasused for data analysis, and aone-unit
higher NPX represents an approximate doubling of the measured plasma ghrelin levels.
aThe most robust (smallest P value) cis-SNP was associated with plasma ghrelin and used as a secondary genetic instrument in two-sample MR analyses.
bSNPs in low linkage disequilibrium were used as the primary genetic instrument in two-sample MR analyses. These SNPs were selected using clumping in the
TwoSampleMR package in R with the European population as the reference population.
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Discussion
This GWAS identified 28 genetic variants that are strongly

associated with plasma ghrelin levels. The genetic variants were
within �200 kb of the GHRL gene, which encodes preproghrelin,
which is posttranslationally processed into different peptides,
including ghrelin (4, 5, 32). Our two-sample MR analysis revealed
an inverse association between plasma ghrelin proxied by the
primary (four SNP) genetic instrument and the risk of gastroin-
testinal cancer. The association was less robust when a single genetic
variant instrument was used, with an inverse association found only
in the UK Biobank. There is limited evidence for shared causal
variants of plasma ghrelin and gastrointestinal cancer risk at the
GHRL locus.

Our MR analyses focusing on gastrointestinal cancer were moti-
vated by several previous observational studies that reported inverse
associations between the total circulating levels of ghrelin and the risk
of gastrointestinal cancers, including esophageal squamous cell car-

cinoma (9, 10), esophageal adenocarcinoma (11), stomach can-
cer (10, 12, 13), and colorectal cancer (in the years approaching
diagnosis only; ref. 14). Our main MR analysis confirmed a significant
inverse association between plasma ghrelin and the composite out-
come of gastrointestinal cancer in theUKBiobank study and in ameta-
analysis of both studies. The analyses of genetically predicted plasma
ghrelin levels in relation to specific gastrointestinal cancers were
underpowered, but all associations were in the inverse direction in
the UK Biobank and meta-analysis. Colocalization analysis was
underpowered, and neither supported nor disproved the existence of
shared genetic variants at theGHRL locus. The reason for the lack of an
association between genetically predicted plasma ghrelin levels and the
risk of gastrointestinal cancer in FinnGen is unclear. However, it
should be noted that the minor allele frequency (MAF) of the top hit
ghrelin-associated SNP (rs34911341) was four times higher in Finn-
Gen (MAF ¼ 0.024) than in the Swedish (MAF ¼ 0.005) and British
(MAF ¼ 0.006) populations included in this study as well as in the

Figure 1.

Associations of plasma ghrelin with gastrointestinal cancer risk in two-sample MR analysis using the primary instrument with four genetic variants. CRC, colorectal
cancer. ORs are scaled per approximate doubling of genetically predicted plasma ghrelin. There was evidence of modest heterogeneity in the meta-analysis of
colorectal cancer (I2 ¼ 19%), but no heterogeneity between estimates in meta-analyses of the other cancers (I2 ¼ 0%).
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Icelandic population (MAF ¼ 0.008; ref. 33). This difference may
explain the discrepancy in the results.

Although most in vitro studies have shown that ghrelin promotes
tumor development, there are also data showing inhibition of cancer
growth and increased apoptosis (3, 5–8). Most studies have been
conducted on acyl ghrelin, which is a ghrelin isoform that binds to the
growth hormone secretagogue receptor and stimulates growth hor-
mone release (1, 8). Ghrelin gene can produce bioactive peptides other
than ghrelin, primarily des-acyl ghrelin and obestatin, which are
generated via alternative splicing or posttranslational modifica-
tions (32). Although no receptors have been identified for des-acyl
ghrelin and obestatin, these peptides have been proven to be active,
may either support or antagonize the effect of acyl ghrelin, and may
have independent activities (32, 34).

The SNP with the strongest association with plasma ghrelin in
the present GWAS was also the strongest cis-SNP associated with
plasma ghrelin (UniProt Q9UBU3) measured with Olink in the UK
Biobank (35) and with SomaScan in an Icelandic cohort (33).
However, the direction of association of this SNP with plasma
ghrelin differed between the methods. The T allele of rs34911341
was positively associated with plasma ghrelin in the UK Biobank
(ref. 35; beta coefficients of 1.39 and 1.30 in the discovery and
replication samples, respectively; very similar to the estimate in the
current GWAS) but negatively associated with plasma ghrelin in the
Icelandic study (33). This difference may be related to the fact that
the Olink method utilizes two antibodies for the same protein that
must simultaneously bind to the protein to provide a signal. In the
case of ghrelin, this binding is complicated because the preprotein
consists of both ghrelin and obestatin, which act in opposite
directions. In general, Olink’s method is considered to have a more
reliable protein target specificity and a higher number of phenotypic
associations than SomaScan (36).

A strength of this study is theMR design, which diminished the bias
due to confounding and reverse causation. Furthermore, the use of a
relatively strong primary genetic instrument for exposure and a large
number of cases for the composite outcome of gastrointestinal cancer
provided a high statistical power in themainMRanalysis. Nonetheless,
the power was low in the analyses of specific gastrointestinal cancers,
except for colorectal cancer, and in the colocalization analysis. Thus,
further MR analyses of the association between ghrelin levels and
specific gastrointestinal cancers based on large-scale genetic consortia
data are warranted. A limitation of this MR study and of previous
observational studies on ghrelin and cancer is the inability to separate
the effect of acyl and des-acyl ghrelin and obestatin. Another short-
coming is that we were unable to examine the association of plasma

ghrelin with the histopathologic subtypes of esophageal cancer and
molecular subtypes of colorectal cancer. Finally, the study populations
comprised individuals of European ancestry, which limits the trans-
ferability of our results to non-European populations.

In conclusion, this GWAS identified associations between multiple
genetic variations in theGHRL gene and plasma ghrelin levels.OurMR
analysis provided suggestive evidence in support of a possible causal
association between higher plasma ghrelin levels and a reduced risk of
gastrointestinal cancer. Further research is warranted to establish the
causal role of ghrelin in gastrointestinal cancer prevention.
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