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GWAS of random glucose in 476,326 
individuals provide insights into diabetes 
pathophysiology, complications and 
treatment stratification

Conventional measurements of fasting and postprandial blood glucose 
levels investigated in genome-wide association studies (GWAS) cannot 
capture the effects of DNA variability on ‘around the clock’ glucoregulatory 
processes. Here we show that GWAS meta-analysis of glucose measurements 
under nonstandardized conditions (random glucose (RG)) in 476,326 
individuals of diverse ancestries and without diabetes enables locus 
discovery and innovative pathophysiological observations. We discovered 
120 RG loci represented by 150 distinct signals, including 13 with 
sex-dimorphic effects, two cross-ancestry and seven rare frequency signals. 
Of these, 44 loci are new for glycemic traits. Regulatory, glycosylation and 
metagenomic annotations highlight ileum and colon tissues, indicating 
an underappreciated role of the gastrointestinal tract in controlling blood 
glucose. Functional follow-up and molecular dynamics simulations of lower 
frequency coding variants in glucagon-like peptide-1 receptor (GLP1R), a 
type 2 diabetes treatment target, reveal that optimal selection of GLP-1R 
agonist therapy will benefit from tailored genetic stratification. We also 
provide evidence from Mendelian randomization that lung function is 
modulated by blood glucose and that pulmonary dysfunction is a diabetes 
complication. Our investigation yields new insights into the biology of 
glucose regulation, diabetes complications and pathways for treatment 
stratification.

Genetic factors are important determinants of glucose homeosta-
sis and type 2 diabetes (T2D) susceptibility. Heritability of both  
fasting glucose (FG) and T2D is high, at 35–40%1 and 30–60%2, respec-
tively. To date, more than 400 genetic loci have been associated with 
T2D3,4. Genome-wide association studies (GWAS) for glycemic traits 
in individuals without diabetes have identified genetic predictors 
of blood glucose, insulin and other metabolic responses during  
fasting or after oral or intravenous glucose challenge tests5–8.  
However, physiological glucose regulation involves responses to 
diverse nutritional and other stimuli that were, by design, omit-
ted from such studies. Blood glucose is frequently measured at  

different times throughout the day in clinical practice and research 
studies (random glucose (RG)). While RG is inherently more vari-
able than standardized measures, we reasoned that, across a  
very large number of individuals, it gives a more comprehensive 
representation of complex glucoregulatory processes occurring 
in different organ systems. Therefore, to identify and functionally  
validate genetic effects influencing RG, explore its relationships 
with other traits and diseases, and use these data to provide path-
ways for T2D treatment stratification, we performed a large-scale 
cross-ancestry GWAS meta-analysis for RG in individuals without 
diabetes.
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Results
RG GWAS expands the catalog of glycemia-related genetic 
associations
We undertook RG GWAS in 476,326 individuals without diabetes of 
European (n = 459,772) and other ancestries (n = 16,554) with adjust-
ment for age, sex and time since last meal (where available), along with 
the exclusion of extreme hyperglycemia (RG > 20 mmol l−1) and indi-
viduals with diabetes (Supplementary Table 1). The covariate selection 
was done upon extensive phenotype modeling (Supplementary Note, 
Supplementary Table 2 and Extended Data Fig. 1a). We identified 150 
distinct signals (P < 10−5) by fine mapping through conditional analysis 
within 120 loci reaching genome-wide significance (P < 5.0 × 10−8; Fig. 1a 
and Supplementary Tables 3 and 4). Fifty-three RG signals are reported 
for glycemic traits for the first time, greatly expanding our knowledge 
about the genetics of glycemia (Tables 1 and 2 and Supplementary 
Table 3). Adjustment for last meal timing (Extended Data Fig. 1b) did 
not change effect size estimates while enabling better power for the 
analysis. Application of glycated hemoglobin (HbA1c) cut point for 
diagnosing diabetes (HbA1c ≥ 6.5%) highlighted stronger associations 
at G6PC2 and GCK lead RG loci (Extended Data Fig. 1c), suggesting their 
roles in glucose set-point in normoglycemia9. Neither adjustment for 
body mass index (BMI), nor a more stringent hyperglycemia cut-off 
(RG > 11.1 mmol l−1; Extended Data Fig. 1d,e) materially changed the 
magnitude and significance of the RG effect estimates, although when 
all covariate models were individually applied, 11 additional signals at 
genome-wide significance were identified (Table 2 and Supplementary 
Table 5). Despite previous misconceptions that RG is of limited value 
for genetic discovery because of its inherent variability, our RG GWAS 
demonstrates that this trait variability has a clear genetic component.

A number of signals identified in individuals of European ancestry 
showed nominal significance (P < 0.05) in other ancestry groups, includ-
ing new loci MANSC4/KLHL42 in African, FAM46C and ACVR1C in Indian 
and RBMS1 in Chinese ancestry groups (Supplementary Table 3). All such 
signals, except rs540524 at G6PC2, rs183606969 at GCK and rs6006399 
at MTMR3/HORMAD2, were directionally concordant across ancestries. 
At GCK, rs2908286 (r2

1000GenomesAllAncestries = 0.83 with rs2971670 lead in 
European ancestry individuals) was genome-wide significant in the Afri-
can ancestry individuals alone (Supplementary Table 6). Cross-ancestry 
meta-analyses combining European and the other four ancestral groups 
revealed two new RG signals at RRNAD1 and PROX1 (Table 2 and Supple-
mentary Table 6). Overall, while being only 16,554 individuals larger in 
sample size than the European ancestry meta-analysis, the cross-ancestry 
analysis expanded the new locus discovery for RG, confirming the poten-
tial of cross-ancestry studies for complex trait genetics.

The strongest associations with RG were detected at G6PC2 
(P < 1.0 × 10−746) and GCK (P < 3.7 × 10−277), established loci for FG and 
with key roles in gluconeogenesis10 and glucose sensing11, respectively 
(Supplementary Table 3). Notably, only two-thirds of RG signals over-
lapped with T2D-associated loci (Extended Data Fig. 1f), including three 
new loci for glycemia (SCD5, RNF6 and TSHZ2). The direction of effects 

at these loci between RG, T2D and homeostasis model assessment of 
β-cell function/insulin resistance (HOMA-B/HOMA-IR)6 (Extended 
Data Figs. 1f,g and 2 and Supplementary Table 7) were consistent with 
their epidemiological correlation. We also discovered sex dimor-
phism at 13 RG loci, including male-specific PRDM16 and RSPO3, and 
female-specific SGIP1, SRRM3 and SLC43A2 (Table 2, Fig. 1a and Supple-
mentary Tables 3 and 8). We conclude that sex dimorphism, character-
izing over one-tenth of RG-associated loci, is a widespread feature of 
glucose metabolism.

Coding, rare and causal variants in RG variability
The lead variants at two new RG loci (NMT1 and RFX1) and three previ-
ously reported loci for FG (TET2, THADA and RREB1) were all coding 
common (minor allele frequency (MAF) ≥ 5 %) variants (Supplementary 
Table 3 and Extended Data Fig. 3). Additionally, lead RG-associated SNPs 
at glucagon-like peptide-1 receptor (GLP1R), neuronal differentiation 
1 (NEUROD1) and ER degradation enhancing α-mannosidase like pro-
tein 3 (EDEM3) loci in our analysis were low-frequency (5% > MAF ≥ 1%) 
coding variants (Table 1, Supplementary Table 3 and Extended Data 
Fig. 3). NEUROD1 and EDEM3 are plausible candidates for glucose 
homeostasis, with the former reported for glucosuria12 and the lat-
ter linked to renal function13,14. Within the rare allele frequency range 
(1% > MAF ≥ 0.001%), we first identified 30 RG loci and validated seven 
in whole-exome sequencing (WES) UK Biobank (UKBB) data (Supple-
mentary Note). These included noncoding, such as rs2096313127  
at CAMK2B (Supplementary Table 9) and synonymous rs2232324 in 
G6PC2 variant associations (Table 2 and Supplementary Table 9). We 
expanded the annotation of coding nonsynonymous independent 
(r2

1000GenomesAllAncestries < 0.0010) rare variant signals associated with RG to 
nondeleterious new rs146886108 (Arg187Gln) in ANKH15, and deleteri-
ous, including three in G6PC2 with predicted (rs2232326) and estab-
lished (rs138726309, rs2232323)16 effects (Supplementary Table 9).  
Thus, a range of coding and rare variants contributes to RG level  
variability and can be detected in very large genetic studies.

Next, we sought to pinpoint the most plausible set of causal vari-
ants by calculating 99% credible sets for each RG locus. In the European 
ancestry-only analysis, 15 RG signals were explained by one variant with 
a posterior probability of ≥99% of being causal, including low-frequency 
variants in GLP1R, G6PC2, MECOM and CCND2 (ref. 17), and common 
variants in LMO1 and CACNA2D3 (Fig. 1b and Supplementary Table 
10a). For another 16 signals, such as at RMST, FOXN3 and ADRA2A, a 
lead variant had a posterior probability ≥80%. Credible sets at WIPI1, 
GCKR, TET2, RREB1 and RFX6 included coding common variants. RREB1 
and RFX6 encode transcription factors implicated in the development 
and function of pancreatic β cells18,19. The credible sets were narrowed 
down for several signals in cross-ancestry RG meta-analysis (European 
ancestry median credible set size = 12.0 and cross-ancestry = 12.0), with 
improvements observed at DGKB and TP53INP1 lead signals (Supple-
mentary Table 10b,c). These analyses highlight examples of validated 
and potential targets for therapeutic development15.

Fig. 1 | Summary of all RG loci identified in this study. a, Circular Manhattan 
plot summarizing findings from this study. In the outermost layer, gene names 
of the 133 distinct RG signals are labeled with different colors indicating 
the following three clusters defined in cluster analysis: 1a/1b, metabolic 
syndrome; 2a/2b, insulin release versus insulin action (with additional effects 
on inflammatory bowel disease for cluster 2a) and 3, defects of insulin secretion. 
Asterisks annotate RG signals that are new for glycemic traits. Track 1 shows RG 
Manhattan plot reporting −log10(P value) for RG GWAS meta-analysis. Signals 
reaching genome-wide significance (P < 5.0 × 10−8) are colored in red. Crosses 
annotate loci that show evidence of sex heterogeneity (Psex-dimorphic < 5.0 × 10−8 
and Psex-heterogeneity < 0.05); blue crosses for larger effects in men, green crosses 
for larger effects in women. Track 2 shows the effects of the 133 independent 
RG signals on four GIP/GLP-1-related traits GWAS. The colors of the dotted lines 
indicate four GIP/GLP-1-related traits: gray dot, signals reaching P < 0.010 for 

a GIP/GLP-1-related trait; red dot, lead SNP has a significant effect on GIP/GLP-
1-related trait (Bonferroni corrected P < 1.0 × 10−4). Track 3 shows the effects 
(−log10(P value)) of the 133 independent RG signals on 113 glycan PheWAS. Track 
4 shows the effects (−log10(P value)) of the 133 independent RG signals on 210 
gut-microbiome PheWAS. Track 5 shows MetaXcan results for ten selected 
tissues for RG GWAS meta-analysis; signals colocalizing with genes (Bonferroni 
corrected P < 9.0 × 10−7) are plotted for each tissue. All P values were calculated 
from the two-sided z statistics computed by dividing the estimated coefficients 
by the estimated standard error, without adjustment. b, Credible set analysis 
of RG associations in the European ancestry meta-analysis. Variants from each 
of the RG signal credible sets are grouped based on their posterior probability 
(the percentiles labeled on the sides of the bar). SNP variants with posterior 
probability >80%, along with their locus names, are provided. All variants from 
the credible set of lead signals are highlighted in bold.
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Characterization of RG-associated GLP1R coding variants 
provides a framework for T2D treatment stratification
Following annotation and definition of likely causal variants, for func-
tional studies, we prioritized GLP1R, which encodes a class B1 GPCR 
(GLP-1R) important in blood glucose and appetite regulation and a 

well-established target of the T2D drugs exenatide (exendin-4) and 
semaglutide20. We used RG data to validate an experimental framework 
for predicting individual responses to GLP-1R agonists, as this would 
be a major asset in clinical practice and is currently lacking. Within 
GLP1R, the lead missense variant at rs10305492 (A316T) has a strong 
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Table 1 | New signals for glycemic traits discovered in GWAS meta-analysis of RG levels in up to 459,772 individuals of 
European ancestries without diabetes

Signal Nearest gene(s) Variants Chr Position Type/model Alleles EAF Effect SE P value P het n

EUR KDM4A rs3791033 1 44,134,077 lead/7 T/C 0.67 −0.0017 0.00031 3.9 × 10−8 0.58 455,267

EUR FAM46C rs1966228 1 118,144,332 additional/5 A/G 0.75 0.0032 0.00034 1.3 × 10−20 0.98 412,368

EUR FAM46C rs17656269 1 118,162,139 lead/7 T/C 0.33 0.0030 0.00032 4.3 × 10−21 0.075 455,647

EURa EDEM3 rs78444298 1 184,672,098 lead/5 A/G 0.020 0.0076 0.0011 2.8 × 10−12 0.68 398,925

EUR ACVR1C rs58288813 2 158473008 lead/5 T/C 0.95 0.0037 0.00066 2.3 × 10−8 0.0073 415,629

EUR ACVR1C rs2848657 2 158495349 additional/7 A/T 0.13 0.0026 0.00044 2.4 × 10−9 0.13 454,031

EUR RBMS1 rs12692596 2 161,265,910 lead/7 T/C 0.37 0.0019 0.00030 1.2 × 10−9 0.84 457,182

EURa NEUROD1 rs8192556 2 182,542,998 lead/7 T/G 0.024 0.0053 0.00096 3.0 × 10−8 0.50 418,468

EUR CACNA2D3 rs34222465 3 55,123,055 lead/1 A/G 0.56 −0.0019 0.00030 3.7 × 10−10 0.055 418,498

EUR TRIM59, KPNA4 rs9799314 3 160,082,071 lead/7 T/C 0.47 0.0018 0.00030 1.1 × 10−9 0.025 439,182

EUR MECOM rs73174306 3 169,194,244 lead/5 A/T 0.96 −0.0059 0.00074 1.3 × 10−15 1.00 393,841

EUR LCORL rs1503884 4 18,207,538 lead/5 T/G 0.56 −0.0018 0.00030 8.8 × 10−10 0.65 414,134

EUR SCD5 rs4693043 4 83,563,582 lead/7 A/G 0.14 0.0023 0.00042 2.9 × 10−8 0.66 456,696

EUR ADRB2 rs71584073 5 148,149,418 lead/5 T/C 0.92 0.0038 0.00056 1.7 × 10−11 0.91 398,925

EUR SYNGAP1 rs9461856 6 33,395,199 lead/1 A/G 0.49 −0.0017 0.00030 4.9 × 10−9 0.29 436,654

EUR ARMC2, SESN1 rs118126621 6 109,304,170 lead/5 A/G 0.025 0.0055 0.00098 2.3 × 10−8 0.029 393,841

EUR PEX7 rs7756291 6 137,235,325 lead/7 T/C 0.55 −0.0016 0.00030 4.4 × 10−8 0.47 434,769

EUR POP7, EPO rs221798 7 100,287,495 lead/5 C/G 0.11 −0.0030 0.00047 7.1 × 10−11 0.78 415,738

EUR PRKAR2B rs3801969 7 106,711,492 lead/1 T/G 0.44 0.0017 0.00030 1.2 × 10−8 0.47 458,102

EUR A1CF rs61856594 10 52,637,925 lead/7 A/G 0.70 0.0022 0.00032 7.3 × 10−12 0.59 451,966

EUR ADRA2A rs11195538 10 113,117,650 additional/5 T/C 0.93 0.0031 0.00060 2.3 × 10−7 0.21 403,260

EUR TCF7L2 rs144155527 10 114,737,633 additional/5 T/C 0.019 −0.0061 0.0011 3.5 × 10−8 0.33 398,925

EUR USP47 rs11022029 11 11,806,317 lead/5 T/C 0.85 0.0023 0.00042 3.4 × 10−8 0.75 414,134

EUR PDE3B rs141521721 11 14,763,828 lead/5 A/C 0.024 0.0054 0.00098 2.6 × 10−8 0.38 398,925

EUR OR4A5 rs72913090 11 50,653,357 lead/5 A/C 0.92 0.0033 0.00055 2.7 × 10−9 1.0 380,422

EUR TRIM48 rs150587121 11 55,036,391 lead/5 T/C 0.91 0.0030 0.00054 3.3 × 10−8 0.12 396,388

EUR OR8K3, OR8K1 rs2170441 11 56,095,739 lead/5 A/G 0.078 −0.0032 0.00056 9.5 × 10−9 0.57 398,925

EUR CCND2 rs3217791 12 4,384,669 additional/7 T/C 0.074 −0.0032 0.00059 8.2 × 10−8 0.69 393,841

EUR SOX5 rs12581677 12 24,060,732 lead/5 A/G 0.91 0.0032 0.00053 3.1 × 10−9 0.10 414,063

EUR MANSC4, KLHL42 rs11049144 12 27,931,511 lead/5 A/C 0.22 −0.0022 0.00036 1.2 × 10−9 0.012 413,498

EUR RNF6 rs12874929 13 26,781,607 lead/1 A/G 0.77 −0.0026 0.00035 5.5 × 10−14 1.0 456,162

EUR SPRY2 rs4884144 13 80,678,136 lead/5 A/G 0.67 0.0019 0.00032 1.2 × 10−9 0.38 411,619

EUR HERC1 rs67507374 15 64,038,340 additional/5 A/T 0.31 −0.0024 0.00032 8.9 × 10−14 0.28 415,015

EUR HNF1B rs10908278 17 36,099,952 lead/5 A/T 0.52 −0.0019 0.00030 2.3 × 10−10 0.39 398,925

EURb NMT1 rs2239923 17 43,176,804 lead/1 T/C 0.29 0.0020 0.00030 1.1 × 10−9 0.54 458,104

EUR WIPI1 rs2952295 17 66,447,421 lead/5 A/T 0.23 0.0024 0.00035 4.5 × 10−12 0.14 398,925

EUR SKA1, MAPK4 rs2957989 18 48,075,733 lead/1 A/G 0.82 0.0021 0.00039 3.4 × 10−8 0.67 437,935

EUR RALY rs7274168 20 32,435,978 lead/1 T/C 0.48 0.0018 0.00030 4.5 × 10−9 0.75 443,728

EUR HNF4A rs2267850 20 43,524,963 lead/7 T/C 0.27 −0.0021 0.00033 6.2 × 10−10 0.92 437,057

EUR TSHZ2 rs2255805 20 51,627,634 lead/5 T/C 0.58 −0.0019 0.00030 1.5 × 10−10 0.90 414,134

EUR STX16–NPEPL1 rs61285514 20 57,283,828 lead/7 A/G 0.77 0.0021 0.00035 2.3 × 10−9 0.24 451,642

EUR EEF1A2, PPDPF rs6122466 20 62,139,177 lead/5 A/G 0.86 −0.0026 0.00043 7.8 × 10−10 0.70 405,111

A lead signal was annotated as ‘EUR’ if it reached genome-wide significance (P < 5.0 × 10−8) in the meta-analysis of European ancestry cohorts in either of our two models of interest with 
adjustment for age, sex with or without time since last meal (where available) along with the exclusion of extreme hyperglycemia (RG > 20 mmol l−1) or in their combination. Additional distinct 
signals with a region-wide threshold of P ≤ 1.0 × 10−5 are also reported. Effects and P values reported are from the model indicated in column ‘type/model’ (1, AS20; 5, AST20; 7, AS20 + AST20). 
Heterogeneity among studies was assessed using the I2 index. aNonsynonymous variants. bSynonymous variants. Alleles, effect/other; Chr, chromosome; EAF, effect allele frequency 
(frequency of allele, for which beta is reported); EUR, individuals of European ancestry; Pos, position GRCh37.
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(0.058 mmol l−1 per allele) RG-lowering effect, second by size only to 
G6PC2 locus variants, and is also associated with FG/T2D21,22.

We functionally tested the impact of rs10305492 (A316T) and 
16 other GLP1R coding variants detected in the UKBB dataset, with 
effect allele frequency ranging from common (G168S, rs6923761, 
PRG GWAS meta-analysis = 5.20 × 10−5) to rare (R421W, rs146868158,  
PRG GWAS meta-analysis = 0.036), by measuring GLP-1-induced recruitment 
of mini-Gαs

23 in HEK293 cells stably expressing wild-type (WT) or 
variant GLP-1R. This approach captures the most proximal part of the 
Gαs-adenylate cyclase-cyclic adenosine monophosphate pathway, 
which links GLP-1R activation to insulin secretion. With correction 
for differences in cell surface expression determined using SNAP-tag 
labeling24, mini-Gs-coupling efficiency was indeed predictive of the RG 
effect for these variants (Fig. 2a and Supplementary Table 11), thereby 
linking experimentally measured GLP-1R function in vitro to blood 
glucose homeostasis. This relationship was assessed in UKBB WES data 
(Supplementary Note and Extended Data Fig. 4).

Focusing on the two directly genotyped GLP1R missense variants in 
UKBB, we also measured mini-Gs responses to several endogenous and 
pharmacological GLP-1R agonists, observing that A316T (rs10305492-A) 
showed increased responses and R421W (rs146868158-T) showed 
reduced responses, to all ligands except exendin-4 (both variants) 
and semaglutide (A316T only), in line with their RG effects (Fig. 2b). 
Interestingly, for late-stage T2D candidate tirzepatide, which has pro-
nounced ‘biased agonism’ at GLP-1R25, the difference between A316T 
and R421W amounted to nearly tenfold difference in activity. The 
common G168S variant, with a relatively small RG-lowering effect 
(β = −0.0013, s.e. = 3.1 × 10−4), also showed increases in function with 
pharmacological agonist stimulation. As GLP-1R undergoes extensive 
agonist-induced endocytosis, a process that modulates the subcellular 
origin and temporal dynamics of receptor signaling26, we also assessed 

the endocytic characteristics of A316T, G168S and R421W variants using 
high content microscopy. Here the most notable observation was that 
agonist-induced GLP-1R endocytosis with R421W was normal despite 
its signaling deficit, suggesting a specific alteration to how this variant 
couples to downstream effectors24. These results, supported by RG 
data and clinical observations27,28, suggest that in vitro assessments 
can provide valuable insights into the optimal selection of GLP-1R 
treatment according to genotype.

Next, we performed molecular dynamics (MD) simulations of 
human GLP-1R bound to oxyntomodulin (OXM)29 to gain structural 
insights into the above-described GLP1R variant effects. A316T has a 
single amino acid substitution in the core of the receptor transmembrane 
(TM) domain (Fig. 2c) that leads to an alteration of the nearby hydro-
gen bond network that normally serves to stabilize the GLP-1R inactive 
state (Supplementary Video 1). Specifically, in A316T, residue T3165.46 
replaces Y2423.45 (superscripts follow the study discussed in ref. 30  
generic GPCR class B1 numbering system, where the number before 
the dot indicates the TM helix and the number after the dot refers to the 
sequence distance from the most conserved residue indicated by 50) in 
a persistent hydrogen bond with the backbone of P3125.42, one turn of the 
helix above T3165.46 (Fig. 2d,e and Supplementary Video 1). This triggers 
a local structural rearrangement that could transmit to the intracel-
lular G-protein-binding site through TM3 and TM5, thereby enhancing 
G-protein coupling. A water molecule is close to position 5.46 in both 
A316T and WT (water cluster α5; Fig. 2f). Notably, the same water bridges 
the backbone of Y2413.44 and A3165.46 in WT or the backbone of Y2413.44 
and the side chain of T3165.46 in A316T. Given the importance of conserved 
water networks in the activation of class A GPCRs31,32, the stability of the 
hydrated spot close to position 5.46 corroborates the importance of this 
site for GLP-1R effects. In analogy with A316T, simulations with the G168S 
variant indicated the formation of a stable new hydrogen bond between 

Table 2 | New signals for glycemic traits discovered through UK Biobank (UKBB) (European ancestry only) GWAS in other 
RG models, UKBB (European ancestry only) GWAS on rare variants and cross-ancestry meta-analysis of up to 476,326 
individuals of European or other ancestries (Black, Indian, Pakistani and Chinese) in UKBB

Signal Nearest gene(s) Variants Chr Position Type/
model

Alleles EAF Effect SE P value P het n

UKBB PEX7 rs7756291 6 13,7235,325 lead/6 C/T 0.45 0.0018 0.00030 3.0 × 10−9 – 379,291

UKBB INAFM2 rs882829 15 40,607,689 lead/2 C/G 0.92 0.0032 0.00057 1.6 × 10−8 – 379,301

UKBB INAFM2, C15orf52 rs4143838 15 40,622,374 lead/3 T/C 0.95 −0.0039 0.00070 1.8 × 10−8 – 379,947

UKBB ADCY9, SRL rs2018506 16 4,227,922 lead/6 C/G 0.85 −0.0023 0.00042 2.2 × 10−8 – 379,291

UKBB ERN1 rs58642235 17 62,202,689 lead/5 T/C 0.86 −0.0024 0.00044 4.5 × 10−8 – 380,422

UKBBa WIPI1 rs883541 17 66,449,122 In LD with 
lead/6

G/A 0.23 0.0023 0.00036 5.5 × 10−11 – 380,422

UKBBb RFX1 rs2305780 19 14,083,761 lead/4 T/C 0.54 0.0016 0.00029 1.5 × 10−8 – 378,819

UKBB, rarea ANKH rs146886108 5 14,751,305 rare/1 T/C 0.0072 −0.012 0.0018 3.2 × 10−12 – 380,432

Cross-anc RRNAD1 rs3806415 1 156,698,265 lead/5 T/C 0.32 −0.0017 0.00031 3.6 × 10−8 0.51 476,326

Sex-dim (w) SGIP1 rs7544505 1 66,998,618 lead/5 T/C 0.84 −0.0030 0.00053 1.8 × 10−8

0.019
207,903

Sex-dim (m) SGIP1 rs7544505 1 66,998,618 lead/5 T/C 0.84 −0.0010 0.00063 0.10 172,529

Sex-dim (w) POP7, EPO rs534043 7 100,312,724 lead/5 A/G 0.11 −0.0018 0.00061 0.0029
0.0040

207,903

Sex-dim (m) POP7, EPO rs534043 7 100,312,724 lead/5 A/G 0.11 −0.0046 0.00073 4.8 × 10−10 172,529

Sex-dim (w) SLC43A2 rs56405641 17 1,528,464 lead/5 C/T 0.91 −0.0040 0.00067 2.0 × 10−9

1.4 × 10−4
207,903

Sex-dim (m) SLC43A2 rs56405641 17 1,528,464 lead/5 C/T 0.91 −4.1 × 10−5 0.00081 0.96 172,529

Loci showing sex-dimorphic effects on glycemic trait levels for the first time are also shown. A signal was annotated as ‘UKBB’ if it reached genome-wide significance (P < 5.0 × 10−8) in UKBB 
(European ancestry) in any of the six RG models. A signal was annotated as ‘UKBB, rare’ if it reached genome-wide significance (P < 5.0 × 10−8) in UKBB (European ancestry) analysis for rare 
variants. Additional distinct signals with a region-wide threshold of P ≤ 1.0 × 10−5 are also reported. Effects and P values reported are from the model indicated in column ‘type/model’ (2, 
ASB20; 3, AS11; 4, ASB11; 5, AST20; 6, ASTB20). Heterogeneity among studies was assessed using the I2 index. P het values for the sex-dimorphic variants are from Cochran’s Q test (for sex 
heterogeneity representing the differences in allelic effects between sexes). Sex-dimorphic P values (2 degrees of freedom test of association assuming different effect sizes between the 
sexes) for the SGIP1, POP7/EPO and SLC43A2 variants were 3.2 × 10−8, 4.3 × 10−11 and 1.5 × 10−8, respectively. aNonsynonymous variants. bSynonymous variants. Cross-anc, cross-ancestry; Sex-dim 
(m), sex-dimorphic results for men; Sex-dim (w), sex-dimorphic results for women.
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the side chain of residue S1681.63 and A1641.59, one turn above on the same 
helix (Fig. 2g and Supplementary Video 2). This moves the C-terminal end 
of TM1 closer to TM2 and reduces the overall flexibility of intracellular 
loop 1 (ICL1; Fig. 2h), altering the role of ICL1 in G-protein activation. In 
contrast to A316T and G168S, the site of variant R421W is consistent with 
persistent interactions with the G protein, and simulations predicted a 
propensity of R421W to interact with a different region of the G-protein 
β-subunit compared to WT (Fig. 2i). These results capture the full range of 
structural features in the current active GLP-1R models and provide clear 
clues about the dynamics of A316T and other GLP-1R variants, compared 
to early models that did not benefit from the structural insights obtained 
from cryo-electron microscopy22.

For a broader view of the impact of GLP1R coding variation, we 
screened an additional 178 missense variants identified from exome 
sequencing33 for exendin-4-induced mini-Gs coupling and endocytosis 
by transient transfection in HEK293 cells (Supplementary Note, Fig. 2j,k 
and Supplementary Table 12). In total, 110 variants showed a reduced 
response in either or both pathways (‘LoF1’) and 67 displayed a specific 
response deficit that was not fully explained by differences in GLP-1R 
surface expression (‘LoF2’). Many of these defects were larger than 
in the analysis in Fig. 2a, with a major loss of GLP-1R function a likely 
consequence, meaning that patients carrying these variants are less 
likely to benefit from GLP-1R agonist drug treatment.

Functional annotation of RG associations and intestinal health
Previous T2D and glycemic trait GWAS have primarily implicated pan-
creatic, adipose and liver tissues3. We performed a range of comple-
mentary functional annotation analyses by leveraging our RG GWAS 
results to identify additional cell and tissue types with etiological roles 
in glucose metabolism. Data-driven expression prioritized integration 
for complex traits (DEPICT)34, which predicts enriched tissue types from 
prioritized gene sets, highlighted intestinal tissues including ileum and 
colon, as well as pancreas, adrenal glands5, adrenal cortex and cartilage 
(false discovery rate, FDR < 0.20; Fig. 3a,b and Supplementary Table 
13). Similarly, CELL type expression-specific integration for complex 
traits (CELLECT)35, which facilitates cell type prioritization based on 
single-cell RNA-sequencing (scRNA-seq) datasets, identified large 
intestinal tissue as second-ranked only to pancreatic cell types (Fig. 4 
and Supplementary Table 14). Interestingly, RG variants were related 
particularly to enriched expression in pancreatic polypeptide cells, 
exceeding even the more conventionally implicated insulin-secreting 
β cells. Supporting evidence was obtained from transcriptome-wide 

association study (TWAS) analysis, where we identified a total of 216 
(119 unique) significant genetically driven associations across the ten 
tested tissues (Supplementary Table 15a); 51 (25 unique) of highlighted 
genes are located at genome-wide significant RG loci (Supplementary 
Table 15). TWAS signals in skeletal muscle5 showed the largest overlap 
with RG signals, such as GPSM1 (ref. 36) and WARS. The combined results 
from ileum and colon also showed high enrichment, including the 
new NMT1 and the established FADS1/3 and MADD genes (Fig. 1a and 
Supplementary Table 15). Expression quantitative trait locus (eQTL) 
colocalization analyses, using eQTLgen whole blood expression data 
from 31,684 individuals37,38 and the COLOC2 approach, identified 14 
loci with strong links (posterior probability >70%) to gene expression 
data, including TET2 (ref. 39), KCNJ11, KLHL42, IKBKAP and CAMK1D, with 
transcriptional effects in pancreatic islets and kidney mesangial cells 
(Supplementary Table 16). Similar analyses of human pancreatic islets 
regulatory variation in the translational human pancreatic islet geno-
type tissue-expression resource (TIGER) dataset38 defined 58 loci with 
strong statistical support for colocalization of the effects on RG and 
tissue expression of ADCY5, RNF6, FADS1, MADD and STARD10 (ref. 40),  
in addition to KLHL42 and CAMK1D, with the latter overlapping in whole 
blood. Moreover, epigenetic annotations using the GARFIELD tool 
highlighted significant (P < 2.5 × 10−5) enrichment of RG-associated vari-
ants in the fetal large intestine, as well as blood, liver and other tissues 
(Extended Data Fig. 5 and Supplementary Table 17). Adult intestinal 
tissues are not available in GARFIELD except for colon. Prompted by 
multiple analyses highlighting a potential role for the digestive tract 
in glucose regulation, we assessed the overlap between our signals and 
those from the latest gut-microbiome GWAS41 and identified two genera 
sharing signals and direction of effect with RG at one locus: Collinsella 
and Lachnospiraceae-FCS020 at ABO-FUT2 (Fig. 1a and Supplementary 
Table 18). The ABO-FUT2 locus effects on RG could be mediated by the 
abundance of Collinsella/Lachnospiraceae-FCS02, producing glucose 
from lactose and galactose42. Collinsella genus affects gut permeability 
via interleukin-17A43 and shows higher abundance in individuals with 
T2D compared to those with normal glucose tolerance and individu-
als with prediabetes44. Moreover, weight loss decreases Collinsella 
among obese individuals with T2D45. Higher prevalence of the Lachno-
spiraceae family is associated with metabolic disorders, while genus 
Lachnospiraceae-FCS02 abundance shows an inverse correlation with 
serum triglycerides46. However, the mechanism of their enrichment 
has yet to be studied. This multi-omics annotation provided strong 
evidence for links between RG and intestinal health.

Fig. 2 | Functional and structural analysis of coding GLP1R variants. a, Minor 
allele frequency-weighted linear regression was used to test if mini-Gs response 
to GLP-1 stimulation substantially predicted point estimates of GLP1R variant 
effect on RG levels (AST20 βRG as estimated in the UKBB study, nmax = 401,810). 
Mini-Gs response to GLP-1 stimulation was corrected for variant surface 
expression (nmax = 22, exact n for each variant is provided in Supplementary  
Table 11). Error bars extend one standard error above and below the point estimate. 
Size of the dots is proportional to the weight applied in the regression model. 
The regression results (coefficient of determination R2 = 0.74, F(1, 15) = 47.5, 
P = 5.1 × 10−6) suggest that mini-Gs coupling in response to GLP-1 stimulation 
predicts the effect of these coding variants on RG levels (AST20 βRG = −0.030; 
95% confidence interval (CI) = −0.039 to −0.020; P = 5.1 × 10−6). The gray shaded 
area around the regression line corresponds to the 95% CI of predictions from the 
model. Variants in red showed no detectable surface expression (NDE) and are 
not included in regression analysis. b, Mean GLP1R variant mini-Gs coupling and 
receptor endocytosis, with surface expression correction, in response to GLP-1, 
OXM, glucagon (GCG), exendin-4 (Ex4), semaglutide (Sema) and tirzepatide 
(TZP), n = 6. Positive deviation indicates variant gain-of-function, with statistical 
significance inferred when the 95% CIs shown do not cross zero. Responses are 
also compared between pathways by unpaired t test, with an asterisk indicating 
statistically significant differences. c, Architecture of the complex formed 
between the agonist-bound GLP-1R and Gs; the likely effect triggered by residues 
involved in GLP-1R isoforms A316T, G168S and R421W (in magenta) are reported. 

d, Distributions of the distance between Y2423.45 side chain and P3125.42 backbone 
computed during molecular dynamics simulations of GLP-1R WT and A316T; the 
cut-off distance for hydrogen bond is shown. e, Difference in the hydrogen bond 
network between GLP-1R WT and A316T. f, Analysis of water molecules within the 
TMD of GLP-1R WT and A316T suggests minor changes in the local hydration of 
position 5.46 (unperturbed structural water molecule). Also, a stabilizing role 
for the water molecules at the binding site of the G protein (water cluster apha5) 
cannot be ruled out. g, Distributions of the distance between position 1681.63 
and Y1782.48 during molecular dynamics simulations of GLP-1R WT and G168S. 
h, During molecular dynamics simulations, the GLP-1R isoform S168G showed 
increased flexibility of ICL1 and H8 compared to WT, suggesting a different 
influence on G-protein intermediate states. i, Contact differences between Gs and 
GLP-1R WT or W421R; the C terminal of W421R H8 made more interactions with 
the N terminal segment of the Gs β subunit. j, Mini-Gs and GLP-1R endocytosis 
responses to 20 nM exendin-4, plotted against surface GLP-1R expression, from 
196 missense GLP1R variants transiently transfected in HEK293T cells (n = 5 
repeats per assay), with data represented as mean ± s.e.m. after normalization to 
WT response and log10-transformation. Variants are categorized as ‘LoF1’ when 
the response 95% CI falls below zero or ‘LoF2’ where the expression-normalized 
95% CI falls below zero. k, GLP-1R snake plot created using gpcr.com summarizing 
the functional impact of missense variants; for residues with >1 variant, 
classification is applied as LoF2 > LoF1 > tolerated.
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protein49), known to lead to chronic low-grade inflammation50,51 and an 
increased risk of T2D52–54 that might be explained by the role of N-glycan 
branching of the glucagon receptor in glucose homeostasis55. In addition, 
ten glycans showed association with five RG loci (HNF1A, BAG1, PLUT) at a 
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Finally, we observed associations at HNF1A47 with nine total plasma 
N-glycome traits48 at a Bonferroni-corrected threshold (Fig. 1a and Sup-
plementary Table 19). These traits represent highly branched galacto-
sylated sialylated glycans (attached to an α1-acid protein, an acute-phase 
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suggestive level of significance (Fig. 1a). Among them, three are attached 
to immunoglobulin G molecules49, and their increased relative abun-
dances are associated with a lower risk of T2D56 and diminished inflamma-
tion status57. These observations suggest an overlap between networks 
regulating RG homeostasis and plasma-protein N-glycosylation.

Genetic relationships between RG and other metabolic or 
nonmetabolic traits
Using linkage-disequilibrium score regression analyses, we estimated 
the genetic correlations between RG and other phenotypes to quantify 
the shared genetic contribution. We detected positive genetic correla-
tions between RG and squamous cell lung cancer (rg = 0.28, P = 0.0015) 

and lung cancer (rg = 0.12, P = 0.037; Fig. 5 and Supplementary Table 20),  
as well as inverse genetic correlations with lung function related traits, 
such as forced vital capacity (FVC, rg = −0.090, P = 0.0059) and forced 
expiratory volume in 1 second (FEV1, rg = −0.054, P = 0.017; Figs. 3a and 5  
and Supplementary Table 20). To investigate this further, we conducted 
bidirectional Mendelian randomization (MR) analysis, which sug-
gested a causal effect of RG and T2D on lung function, including FEV1 
(βMR–RG = −0.66, P = 9.6 × 10−5; βMR–T2D = −0.049, P = 1.3 × 10−13) and FVC 
(βMR–RG = −0.60, P = 1.5 × 10−4; βMR–T2D = −0.062, P = 1.4 × 10−21), but not vice 
versa (RG βMR–FEV1 = −0.0048, P = 0.42; βMR–FVC = −0.01, P = 0.17 and T2D 
(βMR–FEV1 = −0.18, P = 0.040; βMR–FVC = −0.21, P = 0.040; Supplementary 
Table 21a,b). External factors, such as smoking or sedentary lifestyle, 
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causes of hyperglycemia (a combination of lifestyle and genetic factors), and 
how hyperglycemia affects many organs and tissues. Complications on the left 
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and are supported by our current analyses. Figure created with BioRender.com. 
b, DEPICT prioritization of 134 tissues from the GTEx Project highlights the 
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could cause lung function to decline, independent of RG and T2D effects. 
We implemented multivariable MR (MVMR) and found (Supplementary 
Table 21c) that RG and T2D causal effects on FVC are independent of 
both cigarettes smoked per day (CPD; that is, proxy for smoking58) and 
leisure screen time (LST; that is, proxy for physical activity59). This is 
important as previous observational studies have highlighted worsening 
lung function, as defined by FVC, in patients with T2D, but whether this 
was a causal relationship was not clear60,61. More recently, it was shown 
that patients with diabetes are at an increased risk of death from the viral 
infection COVID-19 (ref. 62), with pulmonary dysfunction contributing to 
mortality63. Our data confirm the causal effect of glycemic dysregulation 
on a decline in lung function as a new complication of diabetes.

Genome-wide genetic correlation analyses also showed a strong 
positive genetic correlation of RG with FG (rg = 0.88, P = 6.93 × 10−61; 
Fig. 4 and Supplementary Table 20). We meta-analyzed RG studies 
other than UKBB with FG GWAS summary statistics64, observing 79 
signals reaching nominal significance that were directionally consist-
ent in both UKBB and RG + FG (Supplementary Table 3), providing 
additional support to our RG findings. Given the large genetic overlap 
between RG, other glycemic traits and T2D, we evaluated the ability of 
a trait-specific polygenic risk score (PRS) to predict RG, T2D and HbA1c 
levels using UKBB effect estimates and the Vanderbilt cohort. The RG 
PRS explained 0.58% of the variance in RG levels when individuals with 
T2D were included (Supplementary Table 22), and 0.71% of the variance 
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after excluding those who developed T2D within 1 year of their last RG 
measurement. The RG PRS performance was comparable to that of the 
FG loci PRS (0.38% versus 0.42% for T2D; 0.40% versus 0.44% for HbA1c), 
indicating shared genetic variability determining glycemic traits.

We previously highlighted diverse effects of FG and T2D loci on 
pathophysiological processes related to T2D development by group-
ing associated loci in relation to their effects on multiple phenotypes6. 
Cluster analysis of the RG signals with 45 related phenotypes identified 
three separate clusters (Fig. 1a, Supplementary Table 23 and Extended 
Data Figs. 6 and 7), including ‘metabolic syndrome’ cluster 1, with 28 
loci also leading to higher waist-to-hip ratio, blood pressure, plasma 
triglycerides, insulin resistance (HOMA-IR) and coronary artery disease 
risk, as well as lower sex hormone binding globulin levels in both sexes 
and testosterone in males. Cluster 3 was characterized, in particular, by 
insulin secretory defects6. Cluster 2 showed a primary effect on insulin 
release versus insulin action3, but included a subcluster of 11 loci, which 
exert protective effects on inflammatory bowel disease, a relationship 
not previously reported. Moreover, cluster 2 was notable for generally 
reduced T2D risk in comparison to clusters 1 and 3, shaping the partial 
overlap between genetic determinants of glycemia and T2D that is 
known to exist65. This RG loci grouping gave innovative insights into 
the etiology of glucose regulation and associated disease states.

Discussion
Leveraging data from 476,326 individuals, we have expanded by 44 the 
number of loci associated with glycemic traits. By using RG, our analysis 
integrates genetic contributions into a wider range of physiological 

stages, which thus far was not possible with standardized glycemic 
measures. Moreover, the greater statistical power obtained from large 
cross-ancestry meta-analysis improves confidence in identifying poten-
tially causal variants, thereby helping to prioritize genes for more detailed 
functional analyses in the future. Our comprehensive functional char-
acterization of GLP1R coding variation validates its role in blood glu-
cose regulation and, more importantly, shows how GLP-1R-targeting 
drug responses depend on genetic variation. Notably, additional 
islet-expressed class B1 GPCRs identified in our current analysis and 
other glycemic trait/T2D GWAS, including GIPR, GLP2R (refs. 3,66) and 
SCTR21, are investigational targets for T2D treatment, which should be 
subjected to similar analysis. Our functional annotation analyses point 
to underexplored tissue mediators of glycemic regulation, with new 
evidence highlighting the role of the intestine. This observation supports 
the profound effects of gastric bypass surgery on T2D resolution67, as 
well as links between the intestinal microbiome and responses to several 
diabetes drugs68. In the near future, larger well-phenotyped datasets will 
enable high-dimensional GWAS investigations, disentangling the role of 
diet composition, physical activity and lifestyle on RG level variability in 
relation to genetic effects. Finally, through MR, we identified a causal 
effect of glucose levels and T2D on lung function, demonstrating the 
utility of this approach for corroborating findings from observational 
studies and elevating lung dysfunction as a new complication of diabetes.
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Methods
Ethics
All participating studies were approved by their appropriate institu-
tional review boards or committees, and written informed consent 
was obtained from all study participants. For all the participating 
studies, approval was received to use their data in the present work. 
Study-specific ethics statements are provided in the references listed 
in Supplementary Table 1.

Phenotype definition and model selection for RG GWAS
We used RG (mmol l−1) measured in plasma or in whole blood (corrected 
to plasma level using the correction factor of 1.13). Individuals were 
excluded from the analysis if they had a diagnosis of T2D or were on 
diabetes treatment (oral or insulin). Individual studies applied fur-
ther sample exclusions, including pregnancy, fasting plasma glucose 
≥7 mmol l−1 in a separate visit, when available, and having type 1 diabetes 
(Supplementary Table 1). Details about RG modeling in the first set of 
six available cohorts (Supplementary Table 2) can be found in the Sup-
plementary Note. For the GWAS, we included individuals based on the 
following two RG cut-offs: <20 mmol l−1 (20) to account for the effect 
of extreme RG values and <11.1 mmol l−1 (11), which is an established 
threshold for T2D diagnosis. We then evaluated the following six dif-
ferent models in GWAS according to covariates included and cut-offs 
used: (1) age (A) and sex (S), RG < 20 mmol l−1 (AS20); (2) age, sex and 
BMI (B), RG < 20 mmol l−1 (ASB20); (3) age and sex, RG < 11.1 mmol l−1 
(AS11); (4) age, sex and BMI, RG < 11.1 mmol l−1 (ASB11); (5) age, sex, time 
since last meal (accounted for as T, T2 and T3), RG < 20 mmol l−1 (AST20) 
and (6) age, sex, T, T2 and T3 and BMI, RG < 20 mmol l−1 (ASTB20). Apart 
from the above, additional adjustments for study site and geographical 
covariates were also applied.

RG meta-analyses
The GWAS meta-analysis of RG consisted of the following five com-
ponents: (1) 37,239 individuals from ten European ancestry GWAS 
imputed up to the HapMap 2 reference panel; (2) 3,156 individuals 
from three European ancestry GWAS with Metabochip coverage; (3) 
21,083 individuals from two European ancestry GWAS imputed up 
to 1000 Genomes reference panel; (4) 380,432 individuals of white 
European ancestry from the UKBB and (5) 16,983 individuals from the 
Vanderbilt cohort imputed to the HRC panel (Supplementary Note). We 
imputed the GWAS meta-analysis summary statistics of each compo-
nent to all-ancestries 1000 Genomes reference panel69 using the sum-
mary statistics imputation method implemented in the SS-Imp v0.5.5 
software70. SNPs with imputation quality scores <0.7 were excluded. 
We then conducted inverse-variance meta-analyses to combine the 
association summary statistics from all components using METAL 
v2011-03-25 (ref. 71). We focused our meta-analyses on models AS20 
(17 cohorts, nmax = 459,772) and AST20 (when time from last meal was 
available in the cohort; 12 cohorts, nmax = 417,290). For the FHS cohort, 
where no information was available for individuals with RG > 11.1 (an 
established threshold for 2hGlu concentration, which is a criterion 
for T2D diagnosis), AS11 model results were used. We also performed 
a meta-analysis using cohorts with time from the last meal available 
(AST20 model, 12 cohorts) combined with those lacking this informa-
tion (AS20, five cohorts) to maximize the association power while taking 
into account T. We termed this analysis as AS20 + AST20 in the following 
text (17 cohorts, nmax = 458,862). A signal was considered to be associ-
ated with RG if it reached genome-wide significance (P < 5.0 × 10−8) in 
the meta-analysis of UKBB and other cohorts in either of our two models 
of interest (AS20) or (AST20) or in their combination (AS20 + AST20).

Of 133 signals detected in the European ancestry subset (Supple-
mentary Note), 105 were directionally consistent in the UK Biobank 
and other contributing studies grouped together, providing the dis-
covery validation (Supplementary Table 3). We report the P value 
from the combined model unless otherwise stated. Full results from 

all models are provided in Supplementary Table 3. We checked for 
nominal significance (P < 0.05) and directional consistency of the 
effect sizes for the selected lead SNPs in the combined model in UKBB 
results versus other cohort results. We further extended the check 
between UKBB results and meta-analysis of other cohorts includ-
ing FG GWAS meta-analysis64, excluding overlapping cohorts. This 
meta-analysis conducted in METAL v2011-03-25 was sample size and 
P value based due to the measures being at different scales (natural 
logarithm-transformed RG and untransformed FG).

Cross-ancestry analyses and meta-analysis
We performed GWAS in non-European ancestry populations within 
UKBB that had a sample size of at least 1,500 individuals. These were 
Black (n = 7,644), Indian (n = 5,660), Pakistani (n = 1,747) and Chinese 
(n = 1,503). We further meta-analyzed our European ancestry cohorts 
with the cross-ancestry UKBB cohorts. The analyses were performed 
with BOLT-LMM v2.3 (ref. 72) and METAL v2011-03-25.

Sex-dimorphic analysis
To evaluate sex dimorphism in our results, we meta-analyzed the UKBB 
and the Vanderbilt cohort with the GWAMA v2.1 software73, which 
provides a 2 degrees of freedom (df) test of association assuming 
different effect sizes between the sexes. We evaluated the evidence 
for heterogeneity of allelic effects between sexes using Cochran’s Q 
statistic73,74. We considered a signal to show evidence of sex dimorphism 
if the sex-dimorphic P value was <5.0 × 10−8 and if the sex heterogeneity 
P value (1 df) was <0.05.

Clumping and conditional analysis
We performed a standard clumping analysis (PLINK v1.90 (ref. 75) 
criteria—P ≤ 5 × 10−8, r2 = 0.01, window-size = 1 Mb, 1000 Genomes Phase 
3 data as linkage disequilibrium (LD) reference panel) to select a list 
of near-independent signals. We then performed a stepwise model 
selection analysis (approximate conditional analysis) to replicate the 
analysis using GCTA v1.93.0 (ref. 76) with the following parameters: 
P ≤ 5 × 10−8 and window-size = 1 Mb. We further checked for additional 
distinct signals by using a region-wide threshold of P ≤ 1.0 × 10−5 for 
statistical significance. For validation and comparison, we also per-
formed direct conditional analyses using BOLT-LMM v2.3 (Supple-
mentary Note). We filtered the direct conditional analysis results and 
BOLT-LMM results by checking the LD between all the variants within 
the same locus and keeping only independent signals (r2 < 0.01). LD 
was calculated from European reference haplotypes from the 1000 
Genomes Project using LDlinkR v1.1.2 library.

GLP-1R pharmacological and structural analysis
Mini-Gs recruitment assay. Where stable cell lines were used (that 
is, Fig. 2a,b), WT or variant T-REx-SNAP-GLP-1R-SmBiT cells (Sup-
plementary Note) were seeded in 12-well plates and transfected 
with 1 µg per well LgBiT-mini-Gs

23 (a gift from N. Lambert, Medi-
cal College of Georgia). The following day, GLP-1R expression was 
induced by the addition of tetracycline (0.2 µg ml−1) to the culture 
medium for 24 h. For transient transfection assays (that is, Fig. 2j), 
HEK293T cells in poly-d-lysine-coated white 96-well plates were trans-
fected using Lipofectamine 2000 with 0.05 µg per well WT or variant 
SNAP-GLP-1R-SmBiT plus 0.05 µg per well LgBiT-mini-Gs and the assay 
performed 24 h later. Cells were then resuspended in Hank’s balanced 
salt solution + furimazine (Promega) diluted 1:50 and seeded in 96-well 
half-area white plates, or the same reagent added to adherent cells for 
transient transfection assays. Baseline luminescence was measured 
over 5 min using a Flexstation 3 plate reader at 37 °C before the addition 
of ligand or vehicle. Agonists were applied at a series of concentra-
tions spanning the response range. After agonist addition, lumines-
cent signal was serially recorded over 30 min, and ligand-induced 
effects were quantified by subtracting individual well baselines. Signals 
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were corrected for differences in cell number as determined by bicin-
choninic acid assay.

Analysis of pharmacological data. Technical replicates within 
the same assay were averaged to give one biological replicate. For 
concentration-response assays (Fig. 2a,b), ligand-induced responses 
were analyzed by three-parameter fitting in Prism 8.0 (GraphPad Soft-
ware). As a composite measure of agonism77, log10-transformed Emax/
half maximal effective concentration (EC50) values were obtained for 
each ligand/variant response. The WT response was subtracted from 
the variant response to give ∆log(max/EC50), a measure of gain- or 
loss-of-function for the variant relative to WT. Log10-transformed sur-
face expression levels were obtained for each variant relative to WT; 
these were then used to correct mini-Gs ∆log(max/EC50) values for 
differences in variant GLP-1R surface expression levels, by subtrac-
tion with error propagation. GLP-1R internalization responses were 
already normalized to surface expression within each assay. Statistical 
significance between WT and variant responses was inferred if the 95% 
confidence intervals for ∆log(max/EC50) did not cross zero77. Changes 
to the profile of receptor response between mini-Gs recruitment and 
GLP-1R internalization were inferred if P < 0.05 with unpaired t test 
analysis, with Holm–Sidak correction for multiple comparisons. For 
transient transfection assays (Fig. 2j), responses were normalized to 
WT response and log10 transformed to give Log ∆ responses. Addition-
ally, the impact of differences in the surface expression on functional 
responses was determined by subtracting the log-transformed normal-
ized expression level from the log-transformed normalized response.

Variance explained in RG effects by mini-Gs recruitment at coding 
GLP1R variants. RG (AST20 model) effects estimated in the UKBB study 
at 16 independent (r2 < 0.02) coding GLP1R variants (Supplementary 
Table 11) were regressed on mini-Gs coupling in response to glucagon-like 
peptide-1 (GLP-1) stimulation (corrected for surface expression) giving 
more weight to variants with higher minor allele frequency.

Computational methods including MD simulations. The active state 
structure of GLP-1R in complex with OXM29 and Gs protein was used to 
simulate WT GLP-1R and G168S, A316T and R421W. The WT systems 
and variants were prepared for MD simulations and equilibrated as 
reported78. AceMD3 3.3.0 (ref. 79) was used for production runs (four 
MD replicas of 500 ns each). AquaMMapS v1 analysis80 was performed 
on 10 ns-long MD simulations of GLP-1R(WT) and GLP-1R(A316T) in 
complex with OXM, with all the α carbons restrained; coordinates were 
written every 10 ps of simulation.

Credible set analysis
After selecting the signals with each region based on different 
meta-analysis results from AS20, AST20 and AS20 + AST20 models, 
we further performed a credible set analysis to obtain a list of poten-
tial causal variants for each of the 133 selected signals (Supplemen-
tary Note). We also calculated credible sets for the cross-ancestry 
meta-analysis and compared the results between the European 
ancestry-only and cross-ancestry meta-analyses.

DEPICT analysis
DEPICT uses GWAS summary statistics and computes a prioritization 
of genes in associated loci, which are used to prioritize tissues via 
enrichment analysis. DEPICT v1_rel 194 was used with default settings 
and RG GWAS summary statistics as input against a genetic background 
of SNPsnap data81 derived from the 1000 Genomes Project Phase 3  
(ref. 82) to prioritize genes (Supplementary Note).

CELLECT analysis
CELLECT35 v1.0.0 and Cell type EXpression-specificity35 v1.0.0 are two 
toolkits for genetic identification of likely etiologic cell types using 

GWAS summary statistics and scRNA-seq data. Tabula Muris gene 
expression data83, a scRNA-seq dataset derived from 20 organs from 
adult male and female mice, was preprocessed as described in the 
Supplementary Note.

Genetically regulated gene expression analysis
We used MetaXcan (S-PrediXcan) v0.6.10 (ref. 84) to identify genes 
whose genetically predicted gene expression levels are associated 
with RG in a number of tissues. The tested tissues were chosen based on 
their involvement in glucose metabolism. Those were adipose visceral 
omentum, adipose subcutaneous, skeletal muscle, liver, pancreas and 
whole blood. Additionally, we tested ileum, transverse colon, sigmoid 
colon and adrenal gland because they were highlighted by DEPICT 
analysis. The models for the tissues of interest were trained with GTEx 
Version 7 transcriptome data from individuals of European ancestry85. 
The tissue transcriptome models and 1000 Genomes86 based covari-
ance matrices of the SNPs used within each model were downloaded 
from PredictDB Data Repository. The association statistics between 
predicted gene expression and RG were estimated from the effects 
and their standard errors coming from the AS20 + AST20 model. Only 
statistically significant associations after Bonferroni correction for the 
number of genes tested across all tissues (P ≤ 9.0 × 10−7) were included 
in the table. Genes, where less than 80% of the SNPs used in the model 
were found in the GWAS summary statistics, were excluded due to the 
low reliability of the association result.

GARFIELD analysis
We applied the GWAS analysis of regulatory or functional information 
enrichment with LD correction (GARFIELD) tool v2 (ref. 87) on the RG 
AS20 + AST20 meta-analysis results to assess the enrichment of the 
RG-associated variants within functional and regulatory features. 
GARFIELD integrates various types of data from a number of publicly 
available cell lines. Those include genetic annotations, chromatin 
states, DNaseI hypersensitive sites, transcription factor binding sites, 
FAIRE-seq elements and histone modifications. We considered enrich-
ment to be statistically significant if the RG GWAS P value reached 
1 × 10−8 and the enrichment analysis P value was <2.5 × 10−5 (Bonferroni 
corrected for 2,040 annotations).

Genetic association with gut microbiome
We assessed the genetic overlap between RG GWAS results and those 
for gut microbiome. GWAS of microbiome profiles were publicly avail-
able and downloaded from https://mibiogen.gcc.rug.nl/. For each of 
the 210 taxa, the corresponding P values for the 133 RG GWAS SNPs and 
their proxies were extracted.

Genetic association with GLP-1 and gastric inhibitory 
polypeptide (GIP)
We assessed the genetic overlap between RG GWAS results and those 
for GLP-1 and GIP measured at 0 min and 120 min. We extracted the 
results for the 133 RG signals from the GWAS summary statistics for 
GLP-1 and GIP88.

eQTL colocalization analysis
We further performed colocalization analysis using whole blood gene 
eQTL data provided by eQTLGen37 and human pancreatic islets eQTLs 
provided by TIGER38 for all 133 RG signals. We used meta-analysis 
results from AS20, AST20 or AS20 + AST20 depending on the degree 
of association of each signal. Only cis-eQTL data from eQTLGen/TIGER 
were incorporated to reduce the computational burden. The COLOC2 
Bayesian-based method89 was used to interrogate the potential colo-
calization between RG GWAS signals and the genetic control of gene 
expression. First, for each signal, depending on which model (AS20, 
AST20 or AS20 + AST20) had the lowest GWAS P value, we extracted 
the RG GWAS test statistics of all SNPs within ±1 Mb region around the 
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133 RG signals. Then, for each RG signal, we matched the eQTLGen/
TIGER results with the RG results and performed COLOC2 analysis 
evaluating the posterior probability of the following five hypotheses 
for each region: H0, no association; H1, GWAS association only; H2, eQTL 
association only; H3, both GWAS and eQTL association, but not colocal-
ized and H4, both GWAS and eQTL association and colocalized. Only 
GWAS signals with at least one nearby gene/probe reaching posterior 
probability (H4) ≥ 0.5 were reported. We considered signals to have 
strong evidence of colocalization if posterior probability (H4) > 0.7.

Genetic association with human blood plasma N-glycosylation
We assessed genetic associations between 133 RG signals and 113 
human blood plasma N-glycome traits using previously published 
genome-wide association summary statistics90. The description 
of the analyzed traits and details of the association analysis can be 
found elsewhere48. We considered associations to be significant when 
P < 0.05/113/133 = 3.3 × 10−6 (after Bonferroni correction). Association 
was considered suggestive when P < 10−4.

Genetic correlation analysis
We investigate the shared genetic component between RG and other 
traits, including glycemic ones, by performing genetic correlation 
analysis using the bivariate LD score regression method (LDSC 
v1.0.0)91. To reduce multiple testing burden, only the GWAS results 
of the AS20 + AST20 model were used. We used GWAS summary 
statistics available in LDhub92 and the Meta-Analysis of Glucose and 
Insulin-related Traits Consortium (MAGIC) website (https://www.
magicinvestigators.org) for several traits including FG/FI64, HOMA-B/
HOMA-IR93. In total, 228 different traits were included in the genetic 
correlation analysis with RG. We considered P ≤ 2.2 × 10−4 (Bonferroni 
correction for 228 traits) as the statistical significant level and P ≤ 0.05 
as the nominal level.

MR analysis
We applied a bidirectional two-sample MR strategy (Supplementary 
Note) to investigate causality between RG and lung function, as well as 
T2D and lung function using independent genetic variants as instru-
ments. We looked for evidence for the presence of a causal effect of 
RG and T2D on the following two lung function phenotypes: FEV1 and 
FVC in a two-sample MR setting. Genome-wide summary statistics 
for the lung function phenotypes were available94, involving cohorts 
from the SpiroMeta consortium and the UKBB study. T2D susceptibil-
ity variants and their effects were obtained from the largest-to-date 
T2D GWAS4.

To avoid confounding due to sample overlap, lung function sum-
mary statistics used as outcome data were those estimated in the 
SpiroMeta consortium alone. Similarly, when testing the effect of 
lung function on RG, RG genetic effects used as outcome data were 
estimated in all cohorts except UK Biobank. There was no sample 
overlap between the lung function and the T2D GWAS, thus allowing 
the use of T2D effects estimated in all contributing European ancestry 
studies. Genome-wide T2D summary statistics were available from a 
previous study3 to test for the causal effect of lung function on T2D. All 
analyses were conducted using the R software package TwoSampleMR 
v0.5.4 (ref. 95).

Causal effects were estimated using the inverse-variance weighted 
method, which combines the causal estimates of individual instrumen-
tal variants (Wald ratios; Supplementary Note) in a random-effects 
meta-analysis96. Instrument heterogeneity Q statistic P values are 
reported. As a sensitivity analysis, we used MR-Egger regression (Sup-
plementary Note) to test for the presence of horizontal pleiotropy and 
obtain causal estimates that are more robust to the inclusion of invalid 
instruments97.

MVMR is an extension of MR that can be applied with either individ-
ual or summary-level data to estimate the effect of multiple, potentially 

related, exposures on an outcome98. We used the MVMR v0.3 R package 
to test whether the causal effects of RG and T2D on FVC are independ-
ent of possible confounders, such as physical activity and smoking. 
The same instrument selection criteria as described for the main MR 
analysis were used. CPD was instrumented by 54 (available out of the 
58 in total) independent genome-wide significant variants, obtained 
from the GWAS discussed in ref. 58. LST served as a continuous proxy 
phenotype for physical activity from the recent study discussed in  
ref. 59 with 66 (available out of the 88 in total) independent 
genome-wide significant variants.

PRS analysis
We tested the ability of the RG genetic effects to predict RG, T2D and 
HbA1c. We compared that to the predictive power of T2D and FG genetic 
instruments by computing PRS for RG, T2D and FG and assessing their 
performance in predicting RG, T2D and HbA1c. PRS analyses require 
base and target data from independent populations. The base datasets 
in our analyses were UKBB-only estimates from the present RG GWAS, 
meta-analysis estimates of 32 studies for T2D15 and meta-analysis 
estimates from MAGIC for FG64. We used the second largest cohort, 
the Vanderbilt University Medical Center, as our target dataset. PRS 
construction and model evaluation (Supplementary Note) were done 
using the software PRSice v2.2.3 (ref. 99).

Clustering of the RG signals with results for 45 other 
phenotypes
We looked up the z scores (regression coefficient β divided by the 
standard error) of the distinct 133 RG signals in publicly available sum-
mary statistics of 45 relevant phenotypes (Supplementary Table 23). 
All variant effects were aligned to the RG risk allele. HapMap 2-based 
summary statistics were imputed using SS-Imp v0.5.5 (ref. 70) to mini-
mize missingness. Missing summary statistics values were imputed via 
mean imputation. The resulting variant–trait association matrix was 
truncated to 2 s.d. to minimize the effect of outliers. We used agglom-
erative hierarchical clustering with Ward’s method to partition the 
variants into groups by their effects on the considered outcomes. The 
clustering analysis was performed in R using function hclust() from 
in-built stats package.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Meta-analysis summary statistics for the GWAS presented in this manu-
script are available on the MAGIC website (magicinvestigators.org) 
and through the NHGRI-EBI GWAS Catalog (https://www.ebi.ac.uk/
gwas/downloads/summary-statistics, GCP ID: GCP000666; with study 
accession codes for Europeans-only meta-analysis: GCST90271557; 
cross-ancestry meta-analysis: GCST90271558; and sex-dimorphic 
meta-analysis: GCST90271559). UK Biobank individual-level data can 
be obtained through a data access application available at https://
www.ukbiobank.ac.uk/. In this study, we made use of data made avail-
able by: 1000 Genomes project (https://www.genome.gov/27528684
/1000-genomes-project); SNPsnap (https://data.broadinstitute.org/
mpg/snpsnap/index.html); Tabula Muris (https://www.czbiohub.org/
tabula-muris/); GTEx Consortium (https://gtexportal.org/home/); 
microbiome GWAS (https://mibiogen.gcc.rug.nl/); Human Gut Microbi-
ome Atlas (https://www.microbiomeatlas.org); eQTLGen Consortium 
(https://www.eqtlgen.org/); TIGER expression data (http://tiger.bsc.
es/) and LDHub database (http://ldsc.broadinstitute.org/ldhub/).
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Extended Data Fig. 1 | RG trait models tested and sensitivity plots showing 
the correlations between association analyses beta coefficients and 
Z-scores from RG models in UKBB. a, The models were labeled according to 
covariates included and RG cut-offs used. Individuals were included based on 
two RG cut-offs: <20 mmol/l to account for the effect of extreme RG values 
(20) and <11.1 mmol/l (11), which is an established threshold for T2D diagnosis. 
Hence, model 1 – AS20 refers to adjustment for age and sex, using a cut-off of 
<20 mmol/l, and so forth. b-e, For c, 4,138 individuals were excluded based on 
HbA1c ≥ 6.5%, in addition to the self-reported or diagnosed T2D cases. Variants 
with a heterogeneity P-value ≤ 0.05 (beta-coefficient plot) or a Z-score difference 
between the two models compared >3 (Z-score plots) are annotated. f, An 
enrichment plot showing the effect of RG signals (AS20 + AST20 model) on T2D. 

RG and T2D effect sizes are plotted along the y- and x-axes, respectively. Point size 
is proportional to the statistical significance of the variant for T2D, with red color 
indicating previously established signals and blue novel signals, respectively. 
The dashed line represents the line of best fit. Variants with T2D P-value in the 
lowest decile are labeled. g, An enrichment plot showing the effects of RG signals 
(AS20 + AST20 model) on HOMA-B and HOMA-IR. The effect sizes on HOMA-B 
and HOMA-IR are plotted along the y- and x-axes, respectively. Point size is 
proportional to the significance of the variant either in HOMA-B or HOMA-IR, 
depending on which trait has the smaller P value. Red color indicates previously 
established signals and blue indicates novel signals, respectively. Variants with 
suggestive significance (P < 5.0 × 10−6) are labeled.
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Extended Data Fig. 2 | Enrichment plots showing the effect of RG signals 
(AS20 + AST20 model) on glycemic and respiratory-related phenotypes. a-i, 
Look-up of effects was done in previously published genome-wide association 
studies for HbA1c (a), fasting glucose (b), fasting insulin (c), type 2 diabetes (d), 
forced expiratory volume in one second (FEV1) (e), forced vital capacity (FVC) 
(f), FEV1/FVC (g), lung cancer (h) and squamous cell lung cancer (i). RG and other 

phenotype effect sizes are plotted along the y- and x-axes, respectively. Point size 
and color are proportional to the significance of the variant in each phenotype, 
with red indicating higher and blue lower significance, respectively. The dashed 
line represents the line of best fit. P < 5.0 × 10−8 was considered statistically 
significant after adjusting for multiple testing. Two-tailed P-values are reported. 
Variants with P-values in the lowest decile are labeled.

http://www.nature.com/naturegenetics
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Extended Data Fig. 3 | LocusZoom plots of common variants in UKBB 
(Europeans) meta-analysis for RG. a-h, Plots are shown for GCKR (a), TET2 
(b), RREB1 (c), NMT1 (d) and WIPI1 (e) loci and low-frequency coding variants at 
EDEM3 (f), NEUROD1 (g) and GLP1R (h) loci. The x-axis shows the chromosomal 

position, and the y-axis shows the uncorrected two-sided −log10 P values from the 
UKBB GWAS conducted using linear mixed-modeling in BOLT-LMM. Horizontal 
line corresponds to P = 5 × 10−8 and blue peaks show the recombination rate.

http://www.nature.com/naturegenetics
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Extended Data Fig. 4 | Association analysis of GLPR1 receptor function and 
random glucose effects of coding variants. Minor allele frequency-weighted 
linear regression was used to test if mini-Gs response to GLP-1 stimulation 
significantly predicted point estimates of GLP1R variant effect on RG levels 
(AST20 βRG as estimated in whole-exome sequencing data from the UKBB 
study). Mini-Gs response to GLP-1 stimulation was corrected for variant surface 
expression (nmax = 22, exact n for each variant is provided in Supplementary  
Table 11). Error bars extend one standard error above and below the point estimate. 

Size of the dots is proportional to the weight applied in the regression model 
(Methods). The regression results (coefficient of determination R2 = 0.56,  
F(1, 14) = 20.1, P = 5.2 × 10−4) suggest that mini-Gs coupling in response to GLP-1 
stimulation predicts the effect of these coding variants on RG levels (AST20 
βRG = − 0.028; 95% CI = −0.042 to −0.015; P = 5.2 × 10−4). The gray shaded area 
around the regression line corresponds to the 95% confidence interval of 
predictions from the model. Variants in red showed no detectable surface 
expression (NDE) and are not included in regression analysis.

http://www.nature.com/naturegenetics
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Extended Data Fig. 5 | Epigenetic annotation of the RG GWAS results using GARFIELD. The analyses were performed using generalized linear modeling in 
GARFIELD software. We considered enrichment to be statistically significant if the RG GWAS P-value reached P = 1 × 10−8 and the enrichment analysis P-value was  
< 2.5 × 10−5 (Bonferonni corrected for 2,040 annotations).

http://www.nature.com/naturegenetics
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Extended Data Fig. 6 | Cluster analysis of effects (as Z-scores) of the distinct 
143 RG signals on 45 relevant phenotypes. All variant effects were aligned 
to the RG risk allele. HapMap2 based summary statistics were imputed using 
SS-Imp v0.5.565 to minimize missingness. Missing summary statistics values 

were imputed via mean imputation. The heatmap was produced using the 
Pheatmap package. For visualization, the Z-scores were truncated to the value 
corresponding to genome-wide significance (Z = 5.45), and 11 phenotypes with 
the lowest median absolute Z-scores were excluded.

http://www.nature.com/naturegenetics


Nature Genetics

Article https://doi.org/10.1038/s41588-023-01462-3

Extended Data Fig. 7 | Scatter plots of the standardized allelic effect 
estimates for selected trait pairs. In each scatter plot, loci were assigned to the 
groups defined from the cluster analysis and highlighted by different colors. a, 
Corrected insulin response (CIR) vs. type 2 diabetes (T2D) (clusters 1a/b related 

to metabolic syndrome). b, Glycated hemoglobin (HbA1c) vs. inflammatory 
bowel disease (IBD) (cluster 2a) highlights the effects of loci with a protective role 
in IBD. c, Plasminogen activator inhibitor-1 (PAI-1) vs. CIR (cluster 3) highlights 
loci linked to insulin secretion defects.
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Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection No software was used for the data collection.

Data analysis The software and tools used in individual GWAS can be found in Supplementary Table 1 with participating studies characteristics. Software/
tools/algorithms included: Minimac2, MACH v1.0, IMPUTE v0.3.1/v1.0.0/v2.3.2/v4.1.2, SNPTEST v1.1.5/v2.5.1, EMMAX vbeta-07Mar2010, 
LMEKIN v1.8 (R package), Merlin v1.1.2, STATA v11, ProbABEL v0.4.3, BOLT-LMM v2.3, SS-Imp v0.5.5, METAL v2011-03-25, GWAMA v2.1, 
PLINK v1.07/1.90, GCTA v1.93.0, BaSiC v1, AceMD3 3.3.0, PHANTAST v1, AquaMMapS v1, DEPICT v1_rel 194, CELLECT v1.0.0,  CELLEX v1.0.0, 
MetaXcan (S-PrediXcan) v0.6.10, GARFIELD v2, COLOC2, LDSC v1.0.0, TwoSampleMR v0.5.4 (R package), PRSice v2.2.3, LDlinkR v1.1.2 library, 
MVMR v0.3 (R package), Prism 8.0 (GraphPad Software), IDTxGen Exome Research Panel v1.0.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

Meta-analyses summary statistics for the GWAS presented in this manuscript are available on the MAGIC website (magicinvestigators.org) and through the NHGR1-
EBI GWAS Catalog (https://www.ebi.ac.uk/gwas/downloads/summary-statistics, GCP ID: GCP000470). UK Biobank individual-level data can be obtained through a 
data access application available at https://www.ukbiobank.ac.uk/. In this study we made use of data made available by: 1000 Genomes project https://
www.genome.gov/27528684/1000-genomes-project; SNPsnap https://data.broadinstitute.org/mpg/snpsnap/index.html; Tabula Muris https://www.czbiohub.org/
tabula-muris/; GTEx Consortium https://gtexportal.org/home/; microbiome GWAS https://mibiogen.gcc.rug.nl/; Human Gut Microbiome Atlas https://
www.microbiomeatlas.org; eQTLGen Consortium https://www.eqtlgen.org/; TIGER expression data http://tiger.bsc.es/; LDHub database http://
ldsc.broadinstitute.org/ldhub/.

Human research participants
Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender As a first step, we have fitted several models in the six cohorts, available to us initially for the modeling of RG, i.e. to identify 
the relevant set of covariates (including sex) as well as the necessary transformation for RG to be used across all the datasets 
in the GWAS meta-analysis. We then evaluated six different models in GWAS according to covariates included and cut-offs 
used: 1) age (A) and sex (S), RG<20 mmol/L (AS20), 2) age, sex and BMI (B), RG<20 mmol/L (ASB20), 3) age and sex, RG<11.1 
mmol/L (AS11), 4) age, sex and BMI, RG<11.1 mmol/L (ASB11), 5) age, sex, T, T2 and T3, RG<20 mmol/L (AST20) and 6) age, 
sex, T, T2 and T3 and BMI, RG<20 mmol/L (ASTB20). To evaluate sex-dimorphism in our results, we meta-analyzed the UKBB 
and the Vanderbilt cohort with the GMAMA software, which provides a 2 degrees of freedom (df) test of association 
assuming different effect sizes between the sexes. We considered a signal to show evidence of sex-dimorphism if the 2 df 
test P-value was <5x10-8 and if the sex heterogeneity P-value (1 df) was <0.05. 

Population characteristics Analyses were conducted on non-diabetic females and males of European ancestry and additionally in non-European 
populations within UKBB (Black, Indian, Pakistani and Chinese). Within each study, individuals were included based on two 
RG cut-offs: <20  mmol/l (20) to account for the effect of extreme RG values and <11.1 mmol/l, which is an established 
threshold for T2D diagnosis. Age distribution and percentage for each gender varied between studies. More detailed 
description of each study collection is provided in Supplementary Table 1, and for the UK Biobank in https://
www.ukbiobank.ac.uk/. 

Recruitment The majority of studies are population-based cohorts, case-control or family-based studies with related individuals. Subjects 
were men and women of European, Black, Indian, Pakistani or Chinese ancestry with no diagnosed diabetes. 

Ethics oversight No ethical approval was required for the study as it is a meta-analysis of summary statistics obtained from studies that each 
had ethical approval by local research ethics committees and written consent was obtained from all study participants. 
Further details about each study ethics approval can be found in the references and websites provided in Supplementary 
Table 1.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size We aimed to bring together the largest possible sample size  for RG with the following collection of samples: (i) 37,239 individuals from 10 
European ancestry GWAS imputed up to the HapMap 2 reference panel; (ii) 3,156 individuals from three European ancestry GWAS with 
Metabochip coverage; (iii) 21,083 individuals from two European ancestry GWAS imputed up to 1000 Genomes reference panel; (iv) 380,432 
individuals of white European ancestry from the UKBB, and; (v) 16,983 individuals from the Vanderbilt cohort imputed to the HRC panel Non-
European UKBB populations included in the analyses had a sample size of at least 1,500 individuals. These were Black (N=7,644), Indian 
(N=5,660), Pakistani (N=1,747) and Chinese (N=1,503). Therefore, exact sample size was not predetermined. Maximum sample size was 
achieved by including all cohorts with RG available.
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Data exclusions Individuals were excluded from the analysis, if they had a diagnosis of T2D or were on diabetes treatment (oral or insulin). Individual studies 

applied further sample exclusions, including pregnancy, fasting plasma glucose equal to or greater than 7 mmol/l in a separate visit, when 
available, and having Type 1 Diabetes. Detailed descriptions of study-specific RG measurements are given in Supplementary Table 1. Low-
quality SNPs were excluded by the following criteria: call rate <0.95, minor allele frequency (MAF) <0.01, minor allele count <10, Hardy-
Weinberg P-value <10−4. After imputation of the GWAS meta-analysis summary statistics, imputed SNPs up to 1000 Genomes reference panel 
with imputation quality score < 0.7 were excluded. For the GWAS of the UKBB data, non-white non-European individuals and those with 
discrepancies in genoped and reported sex were excluded. Furthermore, in the UKBB GWAS, variants with MAF<=1% and imputation 
quality<=0.4 were excluded. 

Replication We have assessed the robustness of our RG meta-analysis findings by comparing the direction of effect of 133 signals, detected in the 
European subset between the UK Biobank (UKBB, 83.8% of the total study size) and other RG contributing studies grouped together. We 
further extended the check between UKBB results and meta-analysis of other RG contributing cohorts together with fasting glucose GWAS 
excluding overlapping cohorts (roughly 1/3 of UKBB sample size). Results from these comparisons are presented in Supplementary Table 3. 
Additionally, we have selected a list of additional distinct signals by carrying out approximate conditional analysis with GCTA  and direct 
conditional analyses on UKBB genotypes with BOLT-LMM. To ensure pharmacological assay results were reproducible, all assays were 
repeated at least 4 times. The exact number of biological replicates is provided in the relevant supplementary table, along with the relevant 
measure of dispersion.

Randomization This study meta-analyzed existing data. Therefore, there were no experimental groups and no randomization was required.

Blinding GWAS is a hypothesis-free approach, so in each study contributing to the meta-analysis, researchers assessing glycemic traits, such as random 
glucose, were blinded to the genotypes that are associated with these outcomes.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Eukaryotic cell lines
Policy information about cell lines and Sex and Gender in Research

Cell line source(s) Flp-In T-REx-293 cells were obtained from Thermo Fisher.

Authentication The Flp-In T-REx-293 cell line were indirectly authenticated by successful integration of the WT/variant GLP1R insert.

Mycoplasma contamination Cells tested negative for mycoplasma.

Commonly misidentified lines
(See ICLAC register)

Name any commonly misidentified cell lines used in the study and provide a rationale for their use.
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