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Background
Historically, ancient DNA (aDNA) studies have focused on human and faunal evolu-
tion and demography, extracting and analyzing predominantly eukaryotic aDNA [1–3]. 
With the development of next-generation sequencing (NGS) technologies, it was dem-
onstrated that host-associated microbial aDNA from eukaryotic remains, which was 
previously treated as a sequencing by-product, can provide valuable information about 
ancient pandemics, lifestyle, and population migrations in the past [4–6]. Modern tech-
nologies have made it possible to study not only ancient microbiomes populating eukar-
yotic hosts, but also sedimentary ancient DNA (sedaDNA), which has rapidly become 
an independent branch of palaeogenetics, delivering unprecedented information about 
hominin and animal evolution without the need to analyze historical bones and teeth 
[7–12]. Previously available in microbial ecology, meta-barcoding methods lack valida-
tion and authentication power, and therefore, shotgun metagenomics has become the 
de facto standard in ancient microbiome research [13]. However, accurate detection, 
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abundance quantification, and authentication analysis of microbial organisms in ancient 
metagenomic samples remain challenging [14]. This is due to the limited amount of 
microbial aDNA and the exceptional variety of both host-associated and invasive micro-
bial communities that have been populating ancient samples when living and post-mor-
tem. In particular, the presence of modern contamination can introduce biases in the 
analysis of aDNA data. All of these technical and biological factors can lead to a high 
rate of false-positive and false-negative microbial identifications in ancient metagenomic 
studies [15].

When screening for the presence of microbial organisms with available reference 
genomes, we aim to assign a taxonomic label to each aDNA sequence. For this purpose, 
there are two dominant approaches: composition, aka k-mer taxonomic classification, 
and alignment-based methods. For the former, the Kraken family of tools [16, 17] is one 
of the most popular in ancient metagenomics, while for the latter, general purpose align-
ers such as BWA [18] and Bowtie2 [19], but also aligners specifically designed for the 
analysis of metagenomic data, such as MALT [20], are among the most commonly used.

Unlike the alignment approach, where each aDNA sequence is positioned along the 
reference genome based on its similarity to it, the k-mer taxonomic classification uses 
a lookup database containing k-mers and Lowest Common Ancestor (LCA) informa-
tion for all organisms with available reference genomes. DNA sequences are classified 
by searching the database for each k-mer in a sequence and then by using the LCA 
information to determine the most specific taxonomic level for the sequence. Advan-
tages of the classification-based approach are high speed and a wide range of candidates 
(database size), while disadvantages include difficulty in validation and authentication 
which can often lead to a high error rate in the classification-based approach. In con-
trast, the alignment-based approach with, for example, MALT provides more means of 
validation and authentication, while being relatively slow, more resource-demanding, 
and heavily dependent on the selection of reference sequences included in the database. 
Technical limitations such as computer memory (RAM) often hinder the inclusion of 
a large amount of reference sequences into the database, which might result in a high 
false-negative rate of microbial detection. In practice, due to the very different nature of 
the analyses and reference databases used, the outputs from classification and alignment 
approaches often contradict each other, bringing additional confusion to the ancient 
metagenomics research community. In fact, both approaches have strengths but also 
profound weaknesses that can lead to substantial analysis error, if not properly taken 
into account.

Here, we define two types of errors common to ancient metagenomics: (1) the detec-
tion error and (2) the authentication error. The detection error comes from the difficulty 
to correctly identify microbial presence or absence irrespective of ancient status. This 
can happen due to many reasons such as overly relaxed or too conservative filtering. 
This error is not specific to ancient metagenomics but represents a general challenge 
that is also valid for the field of modern metagenomics. In contrast, the authentica-
tion error in our case is mainly related to the ancient status of detected organisms and 
caused by modern contamination that is typically present in archaeological samples. 
Often, inaccurate data processing and handling can lead to the erroneous discovery of 
a modern contaminant as being of ancient origin, and vice versa, of an ancient microbe 
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as being modern. Therefore, the major goals of an ancient microbiome reconstruction 
are to establish accurate evidence that a microbe (a) truly exists in a sample and (b) is of 
ancient origin.

Here, we aim to combine the strengths of both classification- and alignment-based 
approaches to develop an ancient metagenomic profiling workflow, aMeta, with low 
detection and authentication errors. For this purpose, we use KrakenUniq [21, 22] — 
which is suitable for working in low-memory computational environments — for initial 
taxonomic profiling of metagenomic samples and informing MALT reference database 
construction, followed by LCA-based MALT alignments, and a comprehensive valida-
tion and authentication analysis based on the alignments. We report that a KrakenUniq-
based selection of microbial candidates for inclusion in the MALT database dramatically 
reduces resource usage of aMeta compared to metagenomic profiling with MALT alone. 
We evaluated our workflow using simulated ancient metagenomic data and bench-
marked it against Heuristic Operations for Pathogen Screening (HOPS) [23], which is 
probably the most popular and de facto standard ancient metagenomic pipeline cur-
rently. We demonstrate that due to its additional breadth/evenness of coverage filter-
ing, greater database size, and flexible authentication scoring system, the combination of 
KrakenUniq and MALT implemented in our workflow results in a higher sensitivity vs. 
specificity balance for the detection and authentication of ancient microbes compared 
to HOPS, given identical computer memory available. Importantly, aMeta consumed 
nearly half as much computer memory as HOPS on a benchmark simulated ancient 
metagenomic dataset.

Results
The aMeta workflow overview is shown in Fig. 1. It represents an end-to-end processing 
and analysis framework implemented in Snakemake [24] that accepts raw sequencing 
data as a set of files, usually belonging to a common project, and outputs a ranked list of 

Fig. 1 aMeta: ancient metagenomic profiling workflow overview. The workflow represents a combination 
of taxonomic classification + filtering steps with KrakenUniq that allows to establish a list of microbial 
candidates for further dynamic building of a MALT database, running LCA-based alignments with MALT 
against the database, and performing validation + authentication analysis based on the alignments
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detected ancient microbial species together with their abundances for each sample, as 
well as a number of validation and authentication plots for each identified microorgan-
ism in each sample. In other words, the workflow leverages a convenient high-level sum-
mary of several authentication and validation metrics that evaluate detected microbes 
based on the evidence of their presence and ancient status.

Here, we provide a detailed description of each step implemented in aMeta. The work-
flow accepts raw metagenomic data in a standard fastq format containing sequenced 
DNA reads, removes sequencing adapters with Cutadapt [25], and selects reads of length 
above 31 bp which have a good taxonomic specificity. Next, the workflow runs KrakenU-
niq [21, 22] (we refer to this step as “pre-screening”), a fast and accurate k-mer-based 
tool which is capable of operating in low-memory computational environments [22]. 
KrakenUniq performs a taxonomic classification of the aDNA sequences and reports a 
number of k-mers unique within each taxon’s reference genome, which can be consid-
ered as a good approximation to the breadth of coverage information; see Additional 
file 1: Fig. S1. Indeed, a greater number of unique k-mers implies a broader breadth of 
coverage since reads span more unique regions, distribute across the reference genome, 
and encompass more base pairs of the reference. The number of unique k-mers is an 
essential filter of aMeta which significantly improves its accuracy (default: 1000 unique 
k-mers, can be configured by the user). Generally, breadth of coverage information is 
obtained through alignments; therefore, the advantage of KrakenUniq is that it is capa-
ble of providing an estimate of the breadth of coverage via k-mer-based read classifica-
tion without the need for explicit alignments.

Figure  2 schematically demonstrates why detection of microbial organisms based 
solely on depth of coverage, sometimes referred to as “coverage” in the literature, might 
lead to false-positive identifications. Depth of coverage is equivalent to the total number 
of mapped reads, normalized by the length of the reference genome. Suppose we have a 
toy example with a reference genome of length 4 ∗ L and 4 reads of length L mapping to 
the reference genome. When a microbe is truly detected, the reads should map evenly, 
which means they should be distributed randomly and hence in a relatively even manner 

Fig. 2 Schematic demonstration of the difference between depth and breadth/evenness of coverage 
concepts. Two read alignment scenarios, A and B, have an identical depth of coverage of  Nreads*  Lread / 
 Lgenome = 4 *  Lread / 4 *  Lread = 1X. However, the reads are spread unevenly in case A and evenly in case B. The 
latter has a higher breadth of coverage (100% in contrast to 25% for the former) and evenness of coverage. 
Scenario B corresponds to a true-positive hit, while scenario A is typical of a false-positive microbial detection
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across the reference genome; see Fig. 2B. In this case, the mapped reads have satisfactory 
breadth of coverage (fraction of covered reference nucleotides) and evenness of coverage 
(uniformness or consistency with which sequenced reads are distributed across the ref-
erence genome). In the toy example in Fig. 2B, all 4 reads map at unique positions and 
such alignments provide a perfect breadth of coverage of 100%. In contrast, in case of 
misaligned reads, where reads originating from species A are incorrectly mapped to the 
reference genome of species B, it is common to observe read stacking in regions of high 
sequence conservation, which is the case in Fig. 2A where all 4 reads align at the same 
position (see also Additional file  1, Fig. S2 for a real data example, where reads from 
unknown microbial organisms are deliberately forced to map exclusively to the Yers-
inia pestis reference genome). In the toy example in Fig. 2A, the read alignments have a 
rather poor breadth of coverage of 25%. Note that the non-overlapping reads in Fig. 2B 
will likely cover more unique k-mers (providing large enough k) compared to the stacked 
reads in Fig. 2A. Therefore, we consider the breadth of coverage, which is conceptually 
related to the number of unique k-mers delivered by KrakenUniq, to be of crucial impor-
tance for robust filtering in our workflow.

In addition to the breadth of coverage filtering, low-abundance microbes are removed 
in aMeta based on their depth of coverage, which is estimated by the number of reads 
assigned to each taxon (default: 200 reads, which can be adapted by the user). Filtering 
by the depth of coverage is also important for subsequent validation and authentication 
steps, as some of these may not be statistically robust enough when performed on low-
abundant microbes. Therefore, aMeta uses a rather conservative approach and focuses 
on reasonably abundant species with even coverage which are more likely to actually be 
present in the samples (Fig. 3).

For pre-screening with KrakenUniq, we built two different databases of refer-
ence sequences: (1) a complete NCBI non-redundant NT database (referred to as full 
NCBI NT), currently used by default in BLASTN [26], that included all eukaryotic and 
prokaryotic genomes available at NCBI, December 2020; (2) a microbial version of the 
full NCBI NT database (referred to as Microbial NCBI NT), consisting of all microbial 
genomic sequences (bacteria, viruses, archaea, fungi, protozoa and parasitic worms) as 
well as the human genome and complete eukaryotic genomes from NCBI. The former 
database can be used for comprehensive screening of both eukaryotic (mammals, plants, 
etc.) and microbial organisms, while the latter is more than half the size, and is sufficient 
for microbial profiling only. Both databases are publicly available to the wider scientific 
community through the SciLifeLab Figshare at https:// doi. org/ 10. 17044/ scili felab. 20205 
504 and https:// doi. org/ 10. 17044/ scili felab. 20518 251.

When comparing different KrakenUniq databases, we found that database size played 
an important role in robust microbial identification. Specifically, small databases tended 
to have higher false-positive and false-negative rates for two reasons. First, microbes 
present in a sample whose reference genomes were not included in the KrakenUniq 
database could obviously not be identified, hence the high rate of false negatives of 
smaller databases. Second, microbes in the database that were genetically similar to the 
ones in a sample appeared to be more often erroneously identified, which contributed to 
the high rate of false positives of smaller databases. For more details, see the sub-section 
“Effect of database size” of the “Results” section.

https://doi.org/10.17044/scilifelab.20205504
https://doi.org/10.17044/scilifelab.20205504
https://doi.org/10.17044/scilifelab.20518251
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Although the technique of filtering the KrakenUniq output by depth and breadth of 
coverage is reliable for establishing the presence of an organism in a sample, the findings 
of KrakenUniq have to be authenticated, i.e., their ancient status needs to be confirmed, 
which is impossible to do with the taxonomic classification approach alone. Indeed, even 
if KrakenUniq has a fairly low detection error (see the “Background” section), it cannot 
provide any information about the ancient status of the detected microbes. Furthermore, 
additional validation based on the alignment summary statistics such as evenness of 
coverage and edit distance can enhance the detection accuracy of aMeta beyond the pri-
mary hard thresholds of breadth and depth of coverage applied to KrakenUniq output.

To validate the results from the KrakenUniq pre-screening step and further elimi-
nate potential false-positive microbial identifications, aMeta performs alignments with 
the MALT aligner [20]. The main advantage of MALT and motivation for us to use it in 
aMeta was that MALT is a metagenomic-specific aligner which applies the Lowest Com-
mon Ancestor (LCA) algorithm in contrast to other traditional genomic aligners such as 
BWA [18] and Bowtie2 [19]. The LCA algorithm is particularly important when working 
with heterogeneous metagenomic sequencing data. More specifically, when performing 
competitive mapping to multiple reference genomes, it is important to correctly handle 
the reads mapping with the same affinity to several references (multi-mapping reads). 
Traditional genomic aligners would disregard the multi-mapping reads as ambiguous 
and non-informative. In contrast, the LCA algorithm in MALT keeps the multi-mapping 
reads within the taxonomic tree of related organisms and assigns the reads to the lower 
ancestor node in the tree. For example, if a read maps with the same number of mis-
matches to two species, the read will be assigned to their common genus and kept for 

Fig. 3 Depth (number of reads specific to a taxon) and breadth (number of unique k-mers) of coverage 
reported by KrakenUniq for microbial taxa in a metagenomic sample. Taxa with large amounts of unevenly 
mapped reads, and hence low breadth of coverage, are considered to be false-positive identifications (left 
upper corner). Red solid horizontal and vertical lines mark optional depth (~ 100 reads) and breadth (~ 1000 
unique k-mers) of coverage filters applied to the KrakenUniq output
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downstream analysis. Alternatively, aMeta users can also select Bowtie2 for faster and 
more memory-efficient alignments; see Additional file  2: S1. Indeed, Bowtie2 may be 
preferred by users because MALT is very resource-demanding. However, since Bowtie2 
lacks LCA handling of multi-mapping reads, MALT is more suitable for metagenomic 
analysis.

In practice, only reference databases of limited size can be afforded when perform-
ing analysis with MALT, which might potentially compromise the accuracy of micro-
bial detection; see Additional file 2: S2 for more details. In consequence, we aim to link 
the unique capacity of KrakenUniq to work with large databases with the advantages 
of MALT for the validation of results via an LCA alignment. For this purpose, aMeta 
dynamically builds a project-specific MALT database, based on a filtered list of micro-
bial species identified by KrakenUniq. In other words, the combination of microbes 
across the samples, remaining after depth and breadth of coverage filtering of the Krak-
enUniq outputs, is used to build a MALT database, which allows the running of LCA-
based MALT alignments using realistic computational resources.

The analysis strategy applied in the aMeta workflow is two-step. First, we pre-screen 
and classify microbial organisms in aDNA samples with KrakenUniq against the full NT 
or microbial NT database, a step that can be performed virtually on any computer, even 
a laptop. Second, we validate the findings by performing MALT LCA-based alignments 
against a project-specific database comprising microbial species identified at the first 
step by KrakenUniq. This two-step strategy provides a good balance between sensitivity 
and specificity of both microbial detection and authentication in aDNA metagenomic 
samples without imposing a large computational resource burden. On the one hand, the 
KrakenUniq step optimizes the sensitivity of microbial detection by using a large data-
base that would otherwise be likely technically impossible for MALT to handle. On the 
other hand, the MALT step optimizes the specificity of microbial detection and authen-
tication by performing LCA-based alignments suitable for computing various quality 
metrics. Note that the two-step design of aMeta minimizes potential conflicts between 
classification (KrakenUniq) and alignment (MALT) approaches by ensuring consistent 
use of the reference database.

As previously emphasized, microbial organisms identified by KrakenUniq and MALT 
in metagenomic samples need to be checked for their ancient status, i.e., authentica-
tion analysis is needed in order to discriminate truly ancient organisms from modern 
contaminants. For authentication of microbial organisms found in metagenomic aDNA 
samples, we applied the MaltExtract tool [23] to the LCA-based alignments produced by 
MALT and computed the deamination pattern [27, 28], read length distribution, average 
nucleotide identity (ANI) via percent identity to the reference, and edit distance (amount 
of mismatches) [23] metrics. Next, the breadth and evenness of coverage of reads aligned 
to each microbial reference genome were generated using SAMtools [29]; see the “Meth-
ods” section and Additional file 2: S3. In addition, the workflow automatically extracts 
alignments and the corresponding reference genome sequence for each identified micro-
bial organism in each sample, allowing users to visually inspect the alignments, e.g., in 
the Integrative Genomics Viewer (IGV) [30], which provides intuitive interpretation 
of the quality metrics reported by aMeta. Finally, histograms of postmortem damage 
scores (PMD) are computed using PMDtools [31], which features a unique option of 
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likelihood-based inference of ancient status with a single read resolution. All the men-
tioned quality metrics are complementary and serve for more informed decisions about 
the presence and ancient status of microorganisms in metagenomic samples. A typical 
graphical output from aMeta is demonstrated in Fig.  4, which summarizes authenti-
cation and validation information for Yersinia pestis, the pathogen responsible for the 
plague, previously reported for the Gökhem2 (Gok2) individual [5]; see also Additional 
file 1: Fig. S3 for the Gökhem4 (Gok4) individual [5].

In addition to the graphical summary of quality metrics, aMeta delivers a table of 
microbial abundances quantified from both rma6- and SAM-alignments available from 
MALT. The alignments in rma6 format are quantified using the rma2info wrapper script 
from the MEGAN tool [32]; see Additional file 2: S7, while a custom awk script is used 
for quantifying microbial abundance from SAM-alignments. A disadvantage of rma6, 
which is a primary MALT alignment format, is that it cannot be easily handled by typi-
cal bioinformatics software such as SAMtools. However, we found that the alternative 
alignments in SAM format delivered by MALT lack LCA information and therefore are 
not optimal either, since they essentially resemble the Bowtie2 alignments. Nevertheless, 
we believe the two ways of abundance quantification are complementary to each other. 
The LCA-based quantification from the rma6 output of MALT might underestimate the 
true per-species microbial abundance, since many short conserved aDNA sequences 
originating from a species are assigned to higher taxonomic levels, e.g., genus level, and 
thus do not contribute to the species abundance. In contrast, the LCA-unaware quan-
tification from the SAM output of MALT seems to overestimate the true per-species 

Fig. 4 Authentication output of aMeta. Panels from left to right, top to bottom: a edit distance computed 
on all assigned reads, b edit distance computed on damaged reads, c evenness/breadth of coverage, d 
deamination pattern, e read length distribution, f PMD scores distribution, g number of reads assigned 
with an identity to a reference, h candidate reference sequences with percentages of mapped reads, and i 
MaltExtract statistics
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microbial abundance since it counts absolutely all reads assigned to a species, including 
the non-specific multi-mapping reads, i.e., the ones that map with the same affinity to 
multiple homologous microbial organisms.

Within the aMeta workflow, we constructed and implemented a special authentica-
tion scoring system that should facilitate getting a quick user-friendly overview of 
potentially present ancient microbes; see "Methods" section and Additional file 2: S5 for 
more details. The score is computed per microbe per sample and represents a quantity 
that combines the eight validation and authentication metrics presented graphically in 
Fig. 4, more specifically (1) deamination profile, (2) evenness of coverage, (3) edit dis-
tance (amount of mismatches) for all reads, (4) edit distance (amount of mismatches) 
for damaged reads, (5) read length distribution, (6) PMD scores distribution, (7) number 
of assigned reads (depth of coverage), and (8) average nucleotide identity (ANI) via per-
cent identity to the reference. The scoring system assigns heavier weights to evenness of 
coverage as an ultimate criterion for the true presence of a microbe, and deamination 
profile as the most important evidence of its ancient origin.

As one of the main outputs, aMeta delivers a heatmap summary of authentication 
scores for each detected microbe in each sample (Additional file 1: Fig. S4). The heatmap 
of scores, ranging from 0 (either not present or modern contaminant) to 10 (present and 
ancient), provides a quick and easy way for users to summarize the results of the ancient 
metagenomic analysis and make more informed decisions about hits to follow-up.

Benchmarking aMeta on simulated data

We benchmarked aMeta against HOPS [23] which is one of the most widely used pipe-
lines in the field of ancient metagenomics. Another popular general-purpose aDNA 
pipeline, nf-core/eager [33], implements HOPS as an ancient microbiome profiling 
module within the pipeline; therefore, we do not specifically compare our workflow 
with nf-core/eager but concentrate on differences between aMeta and HOPS in terms of 
computational resources and accuracy.

For robust comparison of the two approaches, we built a ground truth dataset which 
represents 10 ancient human metagenomic samples with various microbial composi-
tions simulated with the gargammel tool [34]. To mimic potential contamination  sce-
nario, we simulated reads that were both host-associated (ancient) and contaminant 
(ancient and modern). We selected 35 microbial species that are commonly found across 
our aDNA projects [35, 36], and simulated their fragmented and damaged reads. In 
addition, Illumina adapters and sequencing errors were added to mimic typical ancient 
DNA raw genomic sequencing data; see the “Methods” section for details. To better 
resemble a typical situation in our ancient metagenomic studies [35, 36], we simulated 
bacterial reads of both modern and ancient origin. For example, when working with 
ancient dental calculus [35], one may often observe host-associated Streptococcus pyo-
genes or Parvimonas micra, which were simulated here as being of ancient origin. One 
can also find ancient exogenous bacteria of environmental origin,  such as Mycobacte-
rium avium and Ralstonia solanacearum, which were also simulated as ancient. In total, 
18 out of 35 microbial species were simulated as ancient. We also added a number of 
modern bacterial contaminants, such as a few species from the Burkholderia and Pseu-
domonas genera, that are typically found on (blank) negative controls in our aDNA lab. 
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The contaminants were simulated with a moderate fragmentation level and no clear 
deamination or damage pattern. In total, 17 out of 35 microbial species were simulated 
as modern. In summary, the simulated ground truth dataset included both human and 
microbial DNA reads of ancient and modern origin, present at various ratios with vary-
ing levels of damage and fragmentation. We believe that this closely mimics a typical 
metagenomic composition scenario that we observe in various aDNA metagenomic pro-
jects [35, 36]; see the “Methods” section for more details.

Using this simulated ground truth dataset, we first aimed at comparing computer 
memory resources required by aMeta and HOPS. For this purpose, we ran aMeta on the 
simulated data using default settings and the Microbial NCBI NT database, which was 
the second largest among our pre-built databases; see the “Effect of database size” sub-
section for more details. For comparison, we also ran HOPS with default configuration 
parameters on our smallest database, the NCBI RefSeq database with complete micro-
bial genomes, which however could only be used by HOPS on a computer node with at 
least 1 TB of RAM. In our computer resource benchmarking, we found that the design 
of aMeta (pre-screening with KrakenUniq followed by the dynamic construction of the 
MALT database) reduces computer memory load (RAM) by approximately two times 
compared to the resources required to accommodate the MALT database in the HOPS 
pipeline, as shown in Fig. 5. More specifically, aMeta used at most 353 GB of RAM on 
20 threads, while HOPS required at most 685 GB of RAM on 1 thread, and 720 GB on 
20 threads. This memory reduction in aMeta became possible due to two factors: (1) 
the recent low-memory development of KrakenUniq [22] and (2) the dynamic building 
of the MALT database after pre-screening with KrakenUniq. Moreover, the peak mem-
ory load of aMeta can be further reduced from 353 GB to approximately 140–150 GB 

Fig. 5 Comparison of aMeta vs. HOPS computer memory (RAM) usage. Peak memory load of aMeta on a 
benchmark dataset was approximately twice lower compared to peak memory load of HOPS
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(a memory reduction of about 5 times compared to HOPS) for our benchmark dataset. 
This is because, when running aMeta, the irreducible memory consumption of MALT 
was only 138  GB, while the memory peak of 353  GB was observed on the KrakenU-
niq step, which in fact could be executed with even less available memory [22]. This, 
however, would lead to a longer computation time. Nevertheless, according to our tests 
(Additional file 1: Fig. S16), the new KrakenUniq development enables up to 10 times 
faster classification using a 450 GB reference database than with the previous versions, 
even on a computer cluster node with 128 GB of RAM, which was previously impossible 
without a node with at least 512 GB of RAM.

We conclude that aMeta is a more memory-efficient ancient metagenomic workflow 
compared to HOPS. However, one might be concerned that this superior computational 
efficiency can come at the price of reduced accuracy of metagenomic analysis, which 
would be undesirable. To address this, we computed microbial detection and authenti-
cation errors using the simulated ancient metagenomic dataset with the known ground 
truth described above.

We first sought to quantify the detection error of aMeta and HOPS, i.e., when a tool 
falsely reports the presence or absence of a microbe in a metagenomic sample, regardless 
of its ancient status. For this purpose, aMeta with default settings was run on the simu-
lated dataset, and the microbial abundance matrix was computed by KrakenUniq after 
filtering for a breadth of coverage using the Microbial NCBI NT database. For compari-
son, HOPS with default configuration parameters was run using the complete microbial 
genomes NCBI RefSeq database, which was the largest database that was feasible to use 
for HOPS on a 1 TB of RAM computer cluster node. We quantified the abundance of 
microbial organisms detected by HOPS using MEGAN [32]. Next, both KrakenUniq and 
HOPS microbial abundance matrices were filtered using gradually increasing thresholds 
for the number of assigned reads, which is equivalent to filtering by depth of coverage. 
For each depth of coverage threshold applied to the abundance matrices, we compared 
microbial organisms identified by KrakenUniq and HOPS against the true list of organ-
isms simulated by gargammel. As a criterion of overlap between the prediction and 
ground truth, we used two metrics: Intersection over Union (IoU), aka Jaccard similar-
ity, and F1 score, which both quantify the balance between sensitivity and specificity of 
microbial detection by KrakenUniq and HOPS (Fig. 6). Illustrated by the solid lines in 
Fig. 6, it is demonstrated how Jaccard similarity and F1 score change at different depth of 
coverage thresholds applied to the KrakenUniq and HOPS microbial abundance matri-
ces. The dashed horizontal line in Fig.  6 corresponds to the Jaccard similarity and F1 
score computed using the depth and breadth of coverage thresholds set by default in 
aMeta, which can however be modified by the users. More specifically, by default, aMeta 
uses 1000 unique k-mers and 200 reads assigned to the taxon (taxReads) for filtering 
by depth and breadth of coverage, respectively. The default aMeta filtering thresholds 
were previously empirically determined from the analysis of over 1200 ancient metagen-
omic libraries [35, 36]. Nevertheless, the users are encouraged to experiment with the 
number of assigned reads threshold in the range of ~ 100–300 reads, and unique k-mers 
threshold in the range of ~ 500–1500 k-mers for their particular projects depending on 
sequencing depth and organism interest. As Fig. 6 shows, the default settings of aMeta 
result in nearly optimal Jaccard similarity and F1 score values obtained from filtering 
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the KrakenUniq abundance matrix. Importantly, in Fig. 6, one can observe that irrespec-
tive of the depth of coverage threshold applied to the KrakenUniq and HOPS abundance 
matrices, the Jaccard similarity and F1 score for HOPS are always below the sensitiv-
ity vs. specificity level provided by KrakenUniq and aMeta. This conclusion is also con-
firmed by inspecting the accuracy of microbial composition reconstruction, as well as 
the numbers of false-positive and false-negative counts, at different read number thresh-
olds (Additional file 1: Fig. S10).

The greater detection accuracy of aMeta is explained by two factors. First, since it is 
computationally feasible to use very large and phylogenetically diverse databases for 
taxonomic profiling with KrakenUniq and hence aMeta, this allows for the detection of 
microbial organisms that might be missed by HOPS due to their potential absence in 
the HOPS database (since it was not technically feasible to build and use as large and 
diverse HOPS database as it was possible for aMeta). Therefore, KrakenUniq and aMeta 
have a higher sensitivity for microbial detection. This conclusion is confirmed by Addi-
tional file 1: Fig. S5-S10, where the ground truth for the microbial presence-absence per 
sample is compared against the one reconstructed by aMeta and HOPS. For example, 
such simulated species as Campylobacter rectus, Fusarium fujikuroi, Methylobacterium 
bullatum, Micromonas commoda, Micromonospora echinospora, Mycobacterium riyad-
hense, Nonomuraea gerenzanensis, Pseudomonas psychrophila, and Pseudomonas thiv-
ervalensis were correctly identified by aMeta as present in the dataset, but not detected 
by HOPS in any simulated sample. Interestingly, Campylobacter showae was detected 
by HOPS instead of Campylobacter rectus because only the former was included in the 
HOPS database. This shows how a limited database size can impact not only the sensi-
tivity (missed microbes) but also the specificity (falsely identified microbes) of microbial 

Fig. 6 Microbial detection sensitivity vs. specificity comparison between KrakenUniq, HOPS, and aMeta 
(default settings), at different assigned reads thresholds: A Jaccard similarity and B F1 score, are computed 
with respect to the simulated microbial abundance ground truth
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detection. In total, HOPS missed 16 out of 35 simulated microbial species in all samples, 
while aMeta completely missed only 9 out of 35 microbes.

The second factor for increased accuracy of microbial detection by aMeta comes 
from the fact that, while the HOPS microbial abundance matrix can only be filtered by 
depth of coverage (readDis reported by HOPS is not used for filtering and cannot be 
considered as an optimal proxy for breadth of coverage), an additional breadth of cover-
age filter is available in KrakenUniq, and applied by aMeta, improving the robustness 
of microbial detection. Therefore, KrakenUniq and aMeta tend to have overall higher 
specificity for microbial detection. For example, such microbial species as Mycobacte-
rium avium, Nocardia brasiliensis, Rhodopseudomonas palustris, Sorangium cellulosum, 
and Streptosporangium roseum were incorrectly identified by HOPS as present in at least 
one simulated metagenomic sample, while they did not pass aMeta filtering and were 
correctly excluded from the resulting output for these samples.

Additionally, we evaluated the performance of aMeta vs. HOPS on a read level (Addi-
tional file  1: Fig. S11), by comparing the ground truth and reconstructed read counts 
for each microbe in each sample. In contrast to HOPS that has a high dropout rate 
(high false-positive and false-negative counts) and therefore is sensitive to read number 
threshold (lowering the ~ 100–300 reads threshold results in a higher number of false-
positives), aMeta is more robust in a wide range of read number thresholds due to the 
additional breadth of coverage filter that reduces the dropout effect. In other words, low-
ering the ~ 100–300 reads detection threshold down to ~ 10–50 reads slightly improves 
the agreement of aMeta with the ground truth without bringing too many false-posi-
tive hits; see Additional file 1: Fig. S11. However, it is important to keep in mind that 
a microbial hit with only ~ 10–50 reads (and even higher, up to ~ 100 reads) would be 
problematic to authenticate since current gold standard authentication tools such as 
mapDamage [27] and MaltExtract [23] can reliably operate only on a substantially higher 
number of reads (at least 200 reads to our experience). Therefore, while specifying more 
permissive detection thresholds in aMeta might be beneficial for reducing the false-neg-
ative rate, it is not recommended due to potential authentication problems. However, if 
the intent of the user is first to detect a potential organism, before aiming at sequencing 
more data, then the reduced dropout effect in aMeta compared to HOPS can be taken 
advantage of. Overall, we conclude that aMeta has a lower detection error compared to 
HOPS; see Additional file 1: Fig. S5-S11 and Additional file 2: S4 for more details.

Further, we addressed the authentication error of aMeta and HOPS, that is, when a 
tool, e.g., wrongly reports a microbe as ancient that was actually not simulated to be 
ancient. For this purpose, we used the authentication scoring systems implemented in 
aMeta and HOPS. The scoring systems of both tools not only provide a useful ranking 
of microbial organisms, but can also be used for computing sensitivity and specificity of 
microbial validation and authentication for benchmarking purposes. We ran aMeta and 
HOPS with default settings on the simulated ground truth dataset and obtained lists of 
microbial organisms ranked by the scoring system of aMeta and HOPS, where likely pre-
sent and ancient microbes received higher scores. Upon visual examination of the native 
heatmap output generated by HOPS, it became evident that its authentication perfor-
mance was not optimal (Additional file 1: Fig. S12). More specifically, a few bacteria such 
as Rhodopseudomonas palustris, Rhodococcus hoagii, Lactococcus lactis, Brevibacterium 
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aurantiacum, and Burkholderia mallei were mistakenly reported by HOPS to be ancient 
(as they got the highest scores) in several samples, while they were supposed to be mod-
ern according to the simulation’s design. The native scoring system of HOPS is based on 
3 metrics only (edit distance of all and damaged reads + deamination profile). For more 
quantitative comparison, it was carefully generalized to match the scoring system of 
aMeta (see Additional file 2: S5).

Further, we used the scoring systems of aMeta and HOPS to compute receiver operat-
ing characteristic (ROC) curves, reflecting the sensitivity vs. specificity of microbial vali-
dation and authentication of both tools. The comparison of ROC curves between aMeta 
and HOPS computed on the simulated ancient metagenomic dataset is presented in 
Fig. 7. One can observe that for the simulated ground truth dataset, aMeta demonstrates 
overall higher sensitivity vs. specificity of ancient microbial identification compared to 
HOPS. This is mainly due to the contribution from the additional evenness of coverage 
metric (Fig. 4), and better-tuned deamination profile score, which both help aMeta to 
establish a more informed decision about the microbial presence and ancient status. For 
example, the species Burkholderia mallei, Brevibacterium aurantiacum, and Lactococ-
cus lactis, which were simulated as modern, obtained high authentication scores from 
HOPS in some samples, implying they were predicted to be present and ancient. They 
were, however, correctly ranked low as potential modern contaminants by aMeta. In 
contrast, the simulated ancient Salmonella enterica genome was ranked low by HOPS 
due to read misalignment (Additional file 1: Fig. S13), while it obtained high scores from 
aMeta correctly indicating its presence and ancient status; see Additional file 1: Fig. S14. 
Overall, we conclude that aMeta has a lower authentication error compared to HOPS; 
see Additional file 2: S5 for more details.

Fig. 7 Receiver operating characteristic (ROC) curve comparison of authentication scores computed by 
aMeta and HOPS on simulated dataset
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Effect of database size

An advantage of the full NCBI NT compared to other nucleotide databases is that it 
provides perhaps the most diverse representation of organisms (both prokaryotic and 
eukaryotic) across the tree of life. However, due to its large size, it can be memory-
demanding for any metagenomic workflow to use this reference database. Therefore, we 
aimed to investigate to what extent one can reduce the size of the full NCBI NT with-
out compromising the accuracy of organism detection in a metagenomic sample. For 
this purpose, we first built a few KrakenUniq reference databases (with k-mer length 31) 
varying in size and then used the simulated ancient metagenomic dataset with known 
microbial composition in order to assess how well KrakenUniq can reconstruct the 
ground truth depending on the database size.

We found a strong effect of KrakenUniq database size on robustness of microbial 
detection (Fig.  8). Specifically, after the simulated ancient metagenomic samples have 
been profiled with KrakenUniq, we filtered the results by depth and breadth of coverage 
using default thresholds in aMeta: 200 assigned reads and 1000 unique k-mers. Next, we 
computed the Jaccard similarity (intersection over union) between the species detected 
by KrakenUniq in each database and the ground truth species. We used in total four 
databases varying in size and content. The smallest database used was the NCBI Ref-
Seq complete microbial genomes, which included 43,767 reference sequences (9155 
viral, 440 archaeal, and 34,172 bacterial sequences) comprising nearly 70 billion nucleo-
tide characters. The database can be accessed via https:// doi. org/ 10. 17044/ scili felab. 
21299 541. The largest database was the full NCBI NT, which included 60,179,710 refer-
ence sequences containing approximately 230 billion nucleotide characters. This data-
base is available at https:// doi. org/ 10. 17044/ scili felab. 20205 504. The intermediate-size 

Fig. 8 Effect of database size on microbial identification with KrakenUniq: Jaccard similarity (intersection over 
union) metric was computed with respect to a simulated ground truth. Larger databases tend to provide 
better overlap with the ground truth

https://doi.org/10.17044/scilifelab.21299541
https://doi.org/10.17044/scilifelab.21299541
https://doi.org/10.17044/scilifelab.20205504
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databases included the Standard Kraken database (default for both Kraken1 [16] and 
Kraken2 [17]), and the microbial subset of the full NCBI NT, i.e., Microbial NCBI NT. 
The Standard Kraken databases included 53,693 reference sequences (11,956 viral, 553 
archaeal, and 41,184 bacterial sequences) that together contained nearly 80 billion char-
acters, while the Microbial NCBI NT database included 11,840,243 reference sequences 
(2,465,945 viral, 17,519 archaeal, 1,737,968 bacterial, 4,530,716 fungal, 1,689,877 proto-
zoa, and 1,398,218 parasitic worms sequences) comprising 110 billion characters.

The smallest NCBI RefSeq complete genomes database gave the lowest Jaccard simi-
larity to the simulated ground truth, just below 0.2, which suggests that this database 
suffers from low sensitivity of microbial detection which may potentially bias taxonomic 
profiling of metagenomic samples. We found that increasing the database size resulted 
in gradual growth of Jaccard similarity, i.e., a better overlap of detected microbial spe-
cies with the ground truth species. Starting with the Microbial NCBI NT database com-
prising approximately 110 billion characters, the Jaccard similarity reached a plateau 
at around 0.75. Although the complete NCBI NT, that included both prokaryotic and 
eukaryotic reference genomes, was able to further increase the Jaccard similarity metric, 
the effect was rather marginal (Fig. 8). This database, however, demanded substantially 
greater RAM resources. Therefore, we concluded that the Microbial NCBI NT pro-
vides sufficient accuracy when performing microbial profiling, i.e., including eukaryotic 
organisms into the database (as it is the case for the full NCBI NT) does not significantly 
affect the accuracy of microbial detection. Despite the large variation of Jaccard simi-
larity in Fig. 8 indicated by large error bars, which were computed by averaging across 
samples, the increasing profile of Jaccard similarity as a function of database size is quite 
clear. Therefore, based on our simulation work, we concluded that larger databases pro-
vide higher accuracy of microbial detection, while smaller databases suffer from low sen-
sitivity and may introduce biases into microbial identification in metagenomic samples.

Further, to demonstrate how spurious misalignments may arise when working with 
small reference databases, we used a random metagenomic stool sample G69146 from a 
modern infant from the DIABIMMUNE metagenomic database, Three Country Cohort 
[37], and aligned it to the Yersinia pestis (Y. pestis) CO92 reference genome alone. 
We discovered that nearly 22,000 reads mapped uniquely, i.e., with mapping quality 
MAPQ > 0 (Fig.  9). Since the sample was from a modern infant who unlikely suffered 
from the plague, the mapped reads cannot be used as evidence of the presence of Y. pes-
tis in the infant’s stool sample. Further, visually inspecting the alignments in Integrative 
Genomics Viewer (IGV) [30], we confirmed that the reads aligned unevenly and demon-
strated a high number of multi-allelic single nucleotide polymorphisms (SNPs) implying 
Y. pestis was not a right reference genome for the reads; see Additional file 1: Fig. S2. 
Assuming that a large fraction of the aligned reads might be of human rather than bacte-
rial origin, and thus misaligned to the Y. pestis reference genome due to the absence of 
a human reference genome in the reference database, we concatenated the hg38 human 
reference genome with the Y. pestis reference genome and proceeded with competitive 
mapping. We found, however, that adding the human reference genome to the database 
did not change the number of reads mapped uniquely to the Y. pestis reference genome. 
Next, we assumed that the ~ 22,000 misaligned reads originated from microbial organ-
isms, other than Y. pestis, that were phylogenetically closer to Y. pestis than to humans. 



Page 17 of 30Pochon et al. Genome Biology          (2023) 24:242  

We therefore used sequentially (a) 10 random bacterial reference genomes from the 
NCBI RefSeq database, (b) 100 random bacterial reference genomes, (c) 1000 random 
bacterial reference genomes, (d) 10,000 random bacterial reference genomes, and finally 
(e) all 28,898 bacterial genomes available from NCBI RefSeq for September 2022; con-
catenated them with Y. pestis + hg38; and performed alignments with Bowtie2 to this 
concatenated reference. We observed a gradual decrease in the number of reads aligned 
uniquely to Y. pestis: from ~ 8500 reads at 10 random bacteria down to only 11 reads at 
28,898 bacteria (Fig. 9). This was a substantial decrease compared to the initial ~ 22,000 
reads; nevertheless, we still had a few misaligned reads while our expectation was to 
observe near-zero reads aligning uniquely to the Y. pestis reference genome. We believe 
that the ~ 10 aligned reads can be treated as a noise level and therefore should not be 
considered as evidence of microbial presence in a metagenomic sample. Thus, the 
increase in database size, i.e., the number of reference genomes in the database, allowed 
us to correctly confirm that Y. pestis was not present in the modern infant stool sample.

Moreover, we replicated the decreasing profile for the number of (misaligned) reads 
mapped uniquely to Y. pestis by random sampling of bacterial genomes from the Micro-
bial NCBI NT database, this time without the hg38 human reference genome, and 
for a greater number, i.e., up to 117,000 random reference genomes (Additional file 1: 
Fig. S15). When sampling reference genomes from the Microbial NCBI NT database, 
we observed not only a very similar qualitative behavior as in Fig. 9 for genomes from 
NCBI RefSeq, i.e., bigger databases result in lower numbers of misaligned reads, but also 

Fig. 9 Effect of database size on the number of modern metagenomic reads uniquely mapped to Yersinia 
pestis CO92 reference genome. Starting with Y. pestis alone, ~ 22,000 reads map uniquely. This number 
gradually decreases down to only a few reads with the growth of the database, i.e., when the human hg38 
reference genome is added, followed by adding 10, 100, 1000, and 10,000 random bacteria, and finally, all 
available 28898 bacteria from the NCBI RefSeq database. The axes of the plot are log10-scaled
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quantitatively very similar, however slightly higher, numbers as in Fig. 9. We assume that 
the slightly higher counts of misaligned reads observed for Microbial NCBI NT com-
pared to NCBI RefSeq are related to the difference in the quality of reference genomes 
in the two databases, i.e., the same number but better quality reference genomes from 
NCBI RefSeq can “attract” more non-Yersinia reads, and thus result in fewer reads mis-
aligned to Y. pestis reference genome.

Overall, we conclude that the database size plays a major role in the robustness of 
microbial identification in metagenomic analysis. A sufficiently small database, while 
computationally easier to process, may jeopardize the accuracy of metagenomic analy-
sis and lead to high false-positive and false-negative rates for the detection of microbial 
species.

Replication on pathogen‑enriched simulated and real datasets

Given the significant interest for pathogen detection in the field of ancient metagenom-
ics, we aimed to replicate the comparison of aMeta and HOPS on another simulated 
dataset enriched with pathogens, as well as on real ancient metagenomic samples where 
the presence of microbial pathogens had been previously reported [38].

First, we simulated ten new samples with 5 pathogenic bacteria that were not previ-
ously included in the in silico dataset, i.e., Brucella melitensis, Mycobacterium leprae, 
Mycobacterium tuberculosis, Treponema pallidum, and Vibrio cholerae. In addition, 3 
pathogenic viruses, Hepatitis B virus, Human parvovirus B19, and Variola virus, and 
one eukaryotic pathogen, Plasmodium vivax, were added. All 9 pathogens had been 
successfully found in aDNA studies [38] and were therefore simulated as ancient, 
according to the same procedure as described in the “Methods” section (see also 
Additional file  2: S7). To mimic a typical contamination scenario, we also added 4 
modern microbial species from the Burkholderi and Pseudomonas genera. Moreover, 
we specifically addressed the limitation of very low pathogen abundance by signifi-
cantly restricting the number of microbial reads to just 100,000 to 300,000 reads (for 
comparison, in the main analysis, this number varied from 300,000 to 700,000 reads); 
see Additional file 2: S7. The simulated dataset enriched for microbial pathogenic spe-
cies is available at https:// doi. org/ 10. 17044/ scili felab. 24211 584. Additional file 1: Fig. 
S18 displays the ground truth design of the replication pathogen-enriched dataset, 
which was subsequently processed using aMeta and HOPS with their default settings. 
The detection and authentication outcomes from aMeta and HOPS are presented in 
Additional file  1: Fig. S19 and S20, respectively. While aMeta was able to correctly 
detect and authenticate all 9 pathogenic species in most of the samples where they 
were simulated as present (Additional file 1: Fig. S19), HOPS completely missed Plas-
modium vivax and failed to authenticate Hepatitis B virus and Treponema pallidum 
in all simulated samples (Additional file 1: Fig. S20). An example of an authentication 
plot produced by aMeta for Plasmodium vivax correctly detected and authenticated 
in sample 6 is demonstrated in Additional file 1: Fig. S21. Further, while the authen-
tication scores computed by aMeta and HOPS were broadly comparable, HOPS as 
in the main analysis tended to designate samples as ancient more readily. For exam-
ple, a modern contaminant Burkholderia mallei erroneously obtained the highest 
authentication scores from HOPS while it was correctly ranked low by the aMeta 

https://doi.org/10.17044/scilifelab.24211584
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scoring system. Interestingly, we discovered that the Variola virus was highly ranked 
by HOPS in a few samples despite its rather inconclusive deamination profile; see 
Additional file  1: Fig. S22. In contrast, aMeta assigned relatively low authentication 
scores to the Variola virus in all samples due to the lack of clear enrichment of C/T 
polymorphisms at the end of the metagenomic reads. We assume that the consistently 
unconvincing deamination profile for the ancient-simulated Variola virus pathogen 
is related to the poor quality of its reference genome. Finally, to check how sensitive 
aMeta and HOPS can be when working on a very low coverage data, we compared 
the numbers of detected reads per simulated pathogen per sample as a function of 
sequencing depth (Additional file 1: Fig. S23). Both workflows tended to have lower 
missingness at higher sequencing depth. In other words, aMeta missed 4 pathogens 
at the total number of microbial reads of 100,000 and 200,000, and 1 pathogen at 
300,000, while HOPS missed 4 pathogens at 100,000, 6 at 200,000, and 3 at 300,000 
microbial reads. Nevertheless, aMeta demonstrated lower pathogen missingness 
compared to HOPS, i.e., missed 9 pathogens vs. 13 by HOPS. Overall, we can con-
clude that aMeta provides satisfactory performance in terms of pathogen detection 
and authentication even when dealing with low pathogen abundance.

In addition to the simulated pathogen-enriched dataset, we tested the performance of 
aMeta on real microbial pathogens from 4 ancient metagenomic studies: Helicobacter 
pylori [39], Borrelia recurrentis [40], Brucella melitensis [41], and Tannerella forsythia 
[42]. In total, metagenomic sequencing data from 36 libraries were tested. Although 
no ground truth information was available for the tested libraries, we assumed patho-
gen presence in all of them. aMeta was successful in detecting the reported pathogens 
in all but 4 tested libraries (Additional file 3: Table S1 and Additional file 1: Fig. S24), 
which did not pass the default thresholds of aMeta: 200 assigned reads and 1000 unique 
k-mers. Nevertheless, we discovered that two of them, i.e., the libraries ERR1094778 and 
ERR1094779 [39], had extremely low and uncommon sequencing depth, i.e., approxi-
mately 500,000 reads, and that the libraries ERR1094791 and ERR1094792 from the same 
study corresponded to muscle tissue, where, in fact, no evidence of Helicobacter pylori 
had been found in the original study [39]. Further, we found that Borrelia recurrentis was 
discovered by aMeta in all libraries from the study [40]; however, very few reads were 
assigned to the species rank implemented by default in aMeta. In fact, the vast majority 
of reads were assigned to Borrelia recurrentis A1, complete genome, GeneBank acces-
sion number CP000993.1, which had a sequence rank in the NCBI taxonomy used in this 
study. This suggests that rank filters of aMeta can be improved by adding sequence and 
possibly no rank categories. On the other hand, this also shows the importance of large 
and diverse databases used by aMeta, where inclusion of all available microbial strains 
can be critical for the detection of a rare pathogen. Importantly, as it is demonstrated 
in Additional file 1: Fig. S24, the default thresholds for depth and breadth of coverage 
of aMeta provide fair sensitivity of pathogen discovery in a wide range of library sizes. 
More specifically, aMeta is capable of recovering pathogens even in libraries sequenced 
at depth as low as 8 mln reads and potentially even lower. Overall, we conclude that 
aMeta successfully confirmed the presence and absence of corresponding pathogens in 
34 out of 36 analyzed libraries from 4 different shotgun metagenomic studies [39–42], 
which implies a satisfactory accuracy of performance on real data.
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Discussion
While the methodology of traditional ancient genomics reached maturity some time 
ago, there still does not seem to be a profusion of analytical tools to perform ancient 
microbiome analysis, presumably because the latter is a much younger field. Currently 
available ancient metagenomics workflows such as MALT [20], HOPS [23], and nf-core/
eager [33]—the latter internally using HOPS—are sensitive to the choice of reference 
database and are therefore not always optimal in terms of sensitivity vs. specificity bal-
ance of microbial detection. Furthermore, when performing reference-based micro-
biome profiling, the size of a reference database becomes an important factor as large 
databases should provide more unbiased identification of present microbes. If the refer-
ence database is not large enough, there is a risk, first, of not identifying a microorgan-
ism that is not present in the database (Fig. 8), and second, of erroneously identifying 
a microorganism in the database that happens to be phylogenetically close to another 
microbe truly present in the sample but not included in the database; see the example 
in Fig. 9. However, current analytical tools such as MALT [20], HOPS [23], and nf-core/
eager [33] can only be run on reference databases of limited size; see Additional file 2: S2 
for more details. There is, therefore, a current need for alternative, more accurate, and 
memory-efficient ancient metagenomics profiling workflows that can query metagen-
omic samples against large reference databases.

In this study, we proposed a novel ancient Metagenomic workflow, aMeta, which has 
a number of advantages over other analytical frameworks in the field. The workflow is 
based on recent advances in the field of metagenomics and provides a list of ancient 
microbes robustly detected and authenticated based on multiple quality metrics with 
minimal interference from the user. Unlike other typical workflows that often merely 
combine heterogeneous bioinformatic tools, aMeta was designed to answer a specific 
research question, which is the robust identification of ancient microbial organisms with 
optimal sensitivity and specificity of detection and authentication. Therefore, while at 
first glance our workflow can be seen as a combination of k-mer-based classification 
of microbial DNA fragments via KrakenUniq and LCA-based alignment via MALT, it 
implements in fact a number of additional features that (1) harmonize the outputs of 
KrakenUniq and MALT and make them work coherently, (2) minimize the amount of 
manual post-processing work, (3) optimize memory usage, and (4) ensure users obtain 
an easy to grasp and highly accurate overview of the microbial composition of the query 
samples.

More specifically, aMeta uses taxonomic pre-screening with KrakenUniq against a 
large reference database to inform LCA-based alignment analysis with MALT. Initial 
unbiased pre-screening against large databases becomes computationally feasible thanks 
to the recent low-memory development of KrakenUniq [22]; meaning, provided that a 
reference database has been already built and is of a reasonable size, taxonomic clas-
sification can be performed on virtually any computer, even a laptop, irrespective of the 
database size. This new development opens up exciting opportunities for truly unbiased 
pre-screening with KrakenUniq, followed by alignment, validation, and authentica-
tion with MALT, as implemented in our workflow. This approach reduces the memory 
requirements for MALT during the follow-up step, as MALT’s memory usage can be 
minimized by selecting likely present microbial organisms detected by KrakenUniq in 
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the initial pre-screening step. This substantially reduces the memory consumption of 
MALT.

Effectively, our computer memory benchmarking shows that aMeta consumed barely 
half the RAM compared to HOPS when processing 10 simulated ancient metagenomic 
samples (Fig. 5). The memory gain can be explained by two factors. First, despite a larger 
database used by aMeta (microbial version of NCBI NT + human + complete eukary-
otic genomes, the reference sequences occupy ~ 300  GB of disk space) than by HOPS 
(complete microbial genomes from NCBI RefSeq database, the reference sequences 
occupy ~ 60 GB of disk space), the recent fast and low-memory development of Krak-
enUniq [22] was able to handle the larger database more efficiently and to use less mem-
ory compared to MALT, which is the implicit engine of HOPS. Second, as a result of 
pre-screening with KrakenUniq, the dynamically built MALT database had a reduced 
size compared to the MALT database used for HOPS. In other words, the MALT step in 
aMeta is not a screening per se but a follow-up after a KrakenUniq pre-screening. Thus, 
it can be performed using a reduced database, unlike HOPS, which is a screening pipe-
line by design, where in order to obtain an unbiased microbial detection, one has to use 
a large MALT database which imposes a hard computational resource burden as indi-
cated in Fig. 5. More specifically, we were able to run HOPS with our smallest database 
(NCBI RefSeq complete microbial genomes) only on computer nodes with at least 1 TB 
of RAM. In contrast, aMeta was capable of running on 512 GB, and even 256 GB nodes, 
despite using a much larger (Microbial NCBI NT) reference database. Thus, aMeta dem-
onstrates a substantial reduction in memory load.

Importantly, the memory gain of our workflow does not compromise the accuracy of 
microbial detection and authentication. Instead, as shown in Figs. 6 and 7, aMeta has a 
better sensitivity vs. specificity balance for both microbial detection and authentication 
compared to HOPS in a wide range of target reads thresholds. On the one hand, the 
superior sensitivity of aMeta comes from a larger reference database used by KrakenU-
niq compared to the one used by HOPS. In essence, including more microbial organisms 
into the reference database enables their discovery in query samples. On the other hand, 
the superior specificity of aMeta is primarily due to robust filtering based on the even-
ness of coverage applied to candidate microbes. In other words, aMeta does not only 
rely on the number of reads mapped to a reference genome of a microbial candidate, as 
does essentially HOPS, but considers the spread of aligned reads across the reference 
genome as an ultimate criterion of microbial presence. While the evenness of coverage 
is a crucial metric, aMeta also generates a few other quality metrics such as deamination 
pattern, edit distance, PMD scores, read length distribution, average nucleotide identity 
(ANI), and depth of coverage (see Fig. 4) and combines them into a score that can be 
used to rank microbial candidates to get a robust overview of the ancient microbiome. 
A graphical overview of the scores per sample and per microbial candidate (Additional 
file 1: Fig. S4) allows users to quickly understand the ancient microbial composition of 
the query samples and make informed decisions about further sequencing or targeted 
enrichment strategies.

Furthermore, unlike HOPS, aMeta was not designed to serve solely for patho-
gen screening, but can very well operate as a general ancient microbiome profiling 
framework, i.e., covering a much broader spectrum of microbial organisms. However, 
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screening for pathogen DNA in archaeological remains can be one possible application 
of aMeta, which utilizes for this purpose a comprehensive list of microbial pathogens 
that was custom built based on literature. Since screening for microbial pathogens is typ-
ically performed on a very limited number of target reads, the outcome of aMeta might 
be sensitive to the filtering thresholds applied. The major filter of aMeta is the breadth 
of coverage, which is approximated via the number of unique k-mers (Additional file 1: 
Fig. S1). By default, aMeta requires at least 1000 unique k-mers per taxon for detection. 
The number of this order of magnitude was recommended in the original KrakenUniq 
publication [21] and corresponds to approximately ~ 50 non-overlapping reads mapping 
to the taxon reference. Indeed, since our KrakenUniq databases were built with a length 
of k-mer equal to k = 31, and provided that a typical length of a fragmented aDNA would 
be L ~ 50 bp, this would result in L − k + 1 = 50 − 31 + 1 = 20 k-mers. If all the k-mers are 
unique, i.e., they correspond to non-overlapping reads, there should be at most 50 non-
overlapping reads, which would provide 50 × 20 = 1000 unique k-mers. Therefore, in a 
broad sense, the breadth of coverage of 1000 unique k-mers indirectly requires a depth 
of coverage of at least 50 assigned reads for a typical aDNA fragmentation. However, 
it is important to keep in mind that although 50–100 assigned (non-overlapping) reads 
would be enough for detection, this small number of reads would be problematic to 
authenticate with, e.g., mapDamage [27]. Taking into account this limitation, we chose 
to use 200 assigned reads specific to a taxon as a default threshold for depth of coverage 
in aMeta. The choice of 200 assigned reads and 1000 unique k-mers as defaults was justi-
fied from different angles by (1) simulation benchmarking (Fig. 6, Additional file 1: Fig. 
S10 and Additional file 1: Fig. S11) and (2) 36 real ancient shotgun metagenomic libraries 
from 4 different studies reporting pathogens (Additional file 1: Fig. S24, and 3) exhaus-
tive empirical testing in a large dataset of over 1200 ancient metagenomic libraries [35, 
36]. Nevertheless, it is important to emphasize that the depth and breadth of coverage 
thresholds are optional in aMeta and can be adjusted depending on the project goals and 
data quality. For our ancient metagenomic profiling projects, we typically use ~ 100–300 
assigned reads and ~ 500–1500 unique k-mers, and we encourage the users of aMeta to 
experiment with the depth and breadth of coverage filters, and tune them for their par-
ticular projects.

Despite the memory efficiency of aMeta for running ancient metagenomic analysis, it 
assumes that the KrakenUniq database and Bowtie2 index have been built prior to the 
analysis, which is a computer memory-demanding process. For example, building a full 
NCBI NT, KrakenUniq database (with k-mer length 31) in December 2020, required up 
to 4 TB of RAM. Therefore, with the aMeta release, we make a few large pre-built Krak-
enUniq databases and Bowtie2 indexes publicly available for the community; see the 
“Availability of data and materials” section. Currently, aMeta users do not have to build 
their own databases and indexes, which is a time- and memory-consuming process, but 
can freely download the large pre-built databases and use them for their analysis.

Finally, it is important to mention that our workflow follows the standards of repro-
ducible data analysis via the workflow management system, Snakemake [24]. The Snake-
make implementation of aMeta not only facilitates reproducibility and scalability of the 
data analysis, but also allows for seamless integration in high-performance computer 
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(HPC) cluster and cloud environments; see the “Methods” section and Additional file 2: 
S6.

Limitations and planned extensions of aMeta

Despite offering advantages in terms of accuracy and resource usage, aMeta has a few 
limitations which are worth mentioning.

First, aMeta uses a reference-based approach for the discovery of microbial organisms 
in metagenomic samples. This implies that only organisms included in a reference data-
base can be found in a sample. Therefore, a current disadvantage of aMeta is that it is not 
able to discover unknown microbial organisms for which there is no reference genome 
generated yet. This problem, however, is not specific to aMeta but rather to the approach 
as it is also valid for other tools following reference-based strategy such as MALT [20], 
HOPS [23], and nf-core/eager [33].

An alternative approach widely used in modern metagenomics [43–46], and reaching 
maturity in ancient metagenomics [47], is the de novo assembly of microbial contigs. 
With this method, no prior information about potential microbial candidates is required, 
and reference genomes can be reconstructed virtually for any microbe present in a sam-
ple. This process however typically requires high coverage, i.e., deep sequenced samples, 
which might be problematic for palaeogenetics where usually a very limited amount of 
ancient DNA can be extracted from archaeological artifacts. Another difficulty comes 
from the ancient DNA damage [28] that, in addition to sequencing errors, complicates 
the de novo assembly process and can lead to the formation of chimeric contigs [48] 
which could greatly influence the downstream analysis.

A de novo assembly module (not presented in this article) written in Snakemake is 
currently being tested in our lab, and we plan to add it to the workflow in a future release 
of aMeta. This way, aMeta will leverage the power of classification, alignment, and de 
novo assembly which can complement each other and provide a more informative over-
view of microbial composition in ancient metagenomics samples.

Another planned extension of the aMeta workflow is a special mode for working with 
ancient environmental and sedimentary DNA, an area of palaeogenetics that has expe-
rienced a rapid growth [49]. One challenge here to overcome is the fine-tuning of the 
aMeta workflow to deal with large eukaryotic reference genomes such as plant and ani-
mal genomes. For this purpose, using the non-redundant NCBI NT database may not be 
optimal as it contains eukaryotic reference genomes, which are typically of poor quality 
and far from complete. Our preliminary testing shows that the large variation in quality 
of reference genomes across eukaryotic organisms in the NCBI NT database can lead to 
severe biases in taxonomic assignment of metagenomic reads, where spurious taxa can 
be detected merely because they have better quality (more complete) reference genomes 
compared to homologous taxa that are in fact present in the sample.

Further, although the internal default filters used by aMeta are well-tuned and seem 
to demonstrate good performance for a vast majority of aDNA samples [35, 36], we 
are working on developing a strategy for self-adjusting the filters depending on the 
nature and quality of aDNA samples. For example, viruses have typically small ref-
erence genomes, and hence, very few aDNA reads aligned to them. Therefore, hard 
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filtering thresholds that are currently implemented in aMeta might miss rare mem-
bers of the microbial community and need further tuning.

Next, although the pre-screening step with KrakenUniq implemented in aMeta sub-
stantially reduces the amount of memory needed for performing MALT alignments, 
we found that large input fastq-files (> 500 million sequenced reads) from deeply 
sequenced samples, or alternatively, a large number (> 1000) of medium-size input 
fastq-files can still result in a severe memory burden for the MALT step that might 
consume over 1 TB of RAM, even though KrakenUniq is rather insensitive toward the 
input file size. Therefore, we do not currently recommend merging fastq-files from 
different sequencing libraries corresponding to the same sample as it is often done 
in genomics projects, but we advise processing fastq-files individually unless one has 
access to very large computer nodes.

Finally, aMeta may currently not be as fast as HOPS when extensive multi-threading 
is available. Indeed, in our benchmarking (Fig. 5), HOPS was nearly twice faster than 
aMeta, i.e., 250 min vs. 500 min, when both were using 20 threads. Note that HOPS 
was however slower on 1 thread, i.e., 650 min. The advantage of HOPS in speed is not 
surprising because it uses a pre-built MALT database (based on NCBI RefSeq com-
plete microbial genomes), while the time-consuming dynamic building of a MALT 
database is a part of the aMeta run. In addition, a few other essential but time-con-
suming modules of aMeta such as KrakenUniq, Bowtie2, and mapDamage are not 
part of the HOPS pipeline, which gives an additional speed advantage to HOPS. Nev-
ertheless, we are currently developing several optimization schemes that can poten-
tially improve the speed of aMeta in the future release. We are also communicating 
with the nf-core developer team and planning to integrate aMeta to nf-core/eager for 
better versatility, maintenance, and efficiency.

Nevertheless, already in the current state, the aMeta workflow gives clear advan-
tages compared to the state-of-the-art HOPS in terms of accuracy and computer 
memory usage, which can potentially improve the quality of computational analysis in 
the ancient metagenomics field and which we hope will be appreciated by the ancient 
DNA research community.

Conclusions
aMeta is a novel computational workflow for ancient metagenomics that aims at 
improving analysis accuracy and optimization of computational resources. aMeta 
combines the advantages of a k-mer-based taxonomic classification approach in sen-
sitivity and of a Lowest Common Ancestor (LCA) alignment approach in specific-
ity of microbial discovery and authentication. On our simulation benchmark, aMeta 
demonstrated better performance in terms of accuracy and memory load compared 
to HOPS which is currently a gold standard approach in the area of ancient metagen-
omics. We also evaluated aMeta on data from a few ancient shotgun metagenomics 
studies, as well as previously in multiple aDNA projects in our lab, where aMeta con-
sistently demonstrated accurate and computationally feasible performance. Therefore, 
aMeta is likely to be of broad utility for the ancient metagenomics field and aDNA 
research community.
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Methods
Snakemake implementation of aMeta

aMeta was written using the Snakemake language for workflow management [24] which 
ensures reproducibility of the ancient metagenomic data analysis performed by aMeta. 
The workflow together with installation instructions, examples of command lines, docu-
mentation, vignettes, and test dataset can be accessed from GitHub https:// github. com/ 
NBISw eden/ aMeta [50] and Zenodo https:// zenodo. org/ record/ 83549 33 [51]. aMeta 
was developed as a collection of Snakemake rules listed in a Snakefile according to the 
Snakemake best practices (https:// snake make. readt hedocs. io/ en/ stable/ snake files/ best_ 
pract ices. html# snake files- best- pract ices)  and workflow template (https:// github. com/ 
snake make- workfl ows/ snake make- workfl ow- templ ate). Snakemake automatically deter-
mines the execution order of the rules following a Directed Acyclic Graph (DAG) of jobs 
that can be automatically parallelized (Additional file 1: Fig. S17). The workflow and each 
separate rule can be installed via conda, a package manager (https:// conda. pydata. org/). 
Main configuration options of aMeta, for example KrakenUniq filtering thresholds, can 
be specified for a particular dataset in the config.yaml file located within the config direc-
tory. The Snakemake configuration of aMeta can be easily adapted to both local comput-
ers and high-performance computers (HPC).

Quantifying authentication information via aMeta’s authentication scores

The scoring system of aMeta was developed for user convenience as a fast visual over-
view of ancient microbial species present in each metagenomic sample. Since it may be 
time-consuming, and sometimes not even feasible to visually inspect all the quality met-
rics presented in Fig. 4 for each sample and each detected microbe, aMeta implements a 
special scoring system to quantify the authentication and validation metrics. The scoring 
system of aMeta represents a sum of eight validation and authentication metrics com-
puted on the LCA alignments delivered by MALT: (1) deamination profile, (2) evenness 
of coverage, (3) edit distance for all reads, (4) edit distance for damaged reads, (5) read 
length distribution, (6) PMD scores distribution, (7) number of assigned reads (provid-
ing information on the depth of coverage), and (8) average nucleotide identity (ANI). 
Each metric can add + 1 to the total sum except for the evenness of coverage that can 
add + 2, as aMeta considers it to be the most crucial to validate microbial presence, and 
for the deamination profile, which can add up to + 2 (both 5′ and 3′ ends count inde-
pendently), as we assume it to be the ultimate criterion of ancient status of a microbe. 
Therefore, the range of authentication scores a microbe can obtain varies from a mini-
mum of 0 to a maximum value of 10; see Additional file 2: S5 for more details.

Simulation of ancient metagenomic data

We used the gargammel tool [34] to simulate 10 metagenomic samples with varying 
human and microbial composition. Both host-associated and contaminant reads were 
present in the simulated samples. In total, 35 microbial species (31 bacteria, 2 amoeba, 1 
fungus, and 1 algae) commonly found in our ancient metagenomic projects [35, 36] were 
simulated with varying abundance across the samples. The abundance of each microbe 

https://github.com/NBISweden/aMeta
https://github.com/NBISweden/aMeta
https://zenodo.org/record/8354933
https://snakemake.readthedocs.io/en/stable/snakefiles/best_practices.html#snakefiles-best-practices
https://snakemake.readthedocs.io/en/stable/snakefiles/best_practices.html#snakefiles-best-practices
https://github.com/snakemake-workflows/snakemake-workflow-template
https://github.com/snakemake-workflows/snakemake-workflow-template
https://conda.pydata.org/
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in a metagenomic sample was set randomly, and the addition of host-associated and con-
taminant fractions sums up to 1 per sample. We simulated reads belonging to 18 ancient 
and 17 modern microbes. The list of simulated microbial organisms is shown below:

Ancient: Campylobacter rectus, Clostridium botulinum, Enterococcus faecalis, 
Fusarium fujikuroi, Mycobacterium avium, Mycolicibacterium aurum, Neisseria 
meningitidis, Nocardia brasiliensis, Parvimonas micra, Prosthecobacter vanneer-
venii, Ralstonia solanacearum, Rothia dentocariosa, Salmonella enterica, Soran-
gium cellulosum, Streptococcus pyogenes, Streptosporangium roseum, Yersinia pestis, 
Bradyrhizobium erythrophlei
Modern: Acanthamoeba castellanii, Aspergillus flavus, Brevibacterium aurantiacum, 
Burkholderia mallei, Lactococcus lactis, Methylobacterium bullatum, Micromonas 
commoda, Micromonospora echinospora, Nonomuraea gerenzanensis, Pseudomonas 
caeni, Pseudomonas psychrophila, Pseudomonas thivervalensis, Vermamoeba ver-
miformis, Rhodococcus hoagii, Rhodopseudomonas palustris, Mycobacterium riyad-
hense, Planobispora rosea

For ancient microbial reads, we implemented deamination/damage pattern with the 
following Briggs parameters [27, 28] in gargammel: -damage 0.03,0.4,0.01,0.3. The sim-
ulated ancient reads were fragmented and followed a log-normal distribution with the 
following parameters –loc 3.7424069808 –scale 0.2795148843, which were empirically 
determined from the Y. pestis reads in another project [35]. Illumina sequencing errors 
were added with the ART module of gargammel to both modern and ancient reads. 
Finally, Illumina universal sequencing adapters were used, which resulted in 125 bp long 
paired-end reads. Each simulated metagenomic sample contained 500,000 ancient and 
500,000 modern DNA fragments. The total microbial DNA fraction varied as 0.7, 0.7, 
0.7, 0.5, 0.5, 0.5, 0.4, 0.3, 0.3, 0.3 between samples 1 and 10, i.e., the microbial DNA per-
centage varied between 30 and 70% per sample, with the remainder of the reads belong-
ing to human DNA. The codes used for generating ground truth microbial abundances 
as well as simulating ancient metagenomic reads are available on GitHub: https:// github. 
com/ Nikol ayOsk olkov/ aMeta via Zenodo https:// doi. org/ 10. 5281/ zenodo. 81308 19.

Computation of evenness of coverage

The evenness of coverage plot in Fig. 4 is computed by aMeta from BAM alignments, 
produced by MALT or Bowtie2, by splitting the reference genome in 100 bins, counting 
the number of reference positions covered by at least one aligned read within each bin, 
and normalizing this count by the total number of genomic positions in each bin. Tech-
nically, this procedure is performed via the samtools depth command from SAMtools 
with -a flag [29]. This command produces a file reporting the number of reads cover-
ing all positions of the reference genome. By definition, the number of genomic posi-
tions covered at least once and normalized by the total number of genomic positions 
represents the breadth of coverage. Therefore, the evenness of coverage plot produced 
by aMeta in Fig. 4 can be considered as a local breadth of coverage computed in each 
bin across the reference genome. It is expected that a good evenness of coverage has few 
or no bins with a value of zero. Therefore, although the genome-wide average breadth 

https://github.com/NikolayOskolkov/aMeta
https://github.com/NikolayOskolkov/aMeta
https://doi.org/10.5281/zenodo.8130819
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of coverage can be very low in shotgun ancient metagenomic studies due to overall low 
sequencing depth, an even distribution of the reads provides a good hint of microbial 
presence in a sample, which can be followed up by deeper sequencing or target enrich-
ment (capture) experiments. See Additional file 2: S3 for more details.
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