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Abstract 
In machine learning, a sub-field of computer science, a two-tower architecture model is a specialised type 
of neural network model that encodes paired data from different modalities (like text and images, sound 
and video, or proteomics and gene expression profiles) into a shared latent representation space. 
However, when training these models using a specific contrastive loss function, known as the multimodal 
infoNCE loss, seems to often lead to a unique geometric phenomenon known as the modality gap. This 
gap is a clear geometric separation of the embeddings of the modalities in the joint contrastive latent 
space. This thesis investigates the modality gap in multimodal machine learning, specifically in two-tower 
neural networks trained with multimodal-infoNCE loss. We examine the adequacy of the current definition 
of the modality gap, the conditions under which the modality gap phenomenon manifests, and its impact 
on representation quality and downstream task performance. 

The approach to address these questions consists of a two-phase experimental strategy. Phase I involves 
a series of experiments, ranging from toy synthetic simulations to true multimodal machine learning with 
complex datasets, to explore and characterise the modality gap under varying conditions. Phase II 
focuses on modifying the modality gap and analysing representation quality, evaluating different loss 
functions and their impact on the modality gap. This methodical exploration allows us to systematically 
dissect the emergence and implications of the modality gap phenomenon, providing insights into its 
impact on downstream tasks, measured with proxy metrics based on semantic clustering in the hared 
latent representation space and modality-specific linear probe evaluation. 

Our findings reveal that the modality gap definition proposed by W. Liang et al. 2022, is insufficient. We 
demonstrate that similar modality gap magnitudes can exhibit varying linear separability between 
modality embeddings in the contrastive latent space, and varying embedding topologies, indicating the 
need for additional metrics to capture the true essence of the gap. 

Furthermore, our experiments show that the temperature hyperparameter in the multimodal infoNCE loss 
function plays a crucial role in the emergence of the modality gap, and this effect varies with different 
datasets. This suggests that individual dataset characteristics significantly influence the modality gap's 
manifestation. A key finding is the consistent emergence of modality gaps with small temperature settings 
in the fixed temperature mode of the loss function and almost invariably under learned temperature mode 
settings, regardless of the initial temperature value. Additionally, we observe that the magnitude of the 
modality gap is influenced by distribution shifts, with the gap magnitude increasing progressively from the 
training set to the validation set, then to the test set, and finally to more distributionally shifted datasets. 

We discover that the choice of contrastive learning method, temperature settings, and temperature values 
are crucial in influencing the modality gap. However, reducing the gap does not consistently improve 
downstream task performance, suggesting its role may be more nuanced than previously understood. 
This insight indicates that the modality gap might be a geometric by- product of the learning methods 
rather than a critical determinant of representation quality. Our results encourages the need to reevaluate 
the modality gap's significance in multimodal contrastive learning, emphasising the importance of dataset 
characteristics and contrastive learning methodology. 
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Gapet i Maskinernas Mentala Värld
Populärvetenskaplig Sammanfattning

Mohammad Al-Jaff

Artificiell intelligens (AI) handlar om att utveckla algoritmer som gör att maskiner
kan uppfatta, lära, resonera och fatta beslut i realistiska och sv̊ara miljöer. Fokus i
denna uppsats ligger p̊a maskininlärning, där algoritmer tränas att göra prediktera
fr̊an, och lära sig av data. Istället för att programmerare kodar exakta instruktioner,
använder man här algoritmer p̊a träningsdata för att skapa intelligenta system.

Denna uppsats fokuserar p̊a multimodal maskininlärning, vilket innebär att träna
datorer att representera världen genom att kombinera olika datatyper, som bilder,
text och ljud, för att skapa en mer heltäckande först̊aelse. Multimodal data är kom-
binator av tv̊a eller flera typer av sammanlänkande datatyper, s̊a som t ex ljud-
klipp+videoklipp. Utmaningen är att sammanföra dessa för att bilda en enhetlig
bild. Vi använder en ’Tv̊atornsarkitekturmodell’ för att hantera dessa olika datatyper.
Modellen best̊ar av tv̊a separata enheter, var och en specialiserad p̊a en typ av data,
med målet att skapa en meningsfull representation när dessa kombineras.

Ett centralt problem är ’modalitetsgapet’, som uppst̊ar när olika datatyper inte inte-
greras väl i modellens ’mentala rum’ när man tränar dessa modeller med en populär
inlärningsalgoritm som kallas kontrastinlärning. ’Modalitetsgapet’ kan ses som en
missmatch mellan olika datatyper, vilket kan göra det sv̊art för AI baserade system
att behandla dem som delar av samma helhet. Fas ett av denna uppsats handlar om
att utforska när och hur ’modalitetsgapet’ uppst̊ar. Fas tv̊a av uppsatsen fokuserar
p̊a att undersöka vilka metoder som kan stänga ’gapet’ samt utforska fr̊agan om
’modalitetsgapet’ alls utgör ett problem. Resulterar ett större ’gap’ alltid i en sämre
presterande modell?

Huvudresultaten visar att fokus bör ligga p̊a hur man tränar modeller snarare än
att bara försöka stänga gapet. Olika metoder kan prestera lika bra trots att de
har olika stora ’modalitetsgap’. Till exempel genererar standardmetoden (CLIP
loss) för kontrastinlärning oftast ett ’modalitetsgap’ vid l̊aga värden för temperatur-
hyperparametern (givet att denna inte är en konstant). Ytterligare p̊averkas
’modalitetsgapet’ mycket av vilken typ av underliggande data som används d̊a vissa
dataset, oberoende av metod och modell, alltid genererar ett ’gap’.

Satt i en större kontext kan dessa resultat bidra till att underbygga den forskning som
visar p̊a att ’modalitetsgapet’ inte är ett grundläggande hinder i strävan efter bra AI
system. D̊a ett större ’gap’ inte nödvändigtvis betyder en sämre presterande modell
behöver enbart existensen av ett ’gap’ inte p̊averka effektiviteten hos ett AI-system.
Strategier som kan användas för att övervinna gapet behöver inte resultera i en bättre
presterande modell. Insikterna som erh̊alls här bidrar, inte bara till större akademisk
först̊aelse, utan ocks̊a med kunskap vid utveckling av avancerade AI-system.
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Reproduciblability and Transparency efforts:
- Code available at:
GitHub code base - Click here. Or go to
https://github.com/MohammedAlJaff/kth-thesis-code

- Original Raw Data and Results available at (each line is the link):

• Synthetic toy simulations - Learned mode CLIP loss

• Synthetic toy simulations - Fixed mode CLIP loss

• Pseudo multimodality Experiments - Dataset:MHD

• Latent Dim. Experiments - Dataset:MHD

• Experiments - Dataset:MHD

• Experiments - Dataset:CITE - metrics across training

• Experiments - Dataset:CITE - final metrics

Disclaimer: The use of language software services and large language models have
been carefully employed in the writing and editing of this thesis. These tools were not
used to generate, copy, or paste text that the author did not input, or, not fully un-
derstand or claim as their own original work. Instead, these tools have served specific
functions: 1)Aid in Dictation to transcribe spoken words into text. 2) Sanity Check-
ing to validate consistency and coherence of arguments. 3) Avoiding grammatical
and spelling mistakes and enhancing readability to identify and correct grammatical
and syntactical errors as well as to improve the flow and structure of the text. 4)
Generation/Transformation into LaTeX Outputs to assist in technical writing and
formatting. All results and methods in this thesis are either the author’s own work or
properly cited creations of others. The use of language models does not compromise
the originality or integrity of the work presented in this thesis.
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Part I

Introduction

Broad working definitions of Multimodality in Machine Learning
(Parcalabescu, Trost, and Frank 2021)

“ ”Our experience of the world is multimodal – we see objects, hear sounds, feel
textures, smell odours, and taste flavours. Modality refers to how something happens
or is experienced”. (Baltrusaitis et al. 2019)

”In the representation learning area, the word ’modality’ refers to a particular way or
mechanism of encoding information.” (Guo et al. 2019) ”
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1 Introduction

This introductory chapter is meant to give a general overview of the thesis topic and
project and describe the fundamental research questions posed in this thesis. Finally,
I will provide a quick overview of the structure and outline of the thesis.

1.1 The long story put very short

Within the computer science sub-field of machine learning, a specialised neural net-
work architecture known as the two-tower architecture model effectively encodes data
from multiple modalities, such as (text and images) or (sound and video) or (pro-
teomics profiles and gene expression profiles), into a shared latent representation
space. However, a peculiar geometric phenomenon arises when employing a partic-
ular contrastive loss function called multimodal infoNCE loss. This phenomenon,
termed the ”modality gap”, is characterised by a distinct geometric separation of
the modalities in the joint contrastive latent space W. Liang et al. 2022. This sep-
aration can be so extreme that modality specific embeddings can be separated from
each other by a hyperplane. This modality gap phenomenon seems to show up in a
host of large-scale and popular multimodal models applied to various other modality
combinations, the most prominent one being OpenAI’s Contrastive-Language-Image-
Pretraining (CLIP) model (CLIP 2023). This modality gap phenomenon is the focus
of this thesis; why does it come about and under what conditions does it appear?
Does the loss function contribute to or ’cause’ the modality gap phenomena? Does
the presence and (limited?) expressive capabilities of neural network encoders cause
or contribute to the modality gap phenomena? Are we using the right combinations
of metrics to characterise what we think is the ’modality gap’ phenomenon? Does the
degree of this modality gap phenomenon affect the performance when these models
are repurposed for other downstream tasks? These are the central questions posed
in this thesis. The main ’why’ of this thesis can be framed as ’Is the modality gap
something to be worried about? And if so, what can we do about it?’ The ’Why is
this important to study?’ of this thesis is instead ’is this an important issue to be
worried about when we train multimodal machine learning models to learn a joint
representation when using contrastive loss functions?”

If this section makes sense to the reader, then they are advised to go straight to
section 1.3. However, if most of the words were utterly foreign and/or the reader
feels that they have not been exposed to machine learning terminology before, please
continue reading. The following section aims to gently introduce the reader to the
thesis topic by guiding them briefly through the context: first, the bigger context
then, bit by bit, delve into the basic description of this thesis project.
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1.2 The gentle, brief and basic version + context

The world is multimodal. Humans sense the world via vision, tactility, sound, taste,
and olfactory modalities. One can argue that the ability to sense multiple modalities
makes organisms well-adapted to their environments. This also implies that what
makes humans and animals intelligent is their ability to synthesise information and
reason about the world from all of these modalities together to achieve goals in various
environments. Using multiple modalities well and representing them in a holistic com-
putational ’space’ in the domains of AI, Robotics, Machine Learning, and Computer
Vision is the main topic of this thesis project. Multimodal datasets are datasets
which comprise multiple modalities. Such datasets can be categorised by the number
of modalities, presence of class labels, paired modalities, and any missing modalities.
My primary interest lies in datasets with paired data across two modalities, symbol-
ised as D = {(x1

i ,x
2
i }Ni=1 or D = {(x1

i ,x
2
i ,yi)}Ni=1, based on label availability. x1

i and
x2
i are raw representations from two modalities, indicated by the superscript, for the

same underlying ’thing’. This pair we will always refer to as ’positive pairs’, and yi

is the label/class of the pair if such a thing is available. Figure 1 below illustrates
a two-modality dataset of four positive data pairs. The two modalities present here
are short video clips and their audio tracks. The dataset is also labelled since each
positive pair comes with an annotation of what class these pairs belong to.

Figure 1: An illustration of a paired and labelled multimodal dataset. Two modalities: video clip and
audio clip, and the class label of each pair.

Machine learning, a subset of Artificial Intelligence, revolves around designing systems
and algorithms capable of drawing insights from data. Typically, these insights are
derived from ”models” trained on data collections, often denoted by D = {(xi, yi)}N
for labelled datasets and D = {xi}N for unlabeled ones. The essence of a model is
its capacity to transform raw data representations, x, into more meaningful forms
using some parameterised mathematical or algorithmic function, expressed as f :
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x → f(x; θf ), where θf denotes the collection of parameters specifying a particular
function f in some functional family F . In the context of this thesis, we will often
use the words ’encoders’ and ’models’ to refer to these functions f(x; θf ).

The process of ”learning from data” is fundamentally about determining the op-
timal parameters θf for the model such that it minimises an empirical loss function
a quantitative score of the deviation between the model’s output from a target ground
truth value score of the parameters; described mathematically as:

θ∗f = argθf min
1

N

N∑
i=1

Li(yi, f(xi : θf )) (1)

Constructing models that can incorporate multiple data modalities is a significant
aspect of multimodal machine learning (P. P. Liang, Zadeh, and Morency 2022).
The overarching goal is to craft intelligent systems proficient in real-world perception,
recognition and interaction using multiple sensory data. One principal challenge of the
field is to derive common joint/aligned representations from the different modalities.
Human cognition often integrate diverse sensory inputs into unified concepts, and
analogously, these shared representations in machines should demonstrate an
ability to recognise signals from different modalities with the same underlying concept.

Figure 2: General Multimodal Machine learning Model for joint representation learning. The modalities
depicted here are image-text pairs. Inspired from from W. Liang et al. 2022

The model architecture depicted in figure 2 is referred to as the ”two-tower archi-
tecture model” (Yuhao Zhang et al. 2022) is commonly used for learning multimodal
representations where we want to ’align’ the learned representations of each modality
(P. P. Liang, Zadeh, and Morency 2022). The core components of this model archi-
tecture are modality-specific encoders, one for each modality, tasked to learn useful
embedding functions Enc1 : X 1 → Rz and Enc2 : X 2 → Rz, mapping data pairs
from each modality are transformed and encoded via modality-specific encoders into
modality-specific vector representations in a shared latent space: (x1

i ,x
2
i )→ (z1i , z

2
i ).

Within this space, one or more loss functions are applied to facilitate the learning
of a useful and structured joint representations. The definition of ”useful” for these
representations varies, depending on the specific application or intended downstream
use.
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This type of architecture, once trained, aims at representing multimodal data in a
way that encapsulates intrinsic semantic structures of the information. The semantic
structure of a representation refers to the principle that similar items should ideally
be closer in the learned latent representation space while dissimilar items should be
farther apart. This means that representations of items that share attributes, classes,
or types should cluster closer in this space, effectively grouping ’like with like’. For
instance, representations of woodland images during winter should be closer together
compared to representations of urban garages. Similarly, sound clips capturing birds
chirping in forests should have embeddings that group them distinctly apart from the
sounds of bustling automotive factory environments.

Learning such structured representations benefits numerous downstream tasks.
These tasks range from classification, modality-to-modality retrieval, cross-modality-
inference, etc. and serve as practical applications where pre-trained models can be
employed directly or transferred to new scenarios. One prevalent approach is to use
frozen encoders, where the pre-trained weights of the architecture are kept fixed. This
results in a fixed but meaningful latent representation passed through a task-specific
layer for prediction or inference tasks.

Furthermore, ensuring semantic coherence between different modalities becomes cru-
cial, especially when considering cross-modality inference. Here, the architecture’s
capability to perform tasks like using text to query an image database or using image
data to generate descriptive text comes into play. Such alignment between modalities
in downstream tasks serves as a validation for the quality of the learned representa-
tions, affirming the architecture’s robustness and versatility.

This inter-modality semantic structure can be thought of as ’alignment’ between em-
beddings of different modalities, creating a harmonised representation space where
contextually related items from varied modality sources are aligned. Figure 3 depicts
an idealised illustration of this desired outcome. Before training models, each modal-
ity embedding is randomly initialised to be projected somewhere in the latent space
(left sphere). Ideally, we want to end up with a learned representation that resem-
bles the right sub-figure, where not only do we have between-modality overlap and
alignment between positive pairs, but also semantic structure within each modality’s
embeddings: all things’ stars’, ’circles’, and ’points’ are clustered properly together
yet apart from each other.

To facilitate the learning of semantically structured representation, one approach is
contrastive representation learning. This general collection of methods seeks
to minimise a contrastive loss functions to ensure that similar items from both
within and across modalities are represented closely in the joint latent space while
ensuring ”dissimilarity” is emphasised for items that are semantically different. Con-
trastive loss functions come in many flavours, but the essential of these involve forc-
ing the encoders of multimodal models to align representations of positive pairs
(z1i , z

2
i )) while encouraging non-alignment between any and all negative pairs
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Figure 3: Illustration of the transition from initial representation and an ideal final learned representation
during training of multimodal contrastive representation learning models.

(z1i , z
2
k), i ̸= k. The general mathematical framework for contrastive loss functions

can be expressed as:

Lcontrastive =
N∑
i=1

disgreement(z1i , z
2
i ;ϕ) +

∑
i ̸=k

agreement(z1i , z
2
k;ψ) (2)

where ψ and ϕ being possible hyperparameters for these loss-functions. Note that
here, conceptually, minimising the loss amounts to both minimisingdisagreement be-
tween positive pairs and minimising agreement between non-negative pairs across a
multimodal dataset. By minimising the disagreement between positive pairs while
also minimising the agreement of negative pairs, the overall loss function is also min-
imised. Note that we use the term ’minimising the agreement’ for negative pairs and
not, say, maximising the negative of the disagreement between positive pairs’. This
is deliberate because the latter would imply the idea that all and any negative pairs
should have an ”opposite” representation: something that would both be impossible
and useless from a geometric point of view.

One specific famous instance of the multimodal two-towers model trained to minimise
a multimodal contrasted loss is OpenAI’s CLIP model for image-text modalities, de-
picted in figure 4 (Radford et al. 2021). As seen from the figure, given an image
ximg and its corresponding text-captions xtext, CLIP encodes these into a shared nor-
malised latent space (technical details mentioned later), meaning that these encoding
vectors, zimg and ztext have unit length and thus ’live’ on a unit hypersphere. CLIP
then is trained using a specific type of multimodal contrastive loss function, which
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essentially encourages the embeddings of an image to be closer to its text/caption
embedding than to any other caption, and vice versa for a caption embedding w.r.t
its corresponding image embedding relative to all other image embeddings.

Figure 4: The two tower / CLIP style architecture and its training on bimodal paired data (images
and text). For a collection of image-text pairs (img). Adapted from Radford et al. 2021. Used with
permission from first author Alec Radford.

When training neural network-based encoders to transform multiple modalities into
a shared representation space via contrastive learning, a peculiar phenomenon seems
to emerge, this phenomenon, termed the ”modality gap”, is characterised by a
distinct geometric separation between modalities in the joint latent representation
space W. Liang et al. 2022. This separation can be so extreme that the embeddings
of each modality become linearly separable. This modality gap phenomenon seems
to not only show up in CLIP but in a host of other two tower models trained with
contrastive loss functions for various other modalities, (W. Liang et al. 2022) In figure
5 Each sub-graph depicts a visualisation of the latent spaces of four different CLIP
style models train on different modality pairs (The visualisation method used here is
a very common dimensionality reduction method to visualise high dimensional data,
the particular one used here is the UMAP: Uniform Manifold Approximation and
Projection for Dimension Reduction method) In each case, we see a complete geo-
metric separation between each modality embedding. These modality gap phenomena
are the focus of this thesis; why this comes about under what conditions it appears
and whether it even matters for downstream performance are the central questions
posed. This thesis’s main ’why’ can be framed as ’Is the modality gap something to
be worried about? And if so, what can we do about it?’
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Figure 5: The observed modality gap phenomenon for several trained multimodal models trained in a
similar fashion to Radford et al. 2021 . W. Liang et al. 2022 (Figure used with permission by Prof. James
Zou (Stanford))
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1.3 Technical Project Description, Context and Problem Formulation

Relevant to the modality gap phenomenon, the specific version of the general two-
tower architecture model used in learning bimodal dataset in multimodal contrastive
representation learning that will be considered in this thesis is depicted in figure 6
below: Let D = {(x1

i ,x
2
i , yi)}Ni=1 be a bimodal paired and labelled dataset of size N .

Figure 6: The two tower architecture model for (self-supervised) multimodal contrastive representation
learning with contrsastive loss

For all positive pairs (x1
i ,x

2
i ), the two tower model encodes each modality specific

xm
i by its modality specific encoders, depicted as fθf and gθg . These will be neural

networks parameterised by θf and θg respectively. Each of these encoders outputs
modality-specific vectors

x1
i → fθf (x

1
i ) = h1

i ∈ Rd1h (3)

x2
i → gθg(x

2
i ) = h2

i ∈ Rd2h (4)

in modality-specific intermediate latent spaces, which we’ll call h-space(s). In gen-
eral, these do not have to be the same size for each modality because the model
allows for encoder flexibility. These intermediate vectors then get projected into the
same joint/shared latent space where contrastive loss functions can be applied to the
embeddings during model training. These projections are done via modality-specific
”projectors”, essentially any function that maps intermediate representations to a
normalised latent space, Rdh → Rdz , these projectors denoted here as vθv and uθu :
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h1
i → vθv(h

1
i ) = z1i ∈ Rdz , ||z1i ||2 = 1 (5)

h2
i → uθu(h

2
i ) = z2i ∈ Rdz , ||z2i ||2 = 1 (6)

It is in this space, which we’ll call z-space, where a contrastive loss function is used
throughout training to force the model to learn ’useful’ between-modality and within-
modality representations, according to the general notions that were mentioned in the
previous section.

Much like the cartoon illustration of figure 3 of what an ideal representation should
look like, figure 7 shows a more realistic simple toy version of a multimodal contrastive
representation learning run. The first column provides a zoomed-in view of the latent
space, showing the embeddings from each modality; points are coloured based on
their modality. The second column is similar to the first, but points are coloured
based on their semantic labels. The third column offers a global view of the latent
space, illustrating the distribution of embeddings from both modalities. All plots
are shown in spherical coordinate projections. Each row is a snapshot of the learned
representation at some epoch. The top row indicates the beginning of training and
progresses downward, whereas the last row is the final learned representation at the
end of training (the precise epochs each row corresponds to is not important, only
the dynamics of the learned representation from start to finish). We begin (top row)
with modality embeddings in distinct regions where there is no between- and within-
modality clustering structure present. At the end of the training, we end up with
very good overlap between the two modalities while also exhibiting good semantic
clustering both within and between modalities by how points of the same semantic
category (depicted as different colours).

The specific contrastive loss that will be at the core of this project is the so called
Info-NCE loss function (Yuhao Zhang et al. 2022), (Radford et al. 2021), (Oord,
Yazhe Li, and Vinyals 2019) , made popular in a multimodal representation learning
version and context by OpenAI in when developing and training their image-and-text
Contrastive Language Image Pretraining (CLIP) model Radford et al. 2021, (CLIP
2023). In this thesis, we will call this multimodal infoNCE loss function simply as
CLIP-loss, defined mathematically as :

L(1) := − 1

N

N∑
i=1

log
exp((z1i · z2i )/τ)∑N
k=1 exp((z

1
i · z2k)/τ)

(7)

L(2) := − 1

N

N∑
i=1

log
exp((z1i · z2i )/τ)∑N
k=1 exp(z

1
k · z2i )/τ)

(8)
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Figure 7: A more realistic illustration of desired learned representations during bimodal contrastive
representation learning, where the contrastive latent space is the unit sphere in R3.
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LCLIP =
1

2

[
L(1) + L(2)

]
(9)

Where the summation N represents the batch size. The hyperparameter of this loss
function is the so-called temperature τ , which scales the similarities. It can be
either fixed and global or set as an additional learned parameter during training.
In the fixed temperature mode CLIP, τ is constant, whereas in the learned
temperature mode CLIP , τ is a trainable/learnable parameter.

Note that the expressions inside the logarithms are essentially softmax functions ap-
plied over the similarity scores between positive modality pairs.

softmax(x)i =
exi∑n
j=1 e

xj
(10)

The soft max function transforms these similarity scores into a quisi-probability dis-
tribution. Specifically, for each positive pairs of embeddings z1i and z2i . The logarithm
in the loss function is associated with the cross-entropy loss function in multi-class
classification. The − log term penalises the model more when it incorrectly assigns
high probabilities to non-matching pairs (when placing negative pairs close to each
other) and rewards it when placing positive pairs close to each other. The purpose
of this loss function is to ensures that embeddings from corresponding pairs (z1i and
z2i ) are closer in the embedding space, while distancing those from non-corresponding
pairs. In other words, CLIP loss turns the problem of placing positive pair embed-
dings near each other into a classification problem.

One final thing to note is that the loss function in no way uses any label/annotation
information for the datapoints, only that we are given a pairing between points from
different modalities. As such, using CLIP loss for learning representations makes it a
non-supervised learning task.

1.3.1 The Modality Gap Phenomenon & Previous Work

The concept of ”modality gap” in multimodal datasets, first identified by W. Liang
et al. 2022, refers to a distinct separation in the contrastive latent space, or z-space,
of embeddings from different modalities. Let Z1 = {z1i }Ni=1 and Z2 = {z2i }Ni=1 rep-
resent these embeddings for two modalities in a dataset. This gap often appears as
a clear geometric divide between Z1 and Z2 (see figure 5), and in some cases, is
nearly linearly separable. This indicates a lack of alignment or overlap in the post-
training distributions of modality-specific embeddings. The modality gap measure, as
defined by W. Liang et al. 2022, is the difference between the means of each modality
embedding:
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∆gap =
1

N

N∑
i=1

z1i −
1

N

N∑
i=1

z2i (11)

This phenomenon is observed in models trained with CLIP loss, across various multi-
modal datasets, neural network architectures, and temperature settings in CLIP loss.
Figure 8 shows two instances of this gap in a biological sequencing dataset, trained
with a two-tower model using CLIP loss. The first example depicts two facing fronts
with aligned semantics, while the second shows two distinct rings separated by the
gap.

The authors of W. Liang et al. 2022 attribute this gap to the ’cone-effect’, initial
differences in projected embeddings from each encoder, and the contrastive learn-
ing process itself. They suggest that adjusting the gap distance post-training could
improve performance in tasks like zero-shot classification and fairness. Additionally,
Yuhui Zhang et al. 2023 provides evidence of the gap’s geometry being perpendicular
to each modality embedding plane.

Udandarao 2022 conducted a comprehensive analysis of the modality gap in vision-
text models, offering insights from simulating multimodal contrastive representational
learning on the unit-hypersphere. Their focus centred on the concepts of ’alignment’
and ’uniformity’, as introduced by T. Wang and Isola 2020, and their relationship
with the contrastive loss landscape.

Shi et al. 2023 delve deeper into the topic specific to CLIP-style multimodal represen-
tation learning method arguing that the modality gap phenomenon is actually linked
to local minima within the CLIP loss function. They demonstrate through proof-
of-concept experiments that these local minima are challenging to avoid in practice,
offering new insights into the underlying causes of the modality gap, prime of these
is the inclusion of between positive pair terms in the denominator of the CLIP loss
function.

The work of Poklukar, Vasco, et al. 2022 indirectly addresses the modality gap by
primarily focusing on enhancing alignment between positive pairs in multimodal data.
Their approach is particularly relevant for learning representations that are robust,
especially in scenarios where certain modalities might be missing during testing. This
work predates the reporting of the modality gap phenomenon by W. Liang et al.
2022, and therefore does not explicitly mention the gap. However, their evaluation of
representation alignment, using dimensionality reduction methods and topologically
inspired metrics like Delaunay Component Analysis (DCA) (Poklukar, Polianskii, et
al. 2022), indirectly contributes to the understanding of this gap. Their framework
can be seen as a generalisation of the two-tower model, featuring a single shared
projector for all modality-specific embeddings. The set of loss functions they propose
aims to promote alignment and robustness to missing modalities at the inference
stage. The findings from their study suggest that this alignment generally leads to
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improved quality of learned representations in some cases, indicating the potential
significance of addressing the modality gap.

Against the urge of wanting to close the modality gap, Jiang et al. 2023 suggested the
creation of multiple meaningful latent spaces by projecting onto different orthogonal
sub-spaces. The authors reason that focus on aligning modalities complete results in
models only accounting for the shared information present in both modalities while
discounting any within-modality specific information. Their proposed framework al-
lows for both between-modality multimodal contrastive learning and within-modality
self-supervised learning (akin to methods like SimCLR (T. Chen et al. 2020), and
MoCo (X. Chen et al. 2020) for within-modality contrastive learning). The authors
propose novel intra- and inter-modality regularisation techniques, demonstrating their
efficacy in various computer vision and image-text translation tasks.

Figure 8: Modality gap examples when the contrastive latent space is the unit sphere, in R3. Left sup-
figures are coloured based on modality. Right sub-figures are coloured according to class labels.

According to figure 6, multimodal contrastive representation learning consists of sev-
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eral key ’components’ and ’elements’: the specific multimodal dataset being used, the
choice of modality-specific encoders used, and the specific choice of the multimodal
contrastive loss function and its specific choice of the values of its hyperparameters.
Based on these elements, when trying to seek a ’blame’ and ’reason’ for the modality
gap phenomenon a la W. Liang et al. (2022), we can ask the following broad question
to guide our investigative efforts, these making up the key research questions of this
thesis.

1.4 Key Research Questions

1. Does the definition of the modality gap adequately encapsulate the observed
separation of modality embeddings within the latent space?

2. Under what specific conditions does the modality gap become apparent in var-
ious multimodal datasets when using CLIP loss function as contrastive loss
function, and are these conditions consistent across datasets or particular to
individual ones?

3. What are the main drivers of the modality gap, and is it possible to system-
atically measure or neutralise their effects within the representation learning
framework?

4. Following the identification of the elements that contribute to the modality gap,
what approaches can be formulated to diminish or entirely close the gap under
certain conditions?

5. How does the modality gap influence performance on downstream tasks? In
essence, is there a notable difference in outcomes when the modality gap is
managed or resolved?

28



1.5 Approach

In this thesis, we will explore our primary research questions through a two-phase
approach, each phase comprising computational experiments involving the training
or simulated training of two-tower multimodal contrastive representation learning
models.

• Phase I: Exploring and Characterising the Modality Gap under CLIP
Loss

1. Experiment Set 1: Toy Synthetic Simulations with CLIP Loss
In this set, we will isolate the impact of the CLIP loss function on the
modality gap. We will use a synthetic dataset to simulate the representa-
tion learning process, thereby avoiding potential confounding factors from
datasets or neural network encoders.

2. Experiment Set 2: Pseudo-Multimodal Contrastive Learning
with CLIP Loss
We will use real-world data processed through neural network encoders in
this experiment. By employing ’pseudo-multimodal’ datasets, which use
identical data for both modalities, we aim to negate the influence of inher-
ent information differences between modalities in multimodal datasets.

3. Experiment Set 3: True Multimodal Contrastive Learning with
CLIP Loss
In this set, we will conduct experiments with genuine multimodal datasets
from various sources, including a basic dataset and a more complex biolog-
ical dataset in the single-cell -omics field. Our goal is to verify whether the
findings on the modality gap are consistent with the previous experiment
sets.

• Phase II: Influencing the Modality Gap and Analysing Representa-
tion Quality

1. Experiment Set 4: Modifying the Modality Gap in Multimodal
Contrastive Learning
We will evaluate various loss functions or approaches to multimodal con-
trastive representation learning to determine if they can influence the
modality gap and enhance representation quality. We will test and com-
pare nine different methods against the baseline established in Phase I’s
third experiment set.
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1.6 Thesis Structure

Part II: Background

• Chapter 2: Background
Focuses on foundational concepts, including mathematical preliminaries (Sec-
tions 2.1 to 2.1.6), neural networks (Section 2.2), deep learning optimisation
(Section 2.3), logistic regression, and visualisation techniques (Sections 2.4 to
2.6).

Part III: Methodology

• Chapter 3: Methodology I - Datasets and Model Architectures
Discusses the datasets (Section 3.1) and model and encoder architectures (Sec-
tion 3.2), along with linear projectors (Section 3.3).

• Chapter 4: Methodology II - Metrics for Characterising and Evalu-
ating Learned Representations
Details metrics for evaluating learned representations (Sections 4.1 to 4.4).

• Chapter 5: Methodology III - Phase and Experiment Set-Up & Al-
ternative Contrastive Loss Methods
Elaborates on methodology for phases of experiments (Sections 5.1 and 5.2) and
various methods to influence the modality gap (Section 5.3).

Part IV: Results

• Chapters 6-9: Results
Presents key observations, results and outcomes of experiments across Phases I
and II.

Part V: Discussion and Conclusions

• Chapter 10: Discussion
Discusses results in a broader research context, addressing research questions,
limitations of the thesis work, and possible future work.

• Chapter 11: Conclusions
Synthesises key findings and contributions, followed by acknowledgements.
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Part II

Background

2 Background

This chapter aims to provide the relevant background and prerequisite knowledge
underlying the major components, ideas and methods used in this thesis. Three
areas of information will be presented briefly here: mathematical concepts, neural
network and optimisation concepts and a description of one of the key visualisation
plots used in reporting the results.

2.1 Mathematical Preliminaries

The section will provide the core mathematical concepts relevant for the understand-
ing of many of the evaluation metrics of learned representations and the mathematical
concepts underlying some of the alternative contrastive loss functions we will use in
this thesis.

2.1.1 The Euclidean Distance and Cosine Similarity

Much of the effort of this thesis will revolve around notions of distance between points
and similarity between points. The main concepts of relevance here are the Euclidean
distance, the cosine similarity, and their relationship. Let x and y be any two vectors
in RD. The Euclidean distance between them is defined as:

deuclidean(x,y) =
√
∥x− y∥2 =

√√√√ D∑
i

(xi − yi)2 (12)

The cosine similarity between x and y captures the angle of separation between the
two vectors, and is defined as:

cosim(x,y) =
x · y
∥x∥∥y∥

(13)

Almost always in this thesis, we will use the cosine similarity on unit-normalised
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vectors, i.e. vectors where ∥x∥ = 1. This simplifies the cosine similarity formula
down to the simple dot product:

cosim(x,y) = x · y, ∀x,y : ∥x∥ = ∥y∥ = 1 (14)

The relationship between the euclidean distance between any two unit-normalised
vectors and their cosine similarity is:

(deuclidean(x,y))
2 = 2 + 2cosim(x,y) (15)

2.1.2 Distance and Similarity Matrices of a collection of points

Let X = xi
N denote a collection of N points in any dimension. The distance matrix

D is the matrix where the i, j′th element, Di,j , of the matrix represents the distance
between the points xi and xj, ie

Di,j = d(xi,xj) (16)

for some distance function d. Similarly, in this thesis, s usually represents any sim-
ilarity function between vectors. At times when we have indexed vectors xi and xj,
their similarity will shorthanded as sij = s(xi,xj)

2.1.3 Unit Hyperspheres

The unit circle in two dimensions and the unit sphere in three dimensions both have
a radius equal to 1. The unit hypersphere is a generalisation of these to arbitrary
dimensions. The unit hypersphere, also known as the n-sphere, is the set of points in
an Rn+1 space that is exactly unit distance away from the origin. Sn is the standard
mathematical notation for the n-spheres, defined formally as:

Sn = {x ∈ Rn+1 : ∥x∥ = 1} (17)

Note that the dimension surface of the hypersphere is one less than the ambient space
the hypersphere is embedded in. Normalised vectors in D dimensions can be viewed
as residing on the unit hypersphere SD−1. Thus, any two points can have at most a
Euclidean distance of two times the radius, which is equal to 2 when their is cosine
similarity is −1.
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2.1.4 Sampling Points on the Unit-Hypersphere: The Uniform Distribution,
The von Mises–Fisher Distribution and The PowerSphereical Distribution

During some computational experiments within this thesis, it becomes necessary to
’simulate’ the training process of multimodal contrastive representation learning al-
gorithms. A fundamental aspect of this simulation involves generating points on a
unit hypersphere based on sampling from specific distributions defined on the surface
of these hyperspheres. This section provides an overview of methods for sampling
from these distributions, starting with the uniform distribution, progressing to the
von Mises-Fisher distribution, and concluding its computationally more stable and
efficient version, the PowerSpherical distribution.

Uniform Distribution on the unit hypersphere U(Sd−1): This distribution
generates samples that are uniformly distributed over the surface of a unit hyper-
sphere in Rd. The algorithm for uniformly sampling points on a hypersphere surface
is surprisingly straightforward, as detailed by Marsaglia 1972. The procedure uses the
isotropic nature of the normal distribution, that is, its radial symmetry. Uniformly
sampling N points on the surface of a unit hypersphere in Rd effectively amounts to
simply sampling N points from the standard normal distribution in Rd and normal-
ising each sample point to have a unit length.

Algorithm 1 Uniform Sampling on the Surface of a Unit Hypersphere

1: procedure Input(dimension d, sample size N)
2: Initialise an empty list samples
3: Define a d-dimensional multivariate standard normal distribution N (0, Id).
4: for j ← 1 to N do
5: x← draw from N (0, Id)

6: norm←
√∑d

i=1 x
2
i

7: x′ ← x/norm
8: Append x′ to samples
9: end for
10: return samples
11: end procedure

The von Mises-Fisher distribution the PowerSpherical distribution : The
von Mises-Fischer (vMF) distribution is the equivalent of the multivariate normal
distribution in Rd, but constrained on the surface of the unit hypersphere instead.
Recall that the probability density function of the multivariate normal distribution
has its single mode at its ’mean’ µ ∈ Rd and tapers off according to the covariance
matrix. The von Mises-Fischer has a mode in the ’unit-direction’ µ on the unit
hypersphere, which then ’tappers’ off according to a concentration hyperparameter κ
which indicates how concentrated the probability mass is centred around the mean
direction µ (Banerjee et al. 2005). The probability density function of the von Mises-
Fisher distribution is given as:
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vMF (x;µ, κ) := p(x|µ, κ) = κd/2−1

(2π)d/2Id/2−1(κ)
eκµ

Tx (18)

The particular term Id/2−1(κ) in the denominator is a so-called Bessel function, which
is beyond the scope of this thesis, we refer the reader to Banerjee et al. 2005 for more
details.

In practice, sampling from the von Mises-Fisher distribution is computationally in-
efficient and numerically unstable when d is large. De Cao and Aziz 2020, deal with
these issues by proposing an approximation to it, the PowerSpherical distribu-
tion, which, in addition to having well-defined and tractable mathematical properties
(eg expectation, variance and entropy), deal with the short-comings of the von Mises-
Fisher distribution. According to the authors, the unnormalised probability density
function of the PowerSpherical is given by:

p(x : µ, κ) ∝ (1 + µTx)κ. (19)

Sampling from the PowerSpherical distribution for the unit-hypersphere in Rd is done
algorithmically by:

Algorithm 2 Pseudo code for Power Spherical sampling from De Cao and Aziz 2020

1: Input: dimension d, direction µ, concentration κ

2: sample z ∼ Beta
(
z; (d−1)

2
+ κ, (d−1)

2

)
3: sample v ∼ U(Sd−2)
4: t← 2z − 1
5: y ← [t;

√
1− t2v]T ▷ concatenation

6: µ̃← e1 − µ ▷ e1 is the base vector [1, 0, . . . , 0]T

7: µ← µ̃
∥µ̃∥2

8: x← (Id − 2µµT )y ▷ Id is the identity matrix d× d
9: Return: x

Note the use of the uniform distribution over the unit hypersphere (line 3) and the
Beta distribution on line 2 (please see any standard textbook on statistics and prob-
ability for more information on the beta function). Figure 9 illustrates three different
samples from the PowerSpherical distribution, each with directional means and con-
centrations. In this thesis, the PowerSpherical distribution will be used in the form
Python code provided by De Cao and Aziz 2020.
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Figure 9: Three samples from a von Mises-Fischer / PowerSpherical distribution on the surface of the
sphere, each sample coloured is generated using a directional mean µ and concentration κ. Image taken
and modified from De Cao and Aziz 2020, with permission by the author Prof. Wilker Aziz

.
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2.1.5 Information Theoretical Concepts

The following basic concepts from information theory will be useful to understand
the key workings one of the methods I propose to potentially influence the modality
gap phenomenon (see the AIEET method in chapter Methodology III).

Shannon Entropy & The Perplexity of a Distribution
The Shannon entropy of a discrete distribution p(x) is defined as (MacKay 2003):

H := −
∑
x

p(x) log2 p(x). (20)

We can think of the Shannon entropy as a measure of the ”spread” of the probability
distribution across the possible outcomes that x can take. The Shannon entropy is
highest when the spread is minimal and lowest when the distribution is ass uniform
as possible. For a probability distribution over a finite outcome space of size k where
all outcomes of x are equal, i.e. p(x) = 1

K
, the Shannon entropy is given by.

H(p) := −
∑
x

1

K
log2

1

K

=
∑
x

1

K
log2 k

=
K

K
log2K = log2K

(21)

.

The perplexity of a probability distribution p(x) is defined in terms of its Shannon
Entropy H(p) defined by:

Perp(p) := 2H(p) = 2−
∑

x p(x) log2 p(x) (22)

One way to think about the perplexity is as as a measure of the effective number
of outcomes of the the distribution. This can be seen in the case of a finite Uni-
form distribution p(x) where each outcome has probability 1

K
. The entropy of this

distribution is log2K making the perplexity of the distribution PP (p) = 2log2 K = K

2.1.6 Cover’s Theorem and Linear Separability in High Dimensions

The notion of linear separability deals with the feasibility of classifying two distinct
sets of points using a linear decision boundary. In high-dimensional spaces, this
concept becomes particularly significant due to the relationship between the dimen-
sionality of the space these points live in and the number of points in the two sets
used to determine such a boundary.
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This thesis investigates the conditions that contribute to a ’modality gap’ in high-
dimensional latent spaces. When evaluating the linear separability of embeddings, it
is of utmost importance to ensure the robustness of the separability criterion used,
especially in higher dimensions. Here is were Cover’s theorem comes in handy (Choe
2017): both as a cautionary result, and as a prescription to ’robustify’ any linear
separability metrics used:

General Position in High-Dimensional Spaces: A collection of points are
in general position if they do not lie within any lower-dimensional subspace. When
dealing with randomly distributed points, these are typically in general position.

Let’s denote two sets of points in a d-dimensional space, Rd, as A = {xA,i}NA
i=1 and

B = {xB,i}NB
i=1, where N = NA +NB.

According to Cover’s theorem Cover 1965, there are two key regimes relating the
dimensionality of the space and the number of points needed to ’claim linear separa-
bility’ :

1. For N ≤ d + 1: Any such sets A and B can be perfectly separated by some
hyperplane in Rd, which implies the existence of a linear classifier that can distinguish
between them without error.

2. For N > d + 1: The probability that sets A and B are linearly separable in Rd

increases with the dimensionality d.

The core insight that is relevant to us for this thesis is the following: if two embed-
dings are actually linearly separably, what do we need to do to ensure that a metric
will indicate and detect this? And if two embeddings truly are not linearly separable
(think: well ’mixed’ collection of two points), what do we need to do to ’detect’ this.
As mentioned above: a core objective of this thesis is to discern conditions leading to
a ’modality gap’ in the high-dimensional latent space, if we think of a ’modality gap’
as the inability to linearly separate two sets, our task hinges on ascertaining the lin-
ear (un)separability of two embeddings. We must ensure that when our methodology
declares two sets as ’linearly inseparable’, it stands robust, especially in higher di-
mensions. If we merely opt for N < d+1 embeddings and these embeddings overlap,
a linear classifier might still excel, misleadingly signalling separability. Therefore, we
consistently need to use much more than d + 1 points when determining the linear
separability of modality embeddings.
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2.2 Neural Networks

In this section, a brief overview of the core artificial neural network concepts that
are used to this thesis is provided. For an in-depth treatment and further details,
the readers are encouraged to refer to Lindholm et al. 2022, which this exposition is
based on.

Artificial Neurons / Nodes At the heart of artificial neural networks lies the
artificial neuron, which is essentially a function defined by a set of parameters, θ
or w. It receives an input vector or matrix x or any tensor-like object, applies a
calculated combination of these inputs with the parameters, and outputs the result
through a nonlinear activation function σ. Mathematically, this is expressed as:

o = σ(w0 + w1x1 + ...+ wdxd) = σ(w0 +w⊤x) = σ(w⊤x) (23)

Here, w0 is the bias parameter, and the inputs may be raw data features or outputs
from other neurons. The notation after the last equality sign uses the 1-padding
convention, which involves augmenting the input vector with an extra ’one’ in as a
first element. Within this thesis, the most relevant activation functions are:

• ReLU (Rectified Linear Unit) (Fukushima 1975):

σ(x) = max(0, x) (24)

• Mish (Misra 2019):
σ(x) = x tanh(ln(1 + ex)) (25)

• Swish (Ramachandran, Zoph, and Le 2017):

σ(x) =
x

1 + e−x
(26)

When neurons are aligned in parallel forming a layer, they collectively output a vector
o whose elements are the outputs of the individual neurons. If the layer consists of
L neurons, then o is written as o = [o1, o2, ..., oL]

⊤. The matrix notation for a single
layer’s operation is then:

o = σ(Wx+ b) (27)

where W represents the matrix of weights, and b is the bias vector containing all the
bias paramters for each neuron in the stack. The conventional interpretation of the
above is to apply the non-linearity to each element of the vector inside the parenthesis
on the right hand side.

Multi-Layer Perceptions (MLPs):
MLPs consist of multiple layers of neurons, including the input, then so called hidden
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layers, and the output layers. The layers are ’placed’ sequentially after each other
such that the output of one layer becomes the input of the next layer. A hidden
layer transforms the input through a nonlinear activation function. Then one or
more hidden layers enable the functional composition then transform previous layers
outputs. If we view each layer as a vector valued function then multiple layers,
placed in sequence, is mathematically, equivalent to the composition of vector valued
functions. For an L layer MLP, the mathematical function it represents is:

h(1) = h(W(1)x+ b(1)) (28)

...

h(L−1) = h(W(L−1)h(L−2) + b(L−1)) (29)

o = W(L)h(L−1) + b(L) = f(x; θ) (30)

(31)

Where the last layer and formula indicates that the MLP as a whole can be viewed
and considered a large vector valued function constructed through the composition
of several smaller functions, were the complete parameterisation of f is the set of all
the parameters of each node/layer θ = {W (1), ...,W (L)}
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2.3 The Loss Function, Cost Function, and the Key Optimisation Problem
of Deep Learning

’Training a model’ refers to the process of optimising model parameters (θ) such that
it achieves some optima of an objective function specified by a loss function over data.
Here, the terms ’loss function’ and ’cost function’ are essential. The loss function often
represented as L, measures how far the model’s predictions deviate from the actual
target values for individual data points. The cost function (J) calculates the average
loss over a (sub)set of data. The cost function J is defined as the average of the loss
function L computed across a mini-batch (B) containingM samples for a multimodal
dataset:

J(θ) =
1

M

M∑
i=1

L(x1
i ,x

2
i , yi; θ) (32)

Here, L(x1
i ,x

2
i , yi; θ) is the loss computed for the i-th sample in the mini-batch, consid-

ering the data points x1
i and x2

i , the corresponding label yi, and the model parameters
θ. The cost function J provides an overall measure of the model’s performance over
the mini-batch. The core optimisation objective is to minimise the cost function J
with respect to the model parameters θ:

min
θ
J(θ) (33)

This J is used to update model parameters through Stochastic Gradient Descent
(SGD).

Note: Both ’loss function’ and ’cost function’ are sometimes often used interchange-
ably in the literature.

2.3.1 Stochastic Gradient Descent (SGD)

Stochastic Gradient Descent (SGD) aims to minimise the cost function J in an iter-
ative manner by starting out at an initial randomised parameter value and applying
the formula over and over again on different mini-batches:

θnew ← θold − η · ∇θJ (34)

In this equation, η is the so called learning rate aka step-size. This value controls ’by
how much’ to update the current θold to the next θnew. ∇θJ represents the gradient
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of the cost function with respect to the parameters θ which guides the algorithm
towards a local minimum of the cost function.

The update rule can also be expressed as partial derivatives for each individual scalar
parameter θj within the model parameter set θ:

θj ← θj − η ·
∂J

∂θj
(35)

Here, ∂J
∂θj

is the partial derivative of the cost function J concerning the parameter θj.

It shows how the cost function changes as θj varies.

The core concept remains the same in more complex models like those used in con-
trastive learning with encoders and projectors. Parameters are updated to minimise
the cost function (J) using gradients computed from mini-batches of the dataset:

θf ← θf − η · ∇θfJ(z
1, z2, y)

θg ← θg − η · ∇θgJ(z
1, z2, y)

θv ← θv − η · ∇θvJ(z
1, z2, y)

θu ← θu − η · ∇θuJ(z
1, z2, y)

(36)

In these equations, ∇θJ denotes the gradient of the loss function with respect to all
model parameters θ of the model. The ’stochastic’ aspect comes from evaluating the
cost function using mini-batches, and parameter updates are performed iteratively
over these mini-batches to optimise the model. The actual gradients of the loss
functions are computed using the back propagation algorithm (Rumelhart, G. E.
Hinton, and Williams 1986), which is in essence the chain rule of differentiation using
large computational graphs.

2.3.2 The Adam optimisation algorithm

The Adam optimisation algorithm uses a adaptive learning rate scheme in the update
formulas, which can lead to more stable and efficient training (Kingma and Ba 2014).
In contrast to fixed learning rates that might be too large, causing overshooting of
minima, or too small, leading to slow or stuck training, Adam’s adaptive learning
rates dynamically adjust to the scale of each parameter. Adam involves the two
fold strategy of dynamically adjusting the learning rates for each parameter by using
historical gradient information, a concept known as momentum. For mathematical
completeness, the Adam optimisation algorithm is stated by Kingma and Ba 2014 in
its entirety as: (modified from Algorithm 1 in (Kingma and Ba 2014)):
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• Algorithm Inputs:
- α: Learning rate (step size).
- β1, β2: Exponential decay rates within the interval [0, 1) for moment estimates.
- J(θ): Stochastic objective function parameterized by θ.
- θ0: Initial parameter vector.

• Initialisation:
1. m0 ← 0 (First moment vector).
2. v0 ← 0 (Second moment vector).
3. t← 0 (Time-step).

• Optimization Loop:
- While θt not converged according to some stopping criteria:
1. Increment timestep: t← t+ 1.
2. Compute gradients: gt ← ∇θJ(θt−1).
3. Update biased first moment estimate: mt ← β1 ·mt−1 + (1− β1) · gt.
4. Update biased second raw moment estimate: vt ← β2 · vt−1 + (1− β2) · g2t .
5. Compute bias-corrected first moment estimate: m̂t ← mt/(1− βt

1).
6. Compute bias-corrected second raw moment estimate: v̂t ← vt/(1− βt

2).
7. Update parameters: θt ← θt−1 − α · m̂t/(

√
v̂t + ϵ).

Output: - θt: Updated parameters after convergence.

Adam has been the go-to optimiser since its introduction due to its faster convergence
and insensitivity to wide hyperparameter ranges compared to traditional stochastic
gradient descent (SGD). Unfortunately, adaptive learning algorithms are not without
issues since they sometimes fail to reach ”the best”/lowest loss compared to SGD
when choosing the best learning rate (Wilson et al. 2017).
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2.4 A Note on Relevant Deep Learning Models, Regularisation Methods
and Other Training Stabilisation Heuristic Methods

Training neural networks effectively have historically required the use of sophisticated
models, regularisation techniques (methods that prevent over-fitting to training data),
and various heuristics to enhance task performance and stabilise the stochastic op-
timisation process during training. This thesis incorporates several deep learning
models and methods beyond those previously mentioned above. It is important to
acknowledge that a comprehensive discussion of all these models and techniques, in-
cluding their theoretical foundations and detailed mechanisms, is beyond the scope
of this thesis. The models and methods discussed below are well-established in stan-
dard training schemes and have been extensively described in academic literature.
To maintain brevity, this section will briefly introduce each topic and direct inter-
ested readers to relevant original works and educational resources for more detailed
information:

1. Convolutional Neural Networks (CNNs) are artificial neural networks distin-
guished by their use of convolutional kernels, small matrices that are convolved
with the input data to generate an output, often called feature maps. The term
’convolved’ refers to the mathematical operation of a discrete convolution oper-
ation between the kernel and the input. These kernels are akin to the nodes in
an MLP, with the difference being that kernels are relatively few in the number
of parameters (equal to the size of the kernel matrix). In contrast, each node
in an MLP has the same amount of parameters as the entire input. In deep
CNNs, several layers of these kernels are used to create stacks of feature maps,
with each subsequent layer using the output of the previous as its input. CNNs
were first introduced by Fukushima in Fukushima 1975 and Fukushima 1980,
drawing inspiration from the neuro-anatomy of the visual system. Their signif-
icant breakthrough occurred with their application in optical digit recognition
in LeCun et al. 1998. For further understanding, resources such as Z. J. Wang
et al. 2020, Goodfellow, Bengio, and Courville 2016, and Lindholm et al. 2022
are recommended.

2. Weight Decay & AdamW: Weight decay is a regularisation method that pe-
nalises large parameter values during the optimisation process. The method
applies to a wide range of machine learning models, not just neural networks
(Lindholm et al. 2022). The primary rationale behind weight decay is to restrict
the model’s parameters and the optimisation algorithm’s flexibility in adjusting
these parameters ’too freely’. This restriction is important to avoid over-fitting,
where the model also learns to fit the noise component of the training data, po-
tentially reducing generalisation capabilities. A specialised version of the Adam
optimiser (Kingma and Ba 2014), which integrates weight decay was introduced
in Loshchilov and Hutter 2017. This version, known as AdamW, has become
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particularly popular in multimodal contrastive learning. This optimiser is used
for all experiments involving the two-tower architecture models in this thesis.

3. Dropout: Dropout is another regularisation method specific to neural networks.
Proposed by Srivastava et al. 2014, the method involves randomly ’deactivat-
ing’ a certain user-specified fraction of nodes/kernels in each layer during every
gradient update calculation and update. The basic idea behind the method
is to prevent the network from being over-reliant on any particular set of in-
put features by setting the weights of those features to zero. Dropout thus
encourages/forces the model to use all of the information contained in all the
input features at hand. For a more comprehensive explanation of Dropout, see
Lindholm et al. 2022 and Goodfellow, Bengio, and Courville 2016.

4. Gradient Clipping: Gradient clipping is a technique used to control the norm
of the gradient vector of the cost function, ∇θJ , during training/optimisation,
and thereby ’stabilising’ the training process. The process involves simply trun-
cating the gradient norm if it exceeds a user-defined threshold. The idea behind
gradient clipping is to address the ’exploding gradient’ problem. When gradi-
ent norms become very large, they can lead to ’overshooting’ during parameter
updates, causing the model’s objective function to deteriorate instead of im-
proving. The method seems to be first mentioned in the literature by Mikolov
2012, but according to Goodfellow, Bengio, and Courville 2016, the practice of
’truncating’ gradients had been known and used long before.
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2.5 Logistic Regression and Classification Performance

In this section, we present the relevant classification concepts that are used parts of
this thesis.

2.5.1 Linear Classifiers and Logistic Regression Classifiers

Linear classifiers (those classifiers that partition space with hyperplanes) will play a
role in one of the evaluation methods used to assign some ’quality’ measure to learned
representations of our two tower multimodal models (see linear probe evaluation in
the chapter on evaluation metrics for learned representations). The linear classifier
used will be the multi-class version of the logistic regression classifiers. The following
treatment and exposition is from Lindholm et al. 2022.

The multi-class logistic regression models used for classification of M -classes is a
parametric model of the form

g(x; θ = {θ1, θ2, ..., θM}) =


g1(x; θ1)

g2(x; θ2)
...

gM(x; θM)

 (37)

where each element gm(x; θm) models the class specific conditional probability p(y =
m|x, θm), that an x belongs to the classm. We can view each gm(x; θm) as specialising
in ’identifying’ a specific class. Each gm has the functional form:

gm(x; θm) =
eθ

⊤
mx∑M

j=1 e
θ⊤j x

, m = 1, . . . ,M (38)

parameterized by the function parameters θm, which enforces non-negative values
and make the sum of all elements of g (x; θ) sum to one, a condition required to view
g(x; θ as a discrete probability distribution over the m classes.

For each xi in a labelled dataset, its label yi can take on values yi = 1, 2, ..,m, ..,M .
For points xi belonging to class m, ie yi = m, we want to find the class specific
parameters θm such that the value gm(xi; θm) is the largest compared to all other
gm′(xi; θm′). Given this probabalistic formulation and the classification setting, the
suitable cost function used to determine the model parameters θ = {θ1, θ2, ..., θM} is
the multi-class cross-entropy loss:

J(θ) =
1

n

n∑
i=1

− ln gyi(xi; θ) (39)
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with the ultimate goal of finding

θ∗ = argmin
θ

J(θ). (40)

2.5.2 Multi-class classification, Accuracy and F1 score

This thesis will use two classification performance metrics to evaluate the ’quality’ of
the representations of our multimodal models (See chapter on Evaluation methods
for Representations): accuracy and the F1 score. Accuracy is used for datasets with a
relatively even distribution of classes. For datasets with pronounced class imbalances,
the macro-averaged F1 score is used. In the context of labelled dataset classification,
the following notions are useful to define:

• True Positives (TP): when the model correctly predicts a positive instance.

• True Negatives (TN): when the model correctly predicts a negative instance.

• False Positives (FP): when the model incorrectly predicts a positive instance.

• False Negatives (FN): when the model incorrectly predicts a negative instance.

The formula for multi-class accuracy is the ratio of the sum of true positives and true
negatives to the total number of predictions:

Accuracy =
TP + TN

TP + TN + FP + FN
(41)

For datasets with significant class imbalances, accuracy my be a misleading and un-
informative measure of classifier performance. The average accuracy across classes
would in such cases less be sensitive to poor performance on some come of the classes.
The F1 score tries to address this by combining the both precision (TP/(TP + FP))
and recall (TP/(TP + FN)) to provide a more informative classifier performance
metric, defined as:

F1 Score = 2× Precision× Recall

Precision + Recall
=

2TP

2TP + FP + FN
(42)

The macro-average F1 score is calculated as the mean of the F1 scores for each class.
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2.6 Visualisation of sets of experiments using Parallel coordinate plots

Figure 10: Top: An example of a parallel coordinate plot with three hyperparameter axes and one
accuracy metric axis that colourises each experiment curve. Bottom: Same plot as above, but only
the experiments resulting in the top accuracy remain colourised. Adapted from Parallel Coordinates —
Weights & Biases Documentation 2023

Parallel coordinate plots offer a clear and intuitive method for visualising multiple
experiments involving various hyperparameters and metrics. These plots feature mul-
tiple vertical axes aligned side by side, with individual curves intersecting each axis
exactly once. Each axis denotes the range of a hyperparameter or metric, while each
curve corresponds to an individual experiment. The intersection point of a curve
with an axis indicates the hyperparameter setting or the metric value for that specific
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experiment. Typically, curves are colour-coded based on the metric value on the right-
most axis to facilitate easy interpretation. An example of such a plot is illustrated
in Figure 10, which depicts a parallel coordinate plot for a series of experiments as-
sessing three different hyperparameter configurations, with each run’s curve coloured
according to its final performance. These plots are particularly useful for filtering
experiments based on intervals of any hyperparameter or metric. The lower subplot
highlights the set of hyperparameters associated with the top-performing experiments
by filtering.
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Part III

Methodology

3 Methodology I: Datasets and Model Architectures

This first part of the three part Methodology chapters of this thesis will deal with
the dataset used and the neural network models used through this thesis. Two key
datasets will be used in this thesis, one consisting of three modalities coming from
the multimodal robotics and generative modelling literature, the other a 2 modality
dataset recently made for the computational biology community. Each modality
of each dataset has a corresponding neural network architecture that defines the
modality encoder model. In this chapter, the datasets and models will be described.

3.1 Datasets

3.1.1 The Multimodal Handwritten Digits (MHD)

Figure 11: The Multimodal Handwritten Digits (MHD): Cartoon illustration of a tuple.

The Multimodal Handwritten Digits (MHD) dataset serves as the one of the
two multimodal datasets. Created and introduced by Vasco et al. 2022. MHD con-
tains four modalities: images, motion trajectories, sounds, and labels, all associated
with single stroke handwritten digits and associated speech clips of the digits. MHD
consist of a total of 60000 data tuples, split 50k / 10k as training and test datasets.
Figure 11 shows one such data tuple in ’cartoon’ form. The images of digits come
from the UJI Char Pen 2 dataset, where only one-stroke-formed digits are selected
and processed. Due to the limited number of samples in the original dataset, a prob-
abilistic model was learned for each character. By sampling with perturbations, they
generated 60,000 samples of 28×28 greyscale images. Trajectories for each image
stroke are 200-dimensional vectors normalised to the unit interval. The sounds in
each tuple come from the Speech Commands dataset Warden 2018, processed to one-
second clips and then converted into a Mel-spectrogram representation resulting in
a 128×32 matrix ”image” representation for each audio sample. The sounds were
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also normalised to a 0-1 range. Due to a limited number of sounds per class, they
associated each representation with a unique image-trajectory pair through sampling
without replacement. Figure 12 shows 20 examples of the ’image’ and ’sound’ modal-
ities. The dataset also contains labels for each sample, indicating the digit (0-9) it
represents represented as integers, but we forgo using this ’modality’ during training.
These are only used to evaluate and visualise learned representations.

MHD is useful as it gives us a total of 3 different distinct bimodal datasets: (’image’,
’sound’), (’image’, ’trajectory’) and (’sound’, ’trajectory’) while also being small-
scale. This means that we can use MHD as a good prototyping dataset and one
which enables us to test out methods and check if methods and phenomena generalise
beyond a single dataset.

The above exposition of this dataset is based on the dataset creator’s paper in Vasco
et al. 2022.
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Figure 12: The Multimodal Handwritten Digits (MHD): 20 Samples of Image and Sound modalities from
the MHD from Vasco et al. 2022. Note that the Mel-spectrogram images for the Sound modalities are
Transposed for illustration purposes. (False Colour)
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3.1.2 NeurIPS 2021 Multimodal Single-Cell Data Integration Challenge CITE
dataset:

Table 1: Size of each split in the CITE dataset

Dataset split Nr. of Datapoints

train 66175

i.i.d holdout 9020

test 15066

The field of single-cell omics deals with sequencing various macr-molecular contents
(genomic DNA content, transcriptomic RNA gene expression content, and/or protein
content, etc) of individual cells within biological samples. This term can also refer
to the technologies enabling such single-cell sequencing, one of which is the CITE-
Seq technology, introduced by Stoeckius, Hafemeister, Stephenson, et al. 2017, for
simultaneous sequencing of both transcriptomic gene expression profiles (GEX) and
cell surface protein profiles (ADT: Antibody Derived Tags) of a single cell. In this
context, a single-cell omics multimodal dataset can refer to any dataset with paired
or tuple sequencing data for a collection of cells, where each positive pair are two
or more different sequencing information from the same cell. Integrating multimodal
omics data is a core challenge in computational biology (Lakkis, Schroeder, Su, et al.
2022).

The NeurIPS 2021 Multimodal Single-Cell Data Integration Challenge dataset is one
such multimodal dataset introduced in 2021 to challenge the machine learning com-
munity in this omics integration task (Luecken et al. 2021). The key multimodal
aspect of the dataset features two types of sequencing data per cell collected from a
total of 90,261 individual cells from human bone marrow samples. Each data tuple
comprises two vectors, one for each of the cell’s gene expression profile (GEX) and
antibody-derived tag profile (ADT) profiles. The GEX vectors, denoted as xGEX,
are vectors of length 13,953, i.e., xGEX ∈ R13953, while the ADT vectors are 134-
dimensional, xADT ∈ R134.

Cells in the dataset were sourced from nine different donors to capture variations
between donors. These samples were then divided into chunks and sequenced at four
sites, which are essentially different sequencing laboratories located around the world.
This was performed to account for variations not only between donors, but also those
introduced by differing sequencing procedures, different sequencing machines, and
sample handling methods in laboratories. The distribution of donor samples across
these sites is detailed in Table 2.

The dataset is divided into three disjoint splits: the ’train’ set, an ’i.i.d holdout’ set
(identically and independently distributed), and a ’Test’ set, with each split’s size
presented in Table 1. The composition of these sets with respect to sites and donor
is outlined in Table 3, and every cell is associated with a specific cell type label. See

52



Table 2: Correspondence between site number where sequencing took place and which donors had their
samples sequenced and processed at that site.

Site Donors

Site 1 Donors 1, 2, 3

Site 2 Donors 1, 4, 5

Site 3 Donors 1, 6, 7

Site 4 Donors 1, 8, 9

Table 3: Donor and site composition of each of the splits of the CITE dataset

Split Sites Donors

Training & Validation 1, 2, 3 1, 2, 3, 4, 5, 6, 7

i.i.d. holdout 1, 2, 3, 4 1, 2, 3, 4, 5, 6, 7, 8, 9

Test 4 1, 8, 9

Table in Appendix B for the complete description of cell class type and abundance
in each split.

From a machine learning perspective, the donor and site structure within the dataset
offers us a way to evaluate model generalisation beyond the conventional train/test
regime. The i.i.d holdout set can be viewed as a testing set post-training, while
the ’Test’ split represents a distributionally shifted dataset. This shift is due to the
inclusion of data from different donors and sequencing locations, most of which not
present in the training set. As a result, the ’Test’ split sets up a situation for assessing
how well models can generalise to new, statistically different unseen data.
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3.2 Models and Encoder Architectures

Here, we specify the architecture of all encoders used for each modality in our two
datasets. The encoders used for the MHD modalities are taken from Poklukar, Vasco,
et al. 2022 while the encoders for the GEX and ADT modalities are partially inspired
by models in Lance et al. 2022.

3.2.1 MHD models

MHD Image Encoder (Table 4): A simple convolutional neural network suitable for
processing images. It begins with a 2D convolutional layer, which takes a single-
channel input and produces 64 feature maps, using a kernel size of 4x4, a stride of
2, and padding of 1. This is followed by a Swish activation function. Subsequently,
another 2D convolutional layer is introduced, increasing the feature maps from 64 to
128 with identical kernel, stride, and padding parameters. The Swish activation func-
tion is applied again. Post-convolution operations, the tensor is reshaped and passed
through a linear projection layer, mapping the features to a predefined intermediate
latent representation dimension size.

Table 4: MHD Image Encoder Structure

Layer Description

1 Conv2d (1 → 64, kernel size 4, stride 2, padding 1) with Swish activation

2 Conv2d (64→ 128, kernel size 4, stride 2, padding 1) with Swish activation

3 Linear Projection (128 * 7 * 7 → h dim)

MHD Sound Encoder (Table 5): A network for ’sound’ modality input processing
where the input is of a Mel-spectrogram converted image of the original raw sound
source. It opens with a 2D convolutional layer having a kernel size of 1x128, tran-
sitioning from a single input channel to 128 feature maps, coupled with batch nor-
malisation and ReLU activation. The subsequent layers further process these feature
maps: another 2D convolutional layer compresses the feature maps from 128 to 128
with a kernel size of 4x1, followed by batch normalisation and ReLU activation. An
additional 2D convolution layer is applied afterwards, this time expanding the feature
maps from 128 to 256 while maintaining the kernel size of 4x1. Post these convo-
lution operations, the tensor undergoes reshaping and is directed through a linear
projector that condenses the features to match the intermediate latent representation
dimension size.
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Table 5: MHD Sound Encoder Structure

Layer Description

1 Conv2d (1→ 128, kernel size 1x128, stride 1x1) with Batch Normalisation
and ReLU activation

2 Conv2d (128 → 128, kernel size 4x1, stride 2x1, padding 1x0) with Batch
Normalisation and ReLU activation

3 Conv2d (128 → 256, kernel size 4x1, stride 2x1, padding 1x0) with Batch
Normalisation and ReLU activation

4 Linear Projection (2048 → h dim)

Table 6: MHD Trajectory Encoder Structure

Layer Description

1 Linear (200 → 512) with ReLU activation

2 Linear (512 → 512) with ReLU activation

3 Linear Projection (512 → common dim)

MHD Trajectory Encoder (Table 6): This encoder is designed for the processing of the
trajectory modality data. The model consists of an initial linear layer that accepts an
input of 200 features and expands it to 512 features accompanied by ReLU activation.
A subsequent linear layer maintains the 512 feature dimension, again utilising ReLU
activation. The final layer is a linear projection that maps the 512 features to a
shared latent representation dimension, facilitating compatibility with the common
latent space.

3.2.2 Cite Models

GEXEncoder (Table: 7): The GEXEncoder is constructed for the Genomics Expres-
sion (GEX) modality, each raw input being a long vector. The encoder begins with
a dropout layer, which has a default rate of 0.15. This is followed by a linear trans-
formation that maps the input data from the input dimension to a 512-dimensional
space. Post-transformation, there’s another dropout layer and then the mish acti-
vation function. The data then goes through two subsequent dense layers, both of
which reduce the data to a 256-dimensional space, with the first one followed by
batch normalisation and both followed by the mish activation. The encoder’s final
transformation maps the data from 256 dimensions to h-dim dimensions.

ADT Encoder(Table: 8): Similar to the GEX Encoder, this encoder is a feed-forward
neural network: it starts with a dropout layer with a default rate of 0.15. The sub-
sequent linear layer reshapes the input into a 128-dimensional space. After another
dropout and a mish activation, the data traverses through two identical dense lay-
ers, projecting into a 128-dimensional space and utilising the mish activation. The
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Table 7: GEXEncoder Structure

Layer Description

1 Dropout (0.15)

2 Dense (input dim → 512)

3 Dropout (0.15)

4 Dense (512 → 256) with Mish activation and Batch Normalisation

5 Dense (256 → 256) with Mish activation

6 Dense (256 → h dim)

encoder concludes with a transformation that projects data from 128 dimensions to
intermediate h-dim dimensional space.

Table 8: ADTEncoder Structure

Layer Description

1 Dropout (0.15)

2 Dense (input dim → 128)

3 Dropout (0.15)

4 Dense (128 → 128) with Mish activation and Batch Normalization

5 Dense (128 → 128) with Mish activation

6 Dense (128 → h dim)

3.3 Linear Projectors

In all variations of our two-tower multimodal models, the projectors are linear layers
without activation functions. These projectors are defined by the dimensions of the
modality-specific intermediate h-space and the dimension of the contrastive learning
space, known as z-space (Table 9). To ensure that the embeddings within z-space
are normalised to the unit hypersphere, a final normalisation operation is consistently
applied to all projectors.

Table 9: Linear Projector Structure

Layer Description

1 Linear (h dim → z dim)

2 Normalisation
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4 Methodology II: Metrics for Characterising and Evaluating
Learned Representations

In this section, we define and describe all the metrics used to characterise the learned
representation. We first explain the inadequacy of the modality gap as a description
of the modality gap phenomenon. Instead, we propose a suite of 2-3 ’gap’ metrics
that, as a suite, describe the characteristics of the modality gap phenomenon better.
In the last section, we describe the label-centric metrics used to measure the quality
of the learned representation. These two metrics are related to semantic structure.

4.1 Terminology Note

The word ’embeddings’ will often be used interchangeably but will typically be used
as the set of vectors in the h-space and z-space corresponding to the set of input
raw data points. Representation, on the other hand, is used to mean the complete
functional image of the mapping defined by the two encoders and the projectors.

4.2 Geometric ’Gap’ Metrics

The modality gap phenomenon, as originally defined by W. Liang et al. 2022:

∆gap =
1

N

N∑
i=1

z1i −
1

N

N∑
i=1

z2i (43)

focuses on the difference between the mean embeddings of each modality. However,
this definition might not completely capture the ’modality gap’ in its entirety. A
critical aspect overlooked is the degree to which embeddings from different modal-
ities occupy distinct regions in the latent space where contrastive loss is applied.
The original definition by these authors, emphasising the mean difference of modal-
ity embeddings, could benefit from a broader perspective that includes this spatial
distinction in the latent space for a more thorough understanding of the modality
gap.

Figure 13 illustrates this point in several ways. In all sub-figures, we see various
ways two embeddings can be distributed on the unit sphere. The first and seconds
embeddings would be visually identified as having a modality gap, while the last two
would not. The difference between the second and first sub-figure shows that the
latter has a larger modality gap magnitude yet has less of a geometric ”gap”. In
contrast, the former has a very clear-cut ’gap phenomenon’ going on. On the same
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point. Notice further the differences between the embeddings between the second
and fourth sub-figures; the fourth has a very small modality gap (the blue ’ring’
embedding is completely surrounded by the red uniform embedding). These different
types of modality embeddings indicate that the magnitude of the modality gap by
itself does not tell us about a ’gap phenomenon’ without also knowing the ’extent’ of
each embedding (see the difference between the second and the fifth sub-figure).

Further, the first three sub-figures show embeddings with roughly the same modality
gap magnitude, around 0.35, yet geometrically, they are distinct. The first two exhibit
a modality gap phenomenon differently, while the third sub-figure does not.

Figure 13: Various examples of illustrative multimodal embeddings and their ’gap’ metrics: Modality gap
magnitude, modality-specific mean within modality cosine similarity (dark blue and red histogram) and
between modality positive pair cosine similarity histogram (denim blue bottom histogram)

Inspired by Shi et al. 2023, we propose a suite of additional geometric metrics to
characterise the modality gap phenomenon better. The metrics below each aim to
capture some geometric aspect of the embeddings and the modality gap phenomenon.
These metrics (points 1-4 below) will often be collectively referred to as ’gap metrics’:
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1. Modality Gap Magnitude
Despite its limited informativeness, as mentioned earlier, we continue to use the
definition from W. Liang et al. 2022 as one of our metrics. This is primarily
due to the definition’s centrality to this thesis. For the sake of completeness, we
repeat it here: the modality gap is defined as the difference between the means
of the embeddings from each modality:

∆gap =
1

N

N∑
i=1

z1i −
1

N

N∑
i=1

z2i (44)

The magnitude of the modality gap will be monitored for each mini-batch during
training. Similarly, the magnitude of the modality gap for validation and test
sets will be tracked throughout the training process. Given that the embeddings
used for contrastive learning are normalised, with all embeddings residing on
the surface of the unit hypersphere, the magnitude of the modality gap ranges
between 0 and 2.

2. Mean and Standard deviation of all between-modality positive pairs
cosine similarities
Central to all contrastive representation learning methods is the property that
positive pairs be well aligned with each other. We quantify this in the contrastive
learning space, z-space, by the cosine similarity between positive pairs.

Alignment : cosim(z1i , z
2
i ) =< z1i , z

2
i > (45)

We measure this for for positive pairs within a batch or the whole of the vali-
dation and test set and report the means and standard deviations of these.

3. Linear Separability

In order to assess linear separability between two embeddings in a shared space,
we use an ensemble of linear classifiers comprising of ten linear support vector
machines (SVMs) and ten perceptron models. Specifically, we utilise scikit-
learn’s implementation of linear SVM through ‘SGDClassifier‘ with ’hinge’ loss
and ‘perceptron‘ classifier model. Given a validation or test set, we extract the
embeddings for each modality and treat one modality as the positive class (y =
1) and the other as the negative class (y = 0). The dataset of embeddings is then
randomly partitioned into a training set and a test set using a 33-67 split ratio.
Each of the 20 linear classifiers (10 SVMs and 10 perceptrons) is trained on this
split dataset until convergence, adhering to the default parameters specified in
scikit-learn’s implementations. The training and testing are repeated ten times
for each type of classifier to ensure statistical robustness. The performance of
each classifier is evaluated using the classification accuracy metric, defined as:

Accuracy =
Number of Correct Predictions

Total Number of Predictions
(46)

59



We report the average classification accuracy over the ensemble of classifiers,
for both the training runs and the final test evaluation. Theoretically, the range
of this quantity is in [0.0, 1.0]. A value of 1.0 indicates that all classifiers are
completely able to separate the two modality embeddings, indicating a complete
modality gap. A ’well mixed’ representation would result in the value of around
0.5 indicating that all classifiers cannot do better than random chance at telling
apart the modality-specific embeddings.

4. Mean and Standard Deviation of All Within-Modality Cosine Simi-
larities

Similar to how we quantify alignment between modalities through the cosine
similarity of positive pairs in the z-space, we extend this idea to measure the
cosine similarity within each modality (between all pairs of points within the
same modality). For each modality m, we consider all pairs of its embeddings
zmi and zmj to compute their cosine similarities.

Within-Modality Cosine Similarity for modality m : cosim(zmi , z
m
j ) = ⟨zmi , zmj ⟩

(47)

This metric provides us with a quantitative measure of how dispersed or con-
centrated each modality’s embeddings are in the latent space. A mean cosine
similarity value close to 1.0 would indicate that the embeddings are very con-
centrated in the latent space. Conversely, a mean value close to 0.0 could imply
that the embeddings are more dispersed and uniform throughout the z-space.

We compute these cosine similarities for all possible pairs within a given mini-
batch, within each modality, or within the entire validation and test sets
for each modality. We then report the mean and standard deviation of these
within-modality cosine similarities.

It is important to examine the standard deviation of the within-modality cosine
similarity values. A high standard deviation, we conjecture based on observa-
tions in low dimensional latent spaces, represents embeddings forming ’hyper-
rings’ of embeddings. In contrast, a low standard deviation suggests a more
uniform distribution. For a visual representation, one can refer to Figure 13,
where the two top histograms in each sub-figure provide insight into the unifor-
mity of these embeddings.
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4.3 Between Modality k Nearest Neighbour (kNN) Local Similarity

When working with embeddings from two modalities, we would like to understand and
track how similar the local regions around positive paired data point representations
(z1i , z

2
i ) are. Drawing inspiration from the trustworthiness metric commonly used in

dimensionality reduction methods (Maaten 2009), a similar measure called between-
modality kNN local similarity (kNNLocSim) is proposed for the purpose of quantifying
this similarity based on shared identity labels of the k-nearest neighbours of positive
paired points.

Formally, given two paired data points x1i and x
2
i from two different embedding modal-

ities, we wish to determine how many of the same identity label points in the k-nearest
neighbours of x1i also belong to the k-nearest neighbours of x2i .

Mathematically, let N 1
k (x

1
i ) and N 2

k (x
2
i ) denote the sets of k-nearest neighbours for x

1
i

and x2i , respectively, based on a chosen distance or similarity metric. Let the function
1(lj = lk) be the indicator function that returns 1 if data points with labels lj and lk
share the same identity label and 0 otherwise.

The kNNLocSim measure for the paired data points x1i and x2i can then be defined
as:

kNNLocSim(x1i , x
2
i ) =

1

k

∑
j∈N 1

k (x
1
i )

∑
l∈N 2

k (x
2
i )

1(lj = ll) (48)

The value of kNNLocSim(x1i , x
2
i ) lies between 0 and 1. A value close to 1 implies

that the local regions around the paired points x1i and x2i are highly similar, with
many shared identity labels in their k-nearest neighbours. A value near 0 indicates
low similarity between the local regions of the positive paired points.

This measure can be particularly useful in understanding the efficacy of embedding
algorithms in preserving local structure and label distribution around paired data
points across different modalities.
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4.4 Label-Centric Metrics

These metrics utilise label information to capture the semantic structure of learned
representation (e.g. class separation ability and like-with-like clustering abilities).
These are used as proxy metrics for what we mean by ’quality’ of a learned represen-
tation

1. K-Nearest Neighbour Label Similarity:
Understanding how data points with similar class labels are distributed in both
h− and z− spaces during and after model training is of importance. A primary
goal is to ascertain the capability of our models to cluster similarly labelled data
points within each modality. To quantify this, we assess label similarity based
on the k-nearest neighbours within each modality locally. A metric, ranging
between 0 and 1, would be both practical and helpful in this evaluation. A
value approaching 1 should suggests that, for a majority of points, a substantial
portion of their k-nearest neighbours share the same label. This implies well-
clustered embeddings by label within a modality. Conversely, a measure nearing
0 indicates poorly clustered embeddings by label.

Consider a set of embeddings from a paired multimodal dataset, accompanied
by label or class information for each pair:

Z = {(z1i , z2i , yi)}N (49)

For each modality-specific embedding zmi , its within-modality k-nearest neigh-
bours are the k embeddings in Z (excluding zmi itself) that are nearest to zmi
based on a chosen distance or similarity metric (e.g., Euclidean distance or co-
sine similarity). Let Nm

k (zmi ) denote this set of k-nearest neighbours for zmi .
For each zmi , the fraction of its within-modality k-nearest neighbours that share
the label li is defined as:

knn label sim(zmi ) =
1

k

∑
Nm

k (zmi )

1(yj = yi). (50)

Here, 1(·) represents the indicator function, which returns 1 if its condition is
met and 0 otherwise. The cumulative k-NN label similarity measure for a single
modality, averaged over its entire embedding, is:

knn label simm =
1

N

N∑
i=1

knn label sim(zmi ) (51)

Throughout all our model training process, we will monitor this metric for both
modalities on validation/test sets. This metric will primarily be used for the
embeddings in the contrastive latent space embeddings (z-space).
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2. Average Linear Probe Evaluation score.
The method of linear probe evaluation serves as another quantitative way for us
to assess the ’quality’ of the representation of models trained in a self-supervised
way. In essence, it provides us with a measure, in terms of classification perfor-
mance value, of how well a model’s learned representation is able to separate
different classes.

Here we use the specific methods used by Radford et al. 2021. Calculating
this for ’each modality’ for a two-tower multimodal model goes as follows: we
’freeze’ the encoders fθf and gθg . This stops any further updates to their param-
eters, effectively transforming them into static feature extractors. Then, for a
given labelled multimodal dataset, we utilise these frozen encoders to generate
intermediate latent vectors for each modality of the dataset.

h1
i = fθf (x

1
i ), h2

i = gθg(x
2
i ) (52)

For each modality, we train a separate linear classifier to predict the labels
based on the corresponding intermediate latent vectors hm

i . Specifically, we
define two logistic regression classifiers, L1 and L2, for the first and second
modalities, respectively:

ŷ1i = L1(h
1
i ), ŷ2i = L2(h

2
i ) (53)

The classifiers are trained on the respective features and labels, and their clas-
sification performance is evaluated on a test split, yielding classification perfor-
mance scores P1 and P2 respectively. These are either accuracy (if the dataset
has low class imbalance) or some other classification performance metric sensi-
tive to class imbalance, e.g. F1-score. Finally, to obtain a global final measure
of the multimodal models representational quality across both modalities, we
compute the average of these classification performance scores:

Pavg =
P1 + P2

2
(54)

Pavg serves as a proxy composite metric reflecting the overall efficacy of the
multimodal representations in facilitating downstream classification tasks.

Note : This metric should not be confused with the linear separability metric
introduced earlier. Here, the metric aims to measure how well each frozen
encoder in the two-tower model is able to generate embeddings with good class
separability, whereas the linear separability value metric assesses the degree to
which both modality embeddings are isolated from the other.
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5 Methodology III: Phase and Experiment Setup & Alternative
Contrastive Loss Methods (To Influence the Modality Gap
Phenomenon)

As mentioned in the Approach section of the Introduction chapter, the work done in
this thesis is divided into two phases, each containing computational experiments that
involve either training or simulating the training of two-tower multimodal constrastive
representation learning models. Phase I experiments deal with investigating and
characterising the modality gap. Phase II experiments deal with ways to ’close’ the
gap and see if these ways improve the learned representations of the models.

In all sets of experiments, the representations of models will be characterised using
both geometric ’gap’ metrics and their semantic ’quality’ measured through label-
centric metrics described in the previous chapter.

The exact details of the runs and the hyperparameter combinations for all sets of
experiments are detailed in the appendix (Appendix A).

5.1 Methodology for Phase I Experiments: Finding, investigating and
characterising the modality gap

In phase I, the three sets of experiments (1-3) can be regarded as investigative, aiming
to explore the factors surrounding the modality gap. These investigative experiments
aim to uncover the conditions responsible for the modality gap and identify influ-
ential factors when conducting multimodal contrastive representation learning using
specifically the CLIP loss function and its different temperature modes.

5.1.1 Methodology of Experiment 1: Toy synthetic simulations of multimodal
contrastive representation learning with CLIP loss

This set of experiments aims to isolate the sole impact of the CLIP loss function
on the modality gap phenomena by using a synthetic data setup where we simulate
the learned representation process without any possible confounding factor related to
either datasets or neural network encoders. To solely focus on the influence of the
CLIP loss function on the modality gap phenomena and to simulate scenarios similar
to the training of neural networks, we adopted the setup presented by Udandarao
2022. In this approach, the embeddings or data points of two modalities are simply
represented by sampling points from two spherical distributions. From the start, each
point from one modality is paired with a point from the other, resulting in a set of
paired latent vectors (z1i , z

2
i ) and remain so through out the simulated runs to emulate

the embeddings of positive pair multimodal data.
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By sampling data points from power spherical distributions to represent two different
modalities, we create a controlled environment free from the complexities of neural
architectures and dataset variations. We then employ the CLIP loss function to adjust
these synthetic embeddings iteratively.

Let θ0 represent the initial angle of separation between the normalised means of the
two power spherical distributions, µ1 and µ2. We sample N points from each distri-
bution to derive two sets of points Z1 = {z1i }Ni=1 and Z2 = {z2i }Ni=1, each symbolizing
a ’modality’. The distribution from which these points are sampled can be denoted
as:

z1i ∼ PowerSpherical(z;µ1
0, κ) (55)

z2i ∼ PowerSpherical(z;µ2
0, κ) (56)

The procedure for sampling data from two power spherical distributions, with a spec-
ified initial separation angle, followed the procedure provided as pseudocode from
Udandarao 2022, shown in a modified version below:

Algorithm 3 Generating Synthetic modality embeddings from PowerSpherical dis-
tributions

1: Input: Nr. of Samples each modality N , Contrastive latent dimension d, Initial
angle of separation θ, PowerSpherical Concentration K

2: Output: Modality 1 embeddings {z1i }Ni=1, Modality 2 embeddings {z2i }Ni=1

3: Sample mean embedding for modality 1: m1 ∼ N (0, Id) ▷ Id is d-dim identity
matrix

4: Normalise m1 onto hypersphere: m1
i ←

m1
i

||m1||2
5: Sample a random vector: r ∼ N (0, Id)
6: Compute projection: p = r− (r ·m1)m1 ▷ ensures p ⊥m1

7: Normalise p onto a hypersphere: p← p
||p||2

8: Compute embedding for modality 2: m2 = m1 cos θ + p sin θ ▷ ensures angle
between m1 and m2

i is θ
9: Sample z1i N times from PowerSpherical with parameters m1 and K
10: Sample z2i N times from PowerSpherical with parameters m2 and K
11: return z1i and z2

This experiment uses systematic variation of key hyper-parameters like temperature
and latent space dimensions to understand how multimodal embeddings and loss
functions interact to generate modality gaps. The idea here is that if gaps emerge at
this stage, the modality gap phenomenon has its causative origin in the loss function
and optimisation algorithm used. If we observe no stable gap phenomenon, then this
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would lead us to believe that aspects of either the neural networks and/or between-
modality information difference in multimodal datasets are ’causing’ the gap.

In our simulation of the training steps involved in CLIP-style multimodal contrastive
representation learning, we iterate through the process by calculating the CLIP loss
for each z1i , considering its pair z2i as a positive instance. All other possible combina-
tions are treated as negative pairs.

The computation of the CLIP loss at every iteration is represented as:

L =
N∑
i=1

−log exp (z1i · z2i /τ)∑N
j=1 exp

(
z1i · z2j/τ

) + N∑
i=1

−log exp (z1i · z2i /τ)∑N
j=1 exp

(
z1j · z2i /τ

) (57)

The update rule used to adjust the embeddings based on the computed loss is:

zmi,new = Normalize

(
zmi,old − η

∂L

∂zmi

)
(58)

Through this simulation, we can closely monitor the behaviour of the embeddings
and the convergence of the CLIP loss function, providing insights into the interaction
between different modalities in a controlled setting.

We focus on examining several key factors in multimodal contrastive representation
learning: temperature mode, where fixed and learned temperatures in the CLIP loss
function are compared to understand their impact on training; latent space dimen-
sionality, testing dimensions d = [3, 8, 64, 128, 512] to explore effects of various com-
pression levels in the latent space; temperature value, varying τ or τ0 = [1.0, 0.1, 0.01]
to adjust the model’s sensitivity in differentiating data points; initial modality separa-
tion, using angles θ0 = [π

2
, π
8
, 0] to study the influence of starting modality positions in

the latent space; and training duration, extending over 150 thousand gradient update
steps for thorough learning. This setup is designed to investigate how these hyper-
parameters affect the emergence characteristics of modality gaps during the learning
process.

5.1.2 Methodology of Experiment 2: Pseudo-multimodal contrastive represen-
tation learning with CLIP loss

In the previous synthetic toy simulation experiment setup, our objective was to ex-
amine the effect of the loss function on the emergence of a modality gap. Regardless
of any outcome, these experiments fall short of encapsulating the complexities of real-
world multimodal model training. To bridge this gap and add a layer of realism, we
introduce actual neural networks in a multimodal contrast representation learning
setup.
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We employ a ’pseudo-multimodal dataset’ to create a controlled experimental envi-
ronment and isolate the impact of data-related factors. This dataset is created by
duplicating a single dataset to form two identical modalities, and used as input into
separate encoders in our model’s two-tower structure. This approach effectively sim-
ulates a multimodal dataset where each modality conveys the same information. The
purpose of this setup, which we term ’pseudo multimodality’, is to explore how the
neural networks and models themselves influence the emergence of potential modality
gaps, offering a possibly valuable point of comparison to experiment 1. (for models
and datasets used here, see Models and Datasets section).

This set of experiments employs real-world data processed through neural network
modality-specific encoders in our two-tower models. A novel approach of ’pseudo-
multimodal’ datasets is introduced, where identical data is used for both modali-
ties. This strategy eliminates confounding influences from inherent information dif-
ferences or other factors typical of different modalities in multimodal datasets. Our
goal is to ascertain if patterns observed in synthetic toy settings are reproducible
in more realistic scenarios, thereby confirming the general applicability of our find-
ings. We aim to address the critical question: Do modality gaps manifest under
similar conditions in realistic settings as in synthetic ones? For this, we utilise the
Multimodal Handwritten Digits dataset, as referenced in Vasco et al. 2022, construct-
ing three pseudo-multimodal dataset combinations: Image-Image, Sound-Sound, and
Trajectory-Trajectory. Additionally, we adjust the model temperatures to examine
their impact on the outcomes.

Our investigation here centres mainly around the impact of temperature modes and
the temperature values of CLIP on the learning dynamics. The hyperparameters we
run combinations over are fixed and learned temperature CLIP modes, and we explore
a spectrum of temperature values, τ and τ0 = [1.0, 0.1, 0.01].

5.1.3 Methodology of Experiment 3: True Multimodal Contrastive Represen-
tation Learning with CLIP Loss

Experiment 3 extends our exploration into true multimodal datasets, diverging from
the pseudo-multimodal approach in Experiment 2. Here, we engage with true multi-
modal data from two distinct modalities: a simplified toy dataset (the MHD dataset)
and a more complex biological dataset from the single-cell -omics field (the CITE
dataset). The primary objective is to assess whether the modality gap observed in
the previous experiments persists in these more realistic scenarios. This phase in-
volves the conventional training of a two-tower multimodal contrast representation
learning model, also here using CLIP loss as the contrastive loss function. This setup
closely aligns with standard practices in training multimodal models in real-world
applications.

Central to both experiments in this phase is the investigation of the temperature
hyperparameter’s impact. We conduct multiple training runs, altering temperature
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settings to include both fixed and learned temperatures. This approach aims to
evaluate how temperature variations influence the modality gap and provides a basis
for comparison with methods aimed at mitigating the modality gap and its associated
effects.

The temperature hyperparameter is explored through two distinct settings:

Lfixed = LCLIP : where temperature τ is a fixed value parameter (59)

Llearned = LCLIP : where temperature τ is a learned parameter (60)

These experiments are designed to offer insights into the behaviour of modality gaps in
true multimodal learning environments and establish benchmarks for future methods
addressing this phenomenon.

5.2 Methodology for Phase II: Influencing the modality gap with various
methods and analysing their representation performance

Phase II contains a single set of experiments with the aim of influencing the modality
gap via various alternative methods, each targeting different aspects of the multimodal
contrastive representation learning framwork and seeing if these in any way relate to
better representation quality.

5.2.1 Experiment Set 4: Multimodal contrastive representation learning with
alternative methods to influence the modality gap

These ’influencing the gap’ sets of experiments seek to assess whether alternative loss
functions or approaches for multimodal contrastive representation learning can influ-
ence the modality gap phenomenon and potentially enhance representation quality.
A total of 9 alternative methods will be tested and evaluated, using the results in
Phase I -Experiment set 3 as our baselines.

In the earlier parts of this section, we explained how we conducted investigative ex-
periments. These experiments aim to understand when a modality gap appears while
training multimodal datasets using multimodal contrastive representation learning
with CLIP losses. In this chapter, we dive deeper into the methods we used to ex-
plore how we can affect this gap and potentially close it. The methods we will discuss
include changes to the CLIP loss and alternative contrastive losses. Below, we have
summarised all the alternative methods described in the coming section by type and
how they will be referred to.
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1. Adding modality gap term into the CLIP loss function: CLIP+Gap

2. Temperature and hyperparameter free contrastive loss function methods (3
methods):

(a) simple (naive) contrastive loss: simple cl

(b) similarity matrix loss: simmatrix

(c) multimodal Wang-Isola loss: wang+isola

3. Augmenting the CLIP loss function with terms encouraging desired geometric
properties:

(a) fixed+simmatrix

(b) learned+simmatrix

4. Scheduled Temperature scheme: scheduled temp

5. Projector-based methods (two methods):

(a) shared projector method: shared projector

(b) initial identical projectors: init twin projectors

6. An Automated Individualised Entropy Equalising Temperatures method:
AIEET

5.2.2 CLIP + Modality Gap Loss

Of the many ways to think about influencing the modality gap in multimodal con-
trastive representation learning using CLIP loss, one of the easiest by reflex is to sim-
ply add to the overall final loss function that involves the magnitude of the modality
gap. We call this new loss function Lclip+gap, and define it as:

LCLIP+Gap := LCLIP + ||∆gap||22 (61)

where ∆gap is simply the definition of the modality gap ∆gap :=
1
N
ΣN

i z
1
i − 1

N
ΣN

i z
2
i .

All training conditions and hyperparameter sweeps are identical to those of experi-
ment 3 in phase I.

5.2.3 Temperature Free Methods

We introduce a class of methods characterised by two common features: i) the ab-
sence of temperature scaling and other hyperparameters and ii) the utilisation of loss
functions designed to align similar items across different modalities while separating
dissimilar items in the contrastive latent space.
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• Simple (Naive) Contrastive Loss
A simple contrastive loss that, in principle, should function like the infoNCE-
based multimodal CLIP loss involves taking the between modality similar ma-
trix Si,j =< z1i , z

2
k >, and constructing one loss term that encourages the diago-

nal elements of this similarity matrix to be close to 1 (i.e. encourage alignment
of between modality positive pairs) and another loss that that forces all off-
diagonal elements to be close to zero (i.e. penalising closeness of all between
modality negative pairs). The simplest such loss function, what we term here
the Simple Contrastive Loss loss function, adopts a straightforward approach
based on a between-modality similarity matrix Si,j = ⟨z1i , z2j ⟩. The first term of
the loss promotes the diagonal elements of S to be close to 1, thereby aligning
similar items across modalities. The second term ensures that off-diagonal el-
ements are near zero, effectively separating dissimilar pairs. Formally, the loss
Lsimple-cl is defined as:

Lsimple-cl = −
1

N

N∑
i=1

Si,i +
1

N(N − 1)

∑
i ̸=j

S2
i,j (62)

• Similarity Matrix Loss
Building upon the Simple Contrastive Loss, this method aims to achieve
greater separation between distinct semantic clusters both between and within
modality embeddings by enforcing utilising of more of the contrastive la-
tent space; for each modality m, a similarity matrix Sm is computed, where
smi,j = cosim(zmi , z

m
j ).

An additional term is introduced to encourage the distribution of within-
modality encoding throughout the contrastive latent space. This term aims
to make Sm resemble an identity matrix and is formalised as:

Lm
within-modality = −

1

N(N − 1)

∑
i ̸=j

(sm)2i,j (63)

The complete loss, termed as ’simmatrix loss’, combines these components:

Lsimmatrix = Lsimple−cl + L1 + L2 (64)

Note that the diagonal elements of the within-modality similarity matrix will
always be 1 and, therefore, can be ignored as this is simply a constant term.

• Multimodal Wang-Isola Loss
The following method is essentially a multimodal version of the unimodal con-
strastive loss from the work of T. Wang and Isola 2020. It is characterised by
its focus on alignment and uniformity in the latent space. Unlike Simple Con-
trastive Loss and Similarity Matrix Loss, this method introduces two key terms
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in its loss function: Lalignment and Lm
uniformity. This method introduces a com-

posite loss function that aims to achieve both between-modality alignment and
within-modality uniformity, much like the objectives of simple-cl and simmatrix
loss. However, the mathematical approach differs regarding the within-modality
uniformity term.

The first component is the alignment term, Lalignment, which is somewhat akin
to the diagonal element focus in Simple Contrastive Loss. This term seeks to
minimise the Euclidean distance between corresponding latent vectors across
different modalities. Formally, Lalignment is defined as:

Lalignment =
1

N

N∑
i=1

∥z1i − z2i ∥22 (65)

While simple contrastive loss tries to make the diagonal elements of a similarity
matrix approach one, this term minimises the distance between aligned vectors,
simplifying the alignment task.

The second component is Lm
uniformity, unique in its aim to distribute embeddings

from each modality uniformly over the latent space. This resembles the simi-
larity matrix loss term that encourages the utilisation of the contrastive latent
area but is mathematically distinct. Inspired by principles from physics for
optimally placing charged particles on a unit hypersphere, the uniformity term
is:

Lm
uniformity = log

(
1

N2

N∑
i=1

N∑
j=1

exp
(
−2∥zmi − zmj ∥22

))
(66)

Note that unlike in CLIP loss, the loss function has no explicit penalisa-
tion/encouragement term for between modality negative pairs, only that each
modality-specific encoder spreads and ’utilises’ as much as the z-space as pos-
sible while also enforcing alignment between positive pairs.

Wang and Isola rigorously demonstrate that the uniformity loss Lm
uniformity is

minimised when the embeddings are sampled from a uniform distribution over
the unit hypersphere. In this optimal arrangement, the loss encourages the
embeddings to spread evenly across the latent space, achieving a uniform dis-
tribution that minimises the loss function.

Finally, the composite loss function LWI is a combination of the above terms,
aiming to achieve a balance between alignment and uniformity:

LWI = Lalignment +
1

2

(
L1
uniformity + L2

uniformity

)
(67)

In summary, while this method shares the high-level goals of alignment and ef-
fective latent space utilisation with simple contrastive loss and similarity matrix
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loss, it employs unique mathematical formulations to achieve these objectives.
Particularly in ’larger’ latent dimensions, the minimum of the Lm

uniformity term
should be around −4 when t = 2 (T. Wang and Isola 2020). To the best of my
knowledge, this loss function has not been extended nor used in the multimodal
setting.

There are no factors of variations in the runs of these methods. Otherwise, all other
conditions are identical to experiment 3 in phase I.

5.2.4 Supplementing CLIP loss with terms to encourage embedding ’spread’

Note that the CLIP loss lacks terms explicitly addressing the influence of points
within modalities on each other. In a L2 normalised latent space where contrastive
learning operates on a unit hypersphere surface, it is reasonable to consider promot-
ing dispersion within each modality. This promotion of dispersion within modalities
could potentially contribute to further reduction of the CLIP loss: In theory, se-
mantically dissimilar points within each modality’s embeddings would be encouraged
to be more widely separated, aligning with the explicit encouragement of spreading
within modalities. Moreover, within modality spread could possibly promote faster
and more ’mixing’ of each modality embeddings.

One simple way to encode this idea into a loss function, and the one we propose and
evaluate, is to sum CLIP-loss with the simmatrix loss proposed above:

LCLIP+simmmatrix = Lclip + Lsimmatrix (68)

In this thesis, we consider two versions of this loss function, one where we treat
the hyperparameter as fixed and the other where the temperature is also a learned
hyperparameter.

Lfixed+simmmatrix and Llearned+simmmatrix (69)

All training conditions and hyperparameter sweeps are identical to those of experi-
ment 3 in Phase I.
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5.2.5 Scheduled Temperature Method

F. Wang and Liu 2021 showed that in the unimodal setting, the temperature τ dras-
tically affects both the distribution of the embeddings in the contrastive latent space
and the clustering semantic grouping geometry of the learned embeddings. At least
in the unimodal contrastive learning setting, the value of the temperature τ directly
affects a model’s instance-level and group-wise discrimination capabilities. Ideally, we
want a good balance between models being able to separate fine-grained instance-level
differences while also preserving high-level / class/group-level differences.

Both F. Wang and Liu 2021 and Kukleva et al. 2023 have shown that at small temper-
atures, models concentrate on instance discrimination, i.e. spreading out the similar
instance, leading to a much more homogeneous dispersal of points on the hypersphere,
to the possible detriment of coarse-grained semantic cluster separation, while larger
temperatures τ models tend to focus on learning features that readily distinguish
between different coarse-grained semantic clusters, rather than determining finer de-
tails within a cluster. In other words, ”instead of learning ’fine-grained’ features that
allow for better instance discrimination between hard negatives, the model will be
biased to learn easy patterns that would enable for group-wise discrimination and
thereby increase the margin between clusters of samples” (Kukleva et al. 2023). The
authors point out that this could skew the model towards identifying features ef-
fective for broad category separation, potentially undermining its ability to handle
rare classes in datasets with high imbalanced distributions. Kukleva et al. 2023 pro-
posed a dynamic temperature scheme to benefit from the benefits of both small and
large temperature regimes. In their approach, they find that having a simple cosine
scheduling of the

In terms of modality gap aspects, during the prototyping phase of this thesis, it was
observed that a large fixed temperature better encouraged closing the modality gap
much quicker during training (figure 14).

Figure 14: Preliminary observations of fixed temperature CLIP loss on the modality gap during training
for various temperature values. The X-axis represents the number of gradient update steps.

Inspired by Kukleva et al. 2023, we propose a simple scheduled temperature approach
where we start at a high temperature and exponentially decay the temperature value
a small amount at the beginning of every epoch during training, where we apply it
to a multimodal setting. If γ represents the reduction factor and τ0 represents the
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initial value of the temperature, then throughout training, we have at each epoch:

τepoch i+1 = γτepochi
, τepoch0 = τinit (70)

where γ is a reduction factor in the range (0, 1.0). In figure 15, we display the overall
shape of this scheduling for 100 epochs for the case τ0 = 1.0 and γ = 0.97, i.e. we
shrink the temperature by 3 per cent each epoch. In the same figure, we contrast this
scheduling method with that proposed by Kukleva et al. 2023.

Figure 15: Dynamic temperature schedules: Exponential decay and cosine annealing schedules for a
100epoch run.

The training conditions are identical to those of the learned temperature mode of
CLIP in experiment 3 in phase 1, where we use a reduction factor of 0.97 and a
starting temperature of τ0 = 1.0.
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5.2.6 Projectors Based Methods

During the initial prototyping phase of the thesis and subsequently, after the first
synthetic toy experiments, we observed that having two embeddings initially very
close to each other, especially if the embeddings overlapped ’on top’ of each other,
led to no modality gap phenomenon regardless of any other hyperparameter condi-
tion or temperature mode setting. Work by Yuhui Zhang et al. 2023 demonstrated
that the modality gap ’direction’ for image and text multimodal models seems to be
orthogonal to the within-modality embedding planes. This suggests that each modal-
ity embedding resides in different but parallel sub-spaces in the constrastive z-space.
One possible reason for this could be that the loss function encourages this gap and
enables its stability by making the matrix of the linear projectors project into par-
allel and non-overlapping sub-spaces. Given these observations, the following simple
methods involve tackling the modality gap phenomenon by modifying and constrain-
ing the projectors to encourage both modality embeddings to be close to each other
initially and/or ’live’ in the same subspace.

• Shared Projector Method
In this configuration, we employ two-tower encoders fθf and gθg for modalities x1

and x2 respectively, just as in our previous models. However, instead of having
distinct projectors for each modality, both encoders share a common projector
vθv for mapping their respective latent vectors h1 and h2 to the common latent
space z-space.

• Distinct Projectors with identical parameter initialisation Method
In this alternative setup, we still use the two-tower encoders fθf and gθg to
generate the latent vectors h1 and h2. However, we now introduce two distinct
projectors vθv1 and uθu2 for the two modalities. Although distinct, these projec-
tors are initialised with the same weight values but are allowed to diverge during
training:

This approach allows the projectors to adapt individually to each modality while
starting from a roughly closer initialisation point where we have a small initial
angle of separation between the mean vectors of the two modality embedding.

All training conditions and hyperparameter sweeps are identical to those of experi-
ment 3 in Phase 1.
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5.2.7 Automatic Individualised Entropy Equalising Temperatures Method:
AIEET

Two objections could be made about CLIP loss:

1. We are faced with a Goldilocks situation of choosing a good temperature value,
otherwise risking a non-optimal, or even a bad, outcome. Such a task is not easy
to perform without trial and error, and doing so is shrouded with uncertainty
of whether or not one chooses a good value. Often having to go through com-
putationally expensive rounds of grid-searching. Ideally, it would be wonderful
if there was an automatic approach that would ideally converge to represen-
tations equivalent to the best-fixed temperature values. A less ideal but still
pretty good situation would be to have another yet equivalent multimodal con-
trastive loss function, where we have another hyperparameter but one that is
not highly sensitive to specific values nor is finicky between different datasets.
Ideally, choosing a specific value of this new hyperparameter, regardless of the
dataset, would lead to representations comparable to a very good/ best tem-
perature value.

2. Due to its mathematical formulation, CLIP loss does not take into account
cases/datasets where we have i) different abundance of semantic data / ”classes”
where some semantics are simply more common than others (Qiu et al. 2023)
or when the density of embeddings in the contrastive latent space is highly non-
uniform, potentially leading to different ”attraction” / ”repulsion” felt by each
zmi for figure 16 illustrates this situation where we depict the embeddings of
two modalities in z−space from a simple trained model on the CITE dataset.
The key point to notice here is that some semantic types (the ’blue class’) have
a much larger ’extent’ on the unit sphere than others (for instance, the ’red’
class).

Crucial to the insight behind the method to be presented here are two observations:

1. When we reformulate CLIP in terms of Euclidean distances instead of dot prod-
ucts of normalised embeddings, each summand looks like we are essentially
’overlaying’ a Gaussian distribution centred at each zmi with variance = τ :

Lm
i = − log

exp
(

zmi ·zm′
i

τ

)
∑N

j=1 exp

(
zmi ·zm′

j

τ

) = ... = − log
exp

(
−∥zmi −zm

′
i ∥2

2τ

)
∑N

j=1 exp

(
−∥zmi −zm

′
j ∥2

2τ

) (71)

2. Each Lm
i term can be viewed as the negative logarithm of a conditional proba-
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Figure 16: Toy example of non-uniform embedding distribution in the contrastive latent space on the
unit sphere in R3. The left sub-figure is coloured by modality (two modalities, blue and orange). The
right sub-figure is coloured by class.

bility distribution:

Lm
i = − log

exp
(
−∥zmi −zm

′
i ∥2

2τ

)
∑N

j=1 exp

(
−∥zmi −zm

′
j ∥2

2τ

) = − log p(z = zm
′

i |zmi , τ) (72)

I present a proposal for a method that addresses the two problems above. Departing
from the standard CLIP loss function with a single global temperature towards one
where each datapoint for each modality, zmi , is assigned its temperature hyperpa-
rameter value, τmi , that automatically is determined for every batch when computing
the CLIP loss during training. We call this method automatic individualised entropy
equalising temperatures (AIEET ) to be used inside the CLIP loss function. What
we end up with is a final loss function of the form:

L1
AIEET =

N∑
i=1

−log exp (z1i · z2i /τ 1i )∑N
j=1 exp

(
z1i · z2j/τ 1i

) (73)

L2
AIEET =

N∑
i=1

−log exp (z1i · z2i /τ 2i )∑N
j=1 exp

(
z1j · z2i /τ 2i

) (74)

LAIEET = L1
AIEET + L2

AIEET (75)

The criteria we use to determine each of these individualised temperatures is to make
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each the entropy of all the conditional probability terms p(z|zmi , τmi ) have the same
entropy, for some user-specific target entropy value. An equivalent yet more intuitive
way of formulating this criterion in terms of perplexity instead of entropy. Recall from
the information theory section in the Background that we can view the perplexity of
distribution as the effective number of ’outcomes’. Given that our conditional prob-
ability distributions are ”conditions” based on centring a Gaussian function around
each zmi . Given this, another equivalent interpretation comes from the dimensionality
reduction literature (Van der Maaten and G. Hinton 2008), where perplexity is some-
times seen as an ’effective number of neighbours’. This leads us to frame the method
as follows: AIIET: For each zmi , choose its τmi , such that the conditional probability
p(z|zmi , τmi ) has a perplexity equal, to some user-specified value.

One of the theoretical justifications for using entropy, or equivalently the perplex-
ity, as the criterion for adjusting temperatures is that this ”makes the same” the
attraction and repulsion forces for each zmi , taking into account both embeddings
geometry density steaming from differently distributed semantics and/or the encoder
mappings, making this an adaptive and dynamic method. Moreover, a simple binary
search makes each individual temperature easy to determine. The details for the
computation of a single τmi of zmi given the encoded batch embeddings {z1i }N , {z2i }N
and target perplexity Ptarget is as follows:

1. Specify a target perplexity, Perptarget, the hyperparameter. Given the inter-
pretation of perplexity as an ’effective’ number of neighbours around zmi to
consider, the value should be in the range of range 1 (minimum) and the size
of the batch (maximum) during one gradient update iteration.

2. Specify a max and minimum range for τmi , e.g. [0.01, 2π], related to the width
of the Gaussian around each zmi .

3. Calculate the perplexity of the conditional probability distribution given by
equation 74 with an initial τmi value (e.g. the midpoint of the initial range).
For each point, enter the binary search loop where:

(a) Compute the conditional probability distribution p(z|zmi , τmi ) given by us-
ing the current τmi .

(b) Calculate the entropy H(i) of this distribution via:
Hm

i = −
∑N

zm
′

k
p(z = zm

′

k |zmi , τmi ) log p(z = zm
′

k |zmi , τmi ).

(c) Convert the entropy into perplexity Perpmi = 2H
m
i .

(d) Compare Perpmi to Perptarget.

(e) If Perpmi is too high, increase τmi to ’widen’ the distribution. If Perpmi is
too low, decrease τmi to ’narrow’ the distribution.

(f) Adjust the range for τmi based on the comparison and select a new τmi
within this range.
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4. Continue the binary search until the perplexity Perpmi is close enough to
Perptarget or until a maximum number of iterations has been reached. The defi-
nition of ”close enough” can be a small difference between Perpmi and Perptarget.

Once the binary search converges for each zmi , for each modality, a set of individ-
ualised temperatures {τmi }Ni=1 that should yield conditional distributions with the
desired perplexity. The complete AIEET algorithm for determining the individual
temperatures and using the resulting set of individualised temperatures in the CLIP
loss function is thus:

Algorithm 4 Training with AIEET

1: Input: Batch data for modality 1 {x1i }N and modality 2 {x2i }N , AIEET algo-
rithm, loss function

2: Compute representations {h1i }N and {h2i }N using modality-specific encoders for
each x1i and x2i

3: Project {h1i }N and {h2i }N to the embedding space, resulting in {z1i }N and {z2i }N
4: Apply AIEET to obtain optimized temperatures {τ 1i }N for {z1i }N and {τ 2i }N for
{z2i }N

5: Calculate contrastive loss using {z1i }N , {z2i }N , {τ 1i }N , and {τ 2i }N ▷ The loss for
each modality is computed as per:

6: L1
AIEET =

∑N
i=1− log

exp(z1i ·z2i /τ1i )∑N
j=1 exp(z1i ·z2j/τ1i )

7: L2
AIEET =

∑N
i=1− log

exp(z1i ·z2i /τ2i )∑N
j=1 exp(z1j ·z2i /τ2i )

8: Combine both losses to get the total loss LAIEET = L1
AIEET + L2

AIEET

9: Update model parameters based on the computed loss

The idea of having individualised temperatures for each datapoint in a contrastive
loss setting is entirely not novel now: during the writing of this thesis, Qiu et al. 2023
published work on an individualised temperature scheme like AIIET . The authors
propose their method to address the problem of semantic distribution imbalances and
frame their methodology in a framework of optimisation of parameters under uncer-
tainty, an approach known as the use of distributionally robust optimisation. Unlike
in AIIET, which uses binary search optimisation with the principle of equalising en-
tropy/perplexity, their work proposes an efficient stochastic algorithm with provable
mathematical convergence, which may imply a more complex optimisation process
but with guaranteed performance improvements.

In our runs, we test the target perplexities in terms of fractions of the mini-batch size,
which will vary between which dataset we use: [0.25, 0.5, 0.75]×minibatch size. All
training conditions and hyperparameter sweeps are identical to those of experiment
3 in phase 1 for both datasets.
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Part IV

Results

6 Results I: Phase I / Experiment 1: Toy Synthetic Simulations
with CLIP Loss

Key Observations and Results

1. All instances of a strong modality gap occur when we set the fixed tem-
perature mode of CLIP loss to a small value (τ = 0.01). This holds for all
investigated z-space dimensionality and for all investigated initial angles
of embedding separations that are ’realistic’ from a random initialisation
perspective.

2. A modality gap always emerged for all conditions of the learned temper-
ature mode of CLIP, except for when the initial separation angle between
modalities was set to zero.

In learned temperature mode, the temperature consistently decreases
throughout the training process

3. Setting the separation angle to zero is able to close the modality gap for
any dimension and temperature mode and value, regardless of contrastive
latent z-dimensionality investigated.

4. For fixed temperatures that result in no modality gap: The geometry
of the learned embedding exhibits a defined sequence of ’stages’: first
aligning between modality local similarity structure

5. The temperature value determines when and if each stage occurs during
training.

6. The sequences of stages occurs at all tested z space latent dimensions. The
dimensionality affects the ’timing’ of the stages: the higher the dimension,
the ’sooner’ these stages occur during training.

In this set of computational experiments, our objective is to simulate the training
process of a multimodal contrastive representation learning model. Our primary
emphasis will be on isolating and analysing the performance of the clip loss function.
We focus solely on how the CLIP loss function influences the final learned embeddings
and where and when we find any form of a stable modality gap, defined as a scenario in
which the magnitude of the modality gap and the linear separability metric converge
to non-zero values, respectively, around a value of approximately one.
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Our specific objective is to investigate whether stable gaps emerge during our simula-
tions when varying temperatures for fixed temperature modes of the clip loss function
and experimenting for different initial temperatures for learned temperature settings.

In our investigation of both the fixed-temperature mode and the learned temperature
mode, we conduct simulations at various latent dimensions. These simulations encom-
pass scenarios where we initiate training with a range of initial angles of separation
between the modalities. Furthermore, we explore runs with different temperature
setting, τ, τo = [1.0, 0.1, 0.01].

Figure 17 visually represents our fixed temperature mode runs for experiment 1 post-
training. In the top subplot, an unfiltered parallel coordinate plot, where each line
corresponds to a distinct run, traversing through each axis. The first three axes
represent our hyperparameters, while the following two axes represent the measured
modality gaps and linear separability values. Subsequently, in the second and third
plots, we display filtered versions of this data.

An immediate observation from our analysis is that stable modality gaps consistently
manifest at low temperatures, regardless of the latent dimensionality. In realistic
settings at high dimensions, it is common for the separation angle to approximate
perpendicularity, typically around 1.6 radians. What is intriguing is that when we
initially superimpose both modalities (θ0 = 0), the starting temperature does not
appear to significantly impact the modality gap magnitude. In these cases, we tend
to observe modality gaps that converge toward values close to zero.

Next, we sought to investigate the persistence of this phenomenon when transitioning
to a learned temperature mode. For simplicity, we selected two ”extremes” of latent
space dimensionality, z − dim = 3 and z − dim = 64. In this scenario, we initialised
the initial temperature at the same values as in the fixed case. It was observed that
in the majority of cases, during the course of training, the temperature consistently
decreased. The equivalent parallel coordinate plots for these learned temperature
mode toy runs are shown in Figure 18

In contrast to the fixed temperature mode case, where only small temperatures led
to a stable modality gap, in the learned setting, we observed that all initial values
of the temperature resulted in a stable modality gap when the separation angles
approximated realistic cases, specifically around 1.6 or 1.4 radians. This phenomenon
was exclusive to high-dimensional latent spaces. In line with the fixed case scenario,
when we initially align our embeddings, effectively setting the angle of separation to
zero, we observe the absence of a modality gap in both the strong and weak senses.
This observation holds true regardless of the initial temperature settings. Consistent
with the fixed temperature mode scenario, when we initially align our embeddings,
resulting in a zero separation angle, we consistently observe the absence of a modality
gap. This observation holds true across a range of initial temperature settings.

An intriguing observation we made pertains to realistic separation angles. In the
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(a) Complete parallel coordinate plot for fixed temperature toy simulation runs

(b) Runs filtered by complete linear separability between modality embeddings: Linear Sep = 1.0

(c) Runs filtered by initial angle of separation. Only runs that have an initial separation angle of around 0are shown.

Figure 17: Parallel coordinate plot for Experiment 1 runs, fixed temperature mode. The first three
are the hyperparameter axis (z−space dimensionality, initial separation angle between embeddings and
temperature value). The next two axes are the gap metrics.
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(a) Complete parallel coordinate plot for learned temperature toy simulation runs

(b) Runs filtered by complete linear separability between modality embeddings: Linear Sep = 1.0

(c) Runs filtered by initial angle of separation. Only runs that have an initial separation angle of around 0 shown.

Figure 18: Parallel coordinate plot for Experiment 1 runs, learned temperature mode. The first three
are the hyperparameter axis (z−space dimensionality, initial separation angle between embeddings and
temperature value). The next axis represents the final learned temperature for the run. The following
two axes are the gap metrics.
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learned temperature setting, regardless of the initial temperature, we noticed a con-
sistent trend of convergence towards very small final temperatures. These small final
temperatures consistently resulted in the generation of a complete modality gap, char-
acterised by a linear separation value of approximately 1. This naturally prompted
us to investigate whether a learned temperature setting converges to the same final
temperature, regardless of the initial starting point. In Figure 19, we plot the tem-
perature evolution throughout the training process, both for the low 3-dimensional
latent space case and 64-dimensional scenarios, for various initial temperature values.

(a) z-dim 64 learned temp

(b) z-dim 3 learned temp

Figure 19: Temperature during training for learned temperature mode. The bottom sub-figure is for
low-dimensional latent space, and the top sub-figure is for the 64-dimensional latent space. The x-axis
represents gradient update steps. The y-axis is the temperature (unitless) in a logarithmic scale.

Both plots depicted in Figure 19 show a noticeable trend of final temperature con-
vergence towards the same value at the conclusion of training. However, what stands
out is that the initial temperature plays a crucial role in determining the timing of
temperature drops during training in the learned temperature mode. Specifically,
smaller initial temperatures lead to faster convergence to the average learned final
temperature. The key takeaway from here is that that: in learned temperature mode,
the temperature consistently decreases throughout the training process

6.1 Geometric dynamics of the representations during training

Visualising anything becomes notably challenging when the dimensionality exceeds
three. As noted in the methodology evaluation section, we rely on geometric measures
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of our embeddings to gain insights into the geometric dynamics of our embeddings as
we increase the dimensionality of our latent space. While tracking the various geo-
metric gap metrics across the training duration of our runs, we observe a phenomenon
that sheds light on the evolving nature of how CLIP loss affects the geometry of the
learned representation throughout the training process.

The geometry of the learned embedding appears to undergo changes in a stage-wise
manner, characterised by three distinct stages. Figure 20 serves as the example in
depicting this phenomenon. It specifically showcases the fixed-temperature case when
the latent dimensionality is set at 64.

In the first stage, the predominant activity involves both modalities converging to
exhibit similarity within their local neighbourhoods. Moving into the second stage,
once this alignment occurs, these modalities draw closer together, which is evidenced
by the increase in the average cosine similarity between positive pairs and the decrease
in the modality gap magnitude. Simultaneously, we observe an expansion of the
embeddings for both modalities away from the mean cosine similarity within their
respective modalities. This expansion, leading toward perpendicularity, is further
corroborated by the declining Yang-Wang-Isola uniformity measure during the same
period.

The alignment between positive pairs and the expansion of within-modality embed-
dings appear to persist until each modality becomes increasingly proximate to the
point of intermingling. This pivotal phase is visually represented in the figure, where
the between-modality positive pair reaches its maximum value of one, and the modal-
ity gap approaches a value close to zero. Subsequently, in the third stage following
this, we observe a decline in linear separability. This suggests that not only is align-
ment between the modalities intensifying, but it’s progressing to the extent of merging
into one another. This specific stage unfolds between the green and black dashed lines.
Following this, we witness embeddings in the latent dimension becoming entirely in-
separable, and this stable pattern continues onward.

This phenomenon exhibits a consistency across different temperature settings, both
fixed and learned, as well as various latent space dimensionality. When altering the
temperature value in the fixed mode setting, Figure 21, a notable pattern emerges
where higher temperatures prolong the ’time’ required to reach each stage (time in
terms of number of gradient update steps). In essence, each stage takes longer to
manifest as the temperature value is set higher. When altering the latent space
dimensionality, Figure 22, we observe a shift in the occurrence of these stages, with
higher dimensions leading to quicker transitions between stages in terms of training
steps or gradient update steps.

It’s worth noting that this progression in ’stages’ aligns with the observations and
findings presented in Ren and Yuanzhi Li 2023. However, it’s worth noting that
the analysis in Ren and Yuanzhi Li 2023 takes a primarily theory-centric approach,
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Figure 20: Various geometric metrics thought the training of a fixed temperature mode run, τ = 1.0,
Z-dim= 64. Metrics from top to bottom: Average between modality kNN similarity, average between
modality positive pair cosine similarity, linear separability value, modality gap magnitude, average within
modality cosine similarity mean, average within modality cosine similarity standard deviation. The x-axis
represents the gradient update steps.
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with only partial confirmation in their practical experiments involving an Image-text
multimodal dataset.

Figure 21: Effect of temperature value on the sequential ’stages’. OBS for temps that result in modality
gap we have a quick convergence to the final ’stage’ of a modality gap.
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Figure 22: Fixed Temp = 1.0, fixed initial separation angle of θ0 = π/2. Variation of latent dimension
space. For a given temperature that results in a modality gap, the effect of latent space size ’shifts’ when
the stages occur in terms of number of training steps.
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7 Results II: Phase I / Experiment 2: Pseudo-Multimodal Con-
trastive Learning with CLIP Loss

Key Observations and Results

1. Lower Temperatures and Modality Gaps: Small temperature settings
(τ = 0.01), regardless of temperature mode, often lead to the forma-
tion of modality gaps in all our investigated runs. A higher modality gap
generally results in higher linear separability between modality embed-
dings.

2. Modality-Specific Optimal Temperature: The optimal temperature set-
ting for label-centric metrics is specific to the dataset.

3. Non-Monotonic Relationship: No universally consistent relationship ex-
ists between temperature settings and label-centric metrics. Basically, no
such thing as a single overall optimal temperature exists.

4. Variable Phenomena Across Datasets: The extent of modality gap met-
rics and their correlation with label-centric metrics vary across different
datasets.

5. Complexity in Temperature and Task Performance: The relationship be-
tween temperature settings and downstream task performance is complex
and varies across modalities.

6. Learned Temperature Convergence Behaviour: Unlike synthetic cases,
learned temperatures in real-world scenarios often depend on initial set-
tings, adding another layer of complexity.

In this set of experiments, we extend the work done in the previous synthetic simula-
tion experiemnts, where the focus was exclusively on the CLIP loss function. The first
chapter employed synthetic simulations to explore the impact of the contrastive loss
on multimodal data. In this chapter, we take a step towards a more realistic evaluation
by introducing two-tower models and incorporating actual data into the experimental
setup. Unlike in the first chapter, where embeddings were synthetically generated, the
embeddings are produced by neural network encoders trained on real-world data. To
’shield’ any interesting results from any influence due to dataset asymmetries between
modalities, we employ a simple technique called ”pseudo-modality.” As mentioned in
the Methodology chapter, our multimodal dataset is constructed by taking the same
data in a batch and feeding them through both encoders. This ensures that any
observed effects are attributable to the learning process and not influenced by inher-
ent differences between the data modalities. This setup allows us to gain insights
into how the contrastive loss functions when realistic encoders and actual data are
involved while stil maintaining a controlled experimental environment.
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We aim to address several key questions: First, we want to understand how and when
stable modality gaps occur in these more realistic scenarios involving actual encoders
and data. This will allow us to compare the conditions under which modality gaps
emerge in synthetic and realistic settings. Second, we seek to investigate whether the
”stage phenomena” observed in the first chapter, where distinct phases of learning
were identified, also manifest in this more complex environment. By introducing
encoders and real-world data, we aim to elucidate the underlying factors contributing
to these phenomena, thereby providing a more comprehensive view of the behaviour
of contrastive loss in multimodal representation learning.

This set of experiments uses the MHD dataset as our primary data source for training
the multimodal two-tower networks. Given the pseudo-modality setup, we effectively
work with three datasets. Specifically, we duplicate each modality in the MHD dataset
to create two separate multimodal datasets. This experimental design allows us to
investigate the transferability of observed phenomena and conditions between differ-
ent datasets. The overarching goal is to determine whether a consistent pattern of
conditions leading to the emergence of a modality gap can be identified across mul-
tiple datasets and perhaps consistent with the observations from experiment 1. This
would provide strong evidence for the generalizability of our findings, extending their
relevance beyond the specific synthetic simulations explored in the earlier chapter.

(a) Fixed Temperature CLIP loss function mode

(b) Learned Temperature CLIP loss function mode

Figure 23: Parallel coordinate plot for Experiment 2 for both fixed temperature mode (top sug-figure)
and learned temperature mode (bottom sub-figure). The first two are the pseudo-modality dataset types
and temperature hyperparameter axis. The next three axess represents are the modality gap metrics.
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In Figure 23, we present the parallel coordinate plots for both fixed and learned
temperature mode CLIP loss runs. Due to the random initialisation of all encoder
and projector parameters, the initial separation angles between modality embeddings
are not controlled and are, therefore omitted. We observe that low values for both
fixed temperature mode and learned temperature mode (τ, τ0 = 0.01), give rise to
modality gaps. This is consistent with findings from the previous chapter, where low
temperatures also formed complete modality gaps. Additionally, we note a correlation
between the magnitude of the modality gap and linear separability; a higher modality
gap generally corresponds to a linear separability value close to 1. However, inter-
preting these findings solely based on the modality gap could be misleading, given its
low values across all datasets.

Note that while small temperatures generally induce what we identify as a modality
gap, the extent of this gap varies depending on the modality and dataset in use.
In both the learned and fixed temperature settings, complete separation of modality
embeddings occurs for one or two datasets. However, under the same conditions, only
a partial separation with slight overlapping is observed in the other datasets. This
suggests that the nature of the data also plays a role in whether a stable modality
gap is achieved, as well as in determining the degree of this gap.

Figure 24: Relationship between temperature mode and value and average linear probe accuracy. Each
sub-figure corresponds to one of the three pseudo-multimodality datasets used. Within each sub-figure,
the initial grouping is based on temperature mode, then on temperature value.

Next, we focus on the relationship between temperature and label-centric metric,
specifically, we focus solely on average linear probe accuracy across all three of our
pseudo-modality datasets. Figure 24 reveals that the smallest temperature setting
leads to the highest accuracy values in two of the three modalities. This suggests, as
expected, that temperature indeed has an influence over-representation quality, proxy
measured here in terms of average linear probe accuracy. A key takeaway from Figure
24 is that there is no universally optimal temperature setting across all cases. The
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optimal temperature for linear probe accuracy varies between different pseudo modal-
ities. For example, in the (i, i) modality, the lowest initial temperature in the fixed
case yields the best linear accuracy, while a temperature of 0.1 results in the worst.
In contrast, for the (t,t) modality, the opposite holds true: the lowest temperature
performs poorly, and a temperature of 0.1 gives the best results. This variability un-
derscores the influence of the datasets on the optimal choice of temperature vis-a-vis
label-centric metrics.

In essence, a temperature setting that yields the best linear probe performance in one
dataset can result in the worst performance in another. Additionally, there doesn’t
appear to be a monotonic relationship between temperature and linear probe evalua-
tion. This is evident in both the (i, i) and (t, t) modalities for the fixed temperature
cases. In the (i,i) modality, the worst performance occurs at a mid-range temperature,
while in the (t,t) modality, this mid-range temperature produces the best results. This
further highlights the complexity of the relationship between temperature setting and
downstream task performance.

In the synthetic scenario of the previous chapter, all initial temperatures in the learned
temperature clip mode led to a modality gap, and the learned temperature consis-
tently converged to a very low value. Next, we are curious to see if a similar con-
vergence behaviour occurs in the current setting. In the following figure, we track
the learned temperatures throughout training for all combinations, encompassing all
three of our pseudo-modality datasets.

Next, we shift our attention to examining the convergence behaviour of the tempera-
ture within the learned temperature clip mode. In contrast to our observations from
the previous section’s simulation experiments, where the learned temperature consis-
tently converged to a single, lowest value, regardless of the initial temperature, we
now encounter a distinct and varying pattern.

In Figure 28, we illustrate the dynamics of the learned temperature throughout train-
ing for all three modalities and across various runs with different initial temperatures.
The final converged temperature after training heavily depends on the initial tem-
perature value. The order remains consistent in most cases, but a higher initial
temperature leads to a higher final temperature. However, there are exceptions. In
the third sub-figure of Figure 28, focusing on the trajectory-trajectory (t,t) runs, we
notice that starting with 0.1, unlike in other modalities, results in convergence close
to what would be expected with an initial temperature of 0.01.
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Figure 25: A figure Figure 26: Another figure

Figure 27: Another figure

Figure 28: The value of the learned temperature across training for the learned temperature CLIP mode.
Each sub-figure corresponds to each of the three pseudo-modality data (image-image), (sound-sound),
and (’trajectory-trajectory). The X-axis is the gradient upgrade number step, and the y-axis is the
temperature value scale
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8 Results III: Phase I / Experiment 3: True Multimodal Con-
trastive Learning with CLIP Loss

Key Observations and Results

1. Lower temperatures generally result in larger modality gaps in fixed and
learned temperature mode CLIP.

2. A positive relationship exists between temperature (in the fixed temper-
ature mode of clip), modality gap size, and linear separability, but the
degree is dataset-dependent. High initial temperatures generally reduce
modality gaps but show inconsistencies across datasets and metrics.

3. There exists a sweet-spot phenomenon between temperature and label-
centric metrics.

4. Higher temperatures do not consistently improve label-centric metrics.

5. Slight shifts in data distribution affect metrics slightly, as evidenced by
the CITE dataset.

6. Initial temperature significantly influences the final temperature in the
learned mode of CLIP.

In this section, we explore our third set of experiments in phase I, focused on genuine
multimodal contrastive representation learning using CLIP loss function.

8.1 Impact of Contrastive Latent Space Dimensionality on Modality Gap
Emergence

Our initial interest is understanding how various factors affect the ”modality gap”
in a two-tower multimodal contrastive learning setup. Specifically, we look at the
impact of the size of the latent space on the modality gap phenomenon, given differ-
ent (true) multimodal datasets, initial temperature settings, and CLIP temperature
modes. We conduct a wide range of experiments using all combinations of these
factors, particularly using the MHD dataset.

We chose the MHD dataset for its manageable size, which allowed us to conduct
numerous experiments efficiently. We decided not to use the CITE dataset due to the
time and resources that would be required.

Figure 29 provides parallel coordinate plots to visualise the results of these experi-
ments. The first plot shows all the data, while the next two plots show filtered results
based on the size of the modality gap. The plots indicate the multimodal combina-
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tions tested, the experimental settings for the latent space and temperature, and the
final metrics related to the quality of the learned embeddings.

When focusing on experiments with fixed temperature settings, we find that full
modality gaps are generally seen at the lower temperature, specifically at 0.01. This
pattern only holds for two out of the three bimodal datasets we examined. In cases
with some overlap between modalities, we find that modality gaps occur primarily at
small temperatures.

Our findings also show a strong relationship between the modality gap size and linear
separability. Small temperatures lead to large modality gaps and high linear separa-
bility but not necessarily to high positive pair cosine similarities. On the other hand,
for the ’higher’ evaluated fixed temperatures (1.0 and 0.1), there seems to be a con-
sistent trend toward reducing the modality gap across all dimensions and modalities.
This often results in near-complete non-separability, indicated by a linear separabil-
ity value close to 0.5. We find that the same trends are also evident in the learned
temperature setting of CLIP, as illustrated in Appendix C.
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(a) Unfiltered

(b) Almost linear separability of modality embeddings. Linear Separability > 0.9

(c) Complete linear separability of modality embeddings. Linear Seperability = 1.0

Figure 29: MHD - Mode: Fixed Temp CLIP: Modality gap phenomenon across z-space dimensionality
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8.2 Fixed temperature mode of CLIP - Relationship between temperature,
geometric properties and label-centric properties of learned embed-
dings

Next, we narrow our focus to explore how temperature affects various geometric met-
rics and performance in downstream tasks. We limit our analysis to a 64-dimensional
contrastive latent space, as our findings indicate that its size doesn’t significantly
influence the emergence of modality gaps. Instead, temperature settings, either fixed
or learned, appear to be the main drivers of this phenomenon.

A few points to highlight: 1) We use the MHD datasets in our experiments, covering
all three modality combinations. 2) We extend our study to the CITE datasets,
considering both IID holdout and test splits for a complete evaluation. These runs
will serve as key baselines for future work in addressing the modality gap.

We start by focusing on the fixed temperature mode with the MHD and CITE
datasets. A clear pattern emerges: higher initial temperatures generally result in
smaller modality gaps after training. Please refer to Figure 30, specifically the top-
left plots of each sub-figure. For the MHD dataset, lower initial temperatures, at
0.01, nearly eliminate the modality gap, as indicated by a high linear separability
value. For the CITE dataset, however, the trend is different. Near Complete lin-
ear separability emerges even at high temperatures. In the MHD dataset, when the
temperature exceeds 0.01, the embeddings mix completely, closing the modality gap.

Regarding the average cosine similarity between positive pairs, we notice it increases
with higher temperatures. This is evident in both datasets and is depicted in the top-
right sub-figures in Figure 30. Higher temperatures also improve the cosine similarity
between positive pairs in two of the three modality combinations on MHD modality
combinations.

The CITE dataset offers further insights into how slight shifts in data distribution
affect our metrics. While the same general patterns hold, they are slightly less pro-
nounced when the data distribution changes, indicating a degree of consistency in the
results.
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(a) MHD

(b) CITE

Figure 30: Modality gap metrics and label-centric metrics for fixed temperature mode runs of Phase I -
Experiment 3. The top figures are for the MHD runs and are grouped first by multimodality dataset and
then further sub-grouped by temperature value. The bottom figures are for the CITE runs, where initial
groupings are for each of the dataset splits, and then further sub-grouped by temperature value

When we look at label-centric metrics in Figure 30 like average linear probe accuracy
and average kNN label similarities, such as average linear probe accuracy and average
kNN label similarities, some patterns emerge, particularly in the MHD dataset. We
observe that higher initial temperatures typically yield higher metric values. These
temperatures do not consistently correlate with better label-centric metrics. More-
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over, a smaller gap between modalities does not necessarily translate to improved
downstream results.

In our fixed-temperature experiments on the MHD dataset, setting τ = 0.1 led to a
smaller modality gap compared to τ = 0.01. Despite this smaller gap, there was no
improvement in average kNN label similarity in z-space. Both the best and worst
kNN label similarities occurred at temperatures that yielded the smallest modality
gaps and linear separability. Likewise, a smaller modality gap did not significantly
boost average probe accuracy. Summing up, for the MHD dataset across all modality
combinations, the highest temperature setting (τ = 1) consistently produced the
most favourable embeddings in both geometric and label-centric metrics. However,
the second-best temperature varied depending on the specific modality.

When examining the CITE dataset, the highest temperature indeed led to better
geometric performance. For label-centric metrics, a temperature setting of 0.1 out-
performed others. This suggests that while higher temperatures improve geometric
metrics, an optimal temperature for label-centric metrics and downstream tasks varies
depending on the dataset.

8.3 Learned temperature mode of CLIP - Relationship between tempera-
ture, geometric properties and label-centric properties of learned em-
beddings

Turning to the learn temperature mode in CLIP, the patterns become less clear be-
tween gap metrics and label-centric metrics, as shown in Figure 31. Higher tempera-
tures generally improve geometric metrics, but in the case of the CITE dataset, the
variations between temperatures were minimal. For both the IID holdout and test
sets, no significant overlap in embeddings occurred across all tested temperatures.

Given these ambiguous patterns in learned temperature mode, we question ask
whether convergence of the temperature parameter occurs in this mode. We also
consider how the presence of encoders and the variability in information between
modalities might influence convergence based on the initial temperature chosen. In
terms of final converged to temperature, similar to the pseudo modality experiments,
the learned mode of CLIP often converges to different final values (Figure 32). This
suggests that the final temperature is strongly influenced by its initial value. In most
cases, except when starting from the lowest temperatures, we observe a consistent
downward trend in temperature over time, indicating that the learning process is
’cheating’ its way to a lower loss value since the temperature directly influences the
loss value.
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(a) MHD

(b) CITE

Figure 31: Modality gap metrics and label-centric metrics for learned temperature mode runs of Phase I
- Experiment 3. The top figures are for the MHD runs and are grouped first by multimodality dataset
and then further sub-grouped by temperature value. The bottom figures are for the CITE runs, where
initial groupings are for each of the dataset splits, and then further sub-grouped by temperature value

Given these ambiguous patterns in learned temperature mode, we question ask
whether convergence of the temperature parameter occurs in this mode. We also
consider how the presence of encoders and the variability in information between
modalities might influence convergence based on the initial temperature chosen. In
terms of final converged to temperature, similar to the pseudo modality experiments,
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(a) (image-sound) modalities (b) (image-trajectory) modalities (c) (sound-trajectory) modalities

Figure 32: Learned Temperature dynamics across training for all three modality combinations in the
MHD dataset.

the learned mode of CLIP often converges to different final values (Figure 32). This
suggests that the final temperature is strongly influenced by its initial value. Addi-
tionally, in most cases, except when starting from the lowest temperatures, we observe
a consistent downward trend in temperature over time, indicating that the learning
process is ’cheating’ its way to a lower loss value since the temperature directly in-
fluences the loss value.

In summary, two main points stand out for the learned temperature clip mode. First,
in the learned temperature mode, the temperature generally shows a steady decline,
especially when not starting from the lowest settings. Second, the final temperature
is significantly affected by the initial value; higher initial temperatures tend to result
in higher final temperatures.
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9 Results IV: Phase II / Experiment 4: Influencing the Modality
Gap

Key Observations and Results

1. Modality gap metrics are ’influenceable’. Key examples: Temperature-
free methods such as simple cl, wang + isola, symmatrix, and AIEET
show strong performance in reducing gap metrics across all tested scenar-
ios. Wang+Isola and AIEET methods excel in reducing linear separability
for both MHD and CITE (relative to all methods tested).

2. Methods that depend on learned or scheduled temperatures typically per-
form poorly in reducing the modality gap magnitude.

3. For some methods that mitigate/close the modality gap, considerable
variation is observed in their label-centric metrics.

4. Large modality gaps or high linear separability values do not necessarily
indicate poor label-centric performance, adding complexity to the rela-
tionship between the modality gap and the quality of learned representa-
tions.

5. Insignificance of modality gap for label-centric metrics: no solid or con-
sistent pattern is observed between the modality gap metrics and label-
centric quality metrics, suggesting that the modality gap could be a ’by-
product of the learning process’ rather than a critical determinant.

6. The MHD dataset complicates the interpretation of label-centric metric
performance due to performance saturation (easy for methods to reach
very good label-centric performance). Most methods achieve high scores,
underscoring the importance of considering within-method variability.
The MHD datasets should thus be used as a bare-minimum requirements
benchmark for evaluating methods in multimodal contrastive representa-
tion learning.

7. Multimodal Wang+Isola, scheduled temperature and specific runs of the
AIEET methods appear to be top-performing methods in terms of label-
centric metrics.

8. While AIEET shows promise, its label-centric performance varies with
hyperparameter settings. The most successful runs generally have a target
complexity around half the batch size, deduced and consistent from all
experiments. On average, its label-centric performance is roughly on par
with the fixed temperature mode CLIP baselines.

9. Remarkably low within-method variation is observed for the two label-
centric metrics top performers (Wang+Isola and Scheduled Temperature),
across different random seeds.
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In this section, which forms the core of Phase 2 - Experiment 4 of our approach,
we assess the effectiveness of several alternative constrastive methods, concentrating
on their impact on the modality gap and label-centric metrics. This analysis builds
on the observations and results established in the experiments of Phase 1, where we
initially explored the modality gap using the CLIP loss function, most importantly
results from Experiment 3 which will act as our baselines of comparison.

The structure of this chapter is as follows: We first study the effect of each method
on two modality gap metrics. Next, we investigate whether these effects consistently
impact label-centric metrics. In both cases, having fixed and learned temperature
mode of CLIP mode baselines. The results are primarily sorted by mean values over
their respective hyperparameter values. We focus on two primary metrics related to
the modality gap phenomenon: its magnitude and the linear separability in the z-
space. We also narrow our label-centric metrics to the average linear probe evaluation
performance and average kNN label similarity in z-space. Our analysis doesn’t just
look at the top-performing runs for each method. We group runs based on specific
hyperparameters to see if certain settings consistently yield better label-centric metric
outcomes. We average each method’s performance across all runs to ensure fair
comparisons, accounting for different hyperparameter values. We report both the
range and mean of metric values.

When ranking and identifying top-performing methods, we prioritise those consis-
tently performing ”well” across MHD and CITE datasets. Specifically, we highlight
methods that excel across all multimodal combinations of the MHD dataset and both
I.I.D. and test splits of the CITE dataset.

Regarding the colour scheme in figures and plots, methods in the ”Fixed” category
appear in shades of blue, while ”Learned” methods are in shades ranging from red
to brown. Other methods have unique colours to signify their category: ’scheduled’
in deep pink, ’shared projector’ and ’init twin projectors’ in shades of purple, and
’AIEET’ in dark orange. Methods that don’t rely on hyperparameters are shown in
shades of green.
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9.1 General relationship between gap metrics and label-centric methods

(a) MHD modalities

(b) CITE

Figure 33: Influence of alternative methods on the modality gap magnitude. Methods applied to the
MHD modality combinations are sorted by mean value across all three modality combinations. The final
’ranking’ on MHD is shown in the top right legend. Method rankings for the CITE dataset (i.i.d. holdout
split and Test split) are sorted. The red horizontal line indicates the mean value on the CLIP fixed
temperature mode runs.

We begin this analysis by tackling one of the key questions of this thesis topic: How
do our proposed methods affect the magnitude of the modality gap magnitude and
other gap metrics? In Figure 33, we show methods rankings based on the MHD and
CITE datasets. These rankings are organised in ascending order, from the methods
that result in the smallest modality gap magnitude (left) to those that lead to the
largest (right).

Attention should be directed to the legend in the top-right corner of the MHD sub-
figure and the order presented in both CITE sub-figures. Here, our baseline methods
— fixed and learned temperature mode CLIP loss — serve as reference points.

Figure 33 indicates that temperature-free methods such as simple contrastive learning
(simple cl), Wang+Isola, symmatrix, and AIEET are consistently capable of either
closing or significantly narrowing the modality gap in all tested scenarios. These
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methods outperform the best results achieved by the fixed temperature mode CLIP
baseline. When augmenting the fixed temperature mode with either the modality
gap magnitude penalty term or the symmatrix terms, a reduction in gap magnitude
is observed across all instances compared to the baselines. In contrast, methods that
involve learned temperatures generally yield poor results, often ranking among the
worst performers across both datasets. We find that improvements to the learned
temperature mode in CLIP can reduce the modality gap within this category of
learned and scheduled temperatures. However, even the best-performing methods
with learned temperatures fail to surpass the average performance of the fixed tem-
perature mode baseline.

(a) MHD

(b) CITE

Figure 34: Methods affect on linear separability between modality embedding in contrastive learning
z−space. Methods applied to the MHD modality combinations are sorted by mean value across all three
modality combinations. Final ’ranking’ on MHD is shown in top right legend. Method rankings for CITE
dataset (i.i.d. holdout split and test split) are sorted. Red horizontal line indicates the mean value on
the CLIP fixed temperature mode runs.

A similar trend is noticeable when examining other modality gap metrics, particularly
linear separability in the contrastive z-space. Two temperature-free methods and the
AIEET method appear to reduce or even align the modality embeddings effectively.
The performance of the Wang+Isola and AIEET methods is interesting: these meth-
ods consistently result in overlapping modalities with linear separability values falling
below 1.0, a significant improvement compared to the baselines.
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One key question this thesis aims to answer is whether the modality gap can be
influenced and how such changes affect the quality of the learned representation,
particularly about semantic structure, measured here by label-centric metrics.

Up to this point, our observations and results have explored the feasibility of in-
fluencing the modality gap metrics. So far, we have established that it is indeed
possible to affect the modality gap metrics through methods other than the baseline
approaches. Various methods have demonstrated the capacity to influence, diminish,
or even completely close the modality gap in terms of both magnitude and linear
separability (depending on the dataset).

Building upon these observations and in line with the key research questions of this
thesis, the next logical step is to determine the significance of these observed method
influences. The aim is to examine how the proposed alternative methods that exhibit
changes in modality gap magnitude compare when evaluated using label-centric met-
rics. It is important to remember that these label-centric metrics act as indicators
of the ’quality’ of representation embeddings and their influence on downstream task
performance.”

In Figures 35 and 36, we explore the relationship between modality gap metrics and
label-centric metrics. Each sub-figure, corresponding to a different dataset, plots the
modality gap magnitude (or linear separability value) on the x-axis and either the
average linear probe-evaluation F1 score or the average kNN label similarity on the
y-axis. A consistent pattern emerges, regardless of the specific label-centric metric
we consider. We consistently observe strong performance across the entire spectrum
of modality gap magnitudes. Across all magnitudes, performance remains robust.
Interestingly, among methods that resulted in the smallest modality gap, we observe
the largest variation in label-centric values. Among all methods, some runs with the
smallest modality gap also yielded the worst-performing outcomes. However, in most
cases and across both datasets, the best-performing runs tend to coincide with the
smallest and largest modality gap magnitudes.

The pattern seems consistent for linear separability as seen in Figure 36. Methods
with nearly complete overlap (a linear separability of around 0.5), display the broad-
est range in label-centric metrics. This is especially evident in the MHD dataset.
On the other hand, methods that result in a complete modality gap still show a
broad range in label-centric performance. However, much like the modality gap, the
best-performing methods tend to group in the top-left corner of the plot, meaning
lower linear separability values are associated with better performance. Evan the
largest linear separability values do not automatically mean the worst label-centric
performance.
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(a) MHD modalities

(b) CITE

Figure 35: Modality gap magnitude (x-axis) vs. Label centric metrics scatter plots of all runs, coloured
by method and mode. Columns represent different modality combinations for MHHD dataset (top sub-
figure), and different training splits for CITE dataset (bottom subfigure). Note the logarithmic x-axis for
MHD plots.
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(a) MHD modalities

(b) CITE

Figure 36: Linear separability (x-axis) vs. Label centric metrics scatter plots of all runs, coloured by
method and mode. Columns represent different modality combinations for the MHHD dataset (top sub-
figure) and different training splits for CITE dataset (bottom sub-figure).
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9.2 Method performance with respect to label-centric metrics

The absence of a clear pattern between gap metrics and label-centric quality metrics in
our previous analysis suggests that the modality gap is more of a geometric outcome
rather than a decisive factor in the learning process. In this section, we shift our
focus from understanding how different methods influence the modality gap. Instead,
our primary interest now lies in evaluating which methods perform best against our
baselines solely in terms of label-centric metrics. These metrics, as a reminder, serve as
indicators for the quality of representation in downstream tasks. Good performance in
these metrics is assumed to correlate well with overall downstream task performance.

In Figure 37, we introduce a scatterplot where the x-axis shows the average kNN
label similarity and the y-axis shows the average linear probe performance. Our goal
is to identify methods or parameter settings in the plot’s top-right corner, signifying
high performance across both label-centric metrics. One main observation is that
the simple contrastive method (simple cl) consistently ranks lowest in performance
across both datasets. This holds regardless of the modality combination used in the
MHD dataset or the specific data split in the CIT dataset.

Observe in the same figure that the MHD dataset emerges as a relatively straightfor-
ward benchmark for assessing multimodal contrastive representation methods. Most
of the evaluated alternative methods easily achieve high label-centric performance
across all three modality combinations in the MHD dataset. This consistent high per-
formance might indicate that the MHD dataset may serve more as a basic/minimal
standard dataset rather than a challenging benchmark. Any method of significant
merit should be expected to perform well on this dataset. One key insight lies in
recognising that methods failing to achieve good performance on the MHD dataset
might not be sufficiently robust or effective for further consideration.

At the opposite end of the performance spectrum, in the top-right corner of all
sub-figures, we observe that the scheduled temperature method, along with the
Wang+Isola methods and specific hyperparameter of the AIEET method, consis-
tently performs the best. Regarding the AIEET method, it’s worth noting that not
all runs fall into the top-right corner, indicating that specific hyperparameter values
do not yield top-performing results. Upon further examination of the hyperparameter
values associated with the best-performing runs, it becomes evident that they tend
to have a target complexity of approximately half the batch size.
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(a) MHD

(b) CITE

Figure 37: Label-centric metric scatter plots where each run of each method is plotted. Placement in
the scatter plot indicates overall label-centric performance. The top row sub-figures are for MHD runs,
while the bottom row sub-figures are for CITE runs. The colouring of dots is by method type.
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(a) MHD

(b) CITE

Figure 38: Average linear probe evaluation performance of methods. Larger values are ’better’.

A more comprehensive evaluation of the ranking for each method is presented in
Figures 38 and 39, where we have sorted each method based on its label-centric
performance values. In the top-performing methods, we consistently observe that
two methods stand out with exceptionally strong performance compared to the base-
lines. Confirming what we previously observed in Figure 37, it’s evident that both
the Wang+Isola method and the scheduled temperature method consistently excel
across both label-centric metrics on both MHD and CITE. The performance of the
AIEET method has significantly improved compared to baselines. It ranked as the
top-performing method in one dataset, but in the MHD dataset, its performance
was comparable to fixed temperatures. Interpreting label-centric performance on the
MHD dataset presents challenges due to method saturation, where it seems that all
methods yield relatively high results (all exceeding 90 per cent accuracy on average
linear probe accuracy), with limited variation among them. Nevertheless, it’s impor-
tant to consider within-method variation, which remains a matter of significance; with
that said, it is worth mentioning that the two top-performing methods also exhibited
remarkably low within-method variation.
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(a) MHD

(b) CITE

Figure 39: Average kNN label similarity of methods. Larger values are ’better’.
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Part V

Discussion

10 Discussion

This chapter will aim to summarise and contextualise the results from the previous
chapters with respect to the research questions posed in the beginning of this thesis.

10.1 Addressing the thesis research questions

Research Question: Does the definition of the modality gap adequately
encapsulate the observed separation of modality embeddings within the la-
tent space?

While not actually part of the results, it became evident throughout the duration of
this thesis that the quantitative metric to characterise the gap, provided by W. Liang
et al. 2022, did not adequately capture the essence of the modality gap phenomenon.
Specifically, in chapter 4: Methodology II: Metrics for Characterising and Evaluat-
ing Learned Representations, it was demonstrated that various different embedding
configurations with similar modality gap magnitudes exhibited different linear sepa-
rability values and different embedding topologies. Conversely, representation with
very small modality gap magnitudes could be constructed with and without linear
separation between the modality-specific embeddings. From these observations, we
concluded that relying solely on the modality gap defined by W. Liang et al. 2022
was insufficient for a comprehensive understanding of the modality gap phenomenon,
specifically when it failed to capture the actual ’gap’-ness aspect of different embed-
dings occupying distinct regions in the contrastive latent space. We conclude here
that it is crucial to supplement this measure with additional metrics introduced in this
thesis. This leads us to inquire whether other metrics can capture different geometric
properties related to the gap not covered in this thesis.

Research Question: Under what specific conditions does the modality
gap become apparent in various multimodal datasets when using CLIP loss
function as contrastive loss function, and are these conditions consistent
across datasets or particular to individual ones?

The modality gap becomes apparent in multimodal datasets under specific conditions
related to both the temperature mode and its fixed value and initial value in the CLIP
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loss function. These conditions include small temperature settings leading to larger
modality gaps. However, the consistency of these conditions varies across different
datasets, indicating that individual dataset characteristics significantly influence the
modality gap’s emergence. The results from Experiment 1 and Experiment 3 highlight
the role of temperature modes of CLIP loss in the emergence of the modality gap,
particularly lower temperatures leading to the existence of gaps with larger gap mag-
nitudes. Experiment 2 and Experiment 3 show that the impact of these temperature
settings varies across different datasets.

Research Question: What are the main drivers of the modality gap, and
is it possible to systematically measure or neutralise their effects within the
representation learning framework?
&
Research Question: Following the identification of the elements that
contribute to the modality gap, what approaches can be formulated to di-
minish or entirely close the gap under certain conditions?

The results and observations from Experiment 4 revealed that various alternative
contrastive methods can influence the modality gap, suggesting that both the chosen
constrastive learning method and the temperature setting are key drivers. It is possi-
ble to systematically measure and ”mitigate” the gap in datasets to varying degrees,
as evidenced by the effectiveness of temperature-free methods and specific approaches
like simmatrix, Wang+Isola and AIEET in reducing the modality gap.

Research Question: How does the modality gap influence performance
on downstream tasks? In essence, is there a notable difference in outcomes
when the modality gap is managed or resolved?

In Experiment 4, a variety of alternative contrastive methods were explored and
tested with the aim of closing or lessening the modality gap magnitude. Each of these
methods targets different components of the two-tower multimodal contrastive repre-
sentation learning framework. While some methods effectively reduced the modality
gap, this reduction did not consistently translate into enhanced downstream perfor-
mance quality as measured by proxy with the label-centric metrics. This observation
raises questions about the importance and significance of minimising the modality
gap phenomenon. The results and observations from Experiment 4 revealed that
large modality gaps and high linear separability values do not necessarily correlate
with poor label-centric performance for many methods. This lack of a strong or con-
sistent pattern between modality gap metrics and label-centric metrics implies that
the influence of the modality gap on these metrics is not uniformly significant. It leads
to the consideration that the modality gap may emerge as a ”by-product” of certain
contrastive learning methods, rather than being a pivotal determinant of the learned
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representation’s quality. These observations indicate the significance of other factors,
such as the inherent characteristics of multimodal datasets and the nuances of specific
learning methods, in determining the effectiveness of downstream task performance.

10.2 Limitations and Possible future work

It is not easy making broad claims in machine learning with certainty and confidence
without a lot of equally broad and varied experimental efforts. Our explorations and
experimentation in this thesis have been limited to a specific range of multimodal
datasets and CLIP specific two-tower multimodal models. The research is further
limited by using only one type of encoder model for each modality, which, while in-
sightful to generate some results fast, restricts the generalisability of our findings.
Our methodology has been purely empirical, relying on observations from computa-
tional experimental results. While this approach yields practical insights, it does not
extensively explore theoretical aspects or mathematically rigorous insights that could
explain the observations and findings, reflecting the broader challenge in machine
learning of making universally applicable claims and risking the context-dependency
of our findings.

Future research should explore a wider array of datasets and encoder models to deepen
our understanding of the interactions between the modality gap and the CLIP loss
function, and theoretical analysis should complement this for a richer view of mul-
timodal contrastive representation learning. Conducting generalisable studies would
test the applicability of our findings in different contexts and to investigate the learn-
ing dynamics of the CLIP loss function across various modalities and encoder archi-
tectures would provide a more comprehensive understanding of the learning process.

This thesis re-evaluates the significance of the modality gap. The findings suggest that
the impact of the modality gap on representation quality may not be significant. This
leads to the question whether a shift in research focus towards developing contrastive
learning approaches (that better utilise the information in datasets, balancing the use
of mutual and modality-specific information) might be more fruitful.
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Part VI

Conclusions

11 Conclusions

In this thesis, I have embarked on a somewhat in-depth exploration of the modality
gap phenomenon in multimodal contrastive representational learning, particularly
focusing on the use of the CLIP loss function within two-tower multimodal models.
The ”empirical” investigations, centred on computational experiments, have provided
a nuanced understanding of the modality gap phenomenon, its ”causes” and how to
influence it. It was found that the existing quantitative definition of the modality
gap falls short of capturing the actual underlying ’gap’-aspect of the phenomenon.
This gap was observed to vary in its characteristics, such as linear separability and
embedding topologies, depending on the specific configurations of the embeddings.
Furthermore, our research highlighted the context-specific nature of the modality gap,
with the influence of factors like the temperature setting in the CLIP loss function
varying significantly across different datasets. Several simple and/or novel contrastive
loss functions/methods can mitigate the modality gap. However, reducing the gap
does not uniformly translate into improved downstream task performance, suggesting
that the gap might be more of a by-product than a key determinant of representation
quality.

The scope of this thesis was constrained by the range of datasets, the singular type of
encoder model used, and the focus on empirical rather than theoretical analysis. This
limitation highlights the need for broader studies involving more diverse multimodal
datasets, and multiple encoder models. Future research should therefore conduct gen-
eralisability studies to test the applicability of our findings and complement empirical
findings with theoretical analysis for a more holistic understanding.

Our findings suggest that the modality gap’s impact on representation quality may not
be as significant as previously assumed. These observations suggest a re-evaluation of
research priorities in the field. Instead of focusing solely on closing the modality gap,
future research might be more beneficially directed towards developing contrastive
learning approaches that effectively utilise both mutual and modality-specific infor-
mation within datasets.

In conclusion, by highlighting the complexities, nuances and possible insignificance
of the modality gap phenomenon, this thesis contributes to the ongoing conversation
in the field of multimodal machine learning.
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Part VIII

Appendix

12 Appendix A: Experiment Implementation Details

12.1 Synthetic Toy Experiments - Simulation of multimodal contrastive
representation learning

To simulate the distribution of ideal modality embeddings, the following parameters
are required:

• Number of Samples for each modality, N

• Contrastive latent dimension (z-space), d

• Initial angle of separation between modality embeddings, θ

• PowerSpherical concentration parameter, K

In each experimental run:

1. We generated 512 data points from two power spherical distributions, symbol-
izing the two modalities.

2. Gradient descent was performed on the CLIP loss function across 150,000 gra-
dient update iterations using a learning rate of η = 0.1. For the learned tem-
perature mode, the same learning rate was for the temperature parameter.

3. The concentration parameter of the power spherical distribution was set to
10,000, intending to emulate the narrow distribution commonly observed in the
latent spaces of initially randomized deep networks with non-linear activation
functions. This phenomenon is elaborated upon in the ’cone effect’ discussed in
W. Liang et al. 2022.

We systematically evaluated various hyperparameters in our experiments. Specifi-
cally: Temperatures were varied across five distinct values: 2, 1, 0.1, 0.01, and 0.001.
In the learned temperature mode, the same values were used as initial/starting values.
The initial separation angle, representing the initial angle between the means of the
two embeddings, was tested at three angles: 1

2π
, 1

8π
, and 0. We examined contrastive

latent space dimensions of 3, 8, 64, 128, and 512. Each experimental run was executed
with two different random seeds.
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12.2 Pseudo multimodality experiments

In these experiments/runs, we employed three sets of pseudo-multimodal datasets,
each comprising the modalities from the MHD dataset. These sets were named as
Image-Image, Sound-Sound, and Trajectory-Trajectory. Essentially, each modality-
specific dataset represented one modality, and its corresponding pseudo-modality was
derived by simple duplication. This approach allowed us to create meaningful pseudo-
”pairs” of modalities for our experiments.

In this setup, we used linear projectors. Each modality had its own modality-specific
encoder, as detailed in Dataset and Models chapter of this thesis. It’s important
to note that while both towers shared the same type of encoder architecture, they
were distinct encoders, and their respective projection projectors were initialised with
different random initial parameters. This distinction ensured the independence of the
two towers in our multimodal contrastive representation learning framework.

In the fixed temperature clip mode of our experiments, we conducted runs at three
different temperature settings: τ = 1.0, 0.1 , and 0.01. Conversely, in the learned tem-
perature mode, these same temperature values were employed as initial temperatures.
This approach allowed us to explore the impact of temperature on our contrastive
learning framework from different angles. We used the AdamW optimiser in PyTorch
with a default learning rate of η = 0.01. A batch size of 512 was used in all exper-
iments, focusing solely on the MHD dataset for multimodal representation analysis.
A cosine annealing learning rate scheduler and gradient clipping with a magnitude
of 10 were applied for training stability. Additionally, we clipped the temperature to
a minimum of 0.01, following the approach in OpenAI’s CLIP (Radford et al. 2021),
during the learned temperature clip mode.”

For these pseudo-multimodality experiments, we focused solely on a contrasted latent
dimension of 64 (z-space) with an intermediate representation dimension of 100 (h-
space). These specific dimension choices were made to tailor the experiment to our
research objectives. Our decision to concentrate on a contrastive dimension size of
64 was primarily driven by chronological reasons. The pseudo-modality experiments
were conducted after the true-modality experiments. In these true-modality exper-
iments, as well as in the method mitigation experiments and all other experiments,
we consistently defaulted to a focus on a contrastive dimension of 64. This choice
provided continuity and consistency across our research work. The choice to focus on
a contrastive dimension size of 64 was driven by practical considerations and its suit-
ability for the MHD dataset. This size was deemed reasonable and realistic, aligning
with the characteristics of the dataset and the objectives of our research.
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12.3 True multimodal contrastive representation learning experiments

In this subsequent set of experiments, we extend our work to actual multimodal
contrastive representation learning using two-tower models. These experiments are
conducted on all three combinations of modalities present in the MHD dataset, as
well as in the CITE dataset. In all cases, we used the modality-specific encoders
detailed in the Dataset and Models chapter. Consistent with our previous pseudo-
modality experiments, we used the AdamW optimiser with weight decay, with default
PyTorch learning rate with Cosine annealing learning rate scheduling to the learning
rate, following the most common standard practice (minimum learning rate value of
1e− 6)

As with the earlier experiments, we perform these in both the fixed temperature
mode and the learned temperature mode for the CLIP loss function. Generally, our
focus remains on a contrastive latent space dimension of 64 and an intermediate
representation dimension of 100.

However, to explore the impact of varying the contrastive latent space dimension, we
also experiment with dimensions 3, 8, 64, 128, and 512. Importantly, the intermediate
representation dimension remains fixed at 100 across all variations.

125



13 Appendix B: CITE Dataset Table - Abundance of Cell Types
across Datasets

Table 10: Abundance of Cell Types across Datasets: Abbreviations: B - B cell; T - T cell; Mono -
Monocyte; prog - progenitor; HSC - Hematopoietic stem cell; HSPC - Hematopoietic stem and progenitor
cell; ILC - Innate lymphoid cell; Lymph - Lymphoid; MK/E - Megakaryocyte and Erythrocyte; NK -
Natural Killer cell; cDC2 - Classical dendritic celltype 2; pDCs - Plasmacytoid dencritic cells. (Luecken
et al. 2021)

Cell Type Train and Val IID Holdout Test

CD14+ Mono 18478 2129 1086

CD4+ T activated 4989 729 1248

CD4+ T naive 4294 590 1013

NK 3657 520 1257

Reticulocyte 3511 421 340

Erythroblast 3316 411 312

Naive CD20+ B IGKC+ 2464 375 1151

CD16+ Mono 2165 239 231

CD8+ T naive 2081 326 700

NK CD158e1+ 1683 204 280

pDC 1498 173 87

cDC2 1360 166 176

G/M prog 1356 197 328

Naive CD20+ B IGKC- 1205 197 577

HSC 1179 187 337

Normoblast 1153 152 130

Lymph prog 926 162 593

Transitional B 922 149 504

CD8+ T TIGIT+ CD45RO+ 869 122 169

CD8+ T CD57+ CD45RA+ 853 123 327

Proerythroblast 792 165 555

CD8+ T TIGIT+ CD45RA+ 781 110 141

CD4+ T activated integrinB7+ 725 131 200

CD8+ T CD49f+ 594 93 225

B1 B IGKC+ 541 82 197

CD8+ T CD69+ CD45RO+ 498 94 305

CD8+ T CD69+ CD45RA+ 456 77 207

MAIT 438 78 240

MK/E prog 436 75 179

B1 B IGKC- 407 55 151
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Table 10: Abundance of Cell Types across Datasets: Abbreviations: B - B cell; T - T cell; Mono -
Monocyte; prog - progenitor; HSC - Hematopoietic stem cell; HSPC - Hematopoietic stem and progenitor
cell; ILC - Innate lymphoid cell; Lymph - Lymphoid; MK/E - Megakaryocyte and Erythrocyte; NK -
Natural Killer cell; cDC2 - Classical dendritic celltype 2; pDCs - Plasmacytoid dencritic cells. (Luecken
et al. 2021)

Cell Type Train and Val IID Holdout Test

T reg 393 54 162

CD8+ T CD57+ CD45RO+ 380 163 927

ILC1 357 61 134

Plasma cell IGKC+ 226 27 35

gdT CD158b+ 210 69 395

Plasmablast IGKC+ 199 18 15

Plasma cell IGKC- 197 25 17

gdT TCRVD2+ 155 17 19

ILC 125 17 96

Plasmablast IGKC- 101 9 20

CD4+ T CD314+ CD45RA+ 83 10 -

dnT 49 7 -

CD8+ T naive CD127+ CD26- CD101- 37 5 -

T prog cycling 18 6 -

cDC1 18 - -
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14 Appendix C: Parallel coordinate plots for Phase I - Experi-
ment 3 run

(a) Unfiltered

(b) Almost linear separability of modality embeddings. Linear Separability > 0.9

(c) Complete linear separability of modality embeddings. Linear Separability=1.0

Figure 40: MHD - Mode: Learned Temp CLIP: Modality gap phenomenon across z-space dimensionality
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