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Simple Summary: Stifle injury is common in the companion dog population, often leading to
reduced weight bearing due to pain or joint instability, affecting neuromuscular control, balance, and
proprioception. Earlier studies have reported the benefits of rehabilitation after stifle injury, though
the specific effects of most exercises are unknown and predicting outcomes is challenging. In this
randomized and controlled study, we investigated the effects of a 12-week progressive therapeutic
home exercise protocol on static body weight distribution between hindlimbs, balance control, pain-
related disability, and stifle function in 33 dogs diagnosed with stifle injury after 12 weeks of home
exercise. An intervention and a control group both followed a standard rehabilitation protocol for
stifle injury, with the intervention group also following a progressive therapeutic exercise protocol.
The results indicate that the progressive therapeutic exercise protocol improved static body weight
distribution between hindlimbs, pain-related functional disability, and stifle function. The effects
were statistically significant, with intermediate to strong effects. There was a small but nonstatistically
significant positive effect on balance control with the therapeutic exercise protocol, perhaps due to the
rather small sample group and unvalidated method of measurement. We suggest studying balance
control in dogs with stifle injuries more thoroughly in future studies.

Abstract: Stifle injury is common in the companion dog population, affecting weight bearing, neu-
romuscular control, and balance. Therapeutic exercises after stifle injury seem to be effective, but
high-quality research evaluating the effects is lacking. This randomized controlled trial evaluated
the effects of a 12-week progressive therapeutic home exercise protocol on three-legged standing,
targeting balance and postural- and neuromuscular control and disability in dogs with stifle injury.
Thirty-three dogs with stifle injury were randomly allocated to intervention (n = 18) and control
groups (n = 15), both receiving a standard rehabilitation protocol. Additionally, the intervention
group received a progressive therapeutic exercise protocol. The outcome measures were static body
weight distribution between hindlimbs, balance control, the canine brief pain inventory, and the
Finnish canine stifle index. Both groups improved after the intervention period, but the group using
the progressive therapeutic exercise protocol improved to a greater extent regarding static body
weight distribution between the hindlimbs (I: median = 2.5%, IQR = 1.0–4.5; C: median = 5.5%,
IQR = 3.0–8.8), pain-related functional disability (I: median = 0.0, IQR = 0.0–0.2; C: median = 0.9,
IQR = 0.1–1.8), and stifle function (I: median = 25.0, IQR = 9.4–40.6; C: median = 75.0, IQR = 31.3–87.5),
with intermediate to strong effects. These clinically relevant results indicate that this home exercise
program can improve hindlimb function and restore neuromuscular control.
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1. Introduction

Stifle injury is very common in the companion dog population, with cranial cruciate
ligament (CCL) injuries and patellar luxation (PL) being the most common orthopedic
disorders of the stifle joint [1–3]. Insurance data from Sweden showed the overall incidence
of stifle injury to be 55.4 cases per 10,000 dog years at risk, with 43.5% affected by CCL
injury and 29.8% PL [2]. The CCL and muscles of the quadriceps, biceps femoris, and
gastrocnemius require coordination and exact timing to deliver active stifle stability during
dynamic movement [4]. Reduced timing or co-contraction may increase the susceptibility of
the periarticular structures to injury [5]. Hence, improving the motor control mechanism is
anticipated to increase dynamic joint stability, protecting the CCL from excessive strain [5,6].

Surgical treatment of CCL and PL aims to re-establish joint kinematics, resolve pain,
and return the patient to full function [7]. The majority of dogs with CCL injury and
many with PL undergo surgery [5,7]. Evidence for nonsurgical CCL management is
lacking, though the fundamental principles of rehabilitation and tissue healing should be
applied through conservative management; however, the rehabilitation period is possibly
prolonged relative to postoperative rehabilitation [7–9].

Neuromuscular control of limb motion is essential for normal walking to occur [9].
Shumway-Cook and Woollacott [10] state that optimized motor control is required for
the exact modulation of the activation and coordination of muscles to produce functional,
controlled movements. Gait abnormalities are common, including increased stifle flexion
and reduced weight bearing due to pain or instability associated with stifle injury [5,11,12].
Joint degeneration affects the control of muscle forces, muscle firing patterns, balance, and
proprioception hence the importance of re-establishing neuromuscular and postural control
for returning the individual to normal stifle function, daily activity, and quality of life [5,13].

Balance, postural sway, and stability are components of postural control, referring to
the ability to control the center of mass in relation to its base of support, i.e., controlling the
position in space for orientation and stability [10]. Horak’s theoretical balance framework
describes balance as a complex skill involving six interacting systems (Figure 1), all consist-
ing of independent neurophysiological mechanisms controlling a specific aspect of postural
control [14,15]. A recent study [16] focused on postural sway in dogs while standing,
observing a larger movement in older dogs than younger dogs. Moreover, they found
that aging was associated with muscle hypotrophy and reduced strength, and this could
indicate that balance may be associated with muscle hypotrophy [16]. Carrillo et al. [17]
demonstrated a higher sway in lame dogs with CCL rupture and elbow dysplasia compared
to healthy ones; hence, muscle strength could be of importance for balance control in dogs
with stifle injury. Recent studies [18–21] measured postural sway by observing changes in
the center of pressure (COP), using force or pressure plates, in both the mediolateral and
craniocaudal directions. Lutonsky et al. [19] used three-dimensional circular movements to
challenge standing balance in healthy dogs and found a significant increase in multiple
COP parameters with greater movement in the mediolateral direction than craniocaudal.
Dogs with arthrosis of the stifle joint have shown an increase in mediolateral movements
compared to healthy dogs [21], while dogs with osteoarthritis of the elbow or hip joint
indicated compensatory changes in the COP within the paws [20].

Therapeutic exercise is aimed at facilitating recovery and assisting a more rapid return
to function [22,23], promoting neuromusculoskeletal components of physical capacity [24].
Balance and weight-bearing exercises, such as three-legged standing, are used for a wide
range of conditions (e.g., osteoarthritis, CCL rupture, fractures, and neurological conditions)
and are considered important in canine rehabilitation [11,24–27]. Several studies have
reported the benefits of postoperative rehabilitation after CCL surgery [7,25,28–30], though
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the specific effects of most exercises are unknown [13,31], and comparing and predicting
the best outcome is challenging [29,30]. Many veterinary surgeons refer canine patients
for rehabilitation, and canine rehabilitation professionals implement these therapeutic
exercises in daily practice [32,33].
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The rehabilitation process and therapeutic exercises rely on the principles of specificity
and overload, and the dosage will determine the size of the effect [34–36]. In general,
rehabilitation programs start with low-level activities progressing to a higher level [7,9]. All
tissues respond differently to injury, inactivity, and remobilization. However controlled and
progressive loading aids healing and challenges the body to build strength, though loading
should be based on individual ability and activity without compensation and fatigue [7,31].
Rebuilding joint stability and restoring proprioception, while reducing pain is important in
optimizing physical capacity [31,37] and in returning the dog to optimal activity levels as
safely as possible [1,38].

The benefits of postoperative rehabilitation in the clinic, based on fundamental princi-
ples of rehabilitation, have been described in earlier studies [7,25,28–30]; however, what
happens when we add a home exercise protocol of therapeutic exercise?

The aim of this study was to evaluate the effect of an add-on progressive therapeutic
exercise protocol on balance control and function in dogs following stifle injury compared to
a standard rehabilitation program. We hypothesized that progressive therapeutic exercise
decreased the difference in static body weight distribution between hindlimbs, improved
balance control, decreased pain-related disability, and improved stifle function.
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2. Materials and Methods
2.1. Study Design

This study was a randomized controlled clinical trial consisting of two groups of
consecutively recruited dogs with stifle injury.

2.2. Dogs

Thirty-three privately owned dogs, diagnosed and referred by a veterinarian to a
veterinary physiotherapist at IVC Evidensia Animal Hospital Malmö, Sweden (November
2022 to June 2023), were enrolled in this study. Descriptive data of the dogs are illustrated
in Table 1. The owners were informed about the study and the possibility of withdrawing
their dog from participation at any time. The inclusion criterion was a veterinary-diagnosed
stifle injury, while the exclusion criteria were other injuries affecting weight bearing on
other limbs, infection, or FAS (fear, anxiety, and stress) level 3 or above [39]. The study was
approved by the Animal Ethics Committee, Uppsala, Sweden (Dnr 5.8.18-17476/2022), and
by the University of Liverpool Research Ethics Committee (Ref. 12167).

Table 1. Descriptive data of the intervention and control groups.

Intervention Group
Sex Age Breed Weight BCS MCS Type of Injury Intervention Medication

F 5 Labrador Retriever 31.6 7 1 CCL + meniscus TPLO Paracetamol
F 1 Miniature poodle 4.7 5 1 MPL TBR + TTT NSAID
F 10 Jack Russel Terrier 6.5 6 1 CCL + meniscus TPLO NSAID
M 13 Mixed breed 26.1 6 1 CCL TPLO NSAID

M 8 American
Staffordshire Terrier 32.3 6 0 CCL TPLO NSAID

M 11 Bichon Havanais 6.7 5 0 CCL Conservative NSAID

M 9 American
Staffordshire Terrier 30.8 6 0 CCL + meniscus TPLO NSAID

F 5 Staffordshire
Bullterrier 17.4 6 0 MPL TBR + TTT NSAID

F 8 Mixed breed 21 5 0 CCL + meniscus TPLO NSAID
M 7 Golden Retriever 43.5 8 2 CCL TPLO NSAID

M 5 American
Staffordshire Terrier 30 4 0 CCL TTA NSAID

M 7 French Bulldog 17.1 7 0 CCL TTA NSAID
M 5 Mixed breed 36 5 0 CCL TTA NSAID
F 1 Mixed breed 19.4 5 0 CCL TPLO NSAID

M 2 Staffordshire
Bullterrier 17.8 5 0 MPL TTT NSAID

F 5 Mixed breed 25.2 5 0 CCL TTA rapid NSAID
M 6 Mixed breed 35.8 5 1 CCL TPLO NSAID
M 10 Jack Russel Terrier 9.6 7 0 CCL TPLO NSAID

6.6 (3.25)
(1–13)

22.9 (6.16)
(4.7–43.5) 5.5 (4–8) 0 (0–2) 15 CCL (3 with

meniscus) + 3 MPL

Control Group
Sex Age Breed Weight BCS MCS Type of Injury Intervention Medication

M 9 Mixed breed 34 6 1 CCL TPLO NSAID

F 4 Cavalier King
Charles Spaniel 9.2 6 1 MPL TTT NSAID

F 9 Mixed breed 31 6 1 CCL + meniscus TPLO NSAID
M 7 Beagle 19.2 6 0 CCL TPLO NSAID
M 5 Mixed breed 42.8 5 1 CCL TPLO NSAID
M 5 Pomeranian 3.8 5 2 CCL + MPL TPLO NSAID
F 3 Dogo Argentino 40 5 1 CCL TPLO NSAID
F 11 Mixed breed 21 6 1 CCL + meniscus TPLO NSAID

F 1 American
Staffordshire Terrier 26 5 0 CCL TTA NSAID

F 2 Pomeranian 2.7 5 1 MPL TWR + TTT NSAID
F 4 Mixed breed 31 5 0 CCL + meniscus TPLO NSAID
M 7 Cardigan Welsh corgi 19.5 5 1 CCL + meniscus TPLO NSAID
F 9 Mixed breed 30.2 5 0 CCL TPLO NSAID
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Table 1. Cont.

Control Group
Sex Age Breed Weight BCS MCS Type of Injury Intervention Medication

M 1 Standard poodle 8 5 0 MPL TTT NSAID
M 9 Australian Shepherd 22.2 5 1 CCL TPLO NSAID

5.7 (3.13)
(1–11)

22.7 (9.62)
(2.3–42.8) 5 (5–6) 1 (0–2)

11 CCL (4 with
meniscus) + 3 MPL

+ 1 CCL + MPL

Continuous variables (age and weight) are presented with the mean (SD) (range) and categorical variables
(BCS and MCS) with the median (range). F = female, M = male, BCS = body condition score, MCS = muscle
condition score, CCL = cranial cruciate ligament, MPL = medial patellar luxation, TPLO = tibial plateau leveling
osteotomy, TTA = tibial tuberosity advancement, TBR = trochlear block recession, TWR = trochlear wedge recession,
TTT = tibial tuberosity transposition, SD = standard deviation, and NSAID = nonsteroidal anti-inflammatory drug.

2.3. Procedure

The dogs were randomized to an intervention group or control group with the merged
block randomization procedure [40]. They were randomized in groups of ten, using the
software MERGEDBLOCKS version 1.1.0 (www.stephanievanderpas.nl/software, accessed
on 17 October 2022). Both groups followed a standard rehabilitation protocol for stifle
injury based on hydrotherapy, joint mobility, soft-tissue treatment, and home regime with
activity restrictions and leash walking, performed and evaluated regularly by the veterinary
physiotherapist (Appendix A). After measuring the baseline demographics and outcome
data, the dogs started their protocols on their first visit with the veterinary physiotherapist.
If surgery was conducted, the dogs started approximately 10–14 days following surgery;
when being conservatively treated, the dogs started at their first visit after being diagnosed
with stifle injury by the veterinary surgeon. Rehabilitation sessions in a clinical setting
were part of the dogs’ veterinary treatment plan, in consultation with a team of animal
health care professionals together with the dog owners. After 12 weeks, measurements of
the outcome data were repeated.

The owners of the dogs in the intervention group were given a home exercise proto-
col of progressive therapeutic exercise to be performed two times daily (approximately
5–10 min per session) after instructions from the veterinary physiotherapist, as well as a
written copy of the training protocol. The protocol included four different levels based on
three-legged standing, developed to address the six systems of balance control (Figure 1):
(I) biomechanical constraints (four-legged to three-legged and two-legged stances, repeti-
tive weight shifting), (II) anticipatory postural adjustments (four-legged to three-legged
and two-legged stances, repetitive weight shifting), (III) postural responses (weight shifting,
three-legged stance with push), (IV) sensory orientation (standing on unstable surface,
incline), (V) stability limits (weight shifting, three-legged stance with push), and (VI) sta-
bility in gaits (addressed using a standard rehabilitation protocol with hydrotherapy and
controlled leash walking) [14,15]. The exercises progressed from less challenging to more
challenging according to the individual functional level at assessment, as determined by
the veterinary physiotherapist. The home exercise protocol is described in Appendix B.

During the study, all physiotherapeutic assessments, rehabilitation sessions, and data
collection activities were conducted by the same veterinary physiotherapist (I.B.). During
the study period, there were regular clinical re-assessments and rehabilitation sessions.

2.3.1. Demographic Data

Weight, body condition score (BSC) [41], and muscle condition score (MCS) [42,43]
were recorded for all dogs at baseline. The body condition score is a nine-point scale system
used to assess body composition, where an ideal weight corresponds to a score of four or
five, with lower scores being classified as “too thin” and higher scores as “overweight” or
“obese” [41,44]. The muscle condition score is graded from 0 to 3, where low scores mean
“normal muscle mass”, and higher scores correspond to “mild, moderate, or severe muscle
loss” [42,43].

www.stephanievanderpas.nl/software
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2.3.2. Outcome Measures

Difference in body weight distribution between the hindlimbs was measured in static
standing at a Companion Stance Analyzer (PetSafe Stance Analyzer, version 1.20.0.0, 2012,
Companion Animal Health, New Castle, DE, USA). The dog was in a squared stance with
its head and eyes forward towards the owner. Ten recordings (one recording/second)
were registered during four-legged standing, calculating the mean proportion of total
body weight for each hindlimb. The absolute difference between hindlimbs was used for
the analysis.

Balance control was measured in static standing as the difference in mediolateral sway
between the hindlimbs while in a three-legged stance (measuring movement in cm during
4 s of continuous three-legged standing). Having the dog standing as balanced as possible
with head and eyes focused forward at the handler, each hindlimb lifted in position for 5 s.
Video was recorded (using GoPro camera HERO4, GoPro Inc., San Mateo, CA, USA) from a
caudocranial view at the height of the tuber ischii, exposing the frontal plane. Mediolateral
movements were analyzed using the software Kinovea 0.9.5 (https://www.kinovea.org/,
accessed on 22 March 2023) as a valid and reliable tool to measure distances up to 5 m
from an object [45,46] (Figure 2a,b). Markers (soft, white, and sticky furniture pads with
a diameter of 18 mm marked at the center) were placed at L7 and caput metatarsale V
bilaterally, representing landmarks used for measurements [47]. The dogs were video
recorded, while measuring static body weight distribution, standing at the Companion
Stance Analyzer.
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Figure 2. Balance control. The video recording and measurements were performed while in (a) the
baseline position with a four-legged stance just before lifting the limb and in (b) a three-legged
standing position with the hindlimb lifted showing the mediolateral movement from the baseline
position. The green line indicates the displacement of L7 while the right hindlimb is lifted.

The Canine brief pain inventory (CBPI) was used to assess the interference of pain with
the dogs’ function. The CBPI detects changes in the impact of pain on function in dogs with
osteoarthritis and is a validated and quantifiable measure of the owners’ perceptions [48].
The CBPI contains 10 questions with a rating from 0 to 10, with four questions concerning
the severity of pain and six questions regarding how the pain interferes with daily activities.
A mean value providing the pain interference score (0 = pain does not interfere, 10 = pain
completely interferes) was used in this study, i.e., low scores indicate a low impact of the
pain [48]. Additionally, there is a validated Swedish-translated version appropriate for use
in this study [49].

The Finnish canine stifle index (FCSI) was used to measure stifle functionality as a
testing battery with eight items divided into active (compensations in positions of sitting
and lying and symmetry of thrust of hindlimbs getting up from positions of sitting and

https://www.kinovea.org/
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lying) and passive (assessment of muscle symmetry, measurement of symmetry in static
weight bearing between hindlimbs using bathroom scales, and measured flexion and
extension of the stifle joint using a goniometer) components used to quantify the level of
the dog’s stifle function [50]. The FCSI generates a numerical index ranging from 0 to 263,
with cut-off values at 60 (separating the “adequate” and “compromised” functions) and
120 (distinguishing “severely compromised” from “compromised” and “adequate”), which
has been tested and found to be reliable for dogs with stifle injury [51].

2.4. Statistical Analysis

Descriptive data are presented as the mean, with the range and standard deviation
(SD) describing the spread of the data, i.e., body weight and age, as well as the median with
range describing the spread of the data, i.e., BCS and MCS. Data on the outcomes were
tested for normal distribution using the Shapiro–Wilk test. Comparisons of the outcome
measures between the intervention and control groups were conducted using the Mann–
Whitney U-test. The paired equivalent Wilcoxon signed-rank test was used to assess the
same outcome measures for improvement over time. All statistical analysis was performed
using IBM SPSS Statistics (version 28.0.1.1). The significance level for all tests was set to
p ≤ 0.05. Effect size estimates were calculated to evaluate the magnitude of the effect of
the intervention, with the correlation coefficient (r) being a value ranging from −1.00 to
1.00 [52,53]. The intervals of r = 0.1–0.3 (small effect), r = 0.3–0.5 (intermediate effect), and
r > 0.5 (strong effect) are according to Cohen [54]. The correlation coefficient was calculated
using the following formula [52,53]:

r =
Z√
N

The Z-scores were estimated with the Mann–Whitney U test and Wilcoxon signed-rank
test, respectively. N is the total number of observations.

3. Results
3.1. Intervention and Control Groups

Of the 33 dogs entering the study, 26 dogs (14 male, 12 female) finished the study
(Figure 3). The intervention group included 14 dogs (9 male, 5 female), and the control
group included 12 dogs (6 male, 6 female). Descriptive data on the intervention and
control groups are illustrated in Table 1. There were no significant differences in the
basic characteristics between those that were lost/excluded during the study and those
that remained.

3.2. Effect of a Therapeutic Exercise Protocol within and between Intervention and Control Groups

For all outcome measures, there were no significant differences between the groups at
baseline. After the intervention period of 12 weeks, the median difference in static body
weight distribution between the hindlimbs was significantly lower (p = 0.046), with an
intermediate effect in favor of the intervention group compared with the control group
(median = 2.5% vs. 5.5%; Figure 4a). Moreover, the median CBPI pain interference score was
significantly lower (p = 0.004), with a strong effect in the intervention group compared with
the control group (median = 0.0 vs. 0.9; Figure 4c), and the median score of the FCSI with
intermediate effects (p = 0.02) was in favor of the intervention group compared with the
control group (median = 25 vs. 75; Figure 4d). However, there was no significant difference
(p = 0.572) for balance control (i.e., mediolateral sway) between the intervention group
and the control group after 12 weeks (Figure 4b). The statistics are presented in Table 2.
Both the intervention group and the control group improved in all outcome measures with
intermediate to strong effects, except for balance control (i.e., mediolateral sway). The
statistics are presented in Table 3.
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Table 2. Between-group effects.

Intervention Control

Outcome Measure Timepoint n Median
(IQR) n Median

(IQR) p-Value z-Score Effect Size
(r)

Static BWD difference
between hindlimbs

Baseline 14 17%
(13.3–31.8) 12 21%

(5.3–28.8) 0.713 −0.386 −0.076

12 weeks 14 2.5%
(1.0–4.5) 12 5.5%

(3.0–8.8) 0.046 −1.994 −0.391

Balance control
(mediolateral sway)

Baseline 13 15.1%
(5.9–22.6) 11 24.0%

(8.0–35.9) 0.338 −0.985 −0.201

12 weeks 14 12.6%
(4.9–23.0) 11 19.0%

(9.1–27.0) 0.572 −0.602 −0.120

CBPI pain interference
Baseline 14 3.6 (1.8–4.9) 12 4.9 (2.8–6.5) 0.197 −1.313 −0.258

12 weeks 14 0.0 (0.0–0.2) 12 0.9 (0.1–1.8) 0.004 −2.806 −0.550

FCSI
Baseline 14 187.5

(125–190.7) 12 193.7
(150–209.4) 0.220 −1.252 −0.246

12 weeks 14 25.0
(9.4–40.6) 12 75.0

(31.3–87.5) 0.020 −2.303 −0.452

BWD = body weight distribution, CBPI = canine brief pain inventory, FCSI = Finnish canine stifle index, and
IQR = interquartile range.

Table 3. Within-group effects.

Outcome Measure Group Timepoint n Median (IQR) p-Value z-Score Effect Size
(r)

Static BWD
difference

between hindlimbs

Intervention
Baseline 14 17.0% (13.3–31.8)

<0.001 −3.306 −0.62412 weeks 14 2.5% (1.0–4.5)

Control
Baseline 12 21% (5.3–28.8)

0.002 −2.805 −0.52712 weeks 12 5.5% (3.0–8.8)

Balance control
(mediolateral sway)

Intervention
Baseline 13 15.1% (5.9–22.6)

0.893 0.175 −0.03412 weeks 14 12.6% (4.9–23.0)

Control
Baseline 11 24.0% (8.0–35.9)

0.700 −0.445 −0.09512 weeks 11 19.0% (9.1–27.0)

CBPI pain
interference

Intervention
Baseline 14 3.6 (1.8–4.9)

<0.001 −3.297 −0.62312 weeks 14 0 (0–0.2)

Control
Baseline 12 4.9 (2.8–6.5)

<0.001 −2.936 −0.59912 weeks 12 0.9 (0.1–1.8)

FCSI

Intervention
Baseline 14 187.5 (125–190.7)

<0.001 −3.3 −0.62412 weeks 14 25.0 (9.4–40.6)

Control
Baseline 12 193.7 (150.0–209.4)

<0.001 −3.063 −0.62512 weeks 12 75.0 (31.3–87.5)

BWD = body weight distribution, CBPI = canine brief pain inventory, FCSI = Finnish canine stifle index, and
IQR = interquartile range.

4. Discussion

This study is a randomized controlled trial and, to our knowledge, one of the few ex-
perimental studies to evaluate the effect of therapeutic exercise, as an add-on intervention,
on balance, function, and static body weight distribution. We hypothesized that progressive
therapeutic exercise decreased the difference in static body weight distribution between
the hindlimbs, improved balance control, decreased pain-related disability, and improved
stifle function. The results revealed that both the intervention and control groups showed a
statistically significant improvement during the 12 weeks of rehabilitation regarding static
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body weight distribution between the hindlimbs, pain-related functional disability, and
stifle function. There was no statistically significant effect on balance control (i.e., mediolat-
eral sway) either within the groups or between the groups, with a small effect size estimate;
however, we must consider the rather small sample group and the method of measurement
not being tested or validated.

Previous studies [25,28–30] have shown the significance of early rehabilitation after
stifle injury. The results of this study were in congruence with these, as well as with Kirkby
Shaw et al. [7], and their proposed general guidelines for post-CCL surgery rehabilitation
based on tissue healing, individual assessments, clinical reasoning, and functional goals,
with therapeutic exercise being the foundation of rehabilitation. However, in contrast, this
study evaluated the more specific effects of therapeutic exercise as a home exercise protocol.

The training principles of specificity, overload, and progression are essential for reha-
bilitation and therapeutic exercises. Hence, this protocol of therapeutic exercises should not
be generalized and used without continuously assessing physical capacity and pain and
progressing the exercises accordingly to challenge tissues. However, it must be carefully
adjusted to tissue healing, strength, and functional ability. Kirkby-Shaw et al. [7] intro-
duced four fundamental principles of rehabilitation: (I) tissues follow a certain pattern of
healing (acute/inflammatory phase, subacute/reparative phase, and chronic/remodeling
phase), (II) individualized treatment plans adjusted frequently based on an assessment
of tissue healing, strength, and functional abilities/limitations, (III) specific, measurable,
attainable, and relevant goals that consider not only the injury but the whole animal, which
should be modified throughout the phases of healing, and (IV) the foundations of physical
rehabilitation: pain management, therapeutic exercise, manual therapy, and guided return
to activity. The veterinary physiotherapist has an essential role in applying rehabilitation
principles and in the progression of therapeutic exercise. For example, hydrotherapy can
be used in different stages of rehabilitation [55–57]. The early introduction of underwater
treadmill exercise (subacute/reparative phase), with slow speed and adjusting the depth
of water according to the preferred ROM, promotes limb loading and activation of hy-
potrophied muscles while also improving proprioception and balance [55,56]. The home
exercise protocol described in Appendix B, as mentioned earlier, was developed to address
the six systems of balance control (Figure 1); as described by Witter and Bockstahler [58]
and Millis and Levine [59], they are used to promote limb loading, activate muscles, and
reduce pain by promoting neuromuscular interactions. While following the four principles
of rehabilitation, adapted to the patient’s current status, we believe the exercises are safe
for early introduction. Since the FCSI is reliable for measuring stifle functionality, this
functional level of assessment could, perhaps, be used to standardize the progression
of exercise.

4.1. Clinical Implications

The intervention group showed a significantly greater improvement than the control
group regarding static body weight distribution between the hindlimbs, pain-related func-
tional disability, and stifle function. The FCSI cut-off value of 60 was used to separate “ade-
quate” from “compromised” stifle function [51], and it is of important clinical relevance in
this study that all dogs in the intervention group within the IQR are considered to have ade-
quate stifle function (median = 25, IQR = 9.4–40.6) after 12 weeks of rehabilitation, compared
to the compromised stifle function of the control group (median = 75, IQR = 31.3–87.5). To
our knowledge, this is the first study to use the FCSI as an outcome measure for stifle
function investigating the effect of a physiotherapeutic rehabilitation protocol. Consider-
ing static body weight distribution between hindlimbs, Hyytiäinen et al. [60] found it to
be a reliable and objective method of measurement in dogs with hindlimb osteoarthritis
and established the normal difference between the hindlimbs of healthy dogs to be 3.3%
(SD = 2.7%). After the intervention, the intervention group in this study reached a mean
difference of 2.5%, well below the reference of 3.3%, while the control group reached a
difference of 5.5%, which is close to the cut-off value of 6% (3.3%, SD = 2.7%). We do not
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have comparable cut-off values for the CBPI pain interference score, but from our effect size
estimate, we have an intermediate to strong clinical effect for all of the outcome measures
above, increasing the magnitude of our results.

There was no statistically significant effect on balance control (i.e., mediolateral sway)
either within the groups or between the groups. Hence, this method needs to be evaluated
thoroughly in future studies, considering the eventual learning effect of lifting limbs in
a specific order during measurements. We measured sway in the mediolateral direction
while the craniocaudal shift was not assessed. We did not control for how much weight
support the dog received from the hand of the physiotherapist, which might have affected
the results. However, since the dogs were randomized into groups and handled similarly,
it is not likely that there is a difference between the groups, and our conclusions regarding
the treatment effects are still valid. Performing a qualitative movement assessment using
the video recordings, it was evident that the dogs used different strategies to handle pain,
reducing the weight-bearing capacity and strength of the affected limb, which should be
further evaluated. If we can evolve our ability to quantify balance control, it will possibly
improve our capability to treat the different mechanisms involved. Standardized settings
and validated measurement methods of balance control using a standard video camera
or smartphone, and analyzing data using software like Kinovea version 0.9.5 (valid and
reliable for measuring distances and angles [45,46]), could be an affordable and applicable
method to use in a clinical setting.

4.2. Methodological Considerations and Future Studies

To monitor rehabilitation interventions in dogs with stifle injury, validated and clini-
cally relevant outcome measurements are of great importance. In this study, most of the
outcome measures used are considered objective, reliable, and valid for evaluating function,
balance, and muscle strength. Static body weight distribution between the hindlimbs, the
CBPI, and the FCSI are all methods/measurements tested and found to be reliable for
evaluating dogs with stifle injury [48,50,60–66], and Hyytiäinen et al. [51] indicate that the
FCSI is more sensitive to stifle dysfunction over other dysfunctions, increasing the internal
validity of this study.

The FCSI was developed as a testing battery to evaluate the level of stifle function
and was found to be reliable, though has not yet been used as an outcome measure in a
clinical study [50]. The CBPI is an owner-assessment questionnaire developed to quantify
the owner-assessed severity of pain and pain interference on daily activities [48], and it has
been used to evaluate the effect of analgesic therapy, medical treatment, and acupuncture
in dogs with pain associated with osteoarthritis [48,61,67]. Digital scales have been used
to measure the static weight distribution of the hindlimbs and the difference between the
hindlimbs (expressed in percentage of total body weight) [60,63–66]. Hyytiäinen et al. [60]
found it to be a reliable and objective method of measurement in dogs with hindlimb
osteoarthritis. A study by Wilson et al. [62] found that the stance analyzer allowed for
repeatable measurements of the weight distribution of the hindlimbs of dogs with hindlimb
lameness. Most studies, including the present study, are focused on the compensation
strategies of the hindlimbs only. The role of the forelimbs in balance remains unclear and is
something we would like to study simultaneously, but methodological studies are needed
in this field.

The effects of other co-interventions, such as the use of pain medication during the
rehabilitation period, are unclear, but due to the effectful randomization, it is not plausible
that these co-interventions could have influenced the between-group effects.

Earlier studies [7,25,28–30] have shown the significance of rehabilitation after stifle
injury, but this study also shows the importance of performing home exercise between
the sessions with the veterinary physiotherapist, and that it does not require more than
5–10 min two times daily.

Most dogs participating in this study had surgery, and only one dog was managed con-
servatively, which can be considered a limitation. Even though the evidence for nonsurgical
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CCL management is lacking and the rehabilitation period may be prolonged [7–9], fundamen-
tal principles of rehabilitation were followed and there were no substantial differences in the
results after 12 weeks of rehabilitation for the dog going through nonsurgical management.

An important limitation of this study was that the same veterinary physiotherapist
conducted all physiotherapeutic assessments, rehabilitation sessions, and data collection
activities, as well as the fact that they were not blinded to which group the patients were
allocated. This could have affected the data management’s validity. Furthermore, the
owners were also not blinded to which group they were allocated. By clinical experience a
common limitation is owner compliance and whether the exercises were performed with
good form, i.e., understanding when a dog starts compensating because of fatigue. These
issues were addressed by taking time to show the exercises to owners and having them
repeat exercises with their dogs in rehabilitation sessions before sending them home and
repeating them at their next session.

Another limitation of this study was the rather small sample size. Further, there
are external factors that could have affected the measurements of static body weight
distribution between the hindlimbs, as well as control of balance measuring mediolateral
movement. The position of the owner, the side of the leash, and, possibly, the placement
of the stance analyzer (e.g., close to a wall) have been shown to impact the results of
weight distribution [68,69]. Small shifts in movement by the dogs, such as weight shifting
or head turns, are impossible to control and may contribute to errors in measurements.
The time frame of 12 weeks could be seen as too short a rehabilitation time, since not
all dogs regained full function. However, it is for practical reasons not possible to have
longer rehabilitation programs. In general, dogs are possibly not fully rehabilitated within
12 weeks of stifle injury. This study evaluated short-term results and the long-term effects
remain unknown. Previous studies showed that there is a high rate of CCL rupture to the
contralateral limb, with a risk ranging from 22 to 54% after 10 to 17 months from the first
diagnosis [70–72], and Muir et al. [73] determined a median time to contralateral injury of
947 days. Hence, for future studies, there is a need to study the rehabilitation of dogs with
stifle injury over a longer period, with a follow-up within six months to a year.

Concerning the external validity, the results of this study could be seen as a represen-
tative sample of a larger population in Sweden and, possibly, even for other comparable
countries. This study investigated the effect of therapeutic exercise in combination with an
in-clinic standard rehabilitation protocol for stifle injury. We do not know the efficiency
of the home exercise protocol alone, if one does not have the ability to regularly visit an
animal physiotherapist for evaluation, assessments, and in-clinic rehabilitation.

In future studies, it would be interesting to further investigate the muscle activation
and strength of the quadriceps, gastrocnemius, and biceps femoris, which are all muscles
that require coordination to provide passive and dynamic stability [4], while reduced
timing may increase the susceptibility to injury [5].

5. Conclusions

This study indicates that a progressive therapeutic exercise protocol based on three-
legged standing and targeting balance and postural- and neuromuscular control decreased
the difference in static body weight distribution between the hindlimbs, decreased pain-
related functional disability, and improved stifle function in dogs diagnosed with stifle
injury after 12 weeks of daily home exercise. The effects were statistically significant
and showed intermediate to strong effects. Since therapeutic exercise is already widely
implemented in daily practice as an important part of rehabilitation, the clinical relevance
of our results verifies the use of these exercises. Further, this study indicates that there
was no difference and a small effect on the balance control in the mediolateral direction
of the therapeutic exercise protocol. The rather small sample group and unvalidated
measurement method must be considered and may explain the results; hence, we suggest
balance control in dogs with stifle injuries to be tested more thoroughly in future studies.
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The results are highly clinically relevant, since all dogs in the intervention group reached
an adequate level of stifle function following daily therapeutic exercise for three months.
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Appendix A

Standard rehabilitation protocol for stifle injury
The protocol is based on hydrotherapy, joint mobility, soft-tissue treatment, and home

regime with activity restrictions and leash walking.
Hydrotherapy → Based on walking on an underwater treadmill for improved weight

bearing, range of motion, strength, and endurance, striving for the normalization of the
gait pattern and good quality of walking by adjusting the water level and pace.

Joint mobility → Active and passive ranges of motion for quality of movement and
joint health, passive stretching if needed for extensibility of the muscles and tendons.

Soft-tissue treatment → Various massage techniques with trigger point therapy, my-
ofascial release, reflex inhibition, etc., as needed for increased circulation and lymphatic
flow, reduced tension, and pain relief.

Home regime with activity restrictions → Adjusting the home environment, having
the dog on nonslip surfaces in a limited area where they cannot run or jump, and they
should not be allowed on stairs. Try to stimulate them mentally and reduce food intake so
the dog does not gain weight while under activity restrictions.

Leash walking → Initially, on a short leash for 5–10 min multiple times a day, walking
at a slow pace, focusing on weight bearing on all four limbs, and progressing according to
a functional level of assessment.

Appendix B

Home exercise protocol
The protocol is based on two exercises to be performed two times daily, including

four levels and progressing from less challenging to more challenging according to the
individual functional level at assessment determined by the veterinary physiotherapist.

Progression within each exercise occurs by increasing the number of repetitions, sets,
and/or increasing the length of time per repetition.
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Basic criteria for progression to the next level of exercises → weight bearing on all
limbs and being able to lift each limb with control without leaning on the handler in every
position standing with a neutral spine and activated core musculature.

Level 1
Three-legged standing: repeatedly lifting each limb (Figure A1a,b) → criteria for

progressing—basic.
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nial directions (Figure A2) → criteria for progressing—basic, as well as being able to control
weight-shifting movements without having to reposition limbs.
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Two-legged stance lifting diagonally: repeatedly lifting each diagonal pair of limbs
(Figure A6) → basic, as well as being able to lift each diagonal pair of limbs with control
without leaning on the handler.
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