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Abstract
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While artificial intelligence and deep learning have revolutionized many fields in the last decade,
one of the key drivers has been access to data. This is especially true in biomedical image
analysis where expert annotated data is hard to come by. The combination of Convolutional
Neural Networks (CNNs) with data augmentation has proven successful in increasing the
amount of training data at the cost of overfitting. In this thesis, equivariant neural networks
have been used to extend the equivariant properties of CNNs to more transformations than
translations. The networks have been trained and evaluated on biomedical image datasets,
including bright-field microscopy images of cytological samples indicating oral cancer, and
transmission electron microscopy images of virus samples. By designing the networks to be
equivariant to e.g. rotations, it is shown that the need for data augmentation is reduced, that
less overfitting occurs, and that convergence during training is faster. Furthermore, equivariant
neural networks are more data efficient than CNNs, as demonstrated by scaling laws. These
benefits are not present in all problem settings and which benefits will occur is somewhat
unpredictable. We have identified that the results to some extent depend on architectures,
hyperparameters and datasets. Further research may broaden the performed studies to explain
how the results occur with new theory.
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Dedicated to you who struggle. There is always hope.
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Sammanfattning på svenska

Artificiell intelligens (AI), vilket oftast syftar på maskininlärning, har de sen-
aste åren slagit igenom inom naturvetenskaplig forskning och i samhället i
stort. Inte minst inom biomedicinsk bildanalys har metoderna varit fram-
gångsrika, vilket banar vägen för snabbare och mer träffsäker diagnostik. Detta
kan bidra till tidigare upptäckt av elakartad cancer och ökad chans till över-
levnad bland patienter. En av förutsättningarna för hög träffsäkerhet är stora
mängder uppmärkt träningsdata. Inom biomedicinsk bildanalys är detta ofta
svårt att uppnå. Tillgänglig expertkunskap inom exempelvis cellbiologiska
förändringar som tyder på elakartad cancer är sällsynt.

För att öka mängden träningsdata används därför ofta dataförstärkning, där
kunskapen om att bilder med små förändringar, till exempel roterade eller
spegelvända kopior, indikerar samma typ av objekt eller tillstånd som original-
bilden. Denna metod riskerar dock att leda till överanpassning, alltså att
nätverken lär sig att känna igen detaljer i träningsdata till för hög grad. Detta
leder till att okända exempel oftare felklassificeras.

För att komma till rätta med dessa problem kan ekvivarianta neurala nätverk
användas. Faltande neurala nätverk är ekvivarianta mot translationer, det vill
säga lodräta och vågräta förflyttningar, av objekt i bilder. Efter ett faltnings-
lager är resultatet detsamma som om förflyttningen skett på motsvarande sätt
efter faltningsoperationen. Detta innebär att translationen och faltningsoper-
ationen kommuterar. Ekvivarianta neurala nätverk utvidgar denna egenskap
till en större mängd symmetrigrupper, exempelvis rotationer och speglingar.
Detta minskar antalet parametrar och behovet av dataförstärkning.

I avhandlingen har ekvivarianta nätverk designats för populära nätverk för
klassificering och segmentering som VGG16 och U-net. De har tränats och
utvärderats på bland annat ljusmikroskopibilder av celler som indikerar can-
cer i munhålan, och elektronmikroskopibilder på olika typer av virus. För-
delarna med ekvivarianta nätverk är att dataförstärkning kan minskas, att min-
dre överanpassning uppträder och att nätverken konvergerar snabbare under
träningsfasen. Utöver detta är de mer effektiva på att lära sig från tränings-
data, vilket illustreras med brantare lutningar i skalningsdiagram. Dock är det
oklart vilka fördelar som uppträder i vilket sammanhang, och vidare forsk-
ning bör fokusera på att studera fler arkitekturer, dataset och hyperparametrar.
Utöver detta behövs mer teoretisk forskning för att förklara resultaten.

I ett vidare sammanhang kommer AI sannolikt att utvecklas snabbt i takt
med ökad tillgång till beräkningskapacitet och data. Vårt framtida samhälle
bör fokusera på att lära oss systemens förmågor, sprida kunskapen, föra etiska
diskussioner och instifta globala lagar.
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Artikel I visar hur en VGG16-klassificerare kan modifieras till att bli ek-
vivariant mot p4-gruppen av translationer och multiplar av rotationer på 90
grader. Metoden tränas och utvärderas på ett cytologiskt dataset bestående av
bilder utifrån ljusmikroskopi. Cellerna kommer från patienter som antingen är
friska eller har cancer i munhålan. Den ekvivarianta klassificeraren minskar
överanpassning och behovet av dataförstärkning i jämförelse med ett faltande
nätverk.

Artikel II visar hur ett nätverk för semantisk instanssegmentering, U-Net
med en urskiljande förlustfunktion, kan göras ekvivariant mot p4-gruppen. De
ekvivarianta egenskaperna bevisas teoretiskt och illustreras. Metoden tränas
och utvärderas på ett syntetiskt dataset bestående av bilder på pinnar och ett
riktigt dataset med bilder på celler med olika former och ursprung. Resultaten
tyder på att träffsäkerheten är liknande som för ett faltande nätverk, men att
det ekvivarianta nätverket konvergerar snabbare under träningsfasen.

Artikel III visar hur en VGG16-klassificerare kan modifieras till att bli ek-
vivariant mot p4-gruppen bestående av translationer och multiplar av rota-
tioner på 90 grader, på motsvarande sätt som i Artikel I. Metoden tränas och
utvärderas på ett dataset bestående av bilder på olika typer av virus tagna med
transmissionselektronmikroskopi. Resultaten visar att dataförstärkning med
motsvarande transformationer kan minskas och att konvergenshastigheten är
högre under träningsfasen. Samtidigt visar ett skalningsdiagram att det ekvi-
varianta nätverket lär sig mer effektivt från träningsdata i jämförelse med ett
faltande nätverk.

Artikel IV visar hur både VGG16-klassificerare och ett mindre nätverk kan
modifieras till att bli ekvivarianta mot flera olika symmetrigrupper. Nätverket
tränas och utvärderas på samma dataset som i Artikel III. Detta dataset består
av bilder på olika typer av virus tagna med transmissionselektronmikroskopi.
Satsnormalisering används också under träningsfasen. Resultaten visar att
med betydligt längre träningstider minskar överanpassning för de ekvivarianta
nätverken i jämförelse med ett faltande nätverk. Dessutom visar ett skalnings-
diagram att en ekvivariant version av VGG16 med D4-gruppen lär sig mer
effektivt från träningsdata i jämförelse med ett faltande nätverk.
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1. Introduction

At the time of writing this thesis in late 2023, the field of artificial intelli-
gence (AI) is making headlines regularly and has found its way into public
discourse. Be it generative models such as text-to-image models or chatbots,
automated analysis of medical images, or visions of a future society (dystopian
or utopian), some things seems clear. These technologies will continue to
progress, their impact on society will be significant, and it is difficult tell how.
How we use the technologies will partly be up to the reader. How would you
like society to function in terms of e.g. surveillance, task automation or own-
ership of data? The more you know about how these technologies work, and
the more aware you are of your own values, the more informed your opinions
will be.

I first came into contact with the field of computer assisted image analysis
in 2012 when taking an introductory course. Back then, the focus was on what
we today call classical methods: signal processing, statistics and conventional
programming [39]. Solving a problem typically involved manual design of
an algorithm divided into steps. We were 45 students in this course instance.
The number of published articles at the largest related scientific conference,
CVPR (Conference on Computer Vision and Pattern Recognition) was 1933.
The best top-5 test error on the ImageNet challenge was 15.3 % [24]. This
challenge involved letting the program analyze one image at a time, outputting
the five most likely objects contained in the image, which were then compared
to known labels to calculate the error rate. The winner was AlexNet [55],
which used a very different approach than the current standards.

At the time, a number of technologies were mature enough to start ben-
efitting from each other, including massive datasets of labelled images and
computational hardware capable of parallel processing. However, the tech-
niques behind AlexNet had been developed in steps since the 1950s [90]. A
superset of these technologies is often called Artificial Intelligence (AI), which
is a broad term that encompasses the hypothetical development of sentient or
superintelligent machines, but which does not reflect their current capabilities.
Machine learning is more precise, aiming to let programs find algorithmic so-
lutions on their own. Artificial Neural Networks (ANN), which are loosely in-
spired by the neurons of human brains, form the backbone of the current best
performing systems. They are often referred to simply as neural networks.
Here, signal-processing neurons are connected to each other in layers. If there
are multiple hidden layers between the inputs and outputs of the system, the
technology is called deep learning [40]. This hierarchy of technologies is il-
lustrated in Figure 1.1.
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Figure 1.1. The hierarchy of technologies related to deep learning.

Developing deep learning solutions means setting up a specific ANN model,
defining the inputs (such as images), defining the target outputs (such as a
cancer diagnosis), and starting the training process. During training, which
can last for days or weeks, the weights of the connections between the layers
are adjusted in an optimization process which gradually brings the outputs of
the network close to the target outputs (also referred to as labels). Finally, the
trained model can be applied to new data. The same methodology has proven
successful in numerous other fields where digital outputs need to be predicted
from digital inputs.

At the time of writing this thesis, I am teaching in the same course that I
enrolled in myself almost twelve years ago. The number of students is 125, an
increase of 178 %. The number of CVPR submissions has increased by 358 %
to 9155 in the year 2022. The top-5 test error on the ImageNet challenge has
been reduced from 15.3 % to 0.98 %. These numbers are certainly greatly
affected by hype and marketing. But the ImageNet numbers do not lie - the
results are reproducible and similar results have been seen in many other fields.

1.1 Research background
In spite of the success of deep learning in recent years, the methodology has
a number of drawbacks. As already mentioned, large amounts of annotated
data is required. Expert knowledge is needed for labelling e.g. malignant or
healthy cells in microscopy data. Since these domain experts can be hard to
find, and their skills are also in demand for clinical work, biomedical datasets
are often in short supply [31].

Prior knowledge about the problem can be exploited to increase the amount
of training data. Since the rotation of the sample under the microscope is
irrelevant for diagnosis, images can be rotated while keeping the labels in-
tact. However, larger networks with more parameters are needed to learn each
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rotation. This can lead to overfitting, where the methods are adapted to learn-
ing the training examples, but struggle to generalize to unseen data when de-
ployed.

Another issue is the amount of computations needed when training. Train-
ing a state of the art model can take days or weeks, increasing in time with the
amount of data and the size of the models. It is often not feasible to fine-tune
the models for optimal performance, as the amount of computations and time
requirements are too large [78].

1.2 Thesis aims
The aims of this thesis are to mitigate the issues posed by limited training
data (Aim 1), overfitting (Aim 2) and the costs associated with the training
process (Aim 3) in modern biomedical image analysis by using equivariant
neural networks in combination with empirical deep learning and predictable
scaling.

1.3 Thesis outline
The rest of this thesis is organized as follows.

Chapter 2 aims to provide an overview of AI. This can be seen as position-
ing the contributions of the thesis in a wider context. This chapter can safely
be skipped by a reader knowledgeable in deep learning.

Chapter 3 provides the necessary knowledge about common problem set-
tings in biomedical image analysis. It also explains how Papers I, II and III
contribute to solving three related problems by deep learning.

Chapter 4 introduces geometric deep learning. It explains how equivariant
neural networks incorporate geometric information by design to mitigate is-
sues commonly seen in convolutional neural networks. Then, for Papers I, II
and III, it explains how to design equivariant neural networks for the problems
introduced in the previous chapter.

Chapter 5 introduces empirical deep learning and predictable scaling for
mitigating training costs. Furthermore, the experimental results from all the
papers are presented. Additionally for Papers III and IV, it shows how equiv-
ariant neural networks can be used to reduce the costs of training for biomed-
ical image analysis using scaling laws.

Chapter 6 summarizes the findings of the papers, revisits the aims of the
thesis, proposes the way forward for further research, and finishes with the
author’s outlook on the technology.
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2. Background

This chapter provides an overview of deep learning and other types of machine
learning, starting with the basics of learning paradigms and models. Then
it introduces the current state of applications. After that, possible societal
impacts are examined and the important drivers of leading AI technology are
analyzed. The chapter ends with a survey of ethical theory.

2.1 Supervised learning
In supervised learning, labels are associated to each input. An example is K
nearest neighbors [109] or neural networks, described more in detail below.

2.1.1 Neural networks
The fundamentals of modern deep learning is a multilayer neural network with
inputs on one side and outputs on the other [40]. The inputs can take varying
forms, such as age and height of a person, or images which exhibit spatial
relationships between pixels. When a new sample is fed through the network
each neuron performs calculations on its inputs. Typically a nonlinear sum
is calculated by using activation functions. The results are then passed along
to their outputs in the next layer. These intermediate layers are called hidden
layers. The last layer is the output layer, which, like the inputs, can take many
forms. Examples include images (for reconstruction using autoencoders) or
concepts such as a disease diagnosis.

Each neuron has weights associated to its inputs. During the training pro-
cess, which fine-tunes the output of the network to match the labels, the weights
are updated by backpropagation. First, model outputs are calculated in a for-
ward pass. These are then compared with the labels in a loss function, which
is then derived with respects to the weights layer by layer using the chain rule.
The weights are then updated by mathematical optimization, most commonly
gradient descent. This is known as a backward pass. The forward and back-
ward pass for all training data is called an epoch, and this cycle is repeated
until the loss has decreased sufficiently.

The training process can be complicated, and different combinations of hy-
perparameters often need to be tried to reach high accuracy. Important hy-
perparameters and settings include the learning rate of the optimizer, regu-
larization and batch normalization. Transfer learning is a technique that has
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Figure 2.1. The VGG16 convolutional neural network architecture. The white blocks
are combined convolutional and ReLu layers, the red blocks are max pooling layers,
and the green blocks are combined fully connected and ReLu layers. Image sourced
from [42].

proven useful to increase accuracy and reduce the training time. This involves
pretraining a model on a large standardized dataset and then retraining, or
finetuning, the final layers on the new data.

2.1.2 Convolutional neural networks
Common network architectures in image analysis are based on Convolutional
Neural Networks (CNNs), which can exploit the spatial relationships between
pixels efficiently. Here, each neuron has a restricted 2D field of view of the
outputs of the previous layer. The field of view can have a window size of
e.g. 3 by 3 pixels, with a parameter associated to each input, constituting
a kernel k. Simultaneously, all the neurons in a channel share the kernel,
reducing the number of parameters significantly. During a forward pass, this
corresponds to a convolution C of the inputs f with the kernel. This can be
expressed mathematically in the following way:

z(x,y) = k ∗ f (x,y) =
a

∑
i=−a

b

∑
j=−b

k(i, j) f (x− i,y− j) (2.1)

where z is the output, x and y are image coordinates, and i and j are kernel
coordinates in the window of size [−a,a] by [−b,b].

An example is shown in Figure 2.1, which visualizes the VGG16 architec-
ture [96]. Each layer has multiple channels. Activation functions are used
to amplify or attenuate different outputs. Max pooling layers reduce the di-
mensionality of the inputs in steps. After the final pooling layers, only one
dimensional points remain, which are fully connected in the later layers. The
final output layer assigns the most likely classes from the points using a soft-
max activation function.

After training, it has been observed that CNNs tend to learn a hierarchy of
features. Earlier maps tend to learn simple shapes like lines or edges. Later
layers tend to learn more complex structures, like parts of facial structures.
This mechanism is similar to how visual perception functions in the visual
cortex of the human brain. This could also explain how the models learn to
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distinguish e.g. cats from dogs. Dogs can look very different from each other
but share fundamental characteristics which the models learn to identify and
separate from the characteristics of cats.

2.1.3 Transformers
In the last years, transformers [105] have become increasingly competitive in
relation to CNNs. They first made a strong impact in natural language pro-
cessing. Previous state of the art models were mainly based on CNNs and
Recurrent Neural Networks (RNN) [93]. RNNs process sequential data effi-
ciently through the use of bidirectionality and long short-term memory units.

Transformers are instead based on attention mechanisms. When applied to
computer vision tasks, the image is divided into fixed-size patches which are
converted to a vector along with their positions. Attention mechanisms, which
loosely mimic cognitive attention in human brains, then amplify the important
relations among the patches and attenuate less important relations. Finally,
classification heads proceeds similarly as in the end layers of CNN classifiers.

2.2 Reinforcement learning
Another important machine learning paradigm is reinforcement learning [100].
Here, a reward function is used to steer the actions of an agent. If the goal is
to teach a bot to play a computer game, the reward function is designed to in-
crease when the agent takes actions that wins the game, and decrease when the
agent takes actions that loses the game. Algorithms are designed to balance
between exploration, where new actions are tested by the agent, and exploita-
tion, which reinforces current knowledge. Besides games [95], reinforcement
learning is often used in e.g. robotics [44] and energy management [74].

2.3 Unsupervised learning
In contrast to supervised learning and reinforcement learning, unsupervised
learning uses data with no explicit labels or reward function. Instead, some
kind of underlying structure to the data is presumed, and algorithms are de-
signed to find this structure automatically. Examples of unsupervised method-
ologies include clustering methods such as Kmeans [40]. Applications of un-
supervised learning include image segmentation [8] and experimental particle
physics [98].

It has been suggested that unsupervised learning is a promising avenue for
further gains in machine learning [48]. Humans rarely rely on supervisory
signals for many cognitive tasks such as perception. This is illustrated by
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Table 2.1. Overview of different machine learning paradigms and models.

Type of learning Supervisory signal Example models

Supervised Inputs and Labels Discriminative

Reinforcement Reward Function Agent-based

Unsupervised Inputs Generative, SNN

Semisupervised Inputs and small # Labels Discriminative

the Hebbian principle [45], where neurons that fire together, wire together.
Learning occurs irrespectively of errors.

Self-supervised learning is a similar paradigm that uses the statistics of the
data to predict hidden parts of the input. For example, having only seen similar
sentences without any labels, given an uncomplete sentence the networks can
predict the final words.

2.4 Semisupervised learning
Semisupervised learning [19] falls in between supervised and unsupervised
learning. Here, unlabelled data is combined with small portions of labelled
data, which has proven effective in many instances.

A summary of machine learning paradigms, as well as example models, can
be seen in Table 2.1.

2.5 Other machine learning methods
Besides deep learning and neural networks, there are many other machine
learning models. One is Support Vector Machines (SVM) and decision trees [69].
SVM uses hyperplanes to separate different clusters of data into classes. De-
cision trees divide data into two or more branches depending on data features.
At the bottom of the tree, different classes are found at the leafs. Bayesian
networks use graphical models to infer probable causes of signals [46]. The
edges between nodes represent conditional probabilities. This methodology is
useful for causal modelling [83], while deep learning can only uncover cor-
relations between data. Still, determination of causality can only come from
external experiments, such as do-calculus [101].
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2.6 Spiking neural networks
Artificial neural networks are inspired by biological neural networks in the hu-
man brain, but there are important differences between the two. In biological
brains, the timing and rate of signals in both the input and output neurons are
very important for learning. Spiking neural networks (SNNs) are designed to
emulate this behavior [77]. Also, ANNs rely on numerical representations of
data for information transmission, while SNNs operate on spikes which are of
a sparse and binary nature. ANNs are also very power inefficient, as a team of
5 humans consume around 100 W, while the OpenAI Five consumed around
10 MW, around 10 000 times more. More modern systems are even more
power hungry. Modern SNNs aim to work around this by being implemented
on analog neuromorphic computers. However, learning algorithms such as
backpropagation are hard to implement in SNNs due to the non-differentiable
nature of spikes and the lack of correspondence to weight transport by feed-
back. While SNNs show promise, they so far have not delivered the same
impressive results as ANNs for standard tasks.

2.7 Generative models
In contrast to discriminative models, which only aim to determine meaningful
information from data, generative models are probabilistic and can be used to
produce new data of some desired form. This typically means that the user
inputs text guiding the desired output.

2.7.1 Image generation
An example is Generative Adversarial Networks (GAN) [41]. Here, a discrim-
inative network and a generative network compete against each other, with the
generator creating images that are as similar to the training data as possible,
while the discriminator tries to distinguish between the two sets.

Recently, generative models like Stable Diffusion, Midjourney and Dall-E
have been released to the public, being able to create realistic images of great
variety. These are powered by diffusion models [87], which first learn the
process of creating gaussian noise from the training set. After the training is
completed, new images are generated by reversing the process, sampling new
images starting from gaussian noise. Text is embedded in the same latent rep-
resentation as the images, making it possible to guide the denoising process to
the desired outputs. An example of a generated image is shown in Figure 2.2.

2.7.2 Text generation
Large language models, which today are mainly powered by transformers, aim
to process and generate text. Chatbots like ChatGPT [78] are currently able to
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Figure 2.2. An example output from the Stable Diffusion text-to-image model. The
prompt was: "a photograph of an astronaut riding a horse". Image sourced from [27].

roughly mimic humans conversations, which can be useful as e.g. sounding
boards of new ideas.

2.7.3 Generative models compared to humans
Due to the impressive breakthroughs in e.g. image and text generation, discus-
sions about uniquely human qualities like creativity and empathy have shifted
in the last years. It is possible that the perceived qualities of the systems
are driving this discussion to a large extent, rather than their actual capabili-
ties [52]. Human creativity and efforts is what the results are ultimately owed
to. Also, the systems are prone to hallucinate, i.e. fabricate facts, since what
they ultimately are designed to do is function approximation in contrast to a
deeper understanding of e.g. the logic of mathematics.

2.8 Artificial General Intelligence
Concerns have been raised about AI becoming sentient or superintelligent
which could pose a risk to human civilization. An example of such a sys-
tem in fiction is shown in Figure 2.3. Current systems lack these capabilities,
but such outcomes remain possible. Quantitative assessments of this risk [16]
have a similar structure to the Drake equation [29], which estimates the prob-
ability of the number of communicative alien civilizations in our galaxy by
multiplying seven factors representing independent probabilities.

While some of these factors are known or well approximated, others are
very difficult to estimate. The outcome is limited by the most uncertain factors,
which makes it hard to draw any meaningful conclusions from the equation.
The same criticism holds for current estimates of the emergence of superintel-
ligence, as the uncertainties of the factors are substantial. Theoretical under-
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Figure 2.3. HAL 9000 from the movie 2001. Image sourced from [23].

standing of AI or intelligent beings in general is lacking, and the definition of
intelligence is controversial [57]. More research is needed.

2.9 Examples of applications
This section introduces some current and potential applications of AI.

2.9.1 Robotics and autonomous systems
One of the key topics of potential impacts to society from AI has been au-
tomation. Functions requiring motorics has proven difficult. Robots perform
well at specialized, standardized tasks in controlled environments, but are not
as proficient in e.g. setting a table [86]. This is probably related to Moravec’s
paradox from the 1980s: ’for computers it is easy to perform well in intel-
ligence tests or games, but hard to perform well in tasks related to mobility
or perception’ [70]. Research in self-driving cars has shifted from fully au-
tonomous vehicles in the near future to more controlled environments, where
autonomous vehicles have been deployed for a long time [66].

2.9.2 Protein folding
One of the most successful recent applications has been AlphaFold [51], a
model for predicting protein structure from chains of amino acids. This tech-
nology paves the way for use cases in biotechnology and medicine. An exam-
ple of the model output can be seen in Figure 2.4.

2.9.3 Creative work
AI is already affecting creative endeavours such as writing and drawing. AI
models can be used to quickly propose a number of drafts, which could be
selected as is or used as foundations for further work [50]. Those who can
adapt to this workflow are likely to benefit from the technology.
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Figure 2.4. An output of the Alphafold model, which shows the CASP14 target T1049
(PDB 6Y4F, blue) compared with the true (experimental) structure (green). Image
sourced from [33].

2.9.4 Law and Journalism
Generative models producing text and images are likely to impact fields like
law [2]. However, it is unlikely to replace lawyers. Rather, lawyers are likely
to change their workflows to incorporate AI as tools. A similar line of reason-
ing can be used for journalism.

2.9.5 Medicine
Medical doctors such as radiologists are increasingly using AI as assistance
during diagnosis to free up time for other tasks [84]. Another area that could
benefit from AI is mental health. Mental disorders are the leading cause
of years lived with disability [79]. Meanwhile, mental health treatment is
severely underfunded worldwide with an average of 2 % of total healthcare
budgets. Seeking treatment can be unaffordable, inaccessible or lead to dis-
crimination and ostracization. One example where AI could potentially help
is specialized chatbots [15].

2.10 Societal risks
This section summarizes some of AI’s most important risks to society.

2.10.1 Misinformation
One big danger of AI is the risk of spread of misinformation, as it becomes
much easier to generate and spread false information [53]. Photorealistic im-
ages, like deepfakes [76], can be generated of people doing things that have
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never happened. This could be used for propaganda to e.g. sway opinion in po-
litical elections or court processes. There is also a risk of lower faith in voice
recordings, photographs and videos as evidence of something actually hav-
ing happened. Still, the capabilities of algorithms themselves to change our
behaviours have been exaggerated and debunked in recent years [97]. They
instead tend to reinforce whatever bias is already present.

2.10.2 Emissions
Another risk of AI is the increase of carbon emissions. As dataset and model
sizes grow, so do the emissions when developing, training and deploying the
systems [81]. More efficient ways of computation are needed if system capa-
bilities are to progress while reducing emissions.

2.10.3 Bias and Hegemony
AI systems risk reinforcing biases and stereotypes, as their outputs are a re-
flection of their training data [71]. Examples include recommendation algo-
rithms that showed more open job positions to men than women. This outcome
was based on the fact that men tended to be more active in searching for new
jobs [102]. Furthermore, AI systems risk creating cultural homogenization,
as they more and more generate the content that we consume [11]. As an
example, large languages like English are by far more common than smaller
ones like Swedish. This risks strengthen whatever is already very visible and
domineering.

2.10.4 Inequality
A big societal risk is an increase of inequality and the digital divide [17]. This
power gap comes with great risks, fearmongering to manipulate others being
one of them. Therefore, one of the most important tasks ahead is to provide
access to education in critical thinking, AI and the means to take part in it.

2.10.5 Safety and Explainability
If AI systems are deployed in e.g. medical diagnosis, treatment, or self-driving
cars, their safety is paramount. Current systems are still sensitive to outlier
conditions, or adversarial attacks which fool systems by changing inputs in a
way that is imperceptible to humans [59]. Also, systems need to be explainable
to avoid harmful decisions and if they happen, to provide clarity in terms of
what party bears responsibility [108].
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2.10.6 Weapons
AI could be used for further weapons research, including autonomous weapon
systems and harmful biological agents. Such weapons, like heat-seeking mis-
siles, have existed for a long time. However, recent autonomous weapons have
been facing similar issues as self-driving cars [6].

2.11 The AI ecosystem
The current development of AI is to a large extent being driven by two factors:
data and computational power [99]. Algorithm development is certainly im-
portant as well, but computer code can easily be shared and replicated. By a
similar line of reasoning, human ability is important, but the contributions of
individuals tend to even out in large numbers.

2.11.1 Data
Data itself constitutes a societal risk. Mass surveillance has been implemented
by states and companies to various extents [34]. Digital technologies, such as
smartphones with cameras, have allowed for an exponential increase of the
amount of data generated and saved per day [80]. The Internet has mean-
while provided an easy way of spreading and accessing this data. Many of
the recent high performing models have scraped data without permission or
knowledge from the creators [82]. Furthermore, annotations have been out-
sourced to workers in developing countries for very little pay under precarious
conditions [61].

2.11.2 Computational Resources
As the amount of data grows, so does the demands on the computational hard-
ware to process it. This manifests itself in the form of CPUs, memory and to
an increasing extent, GPUs [68] from companies such as NVIDIA and AMD.

Cloud computing generally offers improved flexibility and scaling capa-
bilities when compared to desktop computers at the cost of loss of control.
This infrastructure is in the form of data centers with computational hard-
ware. These resources are accessed through the internet by multiple users
and managed by a central instance. Data centers are sometimes run by na-
tional actors, such as NAISS of Sweden which provides cloud computing to
university-affiliated researchers in machine learning. A significant amount of
cloud computing actors are companies. These include Databricks, Amazon
Web Services, Microsoft Azure and Google Cloud [72]. An example of a
datacenter in operation can be seen in Figure 2.5.
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Figure 2.5. A datacenter at CERN. Image sourced from [49].

2.12 Ethics
There are many ethical theories, but broadly, they fall into two categories [4].
The first one is Teleology, which is concerned with ends and consequences.
One example is Utilitarianism, which aims to maximize happiness for as many
people as possible. One saying from a more practical perspective is ’the ends
justify the means’. The other broad category is Deontology, which is more
concerned with duty and doing what is right for its own sake. One example
is virtue ethics, which puts more emphasis on the person’s character. Ethics
does not in itself provide an answer to what system is ’the right one’ for any
situation. However, studying it sheds light on what your own values are and
what system you are reasoning by, because you are always implicitly follow-
ing some system of values. If values are communicated and understood, it can
also facilitate tolerance and conversation even when they are different. This is
different from relativism, i.e. the belief in no moral principles [22]. Relativism
can manifest itself as blindly following your own conscience or obeying cur-
rent norms. Scientists need to be objective and reason from facts, but they do
not have to be neutral in their opinions.

2.12.1 Legislation
Regulation concerning e.g. AI safety and weaponry should build on experi-
ence with previous technologies. This has shown repeatedly that legislation
need to be clear. A worldwide ban on technology is much more efficient than
encouraging responsible and restrained use [92]. This is one of the explana-
tions of why chemical, biological or nuclear warfare is rare along with human
cloning research. There is a consensus that such use cases are always wrong
or too risky. Those who break these rules are ostracized and punished. How-
ever, sometimes there are big risks with what we are already used to, and this
is where legislation has one of its biggest challenges ahead.
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3. Biomedical Image Analysis

This chapter begins by providing an overview of computerised image analysis
applied to biomedical data. Then, two of the most common problem settings
are described: classification and segmentation. The remainder of the chapter is
devoted to three different problems together with my contributions to solving
them.

3.1 Preliminaries
Computerised image analysis is defined as extracting some type of information
from digital images [39]. The focus of this thesis is image analysis, which
is not the same as video analysis. The latter means evaluation of temporal
data, i.e. the change of structure or appearance in images over time. The
fundamentals of video analysis is the same as for static images.

Images can be both two dimensional (2D) and three dimensional (3D). In
biomedical settings, 2D images are usually the result from microscopy or radi-
ology. 3D images can be the result of optical imaging by e.g. CT (Computed
Tomography). They can also come from magnetic imaging by MRI (Magnetic
Resonance Imaging) or radioactive scans of the brain or body structures by
e.g. PET (Positron Emission Tomography). Images can also be constructed
by visualizing ultrasound data. In this thesis, the focus is on 2D images, but
the analysis of 3D images is carried out in an analogous fashion.

Images can be in different modalities, which usually refer to the method
for generating the images. As an example, in light microscopy, visible light is
used to view samples and take images. In contrast, fluorescence microscopy
uses higher intensity light which triggers a fluorescence reaction in the sam-
ples that is then viewed or imaged. Modalities can be combined for more ad-
vanced analysis using e.g. registration methods. This thesis focuses on single
modalities of varying types.

Digital images can be synthetic or artificial, i.e. generated by computers.
This thesis instead concerns images generated by a sampling of a continuous
signal from an object in the real world via emitted or reflected photons. This
process is exemplified in Figure 3.1. Each image pixel represents a sample
of the signal both in the intensity and spatial domain. As images are usually
manipulated by e.g. zooming and rotation, interpolation needs to be performed
if the image dimensions are to be retained. This corresponds to a resampling
operation, which needs to be performed with care in order to not introduce too
many interpolation artifacts due to e.g. aliasing.
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Figure 3.1. The formation of an image of a real-world object. In the top left, a source
emits light. This is reflected by a real world object in the bottom left. This is captured
by an imaging system in the middle. Finally, a digital image of the object is captured
in the right.

3.2 Classification
In an image analysis context, classification typically involves determining
what kind of object is present in an image. These objects can be tangible
things, such as different species of bacteria. Classification can also indicate
quality, such as the presence of an underlying disease in a tissue sample. In
both cases, the images need to be analyzed in terms of their features, like the
textures, shapes, colors and distributions of items.

3.2.1 Classification by classical methods
Consider as an example the problem of increasing amounts of resident space
objects (RSO), such as space junk, in orbit around the earth. It is desirable
to track these objects to avoid collisions and for potential cleaning missions.
Tracking can be performed by satellite onboard cameras that take images in
specific directions when objects are expected to pass [7]. An image might look
like Figure 3.2. Here, stars can be seen as bright points. A passing object can
be seen as a bright line, due to its movement during the exposure.

The features in the image could be classified using manually constructed
detection algorithms. A line detection filter, i.e. the Laplacian of Gaussian,
could highlight the presence of lines in the image. False detections such as
stars could be handled using connectivity analysis, i.e. removing the smaller
detected objects. The methodology of handcrafted solutions to specific prob-
lems is today referred to as classical methods in image analysis.
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Figure 3.2. A simulated image of stars and a Resident Space Object passing by, visible
as a line. The image contrast has been enhanced for clarity.

These approaches are suited for problems characterized by low variation.
However, there are drawbacks. The manual design is time-consuming, and
algorithms tend to generalize poorly when the conditions are varying, such as
when objects are occluded. It is difficult to manually design algorithms that
can handle all probable cases.

3.2.2 Classification by deep learning
To solve the same problem using neural networks, a CNN could be used [40].
First, images would be loaded into the network. They would preferably num-
ber in the thousands to capture sufficient variation of the data. During training,
filters that indicate the presence of relevant features in the images would be
automatically learnt. Finally, the network could be used to classify unseen im-
ages. Still, the network would have to be retrained if the imaging conditions
changed. Therefore, the key is large amounts of data, which in turn means
larger networks are needed to learn the variations of the data, which in turn
means larger amounts of computational power is needed for processing.

3.2.3 Performance metrics
The performance is assessed using a number of different metrics. In a binary
classifier, four outcomes are possible: True Positive (TP), where an object is
present and has been classified as present; False Positive (FP), when an object
is not present but has been classified as present; True Negative (TN), where an
object is not present and has not been classified as present; and False Negative
(FN), where an object is present and has not been classified as present. These
can be presented in a 2D confusion matrix.
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More detailed metrics can also be used. Accuracy is defined as the number
of correctly classified samples divided by the total number of samples:

Accuracy =
T P+T N

T P+FP+T N +FN
(3.1)

Two other common metrics are sensitivity (the true positive rate) and speci-
ficity (the true negative rate). They are useful for disease prediction but have
to be combined with disease prevalence in clinical practice [1]. They are de-
fined as follows:

Sensitivity =
T P

T P+FN
, (3.2)

Specificity =
T N

T N +FP
. (3.3)

3.2.4 Datasets
The data is typically divided into at least two partitions: a training set and a
test set [30]. The training set is usually the biggest partition and is used in the
training phase. The test set is used after training to see how the trained model
performs on unseen data. Validation sets are often used as well to check the
generalization performance of the model during training. It is crucial to design
the partitions with care to prevent data leakage [54]. Data leakage occurs when
the model learns irrelevant features for classification. For the RSO detection
example, if the test set contain the same RSO as the training set, even if the
images themselves are different, the classifier might pick up subtle features
that only exist in these particular objects. This would give a misleadingly high
accuracy on the test set.

3.2.5 Data augmentation
In biomedical image analysis, datasets are usually difficult to find as expertise
is needed for high quality sample preparation and labelling [32]. To increase
the amount of training data, data augmentation is usually employed [94]. Aug-
mentation can be performed in many ways, such as by adding small amounts
of noise, cropping, or by rotations while keeping the labels intact. Some ex-
amples are shown in Figure 3.3. Data augmentation by rotations is usually
performed in microscopy, as classification should be invariant to rotations of
the sample under a microscope. However, each rotation of the object has to
be learnt separately, meaning the number of parameters increases. This can
increase the risk of overfitting.
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Figure 3.3. Data augmentation examples. The original image is transformed by e.g.
noise additions or rotations while keeping its label intact. Image sourced from [67].

3.2.6 Overfitting and underfitting
One common problem when constructing classifiers is overfitting [26]. Here,
the training data is learnt and classified to a high degree of accuracy, but the
performance on the test set is significantly lower. What usually has happened
in these cases is that the network has learnt the variations of the training data to
a too high extent, and cannot generalize to unseen data which typically looks
slightly different. The risk of overfitting can be explored using the cross-
validation technique, where the training and test sets are recombined into e.g.
five different folds and assessed separately.

When the network is unable to learn the features, low training accuracy
occurs and the network is said to be underfitting. The network is biased by
making erroneous assumptions about the relationships between inputs and out-
puts. An optimally trained network has found a balance between bias and
variance [28]. Overfitting and underfitting can be quantified by comparing the
empirical risk with the testing accuracy. The empirical risk for a classifier
Remp(h) [104] is defined as:

Remp(h) =
1
n

n

∑
i=1

L(h(xi),yi) (3.4)

where h is the hypothesis (i.e., our network), L is the loss function, and xi
and yi are n independent input and output samples, respectively. Since a low
empirical risk is directly proportional to a high classification accuracy on the
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Figure 3.4. Segmentation by the stochastic watershed algorithm. The image shows,
from left to right: endothelial cells, segmentation image after stochastic watershed
algorithm, segmentation after thresholding the result superimposed on the original
image.

training set, the training accuracy can be used as a proxy for the empirical risk.
From this, the overfitting ratio is constructed in Paper I:

Over f itting Ratio =
Training Accuracy
Testing Accuracy

(3.5)

Higher values indicate a higher degree of overfitting.

3.3 Segmentation
Segmentation involves dividing images into different regions [39]. This can
provide a more holistic understanding of the image, such as separating the
background from the foreground. Segmentation can propose candidate regions
for further analysis, such as identifying not only regions where objects are
located in the image, but also what classes the regions represent. Overall, there
are three types of segmentation: semantic, instance, and semantic instance.

3.3.1 Semantic segmentation
Semantic segmentation aims to assign a label to each pixel in the image, where
similarly labelled pixels share some common characteristic, or class. This can
be performed by e.g. border delineation, which determines the boundaries
between regions of the image. An example is the watershed algorithm [10],
which finds the local intensity ridges between different regions. The ridges are
found by analysis of the topographic maps of intensities between seeds. An
example of applying the watershed algorithm on an image of endothelial cells
is shown in Figure 3.4.

A commonly used deep learning architecture for semantic segmentation
is U-Net [89]. It consists of two parts: the encoder and the decoder. The
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Figure 3.5. The U-Net architecture modified with an extra head for semantic instance
segmentation.

encoder takes the image as input and downscales it in steps to a latent space
where similar features are grouped closely. The decoder then upscales the
image in steps, reconstructing the original dimensions from the latent space
and by skip-connections from the decoder. Finally, each pixel is assigned a
label, completing the semantic segmentation. Training of U-Net is performed
similarly as for classification networks, with the difference that the labels are
segmentation maps instead of scalars.

3.3.2 Instance segmentation
The objective of instance segmentation [43] is to label the different object in-
stances regardless of what class they belong to. Consider an image of multiple
cats and dogs. In semantic segmentation, the cats would be labelled differ-
ent than the dogs, but the individual cats would be indistinguishable from one
another. The same would hold for the dogs. In instance segmentation, all indi-
viduals would be labelled separately from each other. This is hard to achieve
for networks designed for semantic segmentation when instances are overlap-
ping in image space.
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3.3.3 Semantic instance segmentation
The goal of semantic instance segmentation is to output both the classes and
instances in the image. One way of accomplishing this is by adding a separate
head to the U-Net architecture, right before the semantic segmentation layer.
This additional head contains a 16-channel representation. At inference time,
this representation is clustered using Kmeans to extract the different instances.
The results are mapped to the original image pixels, yielding both the classes
and instances. An example of the U-Net architecture modified for semantic
instance segmentation is shown in Figure 3.5.

During training, a discriminative loss function [12] is added to the cross-
entropy loss used for semantic segmentation. The purpose of the discrimina-
tive loss is to enforce a mapping of the training data to a latent space in the
instance head. The mapping enforces features originating from different in-
stances to be separated from each other, while features originating from the
same instances are enforced to cluster tightly. This loss term has the following
form:

Lvar =
1
C

C

∑
c=1

1
Nc

Nc

∑
i=1

[∥µc − xi∥−δv]
2
+ (3.6)

Ldist =
1

C(C−1)

C

∑
cA=1

C

∑
cB=1

[2δd −∥µcA −µcB∥]
2
+(cA ̸= cB) (3.7)

Lreg =
1
C

C

∑
c=1

∥µc∥ (3.8)

L = α ·Lvar +β ·Ldist + γ ·Lreg (3.9)

Equation 3.6, Lvar, corresponds to a term that enforces features originating
from the same instance to minimize the distance to their center. Equation 3.7,
Ldist , pushes different clusters apart from each other. Equation 3.8, Lreg, pro-
hibits cluster terms from growing too large. The number of clusters is C, Nc
is the number of elements in cluster c, xi is an embedding, and µc is a cluster
center. ∥ · ∥ is the L1 or L2 norm, and [x]+ = max(0,x). δv and δd constitute
margins for the variance and distance terms, respectively. The constants α , β

and γ control the contribution of each term in equation 3.9.

3.3.4 Performance metrics
Segmentation models are evaluated differently than classification models as
each output pixel has to be compared with its label. One common way of
doing this is with the Dice score [9]:

Dice =
2∗T P

2∗T P+FP+FN
(3.10)
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Figure 3.6. Example cells from the Oral Cancer dataset.

This is easily calculated for classes, but the equation cannot be directly applied
to instances as they are permutation invariant. This means that the instance
labels are without meaning, except in the sense that they differ from other
labels. This can handled in the following way. First, the output instances
are compared with all the labels, and the best overlap is selected. Then, the
selected instance and label are used to update the Dice score and removed.
This process is repeated until no instances and labels are left.

3.4 Oral cancer
Oral cancer can develop in the lips, mouth or upper throat. In 2017, 389 760
people had the disease and 193 696 people died from it [85]. Survival is
heavily dependent on the stage at which the cancer is detected. There are a
number of causes, including tobacco and alcohol use [37], as well as infection
by the human papillomavirus [38]. The latter also causes cervical cancer and
can be prevented with vaccines. Treatment is typically surgery, as well as
radiotherapy and chemotherapy [63].

Oral cancer is usually diagnosed by biopsy followed by tissue analysis [91].
As early detection is important for survival, minimally invasive screening
methods are being tested. They follow a similar procedure as screening for
cervical cancer. For oral cancer screening, a brush is used to scrape cells
from the inside of patients’ mouths. The samples are then put in liquid vials,
smeared on glass slides and stained. Cytotechnologists then examine the sam-
ple, typically looking at around 100 000 cells in different magnifications. This
can take around 10-15 minutes. There is high demand to automate this pro-
cess as it can be difficult and costly to allocate this expertise when needed.
Furthermore, malignancy associated changes (MACs) might be detected with
automated screening. This refers to changes in chromatin structure and mor-
phology of the nucleus in cells, which are imperceptible to humans [36].
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3.4.1 Dataset
The oral cancer dataset originates from a collaboration between Uppsala Uni-
versity, Karolinska Universitetssjukhuset and Södersjukhuset [60]. After the
samples were stained, they were imaged and color information was removed.
Before cytological analysis, each image was centered around a nucleus and
cropped to 80 by 80 pixels. The images came from twelve patients, six of
which were healthy, and six of which had a cancer diagnosis. These were par-
titioned into training data consisting of 8508 images and test data containing
9942 images. The sets were kept apart at a patient level to avoid data leak-
age. Images were given weak labels, meaning individual cells were given the
diagnosis of the patient even though not all cells would be affected. Example
images are shown in Figure 3.6.

3.4.2 Paper I
Paper I describes research conducted into automated analysis of oral cancer.
A sufficiently deep network was chosen to allow for a hierarchy of features to
emerge. The VGG16 classifier network, illustrated in Figure 2.1, was selected
as it had been established in the biomedical image analysis community. The
model was implemented in PyTorch. Sufficiently large amounts of training
training data was needed for convergence during training. The training data
was augmented by rotations of 0, 90, 180 and 270 degrees, multiplying the
number of training samples by four.

3.5 Segmentation of cell nuclei
One way to develop segmentation algorithms is to use challenge datasets. One
of them is BBBC038 from the website Kaggle, where segmentation methods
are ranked according to their performance on the test set [14]. The BBBC038
dataset consists of 670 training images and 65 test images. The training images
are accompanied by pixel masks which vary in numbers, shapes and sizes. An
example is shown in Figure 3.7.

The images are highly varied and have been collected from multiple univer-
sities, companies and hospitals. They originate from different organisms such
as humans, mice and flies. The nuclei are in different states, undergoing e.g.
cell division, genotoxic stress or differentiation. They are present in cultured
mono-layers, tissues and embryos. The images are of varying quality, magni-
fications, illumination, and are imaged in different modalities like fluorescent
and histology stains.
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(a) (b)

Figure 3.7. An example from the BBBC038 dataset. (a) The raw image of cells.
(b) The instance masks.

3.5.1 Paper II
The aim of Paper II was to develop a higher performing and more data efficient
algorithm for semantic instance segmentation in biomedical image analysis.
The U-Net architecture was chosen as a baseline for its capabilities in semantic
segmentation. It was modified with an extra head for instance segmentation
according to the procedure in Subsection 3.3.3 for use in combination with a
discriminative loss function. The architecture is shown in Figure 3.5.

The BBBC038 images had to be selected or cropped to fit the U-Net imple-
mentation, which only worked on images of certain fixed sizes. The cutouts
were chosen in sizes of 256 by 256 pixels. Additionally, each cutout could
only contain a fixed number of instances, as this was a parameter used by the
Kmeans clustering method. The images were therefore searched for patches
containing this number of nuclei. This meant that some images had to be dis-
carded while others provided multiple patches. 500 images were used for the
training set and 16 were used for the test set. The images were converted to
greyscale.

3.6 TEM images of viruses
Viruses are usually around 20-300 nanometers in size. This is too small to
image by conventional microscopy methods. Therefore, Transmission Elec-
tron Microscopy (TEM) is usually applied [56]. In TEM, an electron beam is
transmitted through a sample suspended on a grid. During transmission, the
beam interacts with the sample. This signal is magnified and focused onto a
sensor, e.g. a fluorescent screen, producing the final image.

TEM is commonly used to characterize subcellular structures and new path-
ogens when combined with other methods. As an example, starting in the year
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(a) (b)

Figure 3.8. TEM image of a rotavirus. (a) The virus specimen is found in the center
of the image. (b) Cutout image centered around the rotavirus particle.

2020, the COVID-19 pandemic impacted the world, resulting in millions of
deaths. TEM played an important role in identifying the cause as the SARS-
CoV-2 virus, a type of corona virus, with its characteristic corona of glycopro-
teins [58]. Furthermore, TEM confirmed biochemical data that localized the
entry pathways into host cells. Methods for diagnosis in a clinical setting in-
clude molecular tests such as real-time reverse transcriptase-polymerase chain
reaction (rRT-PCR) or antigen tests on, e.g., nasal specimens [35].

Epidemics caused by new or unknown pathogens are expected in the future.
Therefore, methods for more efficient and accurate characterizations of novel
samples are valuable. Similarly as for diagnosis of oral cancer and many other
diseases, it can be difficult to find the experts and allocate the data needed for
manual analysis. Machine learning methods could automate this classification.
However, this requires large amounts of training data which can be hard to
find. More data efficient methods are needed.

3.6.1 Dataset
A new dataset was prepared with these goals in mind. It consists of 14 different
virus species imaged by transmission electron microscopy (TEM) [64, 65].
The images are cropped around the particles in sizes of 256 by 256 pixels.
Each image is labelled with its corresponding virus particle contained in the
image. The training data has 93 images per class for a total of 1302 images.
An additional augmented training set has the training samples rotated by 0,
90, 180 and 270 degrees, in addition to flips around one axis or no flips. The
validation data has 2249 samples, while the test data has 1900 samples. For
the validation and test sets the classes have varying amounts of samples. To
prevent data leakage, all partitions have been kept separate at the image level.
An example image can be seen in Figure 3.8.
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3.6.2 Papers III and IV
In Papers III and IV, the aim was to investigate how data efficiency could be
improved using equivariant neural networks. Paper IV extended the experi-
ments from Paper III with more optimized networks and varied experimental
conditions [13]. These papers focused more on collecting empirical results
than innovation in comparison to Papers I and II.

Similarly as for Paper I, the VGG16 architecture was chosen for its fa-
miliarity within the biomedical image analysis community. To gather more
empirical results, a custom architecture was selected as well. This second net-
work was similar in design to the ResNet network, but with significantly fewer
parameters to learn. The custom network is illustrated in Figure 3.9.
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Figure 3.9. The custom architecture used in the experiments. The group pooling layer
is only used in the equivariant version of the architecture.
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4. Equivariant Neural Networks

This chapter introduces equivariance and how it manifests in convolutional
neural networks. Building on this knowledge, equivariant neural networks
are then presented. The second half of the chapter is devoted to the practi-
calities of how to design and test equivariant neural networks. This includes
rotation-equivariant versions of the classifiers and segmentation models from
Chapter 3.

4.1 Equivariance in CNNs
CNNs are equivariant to translations of objects in the image f [40]. This
means that if the object is shifted left-right or up-down, the output will be
shifted equivalently after a convolution layer. This can be expressed in the
following way:

T (C( f )) =C(T ( f )) (4.1)

Here, the translation operator T commutes with the convolution operator C.
Translating the output of the convolution is identical to performing the convo-
lution first followed by a translation.

The reason for this property is weight sharing. That is, filter kernels are
identical across the same layer and channel. CNNs can additionally become
invariant to small translations of the inputs by adding pooling layers, which
remove the spatial information from the detected features. This property does
not hold for other transformations, such as rotations or reflections.

4.2 Group Equivariant Neural Networks
There are several approaches to extend the equivariant properties of CNNs.
One of the most prominent is Group Equivariant Convolutional Networks [21].
Here, convolutions are generalized to cover isometric, i.e. distance-preserving,
transformations as well as translations of the kernel k across the input. The
G-convolution is defined as follows for the input layer and the transforma-
tion g:

z(x,y) = k ∗ f (x,y)[g] =
a

∑
i=−a

b

∑
j=−b

k(i, j) f [g−1(x− i,y− j)] (4.2)
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Figure 4.1. The rotations of the p4 group, going clockwise: 0 degrees (top left), 90
degrees, 180 degrees and 270 degrees. The original handwritten image depicts the
digit nine, but its rotation by 180 degrees resembles the digit six.

where z is the output, x and y are image coordinates, and i and j are kernel
coordinates in the window of size [−a,a] by [−b,b]. For transformations g in
the symmetry group G the output is a stack of feature maps. For subsequent
layers, the G-convolutions are defined similarly on the stacks. Networks can
be constructed to be equivariant to the transformations of the chosen symme-
try group to arbitrary depth. Group pooling layers can be used to make the
network invariant to the group transformations.

A commonly used symmetry group is p4, consisting of all compositions
of translations and rotations by 90 degrees about any center in a square grid.
The rotations of this group are illustrated in Figure 4.1, which also shows that
the rotation of an object sometimes carries meaning. Another group is p4m,
which in addition to the transformations in the p4 group also contain mirror
reflections. These groups are subgroups of the Euclidean group in two dimen-
sions E(2), consisting of all isometric transformations [3]. Other common
groups are the 2D orthogonal group consisting of all reflections and rotations
O(2), the 2D special orthogonal group consisting of all rotations SO(2), and
the translation group (R2,+).

4.3 Other approaches
There are multiple other ways to achieve equivariance to more transforma-
tions than translations. One method applies the transformations to the data
or features directly instead of the kernels [25]. Another approach is CFNet
which uses the 2D discrete Fourier transform combined with conic convolu-
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tions, achieving equivariance to the p4 group [20]. Another method is to learn
steerable atomic basis filters for continuous resolution in orientation [107].
Recently, the attention mechanisms of transformers have been combined with
G-convolutions [88].

One common way of implementing equivariant neural networks is to use
the General E(2) - Equivariant Steerable CNNs framework [106]. As the name
hints, it implements the E(2) isometric transformations in 2D. It does this by
solving kernel constraints throughout the layers in the network. A kernel con-
straint looks like the following:

k(gx) = ρout(g)k(x)ρin(g−1) ∀g ∈ G, x ∈ R2 (4.3)

where ρout and ρin are the output and input representations respectively. Each
input and output has to have its representation defined. As an example for
a G-convolution in the first layer, the input representation will be the trivial
representation, while the output will be the regular representation, specifying
the stack of feature maps determined by the chosen symmetry group. The
E(N)-equivariant steerable CNNs framework implements the same principle
on R3 [18].

4.4 Designing equivariant neural networks
When constructing an equivariant neural network, the workflow should be
structured. A good starting point is to select a deep learning framework that
is user friendly and easily integrated with other tools. In my projects, I used
PyTorch, a library on top of the Python programming language. Secondly,
a framework for equivariant neural networks is highly recommended. I used
e2cnn, which is an extension of Pytorch.

The equivariant property cannot be assumed even if you have a solid grasp
of what group you want to design the network to be equivariant to. A test
driven development is therefore recommended. For an invariant classifier, a
recommended approach is to take a few images from the test set and perform
the component transformations of the symmetry group on them. That is, if the
network should be invariant to e.g. rotations of 0, 90, 180 and 270 degrees,
these rotations should be performed on some of the test images. Then, the
images should be loaded into a forward pass of the model. The classifier
should yield identical results for any image regardless of its input orientation.
There can still be small errors due to e.g. numerical errors.

Similar tests should be used for other types of models. For a rotation-
equivariant segmentation network such as U-Net, the resulting segmentation
should be identical if the input image is rotated by the component transforma-
tions of the symmetry group. The results can be compared for all pixels in the
image. Similar to classification models, a small amount of pixels, preferably
less than one percent, can differ due to e.g. numerical errors.
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The layers of the network have to be designed in a way that does not break
the equivariance properties. One common issue is that pooling layers are not
aligned with the input feature dimensions. This will cause the stack of trans-
formations in the group to pool over different areas in the input feature map,
producing different results depending on the orientation. The dimensions and
the strides of the pooling layers together with the dimensions of the input fea-
tures have to be designed to account for this.

4.5 Papers I, III and IV - equivariant classifiers
In Papers I, III and IV, the VGG16 classifier was redesigned to be equivariant
to more transformations than translations using the e2cnn library. The details
of designing the network in Paper I is hereby described.

The first layer lifts a trivial representation (the input images) to a regu-
lar representation, using the p4 symmetry group of translations and multiples
of 90-degree rotations. Subsequent layers use the same symmetry group. A
group pooling operation follows the final G-convolution to make the classi-
fier invariant to the transformations of the group. The final layers are fully
connected to perform the classification of the detected features. Details of the
training settings and architecture are shown in Table 4.1.

An extended custom architecture is described in Paper IV. The classifier is
designed layer by layer in a similar process as for Paper I. Furthermore, as this
architecture contains skip connections, the direct sum function from e2cnn is
used to concatenate tensors of the same type. A PreConvolution layer is used
to prepare the layer for subsequent concatenation. The kernel is of size 1, i.e.
a scalar, to convert the input representation to a regular representation. The
architecture is shown in Figure 3.9.

The test of equivariance to the transformations of the symmetry group showed
an error of typically less than one percent in all cases. This was in contrast to
baseline CNNs which typically showed errors around ten percent.

4.6 Paper II - equivariant neural networks for semantic
instance segmentation

In Paper II, a rotation-equivariant version of the U-Net architecture for seman-
tic instance segmentation is described. The design follows the same principles
as the equivariant classifiers in section 4.5. Layer by layer, the convolution op-
erations have been replaced by G-convolutions using the p4 symmetry group
of translations and multiples of 90 degrees. Direct sums are used to perform
the concatenation operations for the skip connections.

As the U-Net is modified with an extra head in combination with a discrim-
inative loss for instance segmentation, the network needs to be equivariant to
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Table 4.1. Settings for the VGG16 classifier architecture and training procedures.

Parameter Setting
Loss function Cross entropy

Weight initialization He
Optimizer Adam

Learning rate 0.00001
Batch normalization Batches of size 128

No. of epochs 200
Validation frequency 1/5 epochs
Activation functions ReLu

Dropout 0.5 between linear layers
No. of channels 16-16-32-32-64-64-64-

128-128-128-128-128-128
Convolution layers Layers 1-12: (3,1,1)

(size, stride, padding) Layer 13: (4,0,0)
Maxpooling layers Layers 1-4: (2,2,0)

(size, stride, padding) Layer 5: (2,1,0)
Linear layer parameters (128,4096) -

(input, output sizes) (4096,4096) - (4096,2)

Figure 4.2. Commutative diagram for the U-Net semantic instance segmentation net-
work.

90-degree rotations not only for the segmentation output but for the instance
output as well. This is proved in the following way. In the instance head, each
pixel is associated with 16 scalar values. These values span a space which
looks the same regardless of the rotation of the underlying pixels. Therefore,
the clustering step is invariant to rotations, as well as any transformation act-
ing only on the pixel coordinates. This also holds for any clustering algorithm
not relying on pixel coordinates. The commutative diagram for the network is
shown in Figure 4.2.

Testing the equivariance of the semantic output of the U-Net revealed that
only around 167 pixels on average differed from what was expected, i.e. 0.25 %
of the total number of pixels.
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5. Empirical Results

This chapter introduces the emergent field of empirical deep learning, includ-
ing topics like scaling laws, data efficiency and convergence time. The chapter
begins with some lessons learned about setting up and working with an appro-
priate computational environment. This is followed by the experimental setups
and results comparing equivariant neural networks with baseline CNNs.

5.1 Deep learning computational and development
workflow

During the course of the thesis project, I changed both the computational hard-
ware and the software development environment several times. I began by
working on my laptop, equipped with a Quadro P2000 GPU with 4GB mem-
ory and 8 GB system RAM. This was sufficient for simple models using mod-
erate amounts of data. Moving e.g. the backpropagation computations to the
GPU from the CPU resulted in a significant speedup, reducing the time taken
from days to hours. However, the GPU memory proved to be the primary
bottleneck for heavier computations when more data was added.

In my second year, I moved to a stationary desktop computer with a much
more powerful GPU which could handle the needed computations. I accessed
this computer remotely using SSH and SCP to transfer files. The coding was
mainly performed in the Spyder development environment. In my third year,
I tried out different cloud computing environments, including Ericsson Open-
stack, Databricks and Google Colab, which was selected for Paper II. How-
ever, this system proved to be memory-limited for larger equivariant networks.
Cloud computing owned by private interests also comes with privacy concerns
when using e.g. confidential patient data.

In my final phase of my projects, I moved to the NAISS (National Academic
Infrastructure for Supercomputing in Sweden), specifically the Alvis cluster
for machine learning research. This provided access to hardware (an A40
GPU and 64 GB system RAM) and storage that was not limiting the models
or data I could work on. The system also provided transparent schedulers
and computational budgets. Around the same time I switched to Visual Studio
Code, a development environment with a debugger and integrations for remote
development and file access.

For installing software, python package management through pip combined
with virtual environments allowed for isolation of each project. I also used
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(a) (b)

Figure 5.1. Accuracy on the test set using the VGG16 baseline classifier in Paper I.
The colored lines indicate individual runs, and the black line indicates the mean of the
runs. (a) Using unaugmented training data. (b) Using augmented training data.

(a) (b)

Figure 5.2. Accuracy on the test set using the VGG16 classifier in Paper I. The net-
work was modified to be equivariant to the p4 group. The colored lines indicate indi-
vidual runs, and the black line indicates the mean of the runs. (a) Using unaugmented
training data. (b) Using augmented training data.

Horovodrunner on the Databricks cloud computing platform for distributed
deep learning over multiple GPUs on particle collision data from CERN [98].
While this is not related to the papers in this thesis, the same approach can be
used on biomedical image datasets, which can be expected to grow in size in
time. Code with new implementations was uploaded to github open reposito-
ries to aid reproducibility efforts.

5.2 Data augmentation vs equivariance
As described in Section 3.2.5, data augmentation can be used to increase the
amount of training data in biomedical image analysis. This provides the net-
works with additional examples, letting it generalize better. However, this
strategy comes at cost of learning the component transformations. One of the

60



Table 5.1. Overfitting measurements in Paper I. CNN is the baseline network and
GCNN is the rotation-equivariant network.

Network Overfitting ratio
CNN with data augmentation 1.82

GCNN without data augmentation 1.69

main aims of the thesis was to investigate if equivariant networks trained on
unaugmented data could replace baseline networks trained using augmented
data. In control experiment one, baseline networks were expected to drop
in accuracy when training on unaugmented data instead of augmented data.
In control experiment two, equivariant networks were expected to not benefit
much from training on augmented data if the augmentations were to match the
transformations of the symmetry group.

5.2.1 Paper I
In Paper I, the VGG16 model was used to classify oral cancer from cytological
images. The p4 symmetry group was used along with augmentations consist-
ing of rotations of 0, 90, 180 and 270 degrees. The results of the augmentation-
equivariance experiments are illustrated in Figure 5.1 and Figure 5.2 for the
baseline and equivariant networks respectively. It can be seen that the baseline
with data augmentation yielded accuracies of around 55-56 % on the test set,
while the equivariant network without data augmentation yielded accuracies
of around 59-60 %. These results were verified to be statistically significant.
For control 1, curiously, the baseline did not benefit from data augmentation.
For control 2, as expected, the equivariant network did not benefit from data
augmentation.

Both the baseline and equivariant networks yielded 100 % accuracy on the
training set. Combining the two accuracies, the overfitting ratio could be
calculated. This is seen in Table 5.1. As expected, the equivariant network
without data augmentation resulted in less overfitting (1.69) than the baseline
(1.82). Similarly, the equivariant network with data augmentation yielded both
higher sensitivity (0.62) and specificity (0.60) than the baseline (0.57 and 0.56
respectively).

5.2.2 Paper II
In Paper II, augmentation-equivariance experiments were carried out using a
U-Net model modified for instance segmentation. The experiments were first
carried out on a dataset of synthetic sticks. The mean instance Dice score on
the test set was 0.88 for the last 20 epochs.
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Then, experiments were conducted on the modified BBBC038 dataset con-
sisting of cells of varying types. For the equivariant network, the p4 symmetry
group was used. Augmentations by rotations of 0, 90, 180 and 270 degrees
were also performed. The result are presented in Table 5.2. It can be seen that
the equivariant network performed slightly worse than the baseline with data
augmentation. The Dice scores were 0.63 and 0.66, respectively. The results
of Control 1 was as expected, increasing in Dice score from 0.62 to 0.66 when
data augmentation was added. Control 2 yielded slightly lower accuracy when
using data augmentation, dropping from 0.63 to 0.62.

Table 5.2. Results for the instance segmentation experiments in Paper II on the mod-
ified Broad BBBC038 dataset. Initial Dice score is the mean of the first 10 epochs on
the test set. Final Dice score is an average for the last epoch on the test set. Data
augmentation refers to rotations of 0, 90, 180 and 270 degrees. The number of epochs
was 100 except for experiment 2, which used 300 (rows 3–6). CNN refers to the base-
line network and GCNN refers to the rotation-equivariant network. TD stands for the
number of training samples, and AT is short for data augmentation type.

# TD Network AT Initial Dice Final Dice

400 CNN None 0.54 0.65

400 GCNN None 0.59 0.65

500 CNN None 0.44 0.62

500 CNN Rotations 0.52 0.66

500 GCNN None 0.52 0.63

500 GCNN Rotations 0.52 0.62

100 CNN None 0.46 0.61

200 CNN None 0.49 0.63

300 CNN None 0.50 0.62

400 CNN None 0.54 0.65

100 GCNN None 0.53 0.61

200 GCNN None 0.53 0.62

300 GCNN None 0.55 0.64

400 GCNN None 0.57 0.62
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Figure 5.3. The results of Cross-validation for the VGG16 architecture.

5.2.3 Papers III and IV
In Paper III, the VGG16 classifier was used to classify TEM images of viruses.
Again, the p4 group was used, but the augmentations included reflections
about one axis in addition to rotations by multiples of 90 degrees. The re-
sults can be seen in Table 5.3. It can be seen that the rotation-equivariant
network using no data augmentation outperformed the CNN using data aug-
mentation, as expected. The best accuracies on the test sets were 78.80 % and
75.27 % respectively. Also for control 1, the CNN improved from 57.64 % to
75.27 % when data augmentation was added. For control 2, when data aug-
mentation was added to the equivariant network, the accuracy increased from
78.80 % to 82.56 %. Note that batch normalization was not used in any of
these experiments to reduce memory requirements.

To control for overfitting or selection bias, cross-validation was performed.
The training and test datasets were merged. Five folds were constructed by
random sampling of the combined dataset. The images were augmented fol-
lowing the same procedure as in the main experiments. Results can be seen
in Figure 5.3. It can be seen that there is a considerable difference in test set
accuracy depending on which folds are used as training data, indicating the
data could benefit from further rebalancing.

In Paper IV, more experimental conditions were carried out, varying both
the architectures and the symmetry groups. The D4 and C8 symmetry groups
were tested both for the VGG16 and custom architectures. The D4 symmetry
group consists of rotations of multiples of 90 degrees and reflections about one
axis. The C8 symmetry group consists of rotations of multiples of 45 degrees.
The results for the custom architecture, which was designed to reduce the
number of weights significantly, can be seen in Table 5.4. It can be seen that,
for 300 epochs on unaugmented training data using the custom architecture,
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Table 5.3. Results from the main experiments in Paper III. The numbers are averages
and standard deviations over five runs. Best accuracy is the percentage correctly
classified on the test set and Time to stability is in seconds.

Augmentation scheme CNN GCNN

No augmentation

Best accuracy 57.64 78.80

± 2.65 ± 2.23

Epochs to stability 31 24

Time to stability 1577 2145

± 336.23 ± 717.85

Data augmentation

Best accuracy 75.27 82.56

± 0.751 ± 2.44

Epochs to stability 15 12

Time to stability 4317 5469

± 641.31 ± 2670.41

the D4 group with 72.90 % outperformed the baseline with 69.90 %, which
outperformed the C8 group with 64.10 %. When training on augmented data,
similar accuracies (88.4 0%, 87.80 % and 88.70 %) were reached regardless of
equivariant designs of the network. Still, they all increased in accuracy when
augmented data was added, which could be partly explained by the fact that
the augmentations were different from the component transformations of the
symmetry group C8. However, they matched the transformations of the D4
group, which makes the results curious. The results were similar when using
the VGG16 network, as can be seen in Table 5.5.

5.3 Longer training
In Paper IV, both the custom and the VGG16 architectures were additionally
trained for 2400 epochs on the unaugmented training sets. This corresponded
to eight times 300 epochs, which matched the number of transformations in
the augmented data. These experiments were performed as the equivariant
networks trained on unaugmented data received one eighth of the training op-
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Table 5.4. Results from the main experiments in Paper IV for the custom architecture.
Best accuracy is the percentage correctly classified on the test set and Time to stability
is in hours.

Custom network Baseline D4 C8

No augmentation

300 epochs

Best accuracy 69.90 72.90 64.10

Epochs to stability 274 275 234

Time to stability 0.85 7.32 3.90

2400 epochs

Best accuracy 83.30 89.80 89.00

Epochs to stability 2260 1886 2126

Time to stability 7.06 48.72 55.61

Augmented training

300 epochs

Best accuracy 87.80 88.40 88.70

Epochs to stability 244 212 2 56

Time to stability 4.46 33.54 40.54

portunities when compared to CNNs trained on augmented data. The results
can be seen in Table 5.4 and Table 5.5. It can be seen that the equivariant net-
works significantly outperform the baseline network in both cases. Also, the
accuracies match the previous state of the art accuracies on the dataset [64].
This shows that the benefits of equivariant networks sometimes manifest after
very long training times.

5.4 Convergence speed
Equivariant neural networks have proven to converge faster than baseline CNNs,
since they do not have to learn the symmetries of the data explicitly [106].
Similar effects have been seen using equivariant MDP homomorhic in rein-
forcement learning [103], and in facial classification based on invariant Zernike
moments [62].
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Table 5.5. Results from the main experiments in Paper IV for the VGG16 architecture.
Best accuracy is the percentage correctly classified on the test set and Time to stability
is in hours.

VGG16 network Baseline D4 C8

No augmentation

300 epochs

Best accuracy 81.90 85.50 78.20

Epochs to stability 266 262 184

Time to stability 1.33 12.80 9.04

2400 epochs

Best accuracy 87.00 92.40 92.50

Epochs to stability 1478 1474 1667

Time to stability 7.57 73.67 84.01

Augmented training

300 epochs

Best accuracy 91.10 91.00 92.00

Epochs to stability 145 253.4 275

Time to stability 4.28 75.09 81.28

5.4.1 Paper II
In Paper II, the convergence speed was measured by calculating the Dice score
on the test set for the initial ten epochs during training. It can be seen in Ta-
ble 5.2 that the initial Dice score is higher for the equivariant networks com-
pared to the baseline networks for varying amounts of data and types of aug-
mentations. As an example, the equivariant network on the BBBC038 dataset
without data augmentations has an initial Dice score of 0.52 vs the baseline’s
0.44.

5.4.2 Papers III and IV
To measure convergence time in the classification tasks in Papers III and IV,
the time until stability metric was defined as the time until 95 % of the top ac-
curacy was achieved for the first time during training. The results for Paper III
can be seen in Table 5.3. It can be seen that the equivariant network using

66



no data augmentation converged in 2145 seconds. This was roughly half the
time of the baseline network trained on data augmented data, which took 4317
seconds to reach the stable accuracy.

The results for Paper IV can be seen in Table 5.4 and in Table 5.5. It can
be seen that across a range of conditions both the baseline and equivariant net-
works converge in a similar number of epochs. However, as the equivariant
networks demand more computations than CNNs when the number of chan-
nels are the same, the equivariant networks take longer time to converge. This
is in contrast to the results from Paper III. One difference between Papers III
and IV is that batch normalization was not used in Paper III to reduce the
memory requirements. When batch normalization was turned off in Paper IV,
the baseline networks failed to converge at all while the equivariant networks
achieved significantly lower accuracies [13]. This shows that designing net-
works for extended equivariance and enabling batch normalization improve
data efficiency during training through different means.

5.5 Scaling Laws
The success of deep learning is largely unexplained. While there is no the-
ory that contradicts the empirical results, there are also no theoretical guaran-
tees. This contrasts with e.g. the simplex method in linear programming [73],
where theoretical proofs of finding the global optimum exist if the problem is
modelled correctly. Computational learning theory [69] has explained some
machine learning results, but more theory is needed.

One way forward to building a theory of deep learning is to collect empir-
ical results of model behaviours. For instance, it has been observed that test
errors versus model sizes tend to follow a double descent curve [75]. Clas-
sical statistics would expect that after a minimum has been found, the error
would increase with the number of parameters. However, in deep learning ap-
plications, the error increases, hits a peak, and then starts to decrease again,
reaching even lower errors than in the previous valley. This methodology is
not only useful for theoretical developments. State of the art large language
models use similar procedures for determining how to optimize the models, as
it is not feasible to do extensive hyperparameter tuning and model testing due
to computational and time costs [78]. Instead, the model behavior is predicted
using similar curves, tuning is made in the smaller model regions, and then the
model is scaled to its production size.

By similar experiments, the behaviour of models have been examined when
instead varying the amount of data [47]. It has been seen that the error y versus
the amount of data x follows a power law:

y = axk (5.1)
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where a and k are constants. Taking the logarithm and rearranging yields:

log(y) = log(a)+ k ∗ log(x) (5.2)

This can be modelled with linear regression. As the slope k also is the expo-
nent in the power law, this is a practical way of determining how fast the error
is reduced when adding more training data. It has been observed that different
CNN models do not affect the slope, instead shifting the curve up or down.
Interestingly, this behaviour has not been seen with equivariant networks in
modelling of molecular dynamics [5]. Instead, the equivariant networks ex-
hibit a steeper slope, hinting at improved data efficiency.

5.5.1 Papers III and IV
In Papers III and IV, the scaling behaviours for varying amounts of unaug-
mented training samples were investigated. The TEM virus dataset was used,
and baseline and equivariant versions of the VGG16 classifiers were deployed,
as described in Section 3.6. The results can be seen in Figure 5.4 for Paper III
and Figure 5.5 for Paper IV. In the first case, the slope of the equivariant model
using the p4 symmetry group was -0.43, and for the baseline it was -0.26. In
the second case, the slope of the equivariant model using the D4 symmetry
group was -1.05, and for the baseline it was -0.75. In both cases, the slopes
were steeper for the equivariant models. This means that the equivariant net-
works learn faster when adding more training data, i.e. they are more data
efficient. Also in Paper IV, the same experiments were carried out using a cus-
tom model. Here, the slopes of both the baseline and equivariant models were
-0.66. It seems that the difference in data efficiency is architecture dependent.
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Figure 5.4. Log-log chart of test set error vs number of unaugmented training samples
for Paper III. Here the VGG16 was used to classify TEM viruses. The equivariant net-
work using the p4 symmetry group (lower line) has a steeper slope than the baseline,
indicating higher data efficiency.

Figure 5.5. Log-log chart of test set error vs number of unaugmented training samples
for Paper IV. Here the VGG16 was used to classify TEM viruses. The equivariant
network using the D4 symmetry group (upper line in the extreme left of the chart) has
a steeper slope than the baseline, indicating higher data efficiency.
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6. Closing Remarks

This chapter begins by summarizing the papers of the thesis. This is followed
by the conclusions from the research, as well as suggested further research.
The chapter and thesis ends by the author’s outlook on the field of AI.

6.1 Summary of papers
In Paper I, the VGG16 network was used to classify malignancy in images of
cells from patients’ oral cavities. It was shown that an equivariant neural net-
work using the p4 symmetry group resulted in higher classification accuracy
on the test set than a baseline CNN. It was also shown that data augmentation
by 90 degree rotations could be omitted.

In Paper II, the U-Net architecture was used to semantically segment im-
ages from the BBBC038 dataset which pictures cells in varying conditions.
When the network was modified with an extra head and a discriminative loss
function, instance segmentation could be performed as well. It was proven
that changing the network to be equivariant to transformations of the p4 sym-
metry group resulted in rotation-equivariant semantic instance segmentation.
Test set Dice scores were similar regardless of using the rotation-equivariant
or the baseline network with or without data augmentation. Still, the rotation-
equivariant networks provided faster convergence during training.

In Paper III, the VGG16 network was used to classify virus samples in
TEM images. It was shown that an equivariant neural network using the p4
symmetry group instead of the baseline CNN resulted in higher classification
accuracy. It was also shown that data augmentation by multiples of 90 degree
rotations could be omitted with little cost to classification accuracy. Further-
more, the rotation-equivariant network without data augmentation converged
in around half the time of the baseline with data augmentation. Finally, it was
shown in a log-log plot that the rotation-equivariant network was more data
efficient than the baseline when training on varying amounts of unaugmented
data.

In Paper IV, the VGG16 network and a smaller custom network were used
to classify the same virus samples as in Paper III. In contrast to Paper III,
the batch normalization optimization was used as well. Furthermore, variants
of the networks were designed to be equivariant to the C8 and D4 symme-
try groups, respectively. It was shown that results in terms of accuracy and
convergence speed were similar when training for 300 epochs no matter the
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choice of architecture, symmetry group or augmentation strategy. However,
when training for 2400 epochs on unaugmented data, the equivariant networks
outperformed the baseline networks significantly. Also it was shown in a log-
log plot that the equivariant VGG16 network using the D4 symmetry group
was more data efficient than the baseline when training on varying amounts of
unaugmented data. When the custom architecture was used, both the baseline
and equivariant networks exhibited similar slopes in a log-log plot.

6.2 Conclusions
The aims of this thesis as stated in Section 1.2 are to reduce the issues as-
sociated with the annotated training data in biomedical image analysis using
equivariant neural networks in combination with empirical deep learning and
predictable scaling. These issues are lack of data (Aim 1), overfitting (Aim 2)
and computational costs (Aim 3) such as convergence time during training.

The issues were addressed in the papers using equivariant neural networks.
Both classification and semantic instance segmentation models were investi-
gated along with several symmetry groups. Different problem settings, such
as oral cancer classification and semantic instance segmentation of cells, were
explored. Furthermore, predictable scaling methods were employed to aid in
the training process.

A number of conclusions can be drawn from the results. Data augmentation,
a technique for increasing the amount of training data, can be reduced if the
component transformations of the symmetry group match the augmentations
(Aim 1). Overfitting, which was measured by a novel overfitting metric, is
lessened in many cases (Aim 2). One exception to this can be seen with the
semantic instance segmentation networks in Paper II. In some cases, such as
in Paper IV, higher accuracy on the test set and lower overfitting are observed
for equivariant networks only after training for much longer times than what
is considered as standard. In most cases, the convergence to a stable accuracy
during training is faster for the equivariant networks (Aim 3).

There seems to be benefits of using equivariant neural networks in biomed-
ical image analysis owing to the extended symmetries usually found in the
associated datasets, such as rotational symmetry. However, for new problem
settings it is unclear what these benefits will be in practice, such as lower over-
fitting or faster convergence. For medical diagnostics, equivariant networks
could be used either for improved accuracy in production settings. Equivariant
networks could also be used for development and fine-tuning in the training
process to reduce time consumption.
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6.3 Further research
Future research into reducing overfitting and improving data efficiency using
equivariant neural networks could focus on ablation studies, similar to how
performance depended on batch normalization in Paper IV. Further varying
datasets, architectures, symmetry groups and hyperparameters could provide
further insight into how general the observed effects are. The equivariant net-
works could also be designed with different symmetry groups in different lay-
ers to exploit underlying symmetries in varying scales.

In applied research, e.g. oral cancer classification, using equivariant net-
works instead of data augmentation techniques could be explored further. In
theoretical research, more empirical results should be collected. Eventually
and hopefully, theorems could be developed to explain the results, such as the
different slopes of equivariant networks compared to CNNs in log-log plots of
test set errors versus varying amounts of training data.

6.4 Future Outlook of AI
In the last years, AI methods, alone or in combination with other methods,
have largely superseded classical methods in biomedical image analysis for
state of the art accuracy. While classical methods can come with a number
of advantages, such as stronger explainability and simpler implementations,
one of the main strengths of AI methods is flexibility. Neural networks can be
retrained to learn and reproduce patterns, as long as sufficient data and com-
putational power are available. This is part of why they have exploded in use
in many other fields, like natural language processing or molecular modelling.
While neural networks as implemented today are very different from biolog-
ical neural networks, they are more similar than classical methods. Neural
networks are adaptable and closer to how we learn to make new predictions
from the changing conditions around us.

We cannot know today how AI systems and our understanding of them will
develop, but as computational hardware performance and the amount of avail-
able data grow and spread, so will probably the the capacities of AI. Those
with the means to control and exploit the data and computational infrastructure
have significant power. This is one of the biggest dangers ahead. Therefore
efforts should focus on discussing and regulating access to resources and sys-
tems, and what we do with them. Understanding AI system capabilities and
limitations, spreading this knowledge, ethical discussions and global legisla-
tion are critical for our future society.
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