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Abstract

Background: Patients with chronic lymphocytic leukemia (CLL) 
are vulnerable to coronavirus disease 2019 (COVID-19) and are at 
risk of inferior response to severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2) vaccination, especially if treated with the 
first-generation Bruton’s tyrosine kinase inhibitor (BTKi) ibrutinib. 
We aimed to evaluate the impact of the third-generation BTKi, zanu-
brutinib, on systemic and mucosal response to SARS-CoV-2 vac-
cination.

Methods: Nine patients with CLL with ongoing zanubrutinib therapy 
were included and donated blood and saliva during SARS-CoV-2 
vaccination, before vaccine doses 3 and 5 and 2 - 3 weeks after doses 
3, 4, and 5. Ibrutinib-treated control patients (n = 7) and healthy aged-
matched controls (n = 7) gave blood 2 - 3 weeks after vaccine dose 5. 
We quantified reactivity and neutralization capacity of SARS-CoV-

2-specific IgG and IgA antibodies (Abs) in both serum and saliva, and 
reactivity of T cells activated with viral peptides.

Results: Both zanubrutinib- and ibrutinib-treated patients had sig-
nificantly, up to 1,000-fold, lower total spike-specific Ab levels af-
ter dose 5 compared to healthy controls (P < 0.01). Spike-IgG levels 
in serum from zanubrutinib-treated patients correlated well to neu-
tralization capacity (r = 0.68; P < 0.0001) and were thus functional. 
Mucosal immunity (specific IgA in serum and saliva) was practically 
absent in zanubrutinib-treated patients even after five vaccine doses, 
whereas healthy controls had significantly higher levels (tested in 
serum after vaccine dose 5) (P < 0.05). In contrast, T-cell reactivity 
against SARS-CoV-2 peptides was equally high in zanubrutinib- and 
ibrutinib-treated patients as in healthy control donors.

Conclusions: In our small cohort of zanubrutinib-treated CLL pa-
tients, we conclude that up to five doses of SARS-CoV-2 vaccination 
induced no detectable IgA mucosal immunity, which likely will im-
pair the primary barrier defence against the infection. Systemic IgG 
responses were also impaired, whereas T-cell responses were normal. 
Further and larger studies are needed to evaluate the impact of these 
findings on disease protection.
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Introduction

Immunocompromised patients with chronic lymphocytic 
leukemia (CLL) are vulnerable to coronavirus disease 2019 
(COVID-19) and exhibit variable responses to severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2) mRNA 
vaccination [1, 2]. Antibody (Ab) titers are notably low in pa-
tients receiving the first-generation Bruton’s tyrosine kinase 
inhibitor (BTKi) ibrutinib [2, 3], and their vaccine-induced 
T-cell responses are weaker than in most other patient groups 
with immunodeficiency [4]. Zanubrutinib, a third-generation 
BTKi, offers improved progression-free survival compared to 
ibrutinib [5] and possesses increased selectivity to BTK with 
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fewer off-target effects [6], including on interleukin-2-induc-
ible T-cell kinase (ITK). This suggests that zanubrutinib’s 
immunological imprint on the outcome of vaccination might 
differ from earlier generations of BTKi. We here examined 
systemic and mucosal immunity during repeated (up to 5) 
SARS-CoV-2 vaccinations in a cohort of patients with CLL 
on long-term zanubrutinib therapy. Results were compared 
with patients on first-generation BTKi therapy (ibrutinib) and 
healthy age-matched donors that were tested after vaccine 
dose 5.

Materials and Methods

Patients with CLL receiving zanubrutinib in the clinical trials 
BGB-3111-304 [7] and BGB-3111-305 [5] at one single site 
(Karolinska University Hospital) without a history of previous 
COVID-19 tested negative for anti-nucleocapsid Abs, who had 
received at least two vaccine doses against SARS-CoV-2, were 
included. Patients who developed COVID-19 during the study 
period were withdrawn from further analyses from that time 
point. The study was approved by the Swedish Ethical Review 
Authority [8]. The study was conducted in compliance with 
the ethical standards of the responsible institution on human 
subjects as well as with the Helsinki Declaration.

Zanubrutinib-treated patients donated blood and saliva 
samples before vaccine doses 3 and 5 and 2 - 3 weeks after 
doses 3, 4, and 5. Ibrutinib-treated control patients (n = 7) (me-
dian age 67 years, range 67 - 82) and healthy aged-matched 
controls (n = 7) (median age 71 years, range 64 - 88) gave 
blood after dose 5. Quantitative measurements of antibod-
ies against the spike-receptor-binding domain (RBD) and the 
nucleocapsid were performed on serum samples (Elecsys®, 
Roche Diagnostics), and further analyses of anti-spike IgA, 
IgG, and ACE inhibition capacity were performed on both se-
rum and saliva samples (V-PLEX, Meso Scale Diagnostics). 
Peripheral blood mononuclear cells (PBMCs) were used for 
T-cell response analysis using an activation-induced marker 
(AIM) assay as described [4]. A complete description of all 
methods, mainly as described earlier [9], is provided in the 
Supplementary Material 1 (www.thejh.org).

Results

Patient characteristics and vaccination details are shown in Ta-
ble 1. Nine zanubrutinib-treated patients with a median age of 
75 years (range 52 - 83) were included. Six received zanubru-
tinib as first-line treatment and three as salvage therapy > 2.5 
years since their last treatment. The median time from zanu-

Table 1.  Clinical Characteristics at Start of Vaccination Against SARS-CoV-2 and Timepoints of Vaccination and Tests

Median age, years (range) 75 (52 - 83)
Male 56% (5/9)
Zanubrutinib as first-line treatment 67% (6/9)
Time (months) of zanubrutinib treatment before dose 1, median (range) 28 (3.5 - 33.5)
Time (months) between vaccine doses
  Dose 1-2 (n = 9) 1.4 (0.7 - 2.2)
  Dose 2-3 (n = 9) 5 (4.1 - 6.2)
  Dose 3-4 (n = 8) 3.9 (3.4 - 9.0)
  Dose 4-5 (n = 7) 3.2 (3.0 - 6.5)
Type of vaccinea

  Dose 1 (n = 9) C = 4, S = 2, V = 3
  Dose 2 (n = 9) C = 4, S = 2, V = 3
  Dose 3 (n = 9) C = 4, S = 5, V = 0
  Dose 4 (n = 8) C = 0, S = 8, V = 0
  Dose 5 (n = 7) C = 3, S = 4, V = 0
Time (days) since pretest to vaccination, median (range)
  Dose 3 (n = 9) 31 (10 - 73)
  Dose 5 (n = 4)b 4 (0 - 8)
Time (days) since vaccination to post-test, median (range)
  Dose 3 (n = 9) 24 (15 - 36)
  Dose 4 (n = 8) 32 (21 - 43)
  Dose 5 (n = 7) 21 (17 - 53)

aC: Comirnaty® (BNT162b2, Pfizer BioNTech); S: Spikevax® (mRNA-1273, Moderna); V: Vaxzevria® (AZD22, Astra Zeneca). bMissing test for two 
patients and one patient did not receive dose 5 due to SARS-CoV-2 infection.
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brutinib initiation to the first vaccination was 28 months (range 
4 - 34). All had stable partial remission during the vaccination 
period. One patient experienced a SARS-CoV-2 breakthrough 
infection before dose 4 and 1 before dose 5 and was subse-
quently excluded from further analyses.

All zanubrutinib-treated patients (9/9) were seronegative 
prior to dose 3 (total spike-Ab < 0.8 U/mL). When compared 
to baseline, significant increases of total titers were noted after 
vaccine doses 3, 4, and 5 (P < 0.05), albeit 44% (4/9) were 
still seronegative after dose 3, 50% (4/8) after dose 4 and 43% 
(3/7) after dose 5 (Fig. 1a). Similar results were found for se-
rum tested against both anti-wt- (Wuhan ancestral strain) and 
anti-Omicron spike IgG (data not shown). Total Ab levels after 
dose 5 were significantly lower in the zanubrutinib cohort than 
in age-matched healthy donors (median 2.7 U/mL vs. 21,648 U/
mL; P < 0.01; Fig. 1b), with comparable results for anti-spike 
IgG against wt and Omicron (P < 0.01 and P < 0.05). Also, the 
anti-spike total Ab levels in the ibrutinib-treated cohort were 
significantly lower compared to healthy donors (median 2,148 
U/mL; range 0 - 3,331; Fig. 1b). Two zanubrutinib-treated pa-
tients mounted Ab levels in parity with the healthy controls, but 

no individual factors (for example, age, gender, duration of zan-
ubrutinib treatment, or type of vaccine) that might explain this 
were deviant compared to the other patients (data not shown).

The serum inhibition of angiotensin-converting enzyme 
2 (ACE-2) binding to wt spike strongly correlated with the 
level of wt spike-specific IgG for all tested sera (r = 0.82; P < 
0.0001) and for sera from zanubrutinib-treated patients when 
tested separately (r = 0.68; P < 0.0001). Saliva analysis showed 
a low but significant increase of IgG against wt spike in zanu-
brutinib-treated patients (P < 0.05), which strongly correlated 
with spike-specific serum IgG (r = 0.77; P < 0.0001). In con-
trast to IgG, anti-spike IgA levels remained unchanged in se-
rum or saliva in zanubrutinib-treated patients (data not shown). 
However, healthy donors tested after dose 5 exhibited elevated 
serum IgA levels (saliva was not available) against both wt- 
and Omicron spike compared to patients (both P < 0.05).

Additionally, we measured SARS-CoV-2-specific T-cell 
responses. There was no significant change in wt- or Omicron-
specific CD4+ T-cell frequencies after three or more vaccine 
doses (Fig. 2a), but a significant increase of Omicron-specific 
CD8+ T cells after dose 3 (P < 0.05), with a similar trend for wt-

Figure 1. Serological immunity in zanubrutinib- and ibrutinib-treated patients with CLL after SARS-CoV-2 vaccination. Levels of 
SARS-CoV-2 Abs against spike-receptor-binding domain (RBD) were quantified in serum samples from zanubrutinib treated pa-
tients pre- and post-vaccine dose 3, post-dose 4, and pre- and post-dose 5 (a), and in addition post-dose 5 in PBMC from seven 
ibrutinib-treated patients and seven age- and gender-matched healthy donors (b). The median level of reactivity and number 
of samples are indicated above each time point. Dashed line represents positive threshold of 0.8 U/mL and the upper limit of 
detection is 25,000 U/mL. Error bars represent the median (red line) and interquartile range where applicable. Non-parametric 
Kruskal-Wallis test was used to assess differences between all-time points and Mann-Whitney test for comparison between pa-
tient groups and healthy controls. CLL: chronic lymphocytic leukemia; PBMC: peripheral blood mononuclear cell.
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specific CD8+ T cells (P = 0.050, Fig. 2b). Doses 4 and 5 did not 
result in additional increases. In contrast to the serology results, 
spike-specific T-cell responses after vaccine dose 5 were similar 
between zanubrutinib-treated patients and healthy controls for 
both CD4+ (Fig. 2c) and CD8+ (Fig. 2d) T cells, with compara-
ble levels observed in the ibrutinib cohort (Fig. 2c, d).

Discussion

Patients with CLL remain at risk of severe COVID-19 even 
during the Omicron era [10, 11] and often display limited re-

sponsiveness to vaccination against SARS-CoV-2, with the 
lowest seroconversion rates if receiving CD20 monoclonal 
Ab-containing therapy or BTKi [2]. Even though multiple vac-
cinations may lead to seroconversion in more patients, some 
continue to remain seronegative or to have very low Ab titers 
[12]. Limited information is available on the impact on sero-
logical response under a strong BTK inhibitor such as zanu-
brutinib. Recently, a seroconversion rate of 77% was reported 
after three vaccine doses in zanubrutinib-treated patients with 
CLL or Waldenstrom’s macroglobulinemia using an alterna-
tive antibody detection method (even though the levels were 
not specified in U/mL) [13]. In the zanubrutinib-treated pa-

Figure 2. SARS-CoV-2 specific T-cell responses in zanubrutinib- and ibrutinib-treated patients with CLL after SARS-CoV-2 vac-
cination. Antigen specific CD4+ (CD69+CD154+) and CD8+ (CD69+CD137+) memory T cells were measured after SARS-CoV-2 
wild-type and Omicron BA.1 peptide stimulation in PBMC samples from zanubrutinib-treated patients pre- and post-vaccine dose 
3, post-dose 4, and pre- and post-dose 5 (a, b), and in addition post-dose 5 in PBMC from seven ibrutinib-treated patients and 
seven age- and gender-matched healthy donors (c, d). The median level of reactivity and number of samples are indicated above 
each time point. Omicron-specific CD8+ T cells increased significantly (P < 0.05) after dose 3, and there was a similar trend for 
wt-specific CD8+ T cells (P = 0.050). No significant differences were noticed between the different groups of patients, or between 
patients and healthy controls, post-dose 5. Background is subtracted using DMSO negative control of AIM+ CD4+/CD8+ among all 
patients. A positive response was defined with a cut-off level of 0.05% (dashed lines). Error bars represent the median (red line) 
and interquartile range where applicable. Non-parametric Kruskal-Wallis test was used to assess differences between all-time 
points and Mann-Whitney test for comparison between CLL patients and healthy controls. ns: P > 0.05, not statistically significant. 
CLL: chronic lymphocytic leukemia; PBMC: peripheral blood mononuclear cell.
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tients included in the present study, the median Ab level after 
five vaccine doses as determined by the standardized Elecsys® 
assay was only 2.7 U/mL, which was 1,000-fold lower than in 
age-matched healthy donors, and 43% of tested patients were 
still seronegative. There was considerable inter-individual re-
sponse variation, and enlarged studies are needed to explore if 
there may be a relation to factors such as type of vaccine, age, 
or duration of zanubrutinib therapy. The serum neutralization 
capacity correlated very well to serum IgG levels, suggest-
ing functionality of the Abs but also lower protection in indi-
viduals with low responses. The numerically higher Ab lev-
els found in our cohort of ibrutinib-treated patients should be 
viewed with caution; enlarged studies of both BTKi are war-
ranted. Local virus-specific IgA in mucosa probably plays a 
key role in protection against SARS-CoV-2 infection [14, 15], 
as it has a dimeric form with enhanced neutralizing capacity 
[16]. The fact that spike-specific IgA failed to increase either 
in serum or saliva after repeated subcutaneous vaccination in 
zanubrutinib-treated patients is, therefore, worrisome.

The extent to which seronegative patients with CLL can 
mount sufficient T-cell responses is currently unclear [2, 12]. 
The present study showed that seronegative patients with 
CLL on long-term zanubrutinib treatment could generate T-
cell responses comparable to healthy individuals (tested af-
ter dose 5 only, thus, time kinetics could not be compared). 
This aligns with findings in patients with primary immunode-
ficiency (PID) who developed T-cell responses upon mRNA 
vaccination despite lacking B cells [4]. There are conflicting 
reports on whether additional vaccinations may boost T-cell 
responses. For instance, a fourth dose did so in older healthy 
individuals [17] as well as in patients with HIV [17], whereas 
a plateau was reached after the second dose in another report 
on healthy individuals [18]. Our small cohort size precluded 
definitive conclusions about T-cell kinetics, although we found 
a significant boost in CD8+ T-cell reactivity after dose 3, with 
no further increase after doses 4 and 5. Also in the three-dose 
zanubrutinib vaccine report by Nguyen et al, T-cell reactivities 
were increased by a third dose [13]. A third-dose boost was 
also reported in other subsets of patients with CLL [19, 20], 
whereas in lymphoma patients, a Th1, but not CD8+ T cell re-
sponse, was reported by dose 3 [21].

The major limitations of our study are the small number 
of included patients and inter-individual data variation, limit-
ing generalized conclusions from the observations. The risk of 
applying multiple analyses on small materials should also be 
kept in mind. Another limitation was the absence of saliva and 
longitudinally sampled serum from healthy donors. Finally, 
using exact cell counting techniques would have improved the 
flow cytometry analyses. Nevertheless, to our knowledge, this 
is the first study of systemic and mucosal vaccine responses in 
patients with ongoing third-generation BTKi therapy.

In summary, our study on a limited number of patients sug-
gested that many but not all zanubrutinib-treated patients dem-
onstrated a very low ability to generate spike-specific Abs in 
serum and almost no spike-specific Abs in saliva. Importantly, 
however, their capacity to generate spike-specific T cells was 
normal, reaching levels similar to age-matched healthy donors 
when tested after five vaccine doses. Further research is need-
ed to understand how this impaired vaccine immunity affects 

the risk of severe SARS-CoV-2 infection and whether differ-
ences exist between various BTKi types.

Supplementary Material

Suppl 1. Complete description of all methods.
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