Hypertension management and drug-related problems. A case report of the 23-year history of Mr. Jonas

Indre Treciokiene a, b, *, Jurate Peceliuniene b, c, Bjorn Wettermark b, d, Jolanta Gulbinovic e, Katja Taxis a

a Department of PharmacoTherapy, -Epidemiology & -Economics, Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713, AV, Groningen, Netherlands
b Pharmacy and Pharmacology center, Institute of Biomedical Science, Faculty of Medicine, Vilnius University, M. K. Ciurlionio str.21, 03101 Vilnius, Lithuania
c Clinic of Internal Diseases, Family Medicine and Oncology, Faculty of Medicine, Vilnius University, M. K. Ciurlionio str.21, 03101 Vilnius, Lithuania
d Department of Pharmacy, Faculty of Pharmacy, Uppsala University, Husargatan 3, 752 37 Uppsala, Sweden
e Department of Pathology, Forensic Medicine and Pharmacology, Faculty of Medicine, Vilnius University, M. K. Ciurlionio str.21, 03101 Vilnius, Lithuania

A R T I C L E I N F O

Keywords:
Hypertension
Hypertension management
Drug related problems
Pharmacist intervention

A B S T R A C T

Arterial hypertension is a lifelong disease, which management is recognized as the most effective way to reduce cardiovascular mortality. Even though there is extensive evidence on the benefits of lifestyle modification and antihypertensive treatment, many patients with hypertension do not reach blood pressure targets. This paper aims to review the history of antihypertensive treatment of one patient and identify the drug related problems that occurred over the study period. In this case report, the patient’s health record was studied, guidelines checked and a semi-structured interview conducted. Drug related problems were identified and possible pharmacist interventions were introduced. Drug related problems that could have contributed to the lack of hypertension control were adherence, side effects and disease-drug interaction. Identified pharmacists’ interventions ranged from managing self-medication, to collaboration with general practitioner to change prescribing, and counselling the patient on medication use, including adherence. Even though the drug related problems were not that serious in the studied case, the patient could have valued from pharmacist intervention.

1. Background

Globally, it is estimated that 32% of adult men and 34% of adult women have hypertension. Arterial hypertension (AH) is considered the number one risk factor for mortality and morbidity from cardiovascular diseases (CVDs). Despite the extensive evidence of benefits of lifestyle interventions and antihypertensive treatment, many patients with AH do not reach target blood pressures. Treatment coverage is at most 80% and control rates were < 70% in high income countries. Suboptimal adherence with medication, which includes failure to initiate pharmacotherapy, to take medications as often as prescribed, and to persist on therapy are long-term are factors contributing to the poor control of blood pressure. Patients’ beliefs about hypertension and its treatment, low health literacy and lack of social support are some of the underlying barriers for lack of adherence. Successful control of hypertension can be achieved through comprehensive prevention strategies at the individual and population level. International guidelines emphasize the importance of an interdisciplinary team approach in the management of CVD. A team approach that includes a pharmacist appears to represent the most efficient healthcare delivery model, as pharmacist interventions have been shown effective for most patients with cardiovascular diseases. Examples of effective pharmacist interventions include counselling, health education, and medication review. But practical integration of pharmacists in multidisciplinary teams to manage CVD seem to be advancing only slowly. Therefore, we use a clinical case following a patient with hypertension over a long time, to illustrate and discuss the role of the pharmacist in management of those problems. The case report is from Lithuania, a country where around 32% of the adult population has a diagnosis of arterial hypertension which makes hypertension one of the most prevalent chronic diseases in the country.

The aim of this clinical case report is to explore the history of a male

* Corresponding author at: Faculty of Medicine, Vilnius University, M. K. Ciurlionio str. 21, 03101 Vilnius, Lithuania.
E-mail addresses: i.treciokiene@rug.nl, indre.treciokiene@mf.vu.lt (I. Treciokiene), jurate.peceliuniene@mf.vu.lt (J. Peceliuniene), bjorn.wettermark@farmaci.uu.se (B. Wettermark), jolanta.gulbinovic@mf.vu.lt (J. Gulbinovic), k.taxis@rug.nl (K. Taxis).

https://doi.org/10.1016/j.rcsop.2023.100313
Received 20 July 2023; Accepted 21 July 2023
Available online 24 July 2023
2667-2766/© 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
2. Case presentation

Mr. Jonas is a white Lithuanian man, first diagnosed with hypertension in November 1998. Over the studied period, Mr. Jonas had 207 general practitioner (GP) visits recorded, with an average 9 visits a year. At the first record visit in 1998, Mr. Jonas is a 41 years old chief executive at higher education school who visited the GP with symptoms of flickering in the eyes and numbness in the limbs. Lipids and glucose level were not documented at that time. His blood pressure (BP) was measured as 150/110 mmHg. There was no information in the record how BP was measured. The GP prescribed a beta blocker atenolol 25 mg twice a day for 25 days. No further GP visits were documented until January 2000, when he visited the GP with complaints of dryness of the mouth and thirst. In that year, Mr. Jonas was diagnosed as being hypertensive (160/100 mmHg), having elevated glucose level (5.9 mmol/l (106 mg/dl) and being obese. No medicines were prescribed then. From March 2001 onwards he was prescribed antihypertensive medication, initially a beta blocker (nebivolol 5 mg) and a calcium channel blocker (nitrrendipine 20 mg). From that point Mr. Jonas renewed his prescriptions for antihypertensives regularly. Over the following years, his antihypertensive medication was changed from time to time, switching within and between drug classes, ranging from monotherapy to triple therapy. His BP ranged between 130/100 mmHg and 160/100 mmHg in this period. From 2010 onwards, he received some of his antihypertensives as fixed-dose combination.

In 2008, he was prescribed rilmenidine, a centrally acting agent rarely used in hypertension management, for about 5 years. He was found to have dyslipidemia and was prescribed fenofibrate for two months in 2007 and atorvastatin for three months in 2008. Over the years, cardiovascular disease risk was not formally assessed. There were no hospitalizations due to hypertension. He also had a thyroidectomy and levothyroxine treatment was started in 2010. The patient was diagnosed with type 2 diabetes in 2019 and metformin 1000 mg was prescribed twice a day. The patient stayed with the same primary care practice over the whole study period. The treating GP changed in 2016. The patient was also prescribed some other medications over time, including pentoxifylline for flickering in the eyes and numbness in the limbs, nimesulide and diclofenac for upper back and neck pain. Some episodes of infectious diseases were recorded with antibiotics and antivirals prescribed. His health record reveals use of some over-the-counter (OTC) medicines and food supplements that were suggested to him, such as the cough medicine ambroxol and some medicines to relieve flu symptoms such as pseudoephedrine, along with magnesium, vitamin B6 and Omega-3 supplements. For some stomach pain episodes’ omeprazole and ranitidine were prescribed concordantly. The record also showed that silymarin 140 mg tablets were prescribed several times for fatty liver. In 2021, the patient took 3 medications chronically. Diagnoses, the medicines prescribed, and last test results recorded are presented in Table 1.

3. Drug related problems over time

A general practitioner (JP, unrelated to the patient) and a pharmacist, (TT, daughter of the patient), both not previously involved in patient’s treatment, studied the patient’s medical record from the GP practice, taking relevant treatment guidelines for hypertension into account.

Over the span of the 23 years, European hypertension management guidelines had changed several times. The changes of drug classes and combinations prescribed for the patient, might be due to those changes. In general, prescribing was in line with the guidelines, even the use of rilmenidine was recommended as an additional treatment in Lithuanian guidelines when it was prescribed. The main reason for the frequent GP visits was probably the need for medicines to be prescribed as reimbursed medicines could be prescribed for the maximum period of 3 months till the beginning of 2014.

The patient gave written consent. A semi structured interview was conducted with the patient and patients’ comments on distinguished episodes were collected (Table 2). The patients’ medical record and the patient information from an interview was used to identify drug related problems in the studied period. Drug related problems were classified using PCNE Classification for Drug-Related Problems V9.1. Possible interventions were also suggested using the same PCNE tool. Identified problems, causes and possible pharmacist’s interventions are presented in Table 3.

According to medical health record patient was not consulted on lifestyle change (diet, smoking cessation) and no educational

Fig. 1 shows the timeline of the prescribed antihypertensives and Fig. 2 the timeline of his diagnoses between 1998 and 2021.

The patient was also prescribed some other medications over time, including pentoxifylline for flickering in the eyes and numbness in the limbs, nimesulide and diclofenac for upper back and neck pain. Some episodes of infectious diseases were recorded with antibiotics and antivirals prescribed. His health record reveals use of some over-the-counter (OTC) medicines and food supplements that were suggested to him, such as the cough medicine ambroxol and some medicines to relieve flu symptoms such as pseudoephedrine, along with magnesium, vitamin B6 and Omega-3 supplements. For some stomach pain episodes’ omeprazole and ranitidine were prescribed concordantly. The record also showed that silymarin 140 mg tablets were prescribed several times for fatty liver. In 2021, the patient took 3 medications chronically. Diagnoses, the medicines prescribed, and last test results recorded are presented in Table 1.

3. Drug related problems over time

A general practitioner (JP, unrelated to the patient) and a pharmacist, (TT, daughter of the patient), both not previously involved in patient’s treatment, studied the patient’s medical record from the GP practice, taking relevant treatment guidelines for hypertension into account.

Over the span of the 23 years, European hypertension management guidelines had changed several times. The changes of drug classes and combinations prescribed for the patient, might be due to those changes. In general, prescribing was in line with the guidelines, even the use of rilmenidine was recommended as an additional treatment in Lithuanian guidelines when it was prescribed. The main reason for the frequent GP visits was probably the need for medicines to be prescribed as reimbursed medicines could be prescribed for the maximum period of 3 months till the beginning of 2014.

The patient gave written consent. A semi structured interview was conducted with the patient and patients’ comments on distinguished episodes were collected (Table 2). The patients’ medical record and the patient information from an interview was used to identify drug related problems in the studied period. Drug related problems were classified using PCNE Classification for Drug-Related Problems V9.1. Possible interventions were also suggested using the same PCNE tool. Identified problems, causes and possible pharmacist’s interventions are presented in Table 3.

According to medical health record patient was not consulted on lifestyle change (diet, smoking cessation) and no educational
intervention to address cardiovascular risk or cardiovascular disease/hypertension management was recorded. The patient did not recall that he was informed about cardiovascular risk either. His first diet and physical activity recommendation were recorded in 2005 by his general practitioner.

4. Discussion

Over the time span of 23 years of hypertension, Mr. Jonas’ treatment has been revised several times. Mr. Jonas visited the doctor regularly. During this time the patient developed comorbidities such as diabetes...
and hyperlipidaemia. He had a thyroidectomy, but was never hospital-
ized due to hypertension. According to the recorded office-blood pres-
sure measurements, the patient never reached the target BP. At least
eight drug related problems, four of which were related to hypertension
treatment were identified.

The drug related problems were adherence, side effects, and disease
interaction. Those drug related problems are very common in
practice 19 and are very typical in a lifelong disease treatment. The
problems identified were clinically not very serious, but had impact on
the patient’s overall wellbeing. Furthermore, some of the drug related
problems contributed to the lack of hypertension control which
increased the patient’s risk for CVDs. Other drug related problems were
not related to hypertension treatment, but were related to the patient’s
co-morbidities and polypharmacy. Unnecessary drug use is also common
in practice.20,21

We identified a number of possible pharmacist-led interventions to
solve the drug related problems. These interventions ranged from
managing self-medication to collaboration with the GP to change pre-
scribing and counselling of the patient on medication use, including
adherence. While managing self-medication is a daily routine of
pharmacists’ work, other interventions require additional efforts and
service implementation. Medication review interventions have been
found to be effective, not only in detecting and solving drug related
problems, but also improving cardiovascular disease management -
control of blood pressure, cholesterol, and type 2 diabetes mellitus32 and
SBP33,34. Medication reviews vary from a brief revision of the prescribed
medicines to more complex interventions involving interdisciplinary
teams (patients, physicians and other health care professionals), which
allow the detection of pharmacological interactions and medicine-
related problems such as adverse drug reactions, effectiveness prob-
lems, non-adherence, and self-medication. More advanced interventions
require an integrated, interdisciplinary approach and improve pro-
fessionals’ guideline adherence, support informed decision-making and
patient-centred care.35,36 Pharmacist-led interventions in hypertension
have been shown to improve adherence.37,38 Examples include employing
special medication packaging, dose modification, patient self-monitoring of medication-taking and written instructions.39 More
specifically, when antihypertensive treatment is started patient educa-
tion, including addressing motivation, teaching blood pressure moni-
toring and emphasizing medication adherence could be provided. A
recent study showed that such adherence enhancing interventions
improved patients’ BP control and medication adherence and increased
adherence correlated with improved BP control.39 Additional pharma-
cist intervention could also have addressed life style changes 30, including smoking cessation.31

In some countries pharmacists already play an important role in
management of chronic diseases.32 A number of advanced services are
common and offered in >50 countries worldwide, including medication
reviews, disease management programmes (diabetes, hypertension,
asthma) as well as measuring of clinical parameters (blood pressure,
blood sugar, body mass index etc.). Cardiovascular disease primary and
secondary prevention is done mainly through patient education and
counselling, medication safety management, medication review, moni-
toring and reconciliation, detection, and control of specific risk factors,
e.g., smoking cessation. Screening individuals at-risk who are not on
medication are provided in some pharmacies in 26, first time dispensing
interventions (New Medicines Service) in 5 and therapeutic adherence
support in 4 European countries. Medication review services such as
medication therapy management, home medicines review and medi-
cines use review have been offered by community pharmacists in several
countries.33,34

In Lithuania no services beyond dispensing are implemented in
pharmacies except inhaler technique service for asthma or COPD pa-
tients. The only service that might directly enhance adherence is
authorization to dispense 30 days’ supply of prescription medicines to
chronic patients with evidence of previous prescription. This interven-
tion only addresses a logistical barrier to adherence – renewal of med-
icines, but not other factors contributing to medication adherence.35

Despite the evidence that pharmacists can improve clinical outcomes
in a wide array of chronic diseases36 there are structural barriers and
barriers due to the perception of pharmacists and or other health pro-
fessionals to implement services. For example, in Lithuania, pharmacists
are seen as pharmaceutical care specialists that do not provide health
care or disease management services.37 This influences the perception
of pharmacists’ competencies and limits pharmacy services to dispensing
only thus preventing pharmacy intervention programs or pharmacist
involvement in interdisciplinary teams in Lithuania. The main structural
barriers for pharmacy services include lack of comprehensive access to
medical records and lack of remuneration. A related issue is poor,
sometimes non-existent, collaboration between the different healthcare
professionals.38

A case report, as a research design has limitations, yet describes
important scientific observations that are encountered in practice to
expand our knowledge base. Limitations of this report include possi-
bility of recall bias and that some drug related problems were missed.
Also, no information on pharmacies’ activities in practice was recorded.
Table 3

<table>
<thead>
<tr>
<th>Year</th>
<th>Description</th>
<th>Problem</th>
<th>Cause</th>
<th>Possible pharmacist’s interventions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1998</td>
<td>Patient diagnosed with hypertension and prescribed with beta blocker; treatment was discontinued</td>
<td>P1.3 Untreated symptoms or indication</td>
<td>C7.1 Patient intentionally uses/takes less drug than prescribed or does not take the drug at all for whatever reason</td>
<td>I2.1 Patient (drug) counselling</td>
</tr>
<tr>
<td>2000-2002</td>
<td>Patient prescribed with beta blocker; patient complaining having headache at every visit to GP</td>
<td>P2.1 Adverse drug event (possibly) occurring</td>
<td>C1.1 Inappropriate drug according to guidelines/formulary</td>
<td>I1.3 Intervention proposed to prescriber</td>
</tr>
<tr>
<td>2004-2005</td>
<td>Combination of ACEI, CCB and diuretic prescribed; gaps from 20 to 40 days with no medication were detected in the health record.</td>
<td>P1.2 Effect of drug treatment not optimal</td>
<td>C7.1 Patient intentionally uses/takes less drug than prescribed or does not take the drug at all for whatever reason</td>
<td>I2.1 Patient (drug) counselling</td>
</tr>
<tr>
<td>2007</td>
<td>Pseudoephedrine combination prescribed; BP increased</td>
<td>P2.1 Adverse drug event (possibly) occurring</td>
<td>C1.1 Inappropriate drug according to guidelines/formulary C5.3 Wrong drug, strength or dosage advised (OTC)</td>
<td>I1.1 Prescriber informed only</td>
</tr>
<tr>
<td>2017</td>
<td>Patient prescribed with omeprazole and ranitidine at the same time.</td>
<td>P3.1 Unnecessary drug treatment</td>
<td>C1.4 Inappropriate duplications of therapeutic group or active ingredient</td>
<td>I1.4 Intervention discussed with prescriber</td>
</tr>
<tr>
<td>2017-2020</td>
<td>Silymarin was prescribed and recommended to be used from time to time further for “fatty liver”</td>
<td>P3.1 Unnecessary drug treatment</td>
<td>C1.2 No indication for drug</td>
<td>I3.3 Drug paused or stopped ingredient</td>
</tr>
<tr>
<td>2021</td>
<td>Patient forgets to take his Metformin tablets</td>
<td>P1.2 Effect of drug treatment not optimal</td>
<td>C7.1 Patient intentionally uses/takes less drug than prescribed or does not take the drug at all for whatever reason</td>
<td>I2.1 Patient (drug) counselling</td>
</tr>
<tr>
<td>2021</td>
<td>Indication for Cholecalciferol 25000TV was not supported by test results</td>
<td>P3.1 Unnecessary drug treatment</td>
<td>C1.2 No indication for drug</td>
<td>I1.4 Intervention discussed with prescriber</td>
</tr>
</tbody>
</table>

* Pseudoephedrine combinations are OTC medicines in Lithuania, yet it could also be prescribed by the doctor and in this case is considered as prescribed, as it is recorded in the medical record of the patient.

Furthermore, we focused on the possible role of the pharmacist in this case, but this is not the only way to analyse hypertension management. Health care improvement could come from different stakeholders and other health care professionals could also contribute to chronic disease management. 39

5. Conclusion

This case illustrates a range of drug related problems that Mr. Jonas experienced during his 23-years of hypertension treatment history. Even though the drug related problems were not very serious in the studied case, the patient could have benefitted from pharmacist-led interventions.

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Declaration of Competing Interest

One author declares the following personal relationships which may be considered as potential competing interests:

Indre Treciokiene is a daughter of the patient studied.

Acknowledgments

This paper and the research behind it would not have been possible without the agreement and consent of the patient involved, whom we thank a lot.

References

I. Treciokiene et al.

