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Abstract

Reliable detection and classification of bacteria and other pathogens in the human body,

animals, food, and water is crucial for improving and safeguarding public health. For

instance, identifying the species and its antibiotic susceptibility is vital for effective bacterial

infection treatment. Here we show that phase contrast time-lapse microscopy combined

with deep learning is sufficient to classify four species of bacteria relevant to human health.

The classification is performed on living bacteria and does not require fixation or staining,

meaning that the bacterial species can be determined as the bacteria reproduce in a micro-

fluidic device, enabling parallel determination of susceptibility to antibiotics. We assess the

performance of convolutional neural networks and vision transformers, where the best

model attained a class-average accuracy exceeding 98%. Our successful proof-of-principle

results suggest that the methods should be challenged with data covering more species and

clinically relevant isolates for future clinical use.

Author summary

Bacterial infections are a leading cause of premature death worldwide, and growing anti-

biotic resistance is making treatment increasingly challenging. To effectively treat a

patient with a bacterial infection, it is essential to quickly detect and identify the bacterial

species and determine its susceptibility to different antibiotics. Prompt and effective treat-

ment is crucial for the patient’s survival. A microfluidic device functions as a miniature

“lab-on-chip” for manipulating and analyzing tiny amounts of fluids, such as blood or

urine samples from patients. Microfluidic chips with chambers and channels have been

designed for quickly testing bacterial susceptibility to different antibiotics by analyzing

bacterial growth. Identifying bacterial species has previously relied on killing the bacteria

and applying species-specific fluorescent probes. The purpose of the herein proposed spe-

cies identification is to speed up decisions on treatment options by already in the first few

imaging frames getting an idea of the bacterial species, without interfering with the ongo-

ing antibiotics susceptibility testing. We introduce deep learning models as a fast and

cost-effective method for identifying bacteria species. We envision this method being
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employed concurrently with antibiotic susceptibility tests in future applications, signifi-

cantly enhancing bacterial infection treatments.

1 Introduction

This study employs deep-learning techniques for species classification of the bacteria Entero-
coccus faecalis, Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa cultivated

within traps of a microfluidic chip. Combining deep learning methods for data analysis and

microfluidics as a data-generating platform has recently spurred significant advances in bio-

technology and biomedical research [1]. The widespread success of deep learning across vari-

ous data-driven fields in recent years has motivated researchers to apply such methods in

detecting microbes across various microscopy modalities [2].

The pivotal moment which started the deep learning revolution is commonly accepted to

be the development of “AlexNet” by Krizhevsky et al. [3], a deep convolutional neural network

(ConvNet) that outperformed competitors in the ImageNet Large Scale Visual Recognition

Challenge (ILSVRC2012) in 2012 by a large margin [4]. The success of ConvNets is generally

attributed to their ability to automatically learn to extract features through sequential process-

ing of the input data [5].

In the next few years, several techniques and architectural developments further refined the

performance of deep convolutional networks [6] [7]. The ResNet (Residual Network) [8]

architecture and its variants are currently the primary models utilized in the field, enabling the

construction of deeper ConvNets with more layers. ResNet was introduced by He et al. [8],

winning the ILSVRC competition in 2015.

More recently, Vision Transformers (ViT) from 2020, a completely novel neural network

architecture containing no convolutional filters, has shown to be on par and even surpass con-

volutional neural networks in various image-processing tasks, including image classification

[9]. A transformer is a neural network design initially conceived for sequence-to-sequence

modeling in natural language processing tasks, such as language translation or chat robots,

first demonstrated in the “Attention is all you need” paper by Vaswani et al. [10].

Various three-dimensional ResNet variants have been used for video clip classification,

merging temporal and spatial information across frames [11] [12]. However, recent develop-

ments show that transformer-based classifiers considerably surpass these ConvNet methodolo-

gies [13].

For this study, we utilized data from Kandavalli et al. [14], where deep learning methods

were applied for segmenting and tracking cells growing in a microfluidic chip imaged by

phase contrast microscopy. After each completed time-lapse experiment, Kandavalli et al.

applied species-specific Fluorescence In Situ Hybridization (FISH) probes and identified bac-

terial species using images captured by fluorescence microscopy. We leverage the same type of

fluorescence microscopy image data as ground truth. However, we use one fluorescent channel

per species and do not apply combinatorial FISH [14].

The overall experimental setup is shown in Fig 1. Fig 1A and 1B: A mixed species sample is

loaded into the microfluidic chip. Fig 1C: A phase-contrast time-lapse is captured, recording

the growth and reproduction of bacteria in the traps for one hour, consisting of approximately

32 frames. Fig 1C: After fixation and staining, species-specific fluorescent probes attach to

each bacteria, and fluorescence microscopy reveals the species. Traps containing only one spe-

cies are cropped from the phase-contrast timelapse and labeled according to the fluorescent

signal. The cropping targets and labels are shown as colored rectangles. Fig 1D: An image or
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video classification neural network is trained to classify a single frame or time-lapse of growth

respectively in a single trap solely using phase-contrast images. Only two out of approximately

200 positions in the microfluidic chip are shown in Fig 1, where half of the positions in an

experiment were treated with antibiotics. The reason for including image data of both treated

and untreated cells in the pipeline was twofold; firstly, to investigate the robustness of the clas-

sification methods, as treated cells can show very different phenotypic characteristics and cell

morphologies, and secondly, to probe a possible clinical application where antibiotic suscepti-

bility testing and species classification could be performed simultaneously. Antibiotic suscepti-

bility testing (AST) is performed in a microfluidic device by measuring the differences in the

growth rate of treated versus untreated cells to determine how much the cells are affected by

antibiotics.

This study explores the potential of employing a microfluidic chip to diagnose the species

causing a bacterial infection utilizing deep learning image or video classification methods on

phase-contrast image data. This methodology eliminates the need for pre-cultivation or stain-

ing and can be carried out prior to or in parallel with antibiotic susceptibility testing (AST) on

the same microfluidic device. The ultimate goal is integrating species identification with AST

to quickly select appropriate patient treatments. To the best of our knowledge, this is the first

time ConvNets and Vision Transformers have been used to classify the species of bacteria

growing in microfluidic chip traps using only phase-contrast microscopy time-lapses.

2 Related work

The authors were unable to find any existing similar studies performing bacteria classification

on phase-contrast time lapses. However, several other methods exist for imaging bacteria, such

as bright-field, phase-contrast, fluorescence, and electron microscopy at various magnification

levels, as exemplified in Zhang et al. [15]. Microscopy images can also be enhanced using dif-

ferent staining methods for better identification and classification of bacteria. Below is a selec-

tion of related studies where convolutional neural networks were employed for bacteria

classification in micrographs.

Fig 1. Experiment setup. A, B: An illustration of a mixed bacterial sample loaded on a microfluidic chip. C. Time-lapse phase contrast images of

bacterial species growing and reproducing in a medium with (bottom) and without (top) antibiotics. D: The correspondence of the fluorescence image

to the final phase-contrast image reveals the species, with Enterococcus faecalis (red), Escherichia coli (green), Klebsiella pneumoniae (blue), and

Pseudomonas aeruginosa (orange). E: Input to the neural network is a single frame or time-lapse video. Part A of the figure was created using

BioRender.com.

https://doi.org/10.1371/journal.pcbi.1011181.g001
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Wang et al. [16] developed a system for detecting and classifying live bacteria growing on

agar plates. The device captured image data using coherent microscopy, scanning the plate

every 30 minutes with an image resolution of 4 μm, generating time-lapses. Two deep neural

networks were used, one for the early detection of bacterial growth and the second to classify

the species of the bacteria using spatiotemporal data. The classification network could classify

three species of bacteria with the accuracies 97.2% for Escherichia coli, 84.0% for Klebsiella
aerogenes, and 98.5% for Klebsiella pneumoniae respectively. A custom convolutional neural

network design was used for both tasks, using a Pseudo 3D-network [17] coupled with Dense

layers [18].

Zieliński et al. [19] performed deep learning classification of 33 bacterial species imaged by

bright-field microscopy at 100x magnification. The dataset was released as the DIBaS dataset

containing 20 images per species. ConvNet backbones from AlexNet, VGG-M, and VGG-VD

pretrained on ImageNet alongside SIFT descriptors were used for feature extraction. Final spe-

cies classification was performed on the feature representation using either Support Vector

Machines or Random forests. Furthermore, an experiment was conducted where several classi-

fiers were trained successively increasing the number of species included, measuring the accu-

racy as a function of the number of classes admitted. The classifiers based on ConvNet feature

extraction were shown to have better accuracy than those using SIFT, and the best models

acquired a class-average accuracy of around 96%.

Mai et al. [20] further investigated the DIBaS dataset and developed a more efficient classifi-

cation ConvNet, better tailored for utilization on resource-limited devices. The network used

depth-wise separable convolutions, which consist of a depth-wise convolution with one convo-

lutional filter for each input channel, followed by a point-wise 1x1 convolution transforming

the input to a desired channel depth. The accuracy was measured using 5-fold cross-validation

and revealed a performance almost on par with Zieliński et al. [19] despite using only 3.2 mil-

lion parameters, significantly less than the heavy backbones pretrained on ImageNet. Rotation,

shifting, shearing, scaling, and flip augmentations were demonstrated to be integral to achiev-

ing optimal performance. Notably, the absence of these augmentations led to a significant

decrease in accuracy.

Smith et al. [21] used convolutional neural networks for automated Gram stain classifica-

tion. Microscopy image data was captured using a 40x dry objective, and the images were then

cropped and annotated manually. In total, 100,213 crops were collected containing Gram-pos-

itive cocci in clusters, Gram-positive cocci in chains/pairs, Gram-negative rods or background.

The Inception v3 convolutional neural network pretrained on ImageNet was applied to the

classification task, and the resulting model attained an average classification accuracy of 94.9%

on the held-out test crops, consisting of 20% randomly selected samples from the total crops.

All of the above studies relied on the cultivation of bacteria prior to the classification of bac-

terial colonies, increasing the time required between isolation of bacteria and final classifica-

tion. In the presented study, we instead aim to identify bacterial species directly after isolation

while growing in a microfluidic chip.

Hay et al. [22] conducted a study in which fluorescently labeled bacteria inside the larval

zebrafish gut were imaged with 3D light sheet fluorescence microscopy. Pixel arrays with sus-

pected bacterial content, possibly containing a bacteria cell, were extracted from this image

data and independently labeled by six researchers. The 3D pixel arrays had a size of 28x28x8

pixels, with a resolution of 6.22 px/μm, 6.22 px/μm, and 1.0 px/μm, respectively. Ultimately, a

ConvNet, a random forest, and a support vector machine (SVM) were trained to classify the

pixel arrays automatically, whereas the last two methods utilized texture-based feature extrac-

tion. The ConvNet reached near-human accuracy and was shown to outperform the other

methods with both accuracy and inference speed. Furthermore, transfer learning and
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augmentation were demonstrated to be highly beneficial for classification accuracy. Compared

to our presented study, this study relied on fluorescently labeled cells, making it infeasible for

clinical samples.

Panigrahi et al. [23] used a shape index map calculated from the Hessian of the image as a

preprocessing step before feeding the single-channel phase-contrast image data to a U-net for

semantic classification of Myxococcus xanthus and Escherichia coli. Genetically modified bacte-

ria expressing fluorescent markers (GFP and mCherry for Myxococcus xanthus and Escherichia
coli, respectively) were used to generate training data. The image data had a resolution of 16.67

px/μm. The authors reported Jaccard Index test scores of 0.95 ± 0.036 (n = 200 cells) and

0.89 ± 0.047 (n = 545 cells) for the two bacterial species, respectively. This approach is limited

to classifying two bacterial species with pronounced differences in size and shape under

unconstrained growth conditions. Additionally, this technique is incompatible with antibiotic

susceptibility testing. In the work presented in this paper, we classify four bacterial species of

similar size, leveraging further information such as texture and cell interaction during growth

inside a microfluidic chip trap. Furthermore, we employ video classification methods to

extract temporal data for more accurate species identification.

To conclude, the advantage of using phase-contrast micrographs from a microfluidic chip

is that no pre-cultivation or staining is required, and cropping out traps can be automated,

resulting in faster inference speed. In a clinical setting, it can be performed “on the fly” by con-

tinuously acquiring more time-lapse video data as time progresses, increasing the prediction’s

confidence in real time, and also enabling parallel antibiotics susceptibility testing. Further-

more, the novel Vision Transformers and the video classification ResNets are particularly

robust during inference when using subsampled image data, making it compatible with lower

magnification microscopy and suitable for future clinical implementation.

3 Results

In our study, we assessed the classification accuracy of three types of deep-learning models:

Vision Transformers (ViT), ResNets, and R(2+1)D “Video ResNets” [11]. The ViT and

ResNets were investigated using varying model sizes and sub-sampled input image data. The

Video ResNets were evaluated by feeding the network single or multiple time-lapse frames.

Additionally, experiments were conducted using spatially subsampled time-lapses processed

by the Video ResNet.

The models were trained and evaluated on 3,396 cropped-out time-lapse videos of single

traps with bacteria growing in a microfluidic chip. Each video contained 32 image frames col-

lected at a frame rate of two minutes. The image time-lapse data were collected from several

experiments where all four bacterial species were mixed and cultured in the same microfluidic

device. In addition to time-lapses of untreated bacteria, the dataset included bacteria treated

with different antibiotics (see Materials and methods). These mixed species datasets were

selected to avoid potential classification bias arising from chip-to-chip variations. Some traps

contained a mix of bacteria from different species, visible from the fluorescence signals cap-

tured after the final frame. These traps were excluded from the dataset as the probability of

mixed species in the same trap is very low in an actual clinical setting. However, this ground

truth selection was occasionally unreliable (see Discussion).

The data were partitioned into train/test by trap-basis so that image data from 85% of the

traps were used to train the deep learning models, and 15% of the traps were used for testing.

Hence all models were tested on unseen images and time-lapses, and the models could not

train and test on images originating from the same trap. We intentionally trained standard

models with default settings (augmentation, epochs, batch size, and learning rates) until
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convergence without adjusting any hyperparameters, consequently, we did not utilize a valida-

tion set.

Each network was retrained five times to obtain more accurate statistics, using a predeter-

mined random seed for each retraining. This approach ensured a reproducible train/test split,

augmentation sequence, and weight initialization.

The accuracy was first calculated separately for each of the four species as the number of

correctly classified instances of a particular species, true positives, TPi over the total number of

instances of that species Ni in the dataset, acci ¼
TPi

Ni
, referred to as class-specific or “species-

specific” accuracy. The class-specific accuracies were then averaged to obtain the class-average

accuracy describing the overall accuracy of a model, accavg ¼
1

M
PM

i¼1
acci, where M = 4 is the

number of species in the dataset. In the context of multi-class problems, this metric is alterna-

tively labeled as macro-averaged accuracy.

3.1 Single-frame classification

We first evaluated our networks’ ability to identify bacterial species solely using the first frame

in the time-lapse—this would represent the very first information available in a clinical setting.

For this single-frame classification experiment, ResNets and ViTs were trained on all time-

lapse frames in the training set but evaluated only on the first frame of the time-lapses in the

test set. Networks of different sizes were compared, either trained from scratch or pretrained

on ImageNet. The base transformers ViT-B/16 and ViT-B/8 are the standard transformer

models from [9] with patch sizes 16 and 8 respectively, the others are downscaled versions of

(non-pretrained) ViT-B/8, with the settings ViT-[dembed]-[h]-[ndepth]. As seen in the results in

Figs 2 and 3, the pretrained ViT outperformed the best-achieving ResNet despite the ResNet’s

inherent inductive bias for image classification. Pretraining was shown to be more critical for

ViT than for ResNets. Deeper networks yielded robust gains, however, the accuracy plateaued

when using a ResNet with more than 26 layers. Smaller models, in particular, had a higher ten-

dency for classification errors on Pseudomonas aeruginosa.

3.1.1 Testing on later frames. Since the assigned class label is determined immediately

after the final frame in the time-lapse sequence, subsequent frames may more closely corre-

spond to the actual label. Furthermore, the effects of antibiotic treatment will only be apparent

in later stages, leading to alterations in cell appearance (see Discussion). We conducted addi-

tional experiments to investigate this, assessing single-frame accuracy testing on later frames

in the time-lapse using pretrained ResNet-26 and ViT-16. The results are shown in Fig 4. The

vision transformer consistently outperforms ResNet and is more accurate with lower variance

across the test partitions. There were no evident accuracy changes observed when testing on

later frames despite approximately 30% of the traps undergoing antibiotic treatment. Species-

specific accuray plots are outlined in S2 Appendix.

3.2 Decreasing resolution

Subsequently, we conducted experiments to simulate using lower magnification microscopy to

assess the model’s viability in potential clinical devices for two primary reasons: These devices

are usually equipped with lower-resolution microscopy and have constrained computational

capacities. For these evaluations, we chose the pretrained models ResNet-26 and ViT-B/8, as

ViT-B/8 could handle smaller image sizes than ViT-B/16, and deeper ResNets did not notably

increase accuracy. We initiated our training using models with the original image dimensions

of 52x382 pixels and decreased the resolution step-wise, ending up in training models with an
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Fig 2. ResNet single-frame classification. Model comparison performing single-frame classification of the first frame in the time-lapse using different

ResNet variants. The models are categorized based on the ResNet family. Error bars represent the standard deviation in class-average accuracy from the

five retrainings. Scatter plots depict the class-specific accuracy of all individual classifiers and the average class-specific accuracy over the five retrainings

for each model. To reduce overplotting, a minor jitter was introduced along the categorical axis of the species-specific scatter plot. Lines are included

not for interpolation or statistical inference purposes but to visually guide readers in tracking mean values on the ordinal scale.

https://doi.org/10.1371/journal.pcbi.1011181.g002

Fig 3. ViT single-frame classification. Model comparison performing single-frame classification of the first frame in the time-lapse using different ViT

variants. Error bars represent the standard deviation in class-average accuracy from the five retrainings. Scatter plots depict the class-specific accuracy

of all individual classifiers and the average class-specific accuracy over the five retrainings for each model. To reduce overplotting, a minor jitter was

introduced along the categorical axis of the species-specific scatter plot. Lines are included not for interpolation or statistical inference purposes but to

visually guide readers in tracking mean values on the ordinal scale.

https://doi.org/10.1371/journal.pcbi.1011181.g003
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image size of 3x22 pixels. Given that the ViT has a patch size of 8x8 pixels, we were unable to

reduce the resolution below a width of 8 pixels for the transformer. Consequently, the evalua-

tion was limited, so the smallest image dimensions were 8x59 pixels. Sub-sampled images

from all frames in the time-lapse of the training dataset were used during training, and testing

was performed using a sub-sampled version of the first frame in the hold-out test dataset. As

illustrated in Figs 5 and 6, ViT-B/8 consistently performed better than ResNet-26 when using

sub-sampled images.

3.2.1 Training and testing on a balanced non-treated dataset. In the single-frame exper-

iments, most classification errors occurred with Pseudomonas aeruginosa. This trend was espe-

cially noticeable when employing smaller ResNets, non-pretrained downsized Vision

Transformers, or during the subsampling experiments. We hypothesized that the challenge

arose due to the overrepresentation of treated Pseudomonas aeruginosa, with only 250 out of

662 untreated samples available. We suspected these treated traps resulted in altered image

conditions, thereby complicating the classification. To test this hypothesis, we conducted addi-

tional experiments using the downscaled versions of ResNet-8 and ViT Base patch 8, selecting

only 250 traps of each species, reserving 15% of the time-lapses for testing as done previously,

and evaluating on the first frame. The results showed similar scaling characteristics detailed

further in S1 Appendix.

3.3 Video classification

After establishing network performance on single frames, we investigated whether accuracy

could be improved using multiple frames and if the network could leverage temporal informa-

tion from the bacteria reproduction. The R(2+1)D Video ResNet model was trained using an

incrementally increasing number of frames as input, with the frames either shuffled or

Fig 4. Single-frame classification testing on later frames. Performing single-frame classification, testing on subsequently later frames in the time-

lapse using ResNet-26 and ViT-B/16. Error bars represent the standard deviation in class-average accuracy from the five retrainings. Lines are included

not for interpolation or statistical inference purposes but to visually guide readers in tracking mean values on the ordinal scale.

https://doi.org/10.1371/journal.pcbi.1011181.g004
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Fig 5. ResNet performance at reduced image resolution. Error bars represent the standard deviation in class-average accuracy from the five

retrainings. Scatter plots depict the class-specific accuracy of all individual classifiers and the average class-specific accuracy over the five retrainings for

each model. To reduce overplotting, a minor jitter was introduced along the categorical axis of the species-specific scatter plot. Lines are included not

for interpolation or statistical inference purposes but to visually guide readers in tracking mean values on the ordinal scale.

https://doi.org/10.1371/journal.pcbi.1011181.g005

Fig 6. ViT performance at reduced image resolution. Error bars represent the standard deviation in class-average accuracy from the five retrainings.

Scatter plots depict the class-specific accuracy of all individual classifiers and the average class-specific accuracy over the five retrainings for each model.

To reduce overplotting, a minor jitter was introduced along the categorical axis of the species-specific scatter plot. Lines are included not for

interpolation or statistical inference purposes but to visually guide readers in tracking mean values on the ordinal scale.

https://doi.org/10.1371/journal.pcbi.1011181.g006
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ordered. Testing was performed starting from the first frame in the test time-lapses. As illus-

trated in Fig 7, accuracy improves as the classifier can access more frames. Furthermore, pre-

serving the original sequence of time-lapse frames results in slightly enhanced performance

compared to shuffled frames, particularly when using a larger number of frames.

3.3.1 Decreasing resolution. In our final evaluation, we performed video classification

employing pretrained R(2+1)D Video ResNet, incorporating all frames in the time-lapse,

training, and testing on spatially subsampled image data. Notably, even at considerably

reduced resolutions, the model retained high accuracy. However, we observed a consistent,

albeit slight, decline in accuracy (approximately 1%) as the models were trained and tested on

progressively lower resolutions, shown in Fig 8.

3.4 Model evaluation

All model results are summarized in Tables 1 and 2. FLOPS are the number of floating point

operations required for the inference of one sample (video or image) (see Materials and meth-

ods for details), inference times are outlined in S3 Appendix. The pretrained models ResNet-

26, ViT-B/8, and 32-frame R(2+1)D Video ResNet from the scaling experiments were selected

and trained from scratch using an identical random seed and thus train/test split. Confusion

matrices in Fig 9 show classification errors for these models. In order to evaluate model limita-

tions and analyze image data in instances where the model makes an incorrect assessment, the

misclassified test samples from the models in Fig 9 are outlined in S1–S12 Figs.

4 Discussion

4.1 Models

The findings indicate the feasibility of training deep learning models to accurately classify the

bacteria species E. faecalis, E. coli, K. pneumoniae, and P. aeruginosa growing in traps in micro-

fluidic chips based solely on phase-contrast image data. In the single-frame study, ViTs mar-

ginally outperformed ResNets, especially at lower resolutions. When using the Video ResNet

“R(2+1)D” performance improved using an increasing number of frames, plateauing at

approximately 24 frames. Among all evaluated models, the 27-frame Video ResNet achieved

Fig 7. Video ResNet performance at varying number of frames. Results from training video classification “R(2+1)

D”-networks using various numbers of frames. Ordered and randomly shuffled time-lapses were compared for a fixed

number of frames. The scatter plot shows class-average accuracy for each classifier, the line graph shows average class-

average accuracy over all classifiers retrained with their respective train/test split. Lines are not for interpolation or

statistical inference but are added as a visual guide to track the mean values across the ordinal scale.

https://doi.org/10.1371/journal.pcbi.1011181.g007
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the highest overall accuracy at 99.55±0.25%. Moreover, when the video classification network

was applied to spatially downsampled video data, the model exhibited exceptional perfor-

mance, successfully classifying even the most low-resolution time-lapses with little accuracy

degradation.

4.2 Pretraining

The models were pretrained using the ImageNet dataset [4], which predominantly contains

natural images, contrasting significantly with microscopy images of bacteria. While pretrain-

ing is deemed crucial in conventional settings, particularly for transformers, it was not imme-

diately evident whether pretraining would be beneficial for processing the bacteria image data

in this study. However, the results indicated that pretraining was essential for transformers as

the down-scaled Vision Transformers without transfer learning exhibited notably lower per-

formance, as illustrated in Fig 3. In contrast, pretraining was not neccesary for the single-

frame ResNets. Being a convolutional neural networks, these models inherently possess an

inductive bias for image classification.

4.3 Low accuracy of P. aeruginosa in smaller models

The experiments on a fully balanced, non-treated dataset, as detailed S1 Appendix, indicated

that classifying P. aeruginosa was more challenging. However, this was only apparent when

using smaller models and during the single-frame subsampling experiments. This trend was

not observed when using ViT/B-16, larger pretrained ResNets, or when performing spatially

subsampled video classification.

Fig 8. Video ResNet performance at reduced image resolution. Error bars represent the standard deviation in class-average accuracy from the five

retrainings. Scatter plots depict the class-specific accuracy of all individual classifiers and the average class-specific accuracy over the five retrainings for

each model. To reduce overplotting, a minor jitter was introduced along the categorical axis of the species-specific scatter plot. Lines are included not

for interpolation or statistical inference purposes but to visually guide readers in tracking mean values on the ordinal scale.

https://doi.org/10.1371/journal.pcbi.1011181.g008
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Table 1. Model results: Single-frame.

ResNet ViT

Model Parameters FLOPS Accuracy Model Parameters FLOPS Accuracy

CIFAR10 ResNet 8–3 2887 17.32 MFlops 88.63 ± 1.82% ViT-16-1-3 15.24 k 19.21 MFlops 87.73 ± 2.68%

CIFAR10 ResNet 8-4 5040 29.84 MFlops 91.35 ± 0.66% ViT-21-1-4 29.34 k 36.03 MFlops 89.88 ± 2.04%

CIFAR10 ResNet 8-5 7789 45.71 MFlops 92.35 ± 1.94% ViT-27-1-5 54.60 k 62.80 MFlops 90.25 ± 1.54%

CIFAR10 ResNet 8-6 11.13 k 64.96 MFlops 93.39 ± 0.75% ViT-32-1-6 87.01 k 95.19 MFlops 91.80 ± 1.40%

CIFAR10 ResNet 8-7 15.07 k 87.58 MFlops 92.90 ± 1.51% ViT-37-1-7 130.84 k 136.42 MFlops 93.00 ± 1.74%

CIFAR10 ResNet 8-8 19.61 k 113.56 MFlops 93.78 ± 1.38% ViT-43-1-8 196.47 k 194.10 MFlops 93.60 ± 1.40%

CIFAR10 ResNet 8-9 24.75 k 142.91 MFlops 94.23 ± 1.33% ViT-48-1-9 270.63 k 257.27 MFlops 93.66 ± 2.10%

CIFAR10 ResNet 8-10 30.47 k 175.63 MFlops 94.72 ± 0.67% ViT-53-1-10 361.83 k 332.27 MFlops 94.07 ± 1.15%

CIFAR10 ResNet 8-11 36.80 k 211.71 MFlops 95.23 ± 0.93% ViT-59-1-11 487.82 k 431.43 MFlops 94.87 ± 1.62%

CIFAR10 ResNet 8-12 43.72 k 251.17 MFlops 94.92 ± 0.80% ViT-64-1-12 621.38 k 534.74 MFlops 94.25 ± 1.40%

CIFAR10 ResNet 8-13 51.24 k 293.99 MFlops 95.28 ± 1.28% ViT-128-2-12 2.42 M 1.69 GFlops 95.24 ± 1.22%

CIFAR10 ResNet 8-14 59.35 k 340.18 MFlops 95.48 ± 1.09% ViT-192-3-12 5.40 M 3.48 GFlops 95.12 ± 1.91%

CIFAR10 ResNet 8-15 68.06 k 389.74 MFlops 95.30 ± 0.51% ViT-256-4-12 9.56 M 5.89 GFlops 95.79 ± 0.79%

CIFAR10 ResNet 8 77.36 k 442.66 MFlops 96.10 ± 1.24% ViT-320-5-12 14.90 M 8.93 GFlops 96.04 ± 1.34%

CIFAR10 ResNet 14 174.58 k 952.83 MFlops 97.34 ± 0.90% ViT-384-6-12 21.42 M 12.59 GFlops 96.05 ± 0.97%

CIFAR10 ResNet 20 271.80 k 1.46 GFlops 97.78 ± 0.81% ViT-448-7-12 29.12 M 16.87 GFlops 96.12 ± 0.80%

CIFAR10 ResNet 32 466.23 k 2.48 GFlops 97.75 ± 0.57% ViT-512-8-12 38.00 M 21.78 GFlops 96.24 ± 0.73%

Resnet-18 11.17 M 1.43 GFlops 97.37 ± 0.55% ViT-576-9-12 48.06 M 27.32 GFlops 96.23 ± 0.72%

Resnet-26 13.95 M 1.88 GFlops 97.73 ± 0.33% ViT-640-10-12 59.30 M 33.48 GFlops 96.18 ± 0.59%

Resnet-34 21.28 M 3.00 GFlops 97.99 ± 0.28% ViT-704-11-12 71.72 M 40.27 GFlops 96.42 ± 0.54%

Resnet-50 23.51 M 3.37 GFlops 97.50 ± 0.75% ViT-B/8 85.31 M 47.68 GFlops 95.81 ± 1.23%

Resnet-152 58.15 M 9.95 GFlops 97.37 ± 0.46% ViT-B/16 85.31 M 11.59 GFlops 96.77 ± 0.38%

Resnet-200 62.63 M 12.71 GFlops 97.58 ± 0.63% ViT-B/8 Pretrained 85.31 M 47.68 GFlops 98.27 ± 0.65%

Resnet-18 Pretrained 11.17 M 1.43 GFlops 97.50 ± 0.31% ViT-B/16 Pretrained 85.31 M 11.59 GFlops 98.44 ± 0.32%

Resnet-26 Pretrained 13.95 M 1.88 GFlops 97.92 ± 0.51% ResNet-26 Pretrained—Decrease resolution

Resnet-34 Pretrained 21.28 M 3.00 GFlops 98.05 ± 0.70% Resolution Parameters FLOPS Accuracy

Resnet-50 Pretrained 23.51 M 3.37 GFlops 97.84 ± 0.38% 3x22 13.95 M 38.53 MFlops 90.62 ± 1.31%

Resnet-152 Pretrained 58.15 M 9.95 GFlops 97.68 ± 0.33% 4x29 13.95 M 40.81 MFlops 92.79 ± 2.45%

Resnet-200 Pretrained 62.63 M 12.71 GFlops 97.58 ± 0.63% 5x37 13.95 M 72.41 MFlops 95.49 ± 0.72%

ViT-B/8 Pretrained—Decrease resolution 6x44 13.95 M 75.43 MFlops 95.64 ± 1.27%

Resolution Parameters FLOPS Accuracy 7x51 13.95 M 76.36 MFlops 96.11 ± 1.43%

8x59 85.12 M 1.19 GFlops 98.16 ± 0.58% 8x59 13.95 M 85.43 MFlops 96.19 ± 0.82%

9x66 85.12 M 1.36 GFlops 98.03 ± 0.35% 9x66 13.95 M 106.52 MFlops 96.77 ± 0.74%

10x73 85.12 M 1.53 GFlops 98.00 ± 0.75% 10x73 13.95 M 136.72 MFlops 97.20 ± 0.96%

11x81 85.12 M 1.71 GFlops 97.70 ± 0.40% 11x81 13.95 M 142.23 MFlops 96.86 ± 0.54%

12x88 85.12 M 1.88 GFlops 97.96 ± 0.68% 12x88 13.95 M 153.61 MFlops 97.25 ± 0.42%

13x96 85.12 M 2.05 GFlops 97.58 ± 0.30% 13x96 13.95 M 162.94 MFlops 97.55 ± 0.63%

16x118 85.13 M 4.62 GFlops 98.35 ± 0.65% 16x118 13.95 M 205.98 MFlops 97.46 ± 0.58%

20x147 85.14 M 5.66 GFlops 98.34 ± 0.32% 20x147 13.95 M 351.07 MFlops 97.55 ± 0.70%

24x176 85.16 M 10.52 GFlops 98.35 ± 0.43% 24x176 13.95 M 442.43 MFlops 97.49 ± 0.28%

28x206 85.16 M 12.09 GFlops 97.96 ± 0.68% 28x206 13.95 M 539.01 MFlops 97.61 ± 0.46%

32x235 85.19 M 18.99 GFlops 98.44 ± 0.76% 32x235 13.95 M 647.23 MFlops 97.23 ± 0.41%

36x264 85.20 M 21.13 GFlops 98.24 ± 0.32% 36x264 13.95 M 1.05 GFlops 97.70 ± 0.70%

40x294 85.24 M 29.26 GFlops 98.49 ± 0.56% 40x294 13.95 M 1.19 GFlops 97.64 ± 0.47%

44x323 85.25 M 32.92 GFlops 98.15 ± 0.45% 44x323 13.95 M 1.41 GFlops 97.58 ± 0.51%

48x353 85.29 M 43.15 GFlops 98.42 ± 0.52% 48x353 13.95 M 1.57 GFlops 97.70 ± 0.64%

(Continued)
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Table 1. (Continued)

ResNet ViT

Model Parameters FLOPS Accuracy Model Parameters FLOPS Accuracy

52x382 85.31 M 47.68 GFlops 98.42 ± 0.36% 52x382 13.95 M 1.88 GFlops 97.64 ± 0.35%

Average test accuracies and their corresponding standard deviations were computed across five retraining iterations, each utilizing a predetermined random seed. The

best model of each category is highlighted in blue.

https://doi.org/10.1371/journal.pcbi.1011181.t001

Table 2. Model results: Video classification.

Video Resnet “R(2+1)D” Video Resnet “R(2+1)D”—Decrease resolution

Frames Parameters FLOPS Accuracy Resolution Parameters FLOPS Accuracy

1 31.30 M 15.28 GFlops 97.55±0.35% 3x22 31.30 M 1.56 GFlops 98.68±0.24%

2 31.30 M 19.75 GFlops 98.39±0.75% 4x29 31.30 M 1.99 GFlops 98.53±0.34%

3 31.30 M 27.61 GFlops 97.83±0.54% 5x37 31.30 M 3.54 GFlops 99.06±0.41%

4 31.30 M 32.08 GFlops 98.06±0.48% 6x44 31.30 M 4.19 GFlops 98.96±0.27%

5 31.30 M 43.60 GFlops 98.20±0.42% 7x51 31.30 M 5.26 GFlops 98.85±0.28%

6 31.30 M 48.07 GFlops 98.01±0.34% 8x59 31.30 M 6.12 GFlops 98.99±0.19%

7 31.30 M 55.93 GFlops 98.17±0.58% 9x66 31.30 M 9.44 GFlops 99.22±0.35%

8 31.30 M 60.39 GFlops 98.20±0.70% 10x73 31.30 M 10.44 GFlops 99.15±0.19%

9 31.30 M 75.68 GFlops 98.42±0.61% 11x81 31.30 M 12.46 GFlops 99.23±0.16%

10 31.30 M 80.15 GFlops 98.30±0.31% 12x88 31.30 M 13.88 GFlops 99.35±0.33%

11 31.30 M 88.00 GFlops 98.45±0.35% 13x96 31.30 M 16.97 GFlops 99.09±0.17%

12 31.30 M 92.47 GFlops 98.41±0.50% 16x118 31.30 M 22.43 GFlops 99.32±0.43%

13 31.30 M 103.99 GFlops 98.56±0.50% 20x147 31.30 M 37.44 GFlops 99.40±0.34%

14 31.30 M 108.46 GFlops 98.69±0.30% 24x176 31.30 M 51.90 GFlops 99.36±0.47%

15 31.30 M 116.32 GFlops 98.95±0.48% 28x206 31.30 M 70.73 GFlops 99.33±0.24%

16 31.30 M 120.79 GFlops 98.70±0.41% 32x235 31.30 M 90.59 GFlops 99.21±0.44%

17 31.30 M 136.07 GFlops 98.78±0.42% 36x264 31.30 M 117.85 GFlops 99.32±0.46%

18 31.30 M 140.54 GFlops 99.00±0.33% 40x294 31.30 M 141.99 GFlops 99.36±0.32%

19 31.30 M 148.40 GFlops 99.25±0.43% 44x323 31.30 M 172.85 GFlops 99.38±0.33%

20 31.30 M 152.87 GFlops 98.99±0.38% 48x353 31.30 M 202.55 GFlops 99.31±0.51%

21 31.30 M 164.39 GFlops 99.13±0.32% 52x382 31.30 M 241.58 GFlops 99.53±0.40%

22 31.30 M 168.86 GFlops 99.04±0.30%

23 31.30 M 176.71 GFlops 99.01±0.20%

24 31.30 M 181.18 GFlops 99.38±0.16%

25 31.30 M 196.47 GFlops 99.35±0.24%

26 31.30 M 200.94 GFlops 99.21±0.26%

27 31.30 M 208.79 GFlops 99.55±0.25%

28 31.30 M 213.26 GFlops 99.51±0.25%

29 31.30 M 224.78 GFlops 99.48±0.17%

30 31.30 M 229.25 GFlops 99.45±0.39%

31 31.30 M 237.11 GFlops 99.47±0.30%

32 31.30 M 241.58 GFlops 99.32±0.40%

Average test accuracies and their corresponding standard deviations were computed across five retraining iterations, each utilizing a predetermined random seed. The

best model of each category is highlighted in blue. We utilized the pretrained version of the network for these video experiments

https://doi.org/10.1371/journal.pcbi.1011181.t002
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4.4 Ground truth reliability

All our training and model evaluation relies on defining the true class based on fluorescent

staining of the final frame. Although the microfluidic device aims to study the lineage from

one mother cell, the traps may occasionally have contained multiple species during growth

prior to fluorescent capture. Some classification errors may therefore be due to artifacts, such

as multiple species being present in the trap in the first frame, with one subsequently pushed

out. Due to pressure variations, bacteria may also be sucked out of the trap and replaced by

another species, or the trap may be empty at the start, with cells being pushed in during the

experiment. Furthermore, poor fluorophore absorption by a species may indicate that a trap

only contained one species when viewing the fluorescent images, where it, in reality, contained

two. Manual inspection of the misclassified traps from the testing samples indicated that the

aforementioned had occurred in six out of twelve misclassifications, see S1–S12 Figs. Another

phenomenon that can occur is the appearance alteration of the bacteria image data, such as

size, morphology, and structural irregularities, due to traps treated by antibiotics. This trans-

formation occurs gradually, often becoming discernible in later frames rather than the initial

ones. Despite these artifacts, the overall accuracy did not notably change when testing on later

frames in the time-lapse, as seen in 4. Only a slight degradation is evident in the final few

frames.

4.5 Temporal information

In the time-lapse experiments, accuracy improved with the number of frames available to the

classifier, and the results slightly indicate that the order of the frames may be important and

that temporal information from the time-lapses can be extracted to aid the network. In a future

scenario in a clinical setting, accuracy may increase over time as video data is continuously

acquired from the traps, providing increased confidence in the species classification.

4.6 Concurrently with AST testing

To fully demonstrate the simultaneous species classification and AST (antimicrobial suscepti-

bility testing) use case, a more extensive dataset of both treated and non-treated traps needs to

Fig 9. Confusion matrices. Confusion matrices of the models trained once from scratch using the same random seed. All models were trained and

tested at full resolution. The Video ResNet “R(2+1)D” used all 32 frames during both the training and testing phases. The single-frame classifiers

ResNet-26 and ViT-B/8 trained on all frames in the time-lapse but could only access the first frame during test time.

https://doi.org/10.1371/journal.pcbi.1011181.g009
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be collected, testing on solely treated cells. Nevertheless, if antibiotic treatment adversely

affected performance, there should be a notable degradation towards the end frames in Fig 4.

as approximately 30% of the traps were treated in our dataset. Moreover, Pseudomonas aerugi-
nosa performed well in the final frames despite having 60% of the samples treated with antibi-

otics, shown in S2 Appendix. Another way to perform simultaneous AST would be to initially

allow the bacteria to reproduce for a short while without antibiotics to identify the correct spe-

cies. After this, species-specific antibiotics can be added for subsequent AST testing.

4.7 Limitations

A limitation of our method is its inability to handle mixed species within a single trap, how-

ever, it is expected to be a rare event in a clinical setting. Another obvious limitation in this

proof-of-principle study is that we only extend our study to four species.

4.8 Conclusions

In conclusion we have demonstrated that phase-contrast microscopy capturing time-lapses

bacterial growth in microfluidic chip traps could offer a viable method to identify the bacte-

ria causing an infection. The deep learning models exhibited promising results despite train-

ing on a relatively limited dataset, which is an encouraging finding given that the such

models generally improve with availability of more data. The problem is not trivial and

robust improvements were achieved through the use of deeper convolutional networks,

vision transformers and video classification networks that learn spatiotemporal features.

Importantly, we found that classification accuracy can be maintained at lower image resolu-

tion and, thus, lower computational cost, which enables the models to be implemented in

potential diagnostics tools utilizing lower-resolution microscopy and equipped with limited

computing resources. The methodology allows for classification concurrently with or prior

to AST testing.

As this study serves as a proof of principle study, further validation requires the gathering

of an extensive dataset including a greater variety of bacterial species and isolates. We envision

future applications where diagnostic tools containing microfluidic chips can quickly determine

bacterial species and guide efficient treatment.

We envision future applications where diagnostic tools containing microfluidic chips can

quickly determine bacterial species and guide efficient treatment.

5 Materials and methods

5.1 Bacterial strains, sample preparations, and antibiotics

In this study, we investigated four bacterial strains, representing both gram-negative and

gram-positive cells, namely, E. coli K12 MG1655 (DA4201), K. pneumoniae (ATCC 13883), P.
aeruginosa (DA6215) and E. faecalis (ATCC 51299). Glycerol stocks of each strain were inde-

pendently cultured overnight in 5 ml Muller-Hinton (MH) medium at 37˚C, then diluted

1:1000 times in a fresh MH medium supplemented with pluronic and allowed to grow for 2

hours at 37˚C in a shaking incubator with a speed of 200 rpm. Subsequently, the strains were

mixed in equal concentrations and loaded in a microfluidic chip. For susceptibility testing, the

bacterial strains were treated with different antibiotics such as amoxicillin-clavulanate, ampi-

cillin, ciprofloxacin, doripenem, nitrofurantoin, and gentamicin. The concentrations used cor-

respond to MIC values for the E. coli suggested by the European Committee on Antimicrobial

Susceptibility Testing (EUCAST).
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5.2 Experimental setup and imaging conditions

We used the same experimental setup as in Kandavalli et al. 2022 [24], and Baltekin et al.

2017 [25]. Briefly, after loading the cells in a microfluidic chip, cells were exposed to media

with and without antibiotics. For imaging, we used the Nikon Ti2-E inverted microscope

equipped with a Plan Apo Lambda 100x oil immersion objective (Nikon). To monitor the

growth of the bacteria, we captured phase contrast images every two minutes for an hour.

After time-lapse imaging, the bacteria species in each trap in the microfluidic chip were iden-

tified as described in the genotyping protocol by Kandavalli et al. 2022. Next, we capture fluo-

rescence images for each probe in four different fluorescence channels (Alexa Fluor 488, Cy3,

Cy5, and Texas Red) corresponding to E. faecalis, E. coli, K. pneumonia, and P. aeruginosa,

respectively.

5.3 Data selection

The microfluidic chips used in the experiments contained 34–44 traps at each capture position

and were imaged at 162–180 capture positions depending on the experiment. Binary barcode

labels were evenly laid out so that a unique identifier address could be assigned to each trap.

Each phase-contrast and fluorescence microscopy frame was imaged with an image size of

1824 x 3888 pixels at 33 pixels/μm resolution.

To gather the data for this study, we developed custom image processing software to

find and crop each growth trap and barcode label from the microscopy output. The phase-

contrast stack was stabilized using rigid body transformations [26] using only the barcode

labels as reference. Additionally, our image processing pipeline contained a procedure to

shift the position of the fluorescence images to align them with the stabilized phase-con-

trast time-lapse stack. This procedure used a vertical projection of the pixel intensities of

the different images into a one-dimensional vector, generating peaks at the horizontal loca-

tion of the traps. The peaks from the fluorescence images and the phase-contrast projec-

tions were then shifted until alignment, and this shift was then replicated in the original

images. The cropped images from the microfluidic chip’s traps measured between 50–54

pixels in width and 1400–1500 pixels in height. This cropping software and code for repro-

ducing the deep-learning experiments are freely released alongside the dataset to facilitate

further research [27]. The package also contains raw microscopy data showing the trap lay-

out and barcodes.

Traps containing only one species in the mixed species experiments were manually selected

by inspecting the final fluorescence image. This task was performed in a “semi-automated”

way by sorting the traps by aggregated statistics of fluorescence pixel intensity values and visu-

alizing the fluorescence channels side by side, noting the traps with only one bacteria species.

A total of 3396 traps with corresponding time-lapses imaging single-species bacterial growth

were extracted from seven different experiments divided into 684 E. faecalis, 770 E. coli, 1280

K. pneumoniae, and 662 P. aeruginosa. We maximized data extraction from these experiments,

excluding only traps that were empty or contained multiple species as indicated by fluores-

cence signals. A number of train/test splits were created using predetermined random seeds,

withholding 15% of the samples for testing. The dataset contained traps with and without anti-

biotic treatment during growth, as seen in Table 3.

The reason for using mixed species across several experiments was to mitigate the possibil-

ity of overfitting to experimental settings such as microscopy configurations or background

features arising due to chip-to-chip variations, using so-called “Clever Hans”-prediction [28],

or overinterpretation and adapting to non-salient features [29].
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5.4 Single frame classification

When evaluating network performance on single frames, image classifiers were trained using

only a single frame as input. In our primary experiments, the networks could only access the

first frame in the time-lapses at test-time, as it holds greater clinical relevance to determine the

correct species of the bacteria as early as possible. However, we also conducted experiments

testing on subsequently later frames comparing the performance of ResNet-26 and ViT-B/16,

shown in Fig 4 and S2 Appendix. During the training phase, all frames from the time-lapse

were utilized, randomly selecting a frame for each sample in a mini-batch.

We compared the results of multiple ResNet architectures with the novel ViTs, both with

and without transfer learning. While several architectural enhancements have been made to

the ViT and ResNet (and ConvNet) architectures, our experimentation focused on their origi-

nal versions to explore the inherent capabilities of each architecture. Furthermore, these foun-

dational versions are inherently simpler, while newer architectures often incorporate networks

with more complex operations and intricate pathways. Additionally, most new architectures

are predominantly fine-tuned for natural images, with Imagenet commonly serving as the

benchmark. Their relative performance on microscopic images remains largely uncharted.

Recent studies indicate that aspects like training methods, augmentation techniques, and

hyperparameter choices can significantly influence performance more than the actual model

architecture [30].

5.4.1 ResNets—convolutional neural networks. In this study, we evaluated 21 different

ResNet [8] architectures; the regular ImageNet ResNet with 18, 26, 34, 162, and 200 layers, and

the more compact CIFAR-10 ResNet with 8, 14, 20, and 32 layers. Furthermore, we conducted

ablation experiments with the CIFAR ResNet-8, reducing the base feature channel depth in

the first layer to r, r = {3, . . ., 16}, named ResNet-8-r. Adopting this scaling strategy implied

that we used feature channel depths r, 2r, and 4r in the network respectively. ResNet-8–16 is

equivalent to CIFAR ResNet-8 since 16 is the default channel depth after the first layer.

The reason for using the smaller CIFAR ResNet variant was twofold; firstly, to determine

whether this is a trivial problem or if robust gains can be obtained by using a deeper model

with more parameters, secondly to assess the limitations if the models were to be employed in

a diagnostics tool with limited compute resources.

The default ResNet variant used in our experiments was aimed at ImageNet-classification

[4] in the original paper by He et al. [8]. It employed an initial set of 64 7x7 convolutional

Table 3. Data selection.

Enterococcus faecalis Escherichia coli Klebsiella pneumoniae Pseudomonas aeruginosa All species

Treated Untreated Treated Untreated Treated Untreated Treated Untreated Total

Experiment 1 11 12 51 41 3 261 132 90 601

Experiment 2 38 60 0 1 6 183 90 60 438

Experiment 3 51 91 20 116 0 191 2 12 483

Experiment 4 108 66 67 105 0 201 4 4 555

Experiment 5 15 15 35 72 1 142 74 49 403

Experiment 6 6 78 7 41 0 1 1 5 139

Experiment 7 83 50 8 206 0 291 109 30 777

All experiments 312 372 188 582 10 1270 412 250 3396

Data selection across all seven experiments. Each entry corresponds to a microfluidic trap containing only one species of bacteria. In total, approximately 30% of all

extracted traps were treated.

https://doi.org/10.1371/journal.pcbi.1011181.t003
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filters and max-pooling downsampling followed by a series of layers using 3x3 filters, grouped

in pairs, referred to as “blocks.” Convolutions with a stride of 2 in the initial layer of an evenly

spaced subset of these blocks were used, doubling feature-channel depth and halving spatial

dimensions. Additive skip connections were introduced around each block. In instances

where there was a discrepancy in channel depth, it was corrected by using 1x1 convolutions,

transforming the feature maps to the same depth. Bottleneck blocks were used in place of the

standard two-layer blocks for the deeper networks, allowing for less computationally expensive

processing of the feature maps. The bottleneck blocks consisted of three layers; 1x1 filters

reducing the channel depth, 3x3 filters processing at the lower channel depth, and finally, 1x1

filters transforming the feature map to the original dimension before the depth reduction.

The CIFAR10 ResNet variant used in our experiments was presented in the original paper

by He et al. [8] and aimed to classify the smaller CIFAR10 dataset, consisting of 32x32 color

images. It utilized a single 3x3 convolutional layer followed by the standard blocks but

increased feature map depths to 16, 32, and 64, respectively, in the first layer at evenly spaced

blocks. All ResNet variants included a global spatial average pooling layer, a fully connected

layer, and a softmax activation function as a final layer. Batch normalization [7] was used

before each activation.

5.4.2 ViT—Vision Transformers. We evaluated 25 variants of the ViT architectures, the

regular ViT-B with pretrained and randomly initialized weights using patch sizes 8 and 16,

and downscaled versions of ViT-B/8. The scaling was performed as follows; the number of

heads and the embedding dimension was linearly scaled down, keeping the number of layers

constant at 12, analogously to the architectures presented in DeiT [31], ending up using sin-

gle-head attention and an embedding dimension of 64. This scaling strategy was followed by

proportionally scaling down the number of layers and embedding dimension, ending up in an

embedding dimension of 16 and a depth of 3 layers, reducing the model complexity and

observing the average accuracy. We name these architectures ViT-[dembed]-[h]-[ndepth], where

ViT-B/8 being equivalent with ViT-768–12-12.

In the ViT architecture [9], the input image was first split into N patches with a predefined

size, and the patches were then flattened and linearly embedded into tokens with dimensional-

ity dembed. A learned positional encoding was added to each token based on its position in the

sequence. Each of the tokens was then projected into queries, keys, and values with dimension-

ality dq, dk, and dv using a set of projection matrices with learnable weights WQ
i 2 Rdembed�dq ,

WK
i 2 R

dembed�dk , and WV
i 2 R

dembed�dv . The projection was executed several times in parallel,

called “heads” h, 8i 2 {1, . . ., h}. The queries, keys, and values were then packed as rows into

matrices Qi, Ki, and Vi, followed by an operation referred to as the self-attention mechanism.

AttentioniðQi;Ki;ViÞ ¼ softmax
QiK

T
iffiffiffiffiffi
dk

p

 !

Vi

Where AttentioniðQi;Ki;ViÞ 2 R
N�dv . The outputs from all of the h heads were then

concatenated column-wise into a matrix O 2 RN�hdv and then transformed back to the original

dimensionality by a learnable matrix WO 2 Rhdv�dembed . Dimensionalities dq = dk = dv = dembed/h
were chosen for the projection matrices to make the computational cost of the multi-head

attention similar to single-head attention with full dimensionality. Additive skip-connections

were added to this multi-head attention computation’s output, as well as a layer-wise normali-

zation across all embeddings. A fully connected 2-layer feed-forward neural network then pro-

cessed each embedding, with 4dembed hidden units, containing a skip connection and a layer-

wise normalization. These computations were grouped into a block that was repeated ndepth
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times. A learnable “classification token” was prepended to the patch embeddings and fed

simultaneously through the network. The final output was based on this token being fed into a

classification head consisting of a multilayer perceptron using a single layer at fine-tuning

time.

5.4.3 Decreasing resolution. Finally, the performance of ResNets and ViTs were com-

pared when operating under decreased resolution. To approximately simulate using lower

magnification microscopy, the Lanczos [32] interpolation was used for downsampling, which

approximates the Sinc function. A convolution by a Sinc is equivalent to a low-pass filter in the

frequency domain, removing high-frequency parts, thus effectively reducing the resolution.

The image data was resized to a width of w, w 2 {3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 20, 24, 28,

32, 36, 40, 44, 48, 52}. A total of 21 pretrained ResNet-26 networks and 16 ViT-B/8 networks

were trained using the subsampled image data at both train and test time.

5.5 Time-lapse classification and temporal features

To investigate whether temporal dynamics were essential for classification accuracy, several “R

(2+1)D”- Video ResNet classification networks introduced by Tran et al. [11] were trained on

the time-lapse data. A total of 32 frames were obtained from each trap, duplicating the last

frame when the number of frames was lower than 32 in the time-lapse and cropping the time-

lapse longer than 32 frames to 32 frames. In total, 32 networks were trained using different

numbers of frames as input, nframes 2 {1, 2, . . ., 32}. Next, identical video classification net-

works were trained but randomly shuffling the frames before input. The networks trained on

time-lapses with fewer than 32 frames utilized temporal jittering, [11] randomly sampling

nframes consecutive frames from the time-lapse during training. Testing was performed starting

from the first frame in the time-lapse. We hypothesize that if temporal information mattered,

the networks processing shuffled frames would consistently yield a lower accuracy compared

to the networks trained on frames in the correct order.

Furthermore, we conducted full-frame (32 frames) video classification experiments using

spatially sub-sampled data, analogous to the single-frame subsampling.

Due to the surprisingly high accuracy achieved at extremely low resolutions, we conducted

an experiment where the pixels were shuffled during the inference stage to investigate whether

the network’s decision was based solely on image intensity for the smallest image sizes. The

network failed completely at this task with a class-average accuracy of 25% if the pixels in the

video were shuffled, indicating that information such as mean and standard deviation of inten-

sity is insufficient for classification of bacterial species and the network must learn spatiotem-

poral features, even when processing low-resolution images. S1–S4 Videos show that subtle

cell features and temporal dynamics associated with bacterial growth remain discernable even

under heavy subsampling.

The R(2+1)D Video ResNet network used repeated blocks with 2D spatial convolutions,

processing each frame separately, followed by 1D temporal convolutions, fusing temporal

information across frames [11]. The networks were pretrained on the Kinetics-400 dataset

[33] and fine-tuned on our bacterial dataset.

5.6 Training regimes

The deep learning models were all trained with stochastic gradient descent using the AdamW

[6] method, applying standard augmentations such as random crops, horizontal flips, ran-

domly shifting, scaling, and rotating, as well as randomly chaining the brightness and contrast

of the image. A cosine learning rate scheduler with warm restarts [34] was used, using five
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warm-up epochs with a decay rate of 0.5. The cycles had 100 epochs each for the single-frame

classification networks and 75 for the video classification networks.

R(2+1)D Video ResNet networks and single frame classifications were trained with batch

sizes of 8 and 32, respectively. The learning rates were 0.0002 for Video ResNets, 0.001 for

ResNets, and 0.0001 for ViTs. However, due to convergence issues, the 34-layer ResNet’s learn-

ing rate was reduced to 0.0001. The Video ResNets were trained for 150 epochs, single-frame

ResNets for 300 epochs, and the ViT for 500 epochs. The ViTs required more epochs to con-

verge, possibly attributed to the lower learning rate and not having an inductive bias for image

classification. We employed a random weighted sampler to sample the data equally and

address the minor class imbalance. After random cropping, each frame had a size of 52x382

pixels. None of these hyperparameters were tweaked, therefore we did not employ a validation

set.

The models were trained using an Nvidia A100 40GB GPU, which was partitioned using

the MIG (Multi-Instance GPU) 3g.20gb configuration, which approximately equates to halv-

ing the capabilities of the original GPU. Any GPU manufactured in the early 2020s and late

2010s should suffice to train the models. Training times were 1–2 hours for the ResNet models,

1–10 hours for the ViTs, and 1–12 hours for the Video ResNets.

FLOPS presented in Tables 1 and 2 are the number of floating point operations (multiplica-

tions, additions/subtractions, or divisions of floating point numbers) required for the inference

of one sample (video or image). It is a hardware-agnostic way of measuring the computational

complexity of the models. Inference time is highly device-specific and subject to GPU optimi-

zations for particular operations used in certain neural network architectures. It also depends

on the maximum batch size that can be processed, which is limited by the memory size of the

device. However, one may expect the inference time to be linearly correlated with the FLOPS

of a model. We conducted additional tests to measure the inference latency (seconds/sample)

of the models using our particular hardware, outlined in S3 Appendix.

All networks were retrained five consecutive times with different predetermined random

seeds, ensuring reproducibility and uniformity in the training and evaluation process, as they

were all trained and assessed using identical train/test partition setups, augmentation

sequences, and weight initializations. The mean and standard deviation of the average accura-

cies of the classifications were calculated and presented in the results section.

The networks were pretrained on 3-channel natural images, on the contrary, the phase-con-

trast image data had only a single channel as input. The pretrained filters in the first layer with

filter size n x n x 3 were reshaped to n x n x 1, computing the average across the last axis to

accommodate for this. The open-source libraries PyTorch [35] and PyTorch Image Models

[36] were used, for full details refer to the released software and dataset [27].

Supporting information

S1 Fig. Misclassified by ResNet-26. True label P. aeruginosa, classified as E. faecalis. The

ResNet may have confused the stop at the top of the trap as a coccus. The upper half of the trap

was empty in the first frame.

(TIF)

S2 Fig. Misclassified by ResNet-26. True label E. coli, classified as E. faecalis. It appears to

have been cocci in the trap that avoided staining, and the trap clearly did not only contain a

single bacterial species.

(TIF)
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S3 Fig. Misclassified by ResNet-26. E. coli, classified as P. aeruginosa. Both species are rods

with similar shapes and are easily confused, and the fluorescent staining indicates that there

may be two bacterial species in the trap, where one has avoided staining.

(TIF)

S4 Fig. Misclassified by ResNet-26. True label P. aeruginosa, classified as K. pneumoniae. The

trap was empty in the first frames.

(TIF)

S5 Fig. Misclassified by ResNet-26. True label K. pneumoniae, classified as E. coli. Both spe-

cies are rods with similar shapes and are easily confused.

(TIF)

S6 Fig. Misclassified by ResNet-26. True label K. pneumoniae, classified as E. coli. Both spe-

cies are rods with similar shapes and are easily confused.

(TIF)

S7 Fig. Misclassified by ResNet-26. True label P. aeruginosa, classified as E. coli. Both species

are rods with similar shapes and are easily confused. It appears to have been several species in

the trap that avoided staining under heavy antibiotic treatment.

(TIF)

S8 Fig. Misclassified by ResNet-26. True label K. pneumoniae, classified as E. coli. Both spe-

cies are rods with similar shapes and are easily confused.

(TIF)

S9 Fig. Misclassified by ViT/B. True label E. coli, classified as K. pneumoniae. Both species are

rods with similar shapes and are easily confused.

(TIF)

S10 Fig. Misclassified by ViT/B. True label P. aeruginosa, classified as E. faecalis. The ViT

possibly confused the stop at the top of the trap as a coccus. The trap was empty in the first

frame.

(TIF)

S11 Fig. Misclassified by ViT/B. True label K. pneumoniae, classified as E. coli. Both species

are rods with similar shapes and are easily confused.

(TIF)

S12 Fig. Misclassified by R(2+1)D. True label K. pneumoniae, classified as E. coli. Both species

are rods with similar shapes and are easily confused.

(TIF)

S1 Video. Time-lapse video of E. faecalis reproducing in a trap.

(MP4)

S2 Video. Time-lapse video of E. coli reproducing in a trap.

(MP4)

S3 Video. Time-lapse video of K. pneumoniae reproducing in a trap.

(MP4)

S4 Video. Time-lapse video of P. aeruginosa reproducing in a trap.

(MP4)
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S1 Appendix. Fully balanced experiments using non-treated traps. A balanced dataset of

250 time-lapses per species was extracted from the untreated samples, trained, and tested on

downscaled versions of CIFAIR-10 ResNet and ViT-B/8.

(PDF)

S2 Appendix. Species-specific accuracy plots testing on later frames. Training single-frame

ResNet-26 and ViT-16, testing on incrementally later frames.

(PDF)

S3 Appendix. Inference latency. Inference latency measurements (seconds/sample) of the

models using our hardware setup.

(PDF)
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Data curation: Erik Hallström, Vinodh Kandavalli.

Formal analysis: Erik Hallström.

Funding acquisition: Johan Elf, Carolina Wählby.
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