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Introduction

The modern (virtual) product development for mechatronic products has de-
veloped steadily in recent years. Complexity has increased throughout, devel-
opment cycles have become shorter, and demands have become greater. At
the same time, however, the knowledge base has also grown continuously: on
the one hand, through "real" data and information and, on the other, through
virtual or synthetic sources of knowledge - Artificial Intelligence (Al).

For the sustainable operation of Al systems, a data-driven mindset must
be anchored throughout the company.

Beate Hofer, CIO, Volkswagen AG

As a result, there are major shifts, propelled by the impressive advancements
in Al technologies, as evidenced by [1] and [2]. This technological progress
has emerged as a potent force in development, offering augmentation and sup-
port throughout the entire lifecycle of mechatronic product development. Al's
capacity to analyze extensive datasets, identify patterns, and learn from exam-
ples positions it as a formidable catalyst with the potential to revolutionize the
industry, as elucidated in [3].

Many large companies are already taking advantage of this circumstance,
although in many cases, they may not accurately assess the holistic situation
or have thoroughly considered all the challenges. For example, in early Janu-
ary 2024, it was announced that the management, strategy consulting and au-
diting firm Deloitte is rolling out its internal Al co-pilot to a significant portion
of its workforce. As a result, this Al system is intended to assist with daily
tasks such as composing emails and creating presentations. However, the com-
pany simultaneously cautions its employees to exercise carefulness, as the Al
has the potential to generate false statements about real individuals, places, or
facts. To counteract this, Deloitte is implementing corresponding training
measures. Given that untruths in fields such as medicine, defense, and politics,
which are among Deloitte's clients, could have devastating consequences, de-
veloping an awareness of the limitations of Al and simultaneously assessing
the reliability of the models becomes a logical imperative. [4]



Intelligence-driven Opportunities

Mechatronic product development is a multifaceted endeavor encompassing
various disciplines, including mechanical engineering, electrical engineering,
control theory, and software engineering. This means that many different do-
mains and thus also human experts as well as domain-specific tools, working
methods and even languages must harmonize with each other. [5], [6]

VDI 2206 underscores these observations. In 2021, the document under-
went a generous revision with the expanded title “Development of mecha-
tronic and cyber-physical systems”. According to the Association of German
Engineers, this is due to the fact that mechatronic systems now "also have data
interfaces to other components and devices. In this way, they are themselves
cyber-physical systems and become part of a higher-level network. The com-
plexity, interdisciplinarity and heterogeneity of such systems is thus con-
stantly increasing." [7]

Subsequently, it is worth taking a look at the corresponding and current V-
model that emerges from VDI 2206. This can be found in Figure 1.

business model

specification integration

transition

implementation of
system elements

software
electrics/electronics
mechanics

other disciplines

Source: VDI/VDE 2206:2021-11
www.vdi.de/2206

Figure 1: The latest version of the V-model according to VDI/VDE 2206 of November
2021

New in this version is, that the depicted framework illustrates the comprehen-
sive approach to system analysis, modeling, and development, wherein three
interrelated strands encapsulate distinct yet interconnected aspects.

The inner strand is devoted to the crucial aspect of requirements engineer-
ing, underscoring the perpetual management and refinement of requirements
throughout the development lifecycle. The middle strand encompasses the
core activities involved in system development. Finally, the outer strand
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pertains to the modeling and analysis of the system along with its potential
subsystems, which operate in parallel to the central development tasks. This
systematic representation facilitates a rigorous and holistic scientific exami-
nation of the entire development process.

To visually illustrate the interplay between these disciplines, the three
strands are depicted as interconnected subareas using various line styles, such
as dotted, dashed, or solid lines. This graphical portrayal accentuates that the
implementation of system elements relies on profound interconnections be-
tween the involved disciplines. The intricate networking between these facets
ensures a cohesive and comprehensive approach to system development, bol-
stering its scientific rigor.

The challenges of effective interdisciplinary
collaboration

To operationalize interdisciplinary collaboration effectively, it is imperative
for domains to collaboratively advance in unison. However, the practical man-
ifestation of this collaborative spirit often deviates from the ideal. This dis-
crepancy can be attributed to several factors:

Synchronization Imperatives - Instances frequently arise where individual
domains necessitate information or knowledge from other domains at specific
junctures. However, these domains may not have reached the requisite stage,
rendering them unable to provide any information, not even a rudimentary
estimate. This intricacy engenders the subsequent phenomenon.

Divergent Work Paces and Sequences - Given that each domain pursues
distinct goals, and these objectives may not align resource-wise with those of
other domains, the tempo and sequential arrangement of steps can markedly
differ. This incongruity poses significant challenges concerning the aforemen-
tioned synchronization, making it arduous or delayed.

Impaired Communication through disparate Languages - Owing to the
diverse nature of domains, which demand expertise from distinct profession-
als, variations in knowledge bases and communication styles emerge, resem-
bling a scenario of heterogeneous languages. Consequently, communication
may lack precision, leading to the inadvertent loss of crucial details.
Addressing these challenges necessitates a strategic and adept incorporation
of Al which holds promise as a robust solution to these multifaceted issues.
By deploying these technologies, such as Intelligent Knowledge Management,
Al-based Data Analysis Tools and Interface Automation, domains will bridge
the gaps in synchronization, expedite workflows, and facilitate more seamless
communication. This targeted and judicious utilization of Al not only ad-
dresses the outlined challenges but also opens avenues for enhanced efficiency
and innovation in interdisciplinary collaboration.
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With regard to the initial identified use cases for the methodology, which will
be implemented later in the actual project, the examination of the mentioned
possibilities to address challenges and simultaneously increase efficiency and
innovation levels takes place. A practical application for this will involve sup-
porting the development department of a large and well-known research insti-
tutions, aiming to achieve a better interface between design and manufacturing
in the future. This specifically means fewer deviations in terms of planning
and eventual completion. To achieve this, a corresponding body of knowledge
is intended to be created through the use of Al and made available in early
stages, allowing for more targeted and realistic planning of new projects.

Aim and Outline of the Thesis

The Overall Research Question of this thesis is:

How can the mechatronic system design be supported and synchro-
nized in the context of Co-Simulation by using predictive infor-
mation and rules generated by a robustness-checked Al which is fed
through the knowledge base?

This derives into four detailed Research Questions:

R1 How can the relevant areas of knowledge and non-knowledge in mech-
atronic development processes be identified, evaluated and delimited
from each other in order to reach the acceptable level of ignorance com-
petence through targeted knowledge mining?

R2 How can the critical analysis parameters for success and the ideally
suitable segments of the development process for the use of robust and
context-sensitive Al be identified?

R3 How does the process for the linking of diverse mechatronic domains
within a co-simulation framework succeed through translation, inter-
pretation and prediction approaches using AI?

R4 How can previous development sub-processes for cross-domain tasks
evolve with respect to the new mutual synchronization capabilities
made possible by the robust Al and how do these new requirements in-
fluence the current methodology?

Following the formulation of the four specific research inquiries, the subse-
quent step involves identifying and delineating the requisite research method-
ology. This process entails selecting appropriate methods and approaches to
systematically investigate and address the research questions effectively.
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Research Design

At the beginning of a thesis, the question usually arises as to which research
method should be used to achieve the goals. This method aims to both acquire
insights and verify them, thereby aiding in solving scientific challenges. The
choice of method significantly influences the process. Therefore, it is im-
portant to systematically plan and purposefully design the research approach
to generate a coherent argumentation chain and promising results. [8], [9]

The research methodology adopted in this study adheres to the constructive
principles of Design Science proposed by [10], while also incorporating the
extended methods introduced by [11]. According to these methodologies, De-
sign Science encompasses two primary activities: creation and assessment.
"Creation" involves constructing an artifact tailored for a particular purpose,
while "assessment" entails evaluating the effectiveness of said artifact.

A conceptual framework for information system research has been devel-
oped based on these approaches, as depicted in Figure 2.

Environment IS Research Kn(])sv;lzdge

People Develop/Built Foundgtions
* Roles o « Theories * Theories
. Capablhtl.es. o Artifacts * Frameworks
* Characteristics * Instruments
1 * Constructs
Organizations o | ¢ Models
* Strategies 2 2 2 B || * Methods
* Structure & 3 2 = £ || * Instantiations
Culture % < -7 3
* Processes 1 o [| Methodologies
% v @ * Data Apalysis
Technology m = Techniques
* Infrastructure Justify/Evaluate Z|| * Formalisms
* Applications * Analytical * Measures
« Communications * Case Study * Validation
Architecture * Experimental Criteria
* Development * Field Study
Capabilities * Simulation
A T
Application in the Additions to the
Appropriate Environment Knowledge Base

Figure 2: Conceptual framework for information systems research according to [12],
layout-matched
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The criteria for ensuring quality, as formulated by [13] and pursued in this
work, include: relevance, rigor, objectivity, reliability, authenticity, transfera-
bility, and action orientation.

After selecting the methodology, the question arises of which research ap-
proach the scientific work belongs to and consequently, how it should be
structured. The approach of this work is inductive in nature and can be classi-
fied in the field of applied research. The aim of this genre is to develop and
shape a new theory, or in the case of this work, a new methodology or solution,
based on research. Works in this field typically address significant practical
challenges. In relation to the project presented here, this therefore concerns
the integration of efficient and robust Al into mechatronic product develop-
ment, including the resulting effects and the outlook for the future and the
corresponding prospects.

The criteria for a contribution to the state of the art include the following
points according to [12] and therefore especially the Guideline 4:

e new process, product or design object
-> synchronize newly linked cross-domain tasks smarter
through robust Al
e important unsolved problem class to be solved
-> existing asynchrony of domains and different language
e proposes generalizable solution
-> positively influence the current methodology over time
e investigates the solution empirically
-> proof of concept through appropriate data and examples
Four steps are derived from these circumstances, shown in Figure 3.

Identification and
description of the problem

Development of a
generalisable (process)
solution

Feasibility studies based on
Proof of Concepts
prototypes

Final proof of usefulness

Figure 3: The four identified steps for this work in the context of Applied Research
based on [10], [12], [14]
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Having successfully accomplished the identification and description of the
problem at hand, the next phase of the investigation involves a comprehensive
examination of the current state of the art within both the research landscape
and industrial practices. This analysis aims to provide a contextual backdrop
for the subsequent development of the methodical approach, which is de-
signed to facilitate a broad and generalized integration of Al within the devel-
opmental process.

The Methodical Approach is a pivotal component of the research, serving
as a strategic framework for the application of Al across diverse facets of the
development process. This involves a systematic and carefully designed ap-
proach to harnessing Al's capabilities, thereby enhancing efficiency and effec-
tiveness.

Following the formulation of the Methodical Approach, the research will
delve into the exploration of individual aspects related to potential application
areas. This detailed investigation seeks to unravel the intricacies of applying
Al, providing insights into its nuances, challenges, and potential synergies
with existing practices. The focus here is not only on theoretical considera-
tions but also on practical assessments to confirm the real-world effectiveness
of Al applications.

As the research progresses, the conclusive proof of the utility of the pro-
posed method will be a critical juncture. Positive results from the explorations
will serve as the empirical foundation to substantiate the benefits of integrat-
ing Al within the development process. This final step aims to provide a com-
pelling case for the adoption of the method, underscoring its value and signif-
icance in addressing the identified problem. [14] [10]
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State of Science and Technology

In the context of the research landscape, significant activities are evident.
However, when it comes to mechatronic product development, the situation is
different. While looking at current and past publication titles there are occa-
sional attempts to leverage Al profitably, but these efforts typically focus on
individual aspects, neglecting a holistic examination of the entire development
process. Examples for this would be [15], [16], [17].

To thoroughly investigate and substantiate this observation, a compilation

of pertinent categories with the target of a detailed analysis has been under-
taken. These categories are crucial for the meaningful utilization of intelligent
methods for the product development. They include:

16

Consideration of the Holistic Cycle - Evaluate the extent to
which Al is already integrated into the overall mechatronic prod-
uct development process. This involves assessing the incorpora-
tion of Al at various stages, from conceptualization to prototyp-
ing, testing, and deployment.

Domain Linking - Investigate how Al facilitates the integration
and linking of diverse domains involved in mechatronic product
development, such as mechanics, electronics, controls, and soft-
ware. Assess the impact on decision-making, interoperability, and
the identification of design conflicts or trade-offs.

Replacement for Human Expert Knowledge - Analyse the role
of Al in complementing or potentially replacing human expert
knowledge in mechatronic product development. Evaluate how
Al models, trained on big data and domain-specific knowledge,
contribute to consistent and reliable decision-making.
Differentiation from non-relevant Knowledge - Assess the ca-
pability of Al databases to differentiate between relevant and non-
relevant knowledge. Explore how advanced search algorithms,
Natural Language Processing (NLP), and semantic analysis con-
tribute to prioritizing pertinent information and reducing infor-
mation overload.

Consideration of Knowledge Gaps - Investigate how Al data-
bases assist in identifying and bridging knowledge gaps within
mechatronic product development. Explore the use of knowledge
graphs and machine learning algorithms to infer missing



information, and validate the integrated data to ensure accuracy
and reliability.

Robustness of Prediction Quality - Evaluate approaches to
quantify and predict uncertainties inherent in Al, especially
within Artificial Neural Networks (ANNSs). Examine methods to
calculate additional output values reflecting the network's confi-
dence in predictions, providing users with insights into potential
deviations.

Consideration of Optimization Proposals with AI - Explore the
opportunities provided by Al databases for suggesting optimiza-
tion proposals in mechatronic product development. Assess how
Al analyses data to identify areas for improvement, propose de-
sign modifications, and enhance performance based on historical
data, simulations, and benchmarks.

Application to one or more Proofs of Concept - Examine the
application of Al concepts and methods to one or more proofs of
concept.

In order to be able to provide an assessment of the respective research activi-
ties, a corresponding scale is introduced. The evaluation will employ a five-
level scheme represented by circles, each indicating the degree of considera-
tion for a specific characteristic:

1.

No consideration (circle not filled): The literature lacks attention
to the introduced characteristic, with no meaningful references or
discussions.

Rudimentary consideration (circle 1/4 filled): The literature
provides a basic acknowledgment of the characteristic, with mi-
nor references or brief discussions lacking substantial depth or
analysis.

Balanced consideration (circle 1/2 filled): The literature exhibits
a moderate and well-rounded consideration, with reasonable at-
tention, various aspects discussed, and a relatively comprehensive
analysis.

High focus (circle 3/4 filled): The literature demonstrates a sub-
stantial focus on the characteristic, dedicating a significant por-
tion of content to in-depth exploration, offering valuable insights
and extensive discussions.

Holistic consideration (circle fully filled): At the highest level,
the literature exemplifies a comprehensive and all-encompassing
consideration of the characteristic. Thorough analysis covers
every aspect, showcasing a profound understanding and valuable
contributions to the field.

Figure 4 illustrates the outcomes of the conducted investigation regarding the
theoretical deficit.
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The visual result is emphasizing the anticipated observation that while indi-
vidual aspects are occasionally explored in great detail, a comprehensive per-
spective on the overall context is still lacking.

Consequently, there is an absence of a recommended course of action that
stakeholders can follow to effectively harness the potential of Al. This deficit
in a holistic approach impedes the identification of a strategic pathway to fully
exploit the opportunities presented by the intelligent methods. Additional in-
vestigations and aspects can be found in Paper 1.

In practice, the situation is analogous, with substantial expectations con-
cerning current and future potentials. This is corroborated by trend reports
from leading global consulting companies. For instance, McKinsey & Com-
pany, in their document titled The economic potential of generative Al, pub-
lished in June 2023, explore various future impacts of the ongoing mega-trend
of generative Al. They shed light on diverse scenarios, including the transfor-
mation of software engineering and R&D resulting from the effective use of
Al, as seen in Figure 5. [43] The prevailing expectation is unequivocally ori-
ented towards holistically supporting the development processes in both areas
— commencing from initiation and planning, extending to system design, and
culminating in maintenance and diagnosis.

Early Virtual Virtual Physical
Research Design Simulation Test
Analysis £ u Planning

% % % %

o), (@) 9§

Figure 5: The possible transformation fields of product R&D through Al according to
the report of McKinsey & Company [43]

As emphasized Research and Development stands on the brink of transfor-
mation, with the integration of cutting-edge technologies promising to revo-
lutionize traditional processes.

Early-stage analysis is undergoing a profound shift as researchers leverage
generative Al to augment market reporting, ideation, and the initial drafting
of products or solutions. This application empowers them to delve deeper into
market insights and swiftly generate innovative concepts.

The virtual design phase sees a significant evolution as generative Al ena-
bles researchers to swiftly generate drafts and designs based on prompts,
thereby facilitating rapid iteration with a plethora of design options. This
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acceleration not only expedites the design process but also enhances creativity
and exploration.

Virtual simulations, a crucial aspect of product development, are also ben-
efiting from advancements in generative Al. By integrating new deep learning
techniques, researchers are streamlining and optimizing virtual simulations,
leading to faster and more precise outcomes.

Furthermore, in the realm of physical testing, generative Al is revolution-
izing test planning. Researchers are now able to optimize test cases, resulting
in more efficient testing processes and reduced time requirements for physical
build and testing. This optimization not only saves time and resources but also
enhances the overall efficacy of the testing phase.

Similarly, Gartner, a trend research company, annually publishes so-called
Hype Cycles for a general technology radar and specific disciplines. The Hype
Cycle for Artificial Intelligence, 2023, as well as the others, comprises phases
such as

Innovation Trigger,

Peak of Inflated Expectations,

Trough of Disillusionment,

Slope of Enlightenment

and Plateau of Productivity.

As shown in Figure 6 the time axis is represented on the abscissa, while the
degree of expectation is depicted on the ordinate.
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Figure 6: The scheme of the 2023 Gartner Hype Cycle™ for Artificial Intelligence
(AI) [44], layout-matched

It is important to emphasize that the temporal categorization is symbol-based.
For instance, Artificial General Intelligence is currently transitioning between
Phase 1 and 2 but is anticipated to reach the plateau in more than ten years —
a significant temporal duration in the realm of technologies.
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Turning attention to technologies relevant to mechatronic product develop-
ment, terms like Al Engineering and Al Simulation quickly emerge. Accord-
ing to Gartner's assessment, these technologies are currently in the first phase
and are expected to reach the plateau in five to ten years. Knowledge Graphs,
experiencing a resurgence in research due to Al trends, currently find them-
selves in the Trough of Disillusionment and are projected to reach the desired
plateau of productive utilization in two to five years.

In summary, it is evident that individual phenomena related to Al potentials
exist and are adequately explored. However, a comprehensive understanding
and utilization of these effects are still pending. Such a holistic perspective
will serve as a guide for stakeholders, aiding in the initial integration of pos-
sibilities and the exploration of new avenues.
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Conception of the Methodology

Following the presentation of the initial project outline and the underlying sit-
uations in theory and practice with associated deficits, the development of a
methodology for successful potential analysis of robust Al along the develop-
ment process is now underway. As a first step, the development of the neces-
sary rough concept is based. For this purpose, the development of a corre-
sponding request image is initially carried out, visualizing the utilization po-
tentials of the approach in detail once again. Subsequently, a detailed analysis
of the phases and handover points of the V-model takes place, aiming to iden-
tify suitable support options for Al applications and the associated require-
ments as well as the prospects for success. Following this, requirements for
the methodology to be developed are elaborated to ensure alignment with the
identified deficits and target criteria. Building on this, the actual rough concept
is constructed with the associated methodological steps.

Utilization Potential of Al along Product Development

In the realm of product development, the integration of Al holds immense
potential for enhancing efficiency, innovation, and competitiveness. However,
harnessing this potential requires careful consideration of various require-
ments, particularly in terms of accuracy and reliability. Therefore, the goal is
to present a request image that visualizes the evolving demands placed on Al
throughout the product development process.

As products evolve from conceptualization to market launch, the requests
placed on Al systems undergo a corresponding evolution. At each stage of
development, specific requirements regarding accuracy and reliability become
increasingly critical. Understanding this evolution is essential for effectively
harnessing Al's potential in product development.

The request image serves as a visual representation of the evolving re-
quirements for Al accuracy and reliability throughout the product develop-
ment process. It provides a clear and concise overview of how the demands
placed on Al systems change as products progress from conceptualization to
deployment.

The horizontal axis of the request image delineates the various stages of
product development, from conceptualization and design to production and
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deployment. Each stage represents a distinct phase in the product lifecycle,
characterized by specific activities, milestones, and objectives. By organizing
the stages of development along the horizontal axis, the target image provides
a chronological framework for understanding how the demands placed on Al
systems evolve over time.

The vertical axis of the request image quantifies the level of requirements
for Al accuracy and reliability at each stage of the product development. This
axis serves as a metric for assessing the criticality of accuracy and reliability
in Al applications. At the bottom of the vertical axis, the level of requirements
is minimal, indicating that accuracy and reliability are of lesser importance.
As the axis ascends, the level of requirements increases, reflecting the growing
importance of accuracy and reliability in Al systems.

By examining the request image, stakeholders can gain valuable insights
into the evolving demands placed on Al systems throughout the product de-
velopment process. Trends and patterns in the image can highlight areas where
Al capabilities need to be strengthened or where additional resources should
be allocated to ensure the success of the product.

The resulting request image is shown in Figure 7. The individual phases
are explained in more detail in the following.

A

Conceptualization | Developmentand = Productionand = Post-Deployment
and Design Testing Deployment

Level of Request

Time in the Development Process

Figure 7: Request Image for Utilization Potential of Al along Product Development

During the conceptualization and design phase, Al is primarily utilized for
ideation, prototyping, and feasibility analysis. At this stage, the emphasis is
on creativity, exploration, and experimentation. While accuracy and reliability
are important, they are not always paramount. The request image reflects a
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relatively low level of requirements for Al accuracy and reliability during this
phase, as the focus is on generating diverse ideas and concepts.

As the product moves into the development and testing phase, the de-
mands placed on Al systems reach their peak. Here, Al is used for tasks such
as simulation, optimization, and validation. Accuracy and reliability become
critical considerations, particularly as Al algorithms are deployed to predict
performance, simulate behavior, and identify potential defects. The request
image illustrates a significant increase in the requirements for Al accuracy and
reliability during this phase, reflecting the need for robust and trustworthy Al
solutions.

In the final stages of production and deployment, Al is used for tasks
such as quality control, predictive maintenance, and customer support. At this
stage, the reliability of Al systems is paramount, as they directly impact prod-
uct performance, safety, and customer satisfaction. The request image depicts
a peak in the requirements for Al accuracy and reliability during this phase,
reflecting the critical role of Al in ensuring the success and longevity of the
product in the market.

Even after the product is launched, in the so called post-deployment
phase, the demands placed on Al systems continue to evolve. As data accu-
mulates and user feedback is collected, Al algorithms must adapt and improve
over time. The request image represents this ongoing process of refinement,
with the requirements for Al accuracy and reliability fluctuating as new chal-
lenges emerge and new opportunities arise.

The Linking Points of Al in the V-Model

As delineated earlier, the V-Model serves as a pivotal framework in software
development and testing, offering a systematic approach to ensure the quality
and dependability of software systems. Its distinctive "V" shape visually cap-
tures the interconnectedness of development and testing stages, with each de-
velopment phase mirrored by a corresponding testing phase on the opposite
side of the V. This model's applicability extends notably to mechatronic prod-
uct development, providing a structured means to develop and validate all
constituent components and their intricate interconnections. [7]

The overarching aim is to bolster and enhance the effectiveness of all
phases within this development process, as well as analogous or comparable
processes, by introducing meaningful value additions. Therefore, the subse-
quent phase involves the formulation of a dedicated process concept tailored
for the context-sensitive and robust utilization of Al in V-Model-related prod-
uct development.

This tailored process concept seeks to leverage the capabilities of Al in a
manner that aligns seamlessly with the specificities of the V-Model, as seen
in Figure 8.
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The concept addresses the nuances of integrating Al across diverse stages,
ensuring not only contextual relevance but also resilience in the face of uncer-
tainties and variations inherent in the product development lifecycle. By doing
so, the proposed concept aims to advance the state-of-the-art in mechatronic
product development, offering a roadmap for the effective incorporation of Al
within the structured framework of the V-Model.

Initiating with an established business model (Checkpoint 1), the cycle tran-
sitions into the specification phase, where requirements for the mechatronic
system are meticulously gathered and analyzed, spanning mechanical, elec-
tronic, and software aspects. These requirements form the foundation for the
entire development process. Al's utility in this phase extends to automated re-
quirement capture, NLP, and early risk detection, among other capabilities.
[45], [46], [47], [48]

Checkpoint 2 marks the conclusion of the specification phase, leading to
the commencement of the System Architecture phase. This stage involves in-
tegrating mechanical, electronic, and software components, ensuring align-
ment with requirements using the V-Model. The phase culminates in the es-
tablishment of architecture (Checkpoint 3). Al's support in this stage encom-
passes design automation, simulation models, error detection, collaboration,
and knowledge management. [49], [50], [51], [52]

The implementation of system elements, the visually lengthiest phase, fol-
lows, encompassing the development of subsystems like mechanical struc-
tures, electronic components, and software modules. Al plays a pivotal role in
translation, interpretation, and prediction approaches throughout this phase.
The successful completion leads to Checkpoint 4, Implementation. [18], [53],
[54]

System integration and verification come next, emphasizing seamless col-
laboration among mechanical, electronic, and software subsystems. The V-
Model ensures proper functioning, concluding at Checkpoint 5. Al's support
in this phase extends to interface automation and real-time monitoring, as
highlighted in sources such as [55], [56], [57].

The final phase involves validation and transition, ensuring each compo-
nent and subsystem meets requirements and functions correctly within the in-
tegrated mechatronic system. Checkpoint 6 marks the completion, with Al
contributing to intelligent test selection, test data management, and the gener-
ation or anonymization of synthetic data. [7], [58], [59]

Requirements for the Methodology

For a successful deployment of Al into the product development it essential
to define the right requirements and generate the correct specific metrics. The
task is therefore to examine how these processes can be designed to develop
robust Al solutions that meet the requirements of product engineering. [60]
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Requirement collection is the foundational stage in the process of seam-
lessly integrating Al into product development. It entails a detailed examina-
tion of the company's overarching goals and objectives, alongside a compre-
hensive understanding of the demands and preferences of end-users. To
achieve this, various methodologies such as interviews, surveys, workshops,
and focus groups are often employed, facilitating a holistic grasp of the intri-
cate nuances and specificities of the desired Al-powered solution. Addition-
ally, stakeholder consultations and market research play pivotal roles in en-
suring that the collected requirements are not only comprehensive but also
align closely with market trends and emerging technological advancements.
This phase serves as the bedrock upon which subsequent stages of Al imple-
mentation, such as design and development, are built, thereby laying a solid
foundation for the creation of innovative and user-centric Al-driven products
and services. [61], [62], [63]

Key questions to be addressed include:

e  What problems are to be solved through the use of AI?

e  What are the requirements of end-users for Al-powered products?

e What data is required for the development of the Al solution?

e  What technical and regulatory requirements need to be met?

After eliciting requirements, the subsequent crucial step entails the develop-
ment of specific metrics meticulously crafted to gauge the efficacy and suc-
cess of the Al solution. These metrics serve as quantifiable benchmarks, al-
lowing for a structured evaluation of the Al system's performance and impact.
They must be designed to reflect the intricacies of the company's objectives
and align seamlessly with its overarching goals and requirements.

Each metric should be clearly defined with precise parameters delineating its
scope and measurement methodology. Moreover, these metrics ought to be
dynamic, capable of adapting to evolving business needs and technological
advancements. By closely aligning these metrics with the company's strategic
vision and operational objectives, stakeholders can effectively monitor pro-
gress, identify areas for improvement, and make informed decisions to opti-
mize the Al solution's functionality and impact. [64], [65], [66]

Possible metrics may include:

e Precision and Dependability of AI Models: This evaluates the ac-
curacy and reliability of the Al solution in making predictions or de-
cisions, as well as its consistency over time.

o Effectiveness and Scalability: This assesses the efficiency and abil-
ity of the Al solution to operate swiftly and utilize resources opti-
mally, while also examining its capability to scale seamlessly with
increasing data volume or complexity.

e End-User Satisfaction: This measures the level of satisfaction
among end-users with the Al-powered product solution, determining
whether it effectively meets their needs and expectations.
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e Regulatory Compliance and Security: These metrics scrutinize
whether the Al solution adheres to regulatory standards and if it pro-
vides robust security measures against potential threats.

Gathering requirements and crafting precise metrics are pivotal stages in the
creation of resilient Al solutions for product development. By conducting me-
ticulous requirement analyses and establishing unambiguous metrics, compa-
nies can guarantee that their Al solutions effectively meet their intended ob-
jectives, delivering tangible value to both their products and customers.

Application to the Proof of Concept

In the course of the already hinted proof of concepts, a corresponding devel-
opment of case-specific requirements and metrics will take place further in the
course of the research project. In the case of the described example regarding
the optimized interaction between design or development and production, the
previous questions can be asked and the possible answers forecasted accord-
ingly:

What problems are to be solved through the use of AI?

The (improved) and intelligent provision of expert knowledge to efficiently
access insights from the past and utilize them purposeful in the present and
future.

What are the requirements of end-users for AI-powered products?

One of the biggest demands is the easy utilization of insights through as natu-
ral as possible posing of requirements. A model here is certainly the currently
public large language models like ChatGPT & Co., where users can ask natu-
ral queries and immediately receive as accurate information and assistance as
possible. If only an uncertain response is possible for the corresponding query,
this must be appropriately marked, as the reliability of the information plays
arole in product development. However, the level of detail depends on many
circumstances - see chapter Utilization Potential of Al along Product Devel-
opment for more details.

What data is required for the development of the Al solution?

On the one hand, sufficient knowledge from past projects must be usable. The
major hurdle here is often the insufficient processing of information to date
and the unstructured storage of it. In addition, it will generally be necessary to
gather supplementary knowledge, as the data for training the Al must be di-
verse enough to ensure comprehensive knowledge and ensure usability.
What technical and regulatory requirements need to be met?

In addition to the requirements already described such as robustness, there are
always data protection and security requirements for the Al as well as its data
foundations and forecasts. However, these are company-specific or govern-
mental and must be declared and subsequently implemented accordingly.
Only in this way can the tool also be used in the real world.
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General Concept and Classification

Below, the high-level concept for the robust and holistic Al support of mech-
atronic product development is presented. The methodology, depicted and ex-
plained in the following Figure 9, consists of three sub-models that converge
in the actual support of the V-model using intelligent methods.

I. Development and Implementation of new Methods for
Al-optimized Knowledge Graphs

IIL. Ignorance competent Al through ensured Robustness and
Sensitivity of the Prediction Quality

III. New System Design with AI-Support

— ...

IV. Robust AI -Support for the holistic Development Process

Figure 9: General concept for the robust and holistic Al support
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In the initial phase, the focus is on the creation and enhancement of Al-opti-
mized knowledge graphs. This involves the identification and integration of
diverse data sources, ensuring comprehensive coverage of relevant infor-
mation. The development process includes employing advanced machine
learning algorithms to extract, classify, and link data points, resulting in a dy-
namic and evolving knowledge graph. The goal is to build a robust foundation
that serves as the backbone for subsequent Al-driven processes.

To ensure the effectiveness and reliability of the Al system, the second step
emphasizes the implementation of robustness and sensitivity measures. This
involves thorough testing under diverse conditions and scenarios to identify
potential biases, weaknesses, and vulnerabilities in the Al model. Addressing
these issues ensures that the Al system is competent enough to handle uncer-
tainties and ignorance in real-world situations, enhancing its reliability and
usability.

With the Al-optimized knowledge graphs and a robust Al model in place,
the next step involves integrating Al support into the overall system design.
This includes identifying key decision points, processes, and interactions
within the development lifecycle where Al can provide valuable insights, pre-
dictions, or automation. The goal is to create a symbiotic relationship between
human expertise and Al capabilities, enhancing overall efficiency and deci-
sion-making.

The final step encompasses the seamless integration of Al throughout the
holistic development process. This involves continuous monitoring, learning,
and adaptation of the Al system to evolving requirements and challenges. The
Al support is designed to complement human expertise, offering insights, pre-
dictions, and automation that contribute to a more efficient, informed, and
adaptive development process. Regular updates and refinements to the
knowledge graph and Al model ensure that the system remains at the forefront
of technological advancements.

In summary, the proposed methodology follows a systematic approach,
starting with the development of Al-optimized knowledge graphs and ensur-
ing the robustness and sensitivity of the Al model. It then integrates Al support
into the overall system design, culminating in a robust Al-supported develop-
ment process that enhances decision-making and efficiency across the board.
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Detailing the Methodology

Building upon the developed rough concept, the subsequent step involves the
four-step detailing of the method for the holistic potential analysis and utili-
zation of Al possibilities in the development of mechatronic systems.

The initial phase involves creating and improving the knowledge base for
Al-optimized Knowledge Graphs by identifying and integrating diverse data
sources, utilizing advanced machine learning algorithms to extract, classify,
and link data points, with the aim of establishing a dynamic foundation sup-
porting subsequent Al-driven processes. The second step emphasizes imple-
menting robustness and sensitivity measures through thorough testing under
diverse conditions to enhance the Al system's reliability and usability.

The third step involves integrating Al support into the system design, iden-
tifying key decision points and processes where Al can provide insights or
automation, aiming for symbiosis between human expertise and Al capabili-
ties to enhance efficiency and decision-making. Within this work, this point
will be exclusively addressed as a future outlook. It examines the actual ap-
proach to the operational implementation of the developed methodology. In
the final step, integration into the development cycle will occur, along with an
examination of the resulting outcomes and phenomena. Thus, using the use
cases introduced in the introduction, the methodology will undergo verifica-
tion or validation.

Al and Knowledge

In the initial phase, the focus is on creating and refining Al-optimized methods
for knowledge mining. This entails identifying and integrating diverse data
sources to ensure comprehensive coverage. Using advanced machine learning
algorithms, the extraction, classification and linking of the data points takes
place, resulting in a dynamic knowledge graph. The objective is to establish a
robust foundation, serving as the backbone for subsequent Al-driven pro-
cesses. From this arises the first research question, visualized in Figure 10.
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I. Development and Implementation of new Methods for
Al-optimized Knowledge Graphs

N T

RI

How can the relevant areas of knowledge and non-knowledge in
mechatronic development processes be identified, evaluated and
delimited from each other in order to reach the acceptable level of
ignorance competence through targeted knowledge mining?

Figure 10: Development and Implementation of new Methods for Al-optimized
Knowledge Graphs

Al plays a crucial role in mechatronic product development, particularly as a
robust database. Leveraging Al methodologies like machine learning and
knowledge representation, it efficiently manages extensive volumes of infor-
mation, ensuring organized storage and retrieval. This Al-driven database
serves as a valuable asset, granting engineers rapid and comprehensive access
to a wealth of knowledge, including past designs, simulations, test results, and
best practices. The centralized repository not only expedites the design pro-
cess but also fosters collaboration among interdisciplinary teams by offering
a shared platform for exchanging information. [67]

The basis for this is, in any case, an appropriate database. In this context,
the quantity of the necessary information is not even the actual problem but
the identification of the selection relevant for the purpose — keyword
Knowledge Explosion. This phenomenon refers to the rapid proliferation of
information and data, particularly in the fields of science and technology. This
surge in knowledge is driven by technological advancements, especially the
internet and powerful computers, combined with increased global intercon-
nectedness and collaboration. These factors have greatly facilitated the acces-
sibility, storage, and sharing of information. [68]

The Knowledge Explosion has brought numerous advantages, including
widespread access to extensive information, the capacity to exchange ideas,
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and collaborative efforts in research and development. However, it has also
presented challenges, such as grappling with information overload and the ne-
cessity for advanced techniques and tools to navigate and derive meaning from
the data. Therefore, the objective is to adeptly navigate and harness the abun-
dance of available information, but individual experts often hold essential
knowledge within companies, limiting its availability. This may result in un-
necessary redundancies and hinder further development. [69], [70]

To overcome this challenge and effectively utilize existing knowledge, pro-
cesses of identifying, evaluating, and organizing information are crucial.
Techniques like data mining, statistical analysis, and machine learning ana-
lyze data from various sources to extract meaningful insights. The goal is to
convert data into actionable knowledge for informed decision-making, appli-
cable across fields like engineering, finance, and sustainability. The
knowledge analysis process involves data cleaning, visualization, and inter-
pretation - an iterative approach that may lead to new questions. [71], [72],
(73], [74]

But what happens in cases where this knowledge cannot be fully captured,
and thus there is no uniform information base for the use of intelligent meth-
ods? At this point, Al can provide significant added value. Al databases can
identify such gaps and assist in addressing them. As a result, a more compre-
hensive understanding of the system is achieved, enabling better prediction.
[75]

Knowledge Graphs and Data Imputation

To appropriately assess the situation and evaluate the knowledge base,
Knowledge Graphs can be employed as a technique. While the methodology
is not new — initial publications date back at least to the 70s — they have expe-
rienced a kind of renaissance following the Al boom. [76], [77]

Atits core, a Knowledge Graph is a graph-based data structure that captures
entities, their attributes, and the relationships between them. Unlike traditional
databases that store information in tables, Knowledge Graphs embrace a
graph-oriented approach, where nodes represent entities and edges denote the
relationships between them. This interconnected structure enables the repre-
sentation of complex, real-world knowledge in a highly expressive and flexi-
ble manner. [78]

The concept of semantic enrichment lies at the heart of Knowledge Graphs,
where raw data undergoes augmentation with semantic annotations to imbue
it with significance. They achieve this by harnessing ontologies, taxonomies,
and schemes, enabling them to encode not just the data, but also the underlying
semantics. This semantic layer facilitates robust inferencing and reasoning ca-
pabilities, empowering Al systems to extract deeper insights and make more
informed decisions. [79]
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The construction of a Knowledge Graph comprises multiple stages, com-
mencing with data acquisition and preprocessing. Raw data sourced from a
variety of outlets, including structured databases, unstructured text, and online
content, is initially ingested and then standardized. This transformation pro-
cess often includes entity recognition, relationship extraction, and disambigu-
ation techniques aimed at guaranteeing data quality and coherence. After pre-
processing, the data is translated into a graph-based representation, where en-
tities are mapped to nodes and relationships to edges. This mapping process
entails establishing ontologies, schemes, and vocabularies that dictate the
structure and semantics of the Knowledge Graph. Utilizing graph-based algo-
rithms, patterns can be uncovered, related entities clustered, and missing rela-
tionships inferred, thereby enhancing the graph with supplementary
knowledge. The four steps for the so called extraction pipeline can be found
in Figure 11. [80], [81], [82]
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Figure 11: The four process steps for creating Knowledge Graphs

In NLP, knowledge graphs facilitate entity linking, semantic parsing, and
question answering by providing a structured representation of knowledge that
can be leveraged to interpret and generate natural language text. Moreover, in
machine learning, Knowledge Graphs serve as a source of structured data for
training and inference, enabling models to exploit rich relational information
and generalize more effectively. This integration into the intelligent systems
has profound implications for the field, unlocking new possibilities for
knowledge representation, reasoning, and decision-making. By encapsulating
domain knowledge in a graph-based format, Al systems gain a deeper under-
standing of the underlying semantics, enabling them to perform more sophis-
ticated tasks with greater accuracy and efficiency. Furthermore, Knowledge
Graphs facilitate interoperability and integration across disparate Al systems
and data sources, fostering collaboration and knowledge sharing in complex
Al ecosystems - as a parallel representation of the real situation, as already
explained in the Introduction. [83], [84]
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But despite their promise, Knowledge Graphs are not without challenges.
Scaling knowledge graphs to handle large-scale, dynamic datasets poses scala-
bility and performance issues. Additionally, ensuring the quality, completeness,
and consistency of knowledge graphs remains a persistent challenge, requiring
ongoing efforts in data curation, validation, and maintenance - similar to the
situation of Al use in product development with resilient deployment. [85]

Subsequently, it is possible to fill in incomplete knowledge areas using Ma-
chine Learning methods. These methods are capable of inferring missing in-
formation, detecting implicit relationships, predicting new connections, and
filling gaps based on existing data. This process is referred to as data imputa-
tion. Further details can be found in, among other sources, Paper IV. [86]
Following that, there is an opportunity to validate the data incorporated into
the knowledge Graph, ensuring its accuracy and reliability. More details on
this can be found in the Chapter Al and Ignorance Competence and again Pa-
per IV. It is essential to establish quality assurance processes for consistently
reviewing and updating the data. [67], [87], [88], [89]

Below are two approaches for applying intelligent methods for both
knowledge generation and early analysis through simulated expert knowledge,
supporting the creation of corresponding Knowledge Graphs as well as the
next steps in using the actual intelligent methods.

Intelligent Analysis of Components

The presented method, visualized in Figure 12, serves the intelligent analysis
of components with the goal of consolidating them into a feature table.
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Figure 12: The process steps for the intelligent analysis of components and features
leading to the extracted knowledge, developed in Paper II
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Initially, an approach is devised to swiftly localize features while also deter-
mining their origin and dimensions using raytracing techniques. This ap-
proach offers the advantage of enabling precise segmentation of features and
their immediate surroundings. Regions devoid of features are disregarded,
streamlining subsequent analysis.

The selected approach provides resolution advantages for the subsequent
voxelization, which serves as a crucial preparatory step for supplementary
analysis utilizing techniques like ANNSs for automated recognition of trained
phenomena. By avoiding a uniform resolution in favor of individual segments
with sufficiently high resolution, the examination of features attains necessary
detail. Opting for a uniform resolution would render such detailed examina-
tion impractical due to increased computational demands.

Following segmentation, the next phase involves classifying the segmented
areas based on known feature classes. A method is developed to assign fea-
tures to defined classes using rule-based catalogs and associated examination
procedures. Incorporating precise dimensional data and contextual placement
within the component facilitates cataloging and further processing.

An example of a special feature could be an existing hole drilled in the
component. If a ray starts outside the component and exits on the opposite
end, it must intersect the hole at least two times. If the number of intersections
is greater, it could indicate another feature or multiple instances of the same
feature type being examined. Further querying procedures are then required to
investigate these possibilities and provide a conclusive determination. Figure
13 illustrates the querying procedure for the selected example of boreholes.
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Figure 13: Sequence procedure for the detection of boreholes, developed in Paper I1
Finally, the component segments are converted into a format conducive to

mathematical analysis and subsequent processing, utilizing the ongoing
voxelization approach. Leveraging the segmentation accomplished earlier, an

37



appropriate resolution is chosen to maintain computational efficiency without
sacrificing detail. Thus, this approach not only facilitates the extraction of
knowledge but also adheres to sustainable practices throughout the develop-
ment process. An exemplary result can be found in Figure 14. In this case, all
38 features in the xy-plane were automatically detected.

Visualization of the detected boreholes in the
xy-plane by the developed method

Ignorable areas

Figure 14: Visualization of the detected features by the developed method in the xy-
plane, developed in Paper I1

In conclusion, the detailed process established serves as a valuable tool to ef-
fectively manage existing masses of information. Existing projects are thor-
oughly examined and labeled, while new components are appropriately ad-
dressed. This process also establishes essential precautions for future Al utili-
zation. Completed projects become valuable content rather than cluttering
storage space. This method was developed in collaboration with a manufac-
turing company for exactly this purpose. Their projects served as a corre-
sponding proof of concept. More details on the used techniques as well as the
process steps can be found in Paper II.

With regard to the development process, the developed methodology is
particularly beneficial for creating the knowledge base — as evident in
Figure 15.
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Figure 15: The placement of the Intelligent Analysis of Components method within
the development process

Intelligent Component Manufacturability Testing

Al can make certain statements, focusing on the feasibility and success poten-
tial of projects or components. By utilizing knowledge resources and suitable
algorithms, Al assesses the likelihood of achieving desired outcomes and
identifies potential obstacles or challenges during the development process.
This enables companies to make informed decisions regarding resource allo-
cation, time management, and overall project feasibility.

In this context, an Al-based approach, visualized in Figure 16, combined
with preprocessing to address the knowledge explosion, was developed in Pa-
per III. This involves selectively ignoring irrelevant information within a CAD
model to effectively support and secure production-oriented design in virtual
product development. The specific case discussed is the feasibility of holes in
components for milling processing. 37 different wells were successfully ana-
lyzed in Figure 16. The outcomes match those of commercial tools, yet the
efficient and assured management of irrelevant data provides a time ad-
vantage, facilitating targeted analysis concerning producibility.

Part with Extraction Analvsis Result
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Figure 16: Exemplary visualization of the Al-supported method for the detection of
manufacturability, developed in Paper 111
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The workflow in Figure 16 illustrates the intelligent assessment of manu-
facturing feasibility in virtual product development. In the preprocessing step,
relevant areas are initially extracted from the examined product. Subse-
quently, these voxelized regions enter the 3D-Convolutional Neural Network
(CNN), enabling the analysis of individual construction elements. The final
step involves visualizing the results. Any identified manufacturing deficien-
cies can be rectified using a CAD program.

The process follows an iterative development approach. Employing a bot-
tom-up strategy, it begins with task formulation (feasibility analysis of drill-
ings) and then generates the required dataset. The approach is clearly influ-
enced by CRISP-ML(Q) and QUA3CK methodologies. CRISP-ML(Q) is a
machine learning methodology adapted from CRISP-DM, focusing on itera-
tive data analysis and model development. QUA3CK integrates quality man-
agement into agile product development, emphasizing continuous improve-
ment and customer satisfaction. Unlike traditional linear processes, both meth-
odologies are iterative and prioritize adaptability and quality, aligning with
modern agile practices. [90], [91], [92]

For a comprehensive understanding of the developed 3D-CNN and the in-
tricacies of the completed training processes, refer to Paper I11. This document
provides a detailed exploration of the architecture, configurations, and out-
comes of the 3D-CNN, shedding light on the methodologies employed in its
development and training.

In summary, it can be concluded that while the basic feasibility check can
also be performed with conventional tools, the developed methodology sig-
nificantly increases speed due to the quick decision-making capability of Al
methods. Furthermore, the Al enables feasibility checks that do not follow
conventional logic and only allow for an assessment as a whole. Here, the Al
recognizes corresponding patterns and implements them in the future. Partic-
ularly when combined with the methods from Paper II, Al can ignore irrele-
vant areas and thus analyze only the relevant areas quickly.

This method was developed in collaboration with a manufacturing com-
pany whose projects served as corresponding proof of concepts and aimed to
improve interaction with customers in the early phases of development.
With regard to the development process, the developed methodology is
particularly beneficial for the phase between Checkpoints 1 and 2 — as
evident in Figure 17.
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Figure 17: The placement of the Intelligent Component Manufacturability Testing
method within the development process

Addressing the 1st research question

The first research question, developed in the Introduction, concerns

and was methodically addressed.

In the course of the previous chapter, existing methods for the knowledge
base in the form of knowledge graphs were presented and the specially devel-
oped methods for the targeted differentiation between relevant and ignorable
information as well as for fast and intelligence-supported manufacturability
checks were introduced. Consequently, the first research question can be re-
garded as successfully answered, as the methods function reliably and existing
information becomes usable knowledge in this way.

Al and Ignorance Competence

As the second step in the presented general concept, ensuring the effectiveness
and reliability of the Al system is emphasized through the implementation of
robustness and sensitivity measures. Addressing the potential issues enhances
the Al system's competency in handling uncertainties and ignorance in real-
world situations, boosting its reliability and usability. This condition is
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referred to in the following as ignorance competence. The term refers to the
recognition and acknowledgment of one's lack of knowledge or understanding
in a particular subject or field. Rather than being a state of complete ignorance,
it entails being aware of the boundaries of one's expertise and being open to
learning and seeking further knowledge. In essence, ignorance competence
involves understanding what one doesn't know and being willing to engage in
the process of acquiring new knowledge and skills to bridge those gaps. This
mindset promotes humility, curiosity, and continuous growth, as individuals
who possess ignorance competence are more likely to seek out opportunities
for learning and development, leading to personal and professional advance-
ment. From this arises the second research question, visualized in Figure 18.

II. Ignorance competent Al through ensured Robustness and
Sensitivity of the Prediction Quality

R2

How can the critical analysis parameters for success and the ideally
suitable segments of the development process for the use of robust and
context-sensitive artificial intelligence be identified?

Figure 18: Ignorance competent Al through ensured Robustness and Sensitivity of the
Prediction Quality

In the context of the V-Model or comparable development processes, it be-
comes evident that the robustness of the forecasting model plays a fundamen-
tal role. From a temporal perspective, it may be sufficient in early develop-
ment phases to obtain a rough estimate. For example, to acquire an initial met-
ric for further work or to obtain a general forecast of the temperature ranges
in which the application operates, thereby considering materials that can be
taken into account. In subsequent stages, it might become imperative for the
predictions to demonstrate either a heightened level of precision or a minimal
margin of error, particularly in contexts like autonomous driving or other
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safety-sensitive domains. To ensure the suitability of the model for each phase
and, for economic reasons, to train the model to a sufficient extent for its in-
tended use, the consideration of robustness and sensitivity is indispensable, as
[93] and [94] also examine in their work.

Within the method, the concept of Ignorance Competence emerges as a
compelling area of inquiry. As one navigates through the intricate seas of in-
formation, the aim is to uncover the delicate equilibrium between the robust-
ness and sensitivity inherent in intelligent systems. These systems not only
possess the prowess to sift through overwhelming data volumes but also ex-
hibit a remarkable sensitivity to contextual nuances. [95]

The robustness of Al systems becomes evident as they grapple with the
challenges posed by vast and diverse datasets. Therefore Al systems have to
fortify themselves against noise, uncertainties, and adversarial inputs, ensur-
ing resilience in the face of complex information landscapes, as [96] also clar-
ifies. Understanding the robust nature of Al is integral to appreciating its
adaptability and reliability in diverse decision-making scenarios, which also
plays a major role in the medical sector, for example, as [97] shows.

Conversely, the sensitivity of Al systems is another aspect that contributes

to their nuanced decision-making processes. These intelligent systems have
the capability to selectively ignore irrelevant information, honing in on the
salient features that are critical for informed decision-making. The exploration
of sensitivity in Al involves understanding how these systems discern pat-
terns, recognize context, and navigate the delicate balance between infor-
mation retention and intentional ignorance.
With this intersection between Al and Ignorance Competence, it is crucial to
dissect the dual nature of these systems - robust in their ability to handle com-
plexity and sensitive in their capacity to discern and prioritize information.
Through this exploration, the aim is to illuminate the evolving landscape of
Al, shedding light on the dynamic interplay between robustness and sensitiv-
ity as essential attributes in shaping the future of intelligent decision-making
processes.

Understanding Uncertainty and Sensitivity

Utilizing ANNs for predictions necessitates a thorough assessment of their
reliability and addressing potential undesired consequences related to Al
Quantifying uncertainties within ANNS is crucial for computing an additional
output value reflecting prediction certainty, thereby informing users about po-
tential deviations. [98], [99]

Before delving into uncertainty analysis in ANNSs, it's essential to grasp the
underlying sources. Aiding in comprehension, these uncertainties can be cat-
egorized into data and model uncertainties. [100]
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1. Data Uncertainty: Data uncertainty stems from inherent inaccuracies
due to noise or imperfect structuring, such as sensor-recorded data.
Collecting more data doesn't fully mitigate this uncertainty, which can
manifest as homoscedastic (constant variance) or heteroscedastic
(variance dependent on input data). [101]

2. Model Uncertainty: Conversely, model uncertainty arises from in-
sufficient training data, impacting the model's accuracy, especially in
regions with limited reference data. This limitation hinders the mod-
el's generalization capability, affecting its representation of patterns
and relationships in the data. [102]

An ensured robustness is crucial for ensuring reliable predictions within the
dynamic landscape of ANNs. Robustness assessment involves gauging both
training success and prediction quality. ANNs learn from data during training
to capture patterns, while the prediction phase tests their adaptability to novel
inputs. Deviations from expected values indicate low robustness, whereas ac-
curate predictions for unknown data signify high robustness. Extending this
evaluation to Out-of-Distribution (OOD) data enhances understanding of the
network's robustness. [103], [104]

Modern development processes prioritize robustness, especially in early

stages with limited data. This necessitates the incorporation of model uncer-
tainty considerations. Model uncertainty, influenced by training data and ac-
centuated in regions with scarce reference data, is integral to comprehensively
assessing robustness. The analysis strategically focuses on areas involving
new and unknown input data, offering a holistic perspective by integrating
considerations of model uncertainty. [105]
Sensitivity analysis is crucial for understanding how ANNs respond to varia-
tions in parameters. The influences of network parameters, such as neuron
count and learning rate, are evaluated for their impact on training outcomes.
Assessing sensitivity becomes vital when predictions are required for previ-
ously measured inputs, as high sensitivity can lead to diverse effects and po-
tential additional costs in real development processes. [106], [107]

Within sensitivity analysis, data uncertainty serves as an imperative meas-
urement. It allows the evaluation and classification of predictions' sensitivity
by determining uncertainty arising from disturbances in training and input
data. This nuanced approach ensures a thorough understanding of how the
network responds to variations in parameters and input variables, providing
valuable insights for robust and reliable Al applications.

The following section presents a method developed in Paper IV, which uses
appropriate techniques to pave the way for ignorance-competent Al and thus
the appropriate application for each development phase.
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Ignorance Competence through ensured Robustness and
Sensitivity

In the realm of uncertainty analysis for network predictions, diverse tech-
niques with unique strengths and drawbacks exist. Evaluating the perfor-
mance characteristics of these procedures is crucial to discern their suitabil-
ity for specific applications. Within Paper IV, a method was therefore devel-
oped to counter this situation with a suitable process, the aim of which is to
enable proficient handling with Al This can be seen in Figure 19. The details
for the techniques can be read for example in [108], [109], [110] as well as
in Paper I'V.
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Figure 19: The method for the use of Robustness- and Sensitivity-checked Al, devel-
oped in Paper IV

Employing a decision tree approach, visualized in Figure 20, facilitates this
assessment, guiding users to choose a routine aligning with their specific
needs and situational requirements.
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Figure 20: Overview of the techniques for determining uncertainty, developed in Pa-
per IV

In order to gauge the suitability of these techniques for particular applications,
it becomes imperative to thoroughly evaluate and analyze their performance
characteristics. This comprehensive assessment is essential for making in-
formed decisions about the most fitting approach based on the specific re-
quirements and intricacies of the given application.

In the subsequent analysis, the goal is to subject the previously mentioned
methods to testing, comparing their outcomes while considering their distinct
underlying approaches. The evaluation focuses on assessing two crucial types
of uncertainty: data uncertainty and model uncertainty.

For the performance test, a function that incorporates both a cosine and an
exponential component is chosen. Additionally, a gap within the training data
is introduced to scrutinize the behavior within the interpolation range.

In Figure 21, the left side visually represents the predictions of the methods
post-training. The original function is depicted in black, and the training data
is represented by the x-symbols. The network prediction is shown in red, ac-
companied by the variance displayed in pink. This diagram includes divisions
into various variance ranges, based on the probabilities of the Gaussian normal
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distribution. Notably, some of the presented methods possess the capability to
distinguish between uncertainties and provide them based on their respective
types, as illustrated on the right side. Here, the model uncertainty is repre-
sented in red, while the data uncertainty is displayed in blue.

Bayes by Backdrop 4 Deep Dropout

Figure 21: Exemplary results of the uncertainty determination, on the right with dis-
tinction between model (red) and data uncertainty (blue)

Following the analysis of the process results, the subsequent step involves the
creation of a performance spectrum for each method. The outcomes are then
assessed and visually represented in the form of a structured tree, serving as a
decision-making aid. When employing uncertainty analysis for predicting
ANNSs, users can choose the most suitable method based on the available data
and framework conditions. The decision tree offers users a navigational tool
through different branches, allowing them to determine the most appropriate
procedure tailored to their specific circumstances.

Given that each method comes with its own set of advantages and disad-
vantages, there is no universally preferred solution. Specific use cases create
conditions where one method may excel, while another may yield different
outcomes. Ultimately, the selection of the method hinges on the user and the
application at hand.

The resulting decision tree from Paper IV is depicted in Figure 22. It allows
the identification of the most suitable procedure, enabling users to interpret
procedures and Al results effectively. This approach shifts away from perceiv-
ing them as black boxes, fostering proficiency in handling them. Conse-
quently, Al-based prediction models can serve as effective communicators be-
tween domains in modern product development, fostering trust. More details
can be found in Paper IV.
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Figure 22: The resulting decision tree for practical applications
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With regard to the development process, the developed methodology is par-
ticularly beneficial for the phase between Checkpoints 2 and 4 — as evident in
Figure 23.
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Figure 23: The placement of the Ignorance Competence through ensured Robustness
and Sensitivity method within the development process

Here, the robustness of Al predictions, optimization suggestions, and transla-
tions must be known as precisely as possible. It is crucial to determine whether
it is merely an early estimation or a reliable and safety-critical statement.

Addressing the 2nd research question

The second research question, developed in the Introduction, concerns

and was methodically addressed.

Relevant requirement questions and corresponding metrics were proposed that
could lead to the investigation with the aim of answering the stated question.
The specially developed methods for the best possible use of robustness tests
for Al were also presented in order to ensure application potential and require-
ments, as shown in Figure 7. The findings also show that Al can provide support
in all phases, the conditions are just different. As a result, and on the basis of the
progress made, it is possible to use Al safely and in line with requirements in
mechatronic product development. At the same time, this means that the re-
search question has been addressed and answered accordingly. In the next phase
of the project, specific metrics & co. will be developed on the basis of the proof
of concepts indicated, which can be used for subsequent validation.
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Outlook: New System Design

Given the imperative to harmonize multifaceted requirements and disciplines
throughout the process of mechatronic product development, the necessity for
seamless integration across various domains becomes progressively apparent.
Co-simulation frameworks offer a promising avenue for achieving this inte-
gration by allowing different components of a mechatronic system to interact
in a simulated environment. [111], [112], [113]

However, ensuring effective communication and coordination among these
disparate domains remains a significant challenge. The goal therefore is to
explore the role of Al in facilitating the linking of diverse mechatronic do-
mains within a co-simulation framework, as the process concept in Figure 24
demonstrates. Specifically, the focus is on three key aspects: translation, in-
terpretation, and prediction.

II1. New System Design with AI-Support
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How does the process for the linking of diverse mechatronic domains
within a co-simulation framework succeed through translation,
interpretation and prediction approaches using artificial intelligence?

Figure 24: New System Design with AI-Support

Bridging the Gap Between Domains by Translation

One of the fundamental challenges in co-simulation is the disparity in repre-
sentation and semantics across different domains. For example, mechanical
and electrical systems often employ different modeling techniques and nota-
tions, making it difficult to establish meaningful connections between them.
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Al techniques, particularly NLP and machine learning, can play a crucial role
in bridging this gap. [114], [115], [116]

NLP algorithms play a pivotal role in the integration process by scrutiniz-
ing textual descriptions, specifications, and documentation linked with each
domain. They extract pertinent details and transform them into a standardized
format, streamlining the mapping of variables, parameters, and interfaces
across various components. This harmonization facilitates smooth communi-
cation within the co-simulation framework. Furthermore, machine learning al-
gorithms enhance this process by discerning patterns and relationships from
historical data, progressively refining the accuracy and efficiency of the trans-
lation process. [117], [118], [119]

Interpretation: Extracting Meaning from Interactions

Once the various domains are linked within the co-simulation framework, the
next challenge is to interpret the interactions and exchanges that occur be-
tween them and the associated players. This involves understanding the cause-
and-effect relationships, identifying anomalies or deviations from expected
behavior, and making real-time decisions to ensure the stability and perfor-
mance of the overall system.

Incorporating Al techniques such as pattern recognition, anomaly detec-
tion, and decision-making algorithms significantly enhances the integration
process. These algorithms analyze the data streams generated by each domain
during simulation, enabling them to discern patterns of interaction and identify
any unusual or unexpected behaviors.

Subsequently, appropriate corrective actions can be taken. For example, a
decision tree algorithm trained on historical data can analyze the current state
and inputs of a mechatronic system to predict potential future paths. By iden-
tifying critical decision points and their likely outcomes, the system can pro-
actively adjust its parameters or configurations, thereby mitigating the risk of
undesirable outcomes before they occur. [120], [121]

Prediction: Anticipating Future States

In addition to interpreting the present interactions within the co-simulation
framework, Al can also be used to predict future states and behaviors of the
integrated mechatronic system. This proactive approach enables preemptive
decision-making and optimization, leading to improved performance, reliabil-
ity, and efficiency.

Machine learning techniques such as regression, time series analysis, and
reinforcement learning can be employed to forecast the evolution of system
variables and parameters over time. By learning from historical data and in-
corporating real-time feedback from the simulation environment, these algo-
rithms can generate accurate predictions of future states, enabling advanced
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control strategies and optimization algorithms to be applied. [122], [123],
[124]

Al-Enabled Co-Simulation of Design and Production

Let's think of the scenario from the Introduction again: integrating the design
and production domains within a co-simulation framework is essential for op-
timizing processes in industries like manufacturing, design, and infrastructure
development.

In this case, the design domain involves activities such as site layout plan-
ning, material procurement, scheduling, and resource allocation. On the other
hand, the production domain encompasses manufacturing processes, supply
chain management, inventory control, and quality assurance.

By integrating these two domains using a co-simulation framework, it is
possible to optimize the entire lifecycle of a design project, from planning and
design to execution and delivery. However, the complexity of coordinating
activities across these domains poses a significant challenge.

Al techniques can play a crucial role in addressing this challenge by ena-
bling seamless communication and coordination between the design and pro-
duction domains.

NLP algorithms offer a prime example of this capability. They sift through
textual descriptions, specifications, and documentation linked to design plans
and production schedules. In doing so, these algorithms extract pertinent de-
tails and convert them into a standardized format. This process streamlines the
mapping of tasks, resources, and dependencies between the design and pro-
duction domains, fostering seamless integration.

Following NLP's preparatory work, machine learning algorithms step in to
interpret interactions and exchanges between the design and production pro-
cesses. Leveraging historical data and real-time feedback from sensors and
monitoring systems, these algorithms scrutinize patterns of behavior, pinpoint
bottlenecks, and inefficiencies. Subsequently, they generate data-driven rec-
ommendations for optimizing processes, thus enhancing overall efficiency.

Furthermore, predictive analytics can anticipate future states and outcomes,
enabling proactive decision-making and risk management. For example, ma-
chine learning models can forecast the availability of materials and resources,
predict devlopment delays or production bottlenecks, and optimize scheduling
and resource allocation to mitigate potential risks.
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Summary and Conclusion

In conclusion, the imperative for intelligent data and potential analysis in
mechatronic product development is well-founded, given the persistent chal-
lenges related to synchronization and efficiency. The substantial advance-
ments in Al, particularly in generative Al, present unprecedented opportuni-
ties. While some pioneering companies have already embraced proprietary Al
solutions, it is evident that significant challenges, particularly in terms of ro-
bustness and trustworthiness, remain unaddressed.

Responding to these pressing needs, two fundamental research questions
have been successfully addressed and answered.

Firstly, the comprehensive methodology introduced examines the entire de-
velopment process through the illustrative V-Model and strives to establish a
robust Al landscape. This approach effectively identifies, evaluates, and de-
limits the relevant areas of knowledge and non-knowledge in mechatronic de-
velopment processes, reaching an acceptable level of ignorance competence
through targeted knowledge mining.

Secondly, first critical analysis parameters for success and the ideally suit-
able segments of the development process for the use of robust and context-
sensitive Al have been identified. By addressing diverse requirements for ac-
curacy and other factors at various stages of development, the created method
ensures the integration of Al is both effective and efficient.

Notably, a decision support framework has been crafted, empowering users
to interpret procedures and model results. This approach moves away from
perceiving Al as black boxes, fostering a sense of proficiency in effectively
managing them.

While navigating through the evolving landscape of mechatronic product
development, integrating intelligent data and harnessing the power of Al not
only addresses current challenges but also positions organizations for greater
innovation and competitiveness in the dynamic market landscape.

The comprehensive examination of the theoretical and methodological as-
pects concludes this chapter. The transition to the application examples, illu-
minating the practical implementation of the findings, is now warranted.
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Future Work

Looking ahead, the next phase of the project demands a meticulous examina-
tion of the real-world practical situation. This involves delving into the intri-
cacies of mechatronic product development, understanding the nuances of
challenges faced by industry practitioners, and identifying specific pain points
that intelligent data and potential analysis can address.

The exploration will extend to applications and methods pertaining to the
lower and right sides of the V-Model. This involves a detailed consideration
of implementation strategies, testing procedures, and validation methodolo-
gies. Understanding how Al can seamlessly integrate into the execution phase
and the subsequent testing and validation processes is essential. This phase
aims to bridge the gap between theoretical concepts and practical applicabil-
ity, ensuring that the proposed methodology aligns seamlessly with the reali-
ties of mechatronic product development.

Additionally, the project will advance to the stage of proving the con-
cept(s), as already mentioned for the interaction between design and produc-
tion as an example. This involves the practical demonstration of the proposed
methodology in a controlled environment, verifying its effectiveness in ad-
dressing challenges and optimizing the product development process. The
proof of concept(s) will serve as a crucial validation step, providing tangible
evidence of the viability and potential impact of intelligent data and potential
analysis in mechatronic product development.

Through these successive steps, the project aims to refine and validate the
proposed methodology, ensuring its practical relevance and effectiveness in
real-world scenarios. The outcomes of this phase will contribute not only to
the academic understanding of the subject but also to the practical implemen-
tation and adoption of intelligent data and potential analysis in the dynamic
field of mechatronic product development.
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Summary of Papers

This chapter summarizes the content of the papers on which this thesis is
based upon and describes the author’s contribution to each paper.

Paper 1

Leveraging Robust Artificial Intelligence for Mechatronic Product De-
velopment—A Literature Review
This paper explores the existing literature regarding the application of Al as a
comprehensive database, decision support system, and modeling tool in mech-
atronic product development. It analyzes the benefits of Al in enabling domain
linking, replacing human expert knowledge, improving prediction quality, and
enhancing intelligent control systems. For this purpose, a consideration of the
V-cycle takes place, a standard in mechatronic product development. Along
this, an initial assessment of the Al potential is shown and important catego-
ries of Al support are formed. This is followed by an examination of the liter-
ature with regard to these aspects. As a result, the integration of Al in mecha-
tronic product development opens new possibilities and transforms the way
innovative mechatronic systems are conceived, designed, and deployed. How-
ever, the approaches are only taking place selectively, and a holistic view of
the development processes and the potential for robust and context-sensitive
Al along them is still needed.

The author was the main person responsible for selecting, analyzing and
subsequently evaluating the literature. Moreover, the author wrote the paper.

Published in International Journal of Intelligence Science in January 2024.

Paper 11

Intelligent analysis of components with regard to significant features for
subsequent classification

This paper develops an intelligent method to analyze existing data appropri-
ately and, at the same time, prepare it ideally for further applications, such as
forecast models based on Al. To achieve this, several steps need to be taken.
Firstly, a suitable segmentation of the component is performed. The aim is to
detect areas in a component where features and form elements are found.
Other regions are ignored after the inspection by segmentation and voxeliza-
tion. Subsequently, the voxelization of the component takes place, which
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results in the three-dimensional component or Computer- Aided-Design file
being mathematically readable. This is done by rasterizing the component
based on a previously selected resolution and other upcoming steps. Finally,
the segmented and relevant areas are analyzed accordingly.

The author developed the concept and method regarding the Intelligent
analysis of components. Moreover, the author wrote the paper.

Published in SAE Technical Paper, presented orally by the author in July
2023, Stuttgart, Germany.

Paper 111

Intelligent Component Manufacturability Testing in Virtual Product De-
velopment
The paper implements a series of steps to address the increasing knowledge
acquisition in the automotive industry. It emphasizes a targeted approach to
information processing and evaluation, with Al playing a key role. Al is used
to assess existing knowledge, assign attributes, and assist in the economic
evaluation of new components or projects. The integration of intelligent meth-
ods enables companies to make informed decisions regarding resource alloca-
tion, time management, and project feasibility. Additionally, Al-based ap-
proaches are combined with preprocessing to handle the knowledge explosion
and enable efficient analysis of product manufacturability.

The author developed the concept and method regarding the Intelligent
Component Manufacturability Testing. Moreover, the author wrote the paper.

Published in Proceeding of Artificial Intelligence und Machine Learning
in der CAE-basierten Simulation, presented orally by Fabian Richter in Oc-
tober 2023, Munich, Germany.

Paper IV

Robustness and Sensitivity of Artificial Neural Networks for Mecha-
tronic Product Development
This paper aims to evaluate the performance characteristics of different un-
certainty analysis methods and assess their applicability in agile automotive
development processes. By considering the specific requirements and con-
straints of each method, a decision tree is proposed to recommend suitable
and situation-appropriate methods for performing uncertainty analyses in
network prediction. The goal is to enhance data exchange between depart-
ments, mitigate disruptions, and ensure informed decision-making through-
out the development process.

The author developed the concept and method regarding the final decision
tree for the efficient use of Robustness and Sensitivity. Moreover, the author
wrote the paper.
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Published in Proceedings of Automotive meets Electronics and presented
orally by the author in June 2023, Dortmund, Germany.

Paper V

Integration of Vulnerable Road Users Behavior into a Virtual Test En-
vironment for Highly Automated Mobility Systems
This paper describes an approach to integrate real human traffic behavior into
the approval and testing process of highly automated vehicle systems. It pro-
vides a safe and valid way to test critical traffic scenarios between vehicles
and pedestrians. Basically, two different methodologies for the metrological
detection of human movements are analyzed and experimentally examined for
their suitability for this use case. Besides the general functionality, plausibility
and real-time capability are further investigation criteria. The paper concludes
with the integration of the proposed solution into a test bed for highly auto-
mated vehicle systems using a representative traffic scenario.

The author was involved in discussions, supported implementation and as-
sisted in writing the paper.

Published in Proceedings of Kolloguium Future Mobility in June 2022,
Ostfildern, Germany.

Paper VI

Methodical Approach to Integrate Human Movement Diversity in Real-
Time into a Virtual Test Field for Highly Automated Vehicle Systems
This paper measures, processes and integrates real human movement behavior
into a virtual test environment for highly automated vehicle functionalities.
The overall system consists of a georeferenced virtual city model and a vehicle
dynamics model, including probabilistic sensor descriptions. By using motion
capture hardware, real humanoid behavior is applied to a virtual human avatar
in the test environment. Through retargeting methods, the virtual avatar diver-
sity is increased. To verify the biomechanical behavior of the virtual avatars,
a qualitative study is performed, which is based on a representative movement
sequence.

The author was involved in discussions, supported implementation and as-
sisted in writing the paper.

Published in Journal of Transportation Technologies in July 2022.
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Paper VII

Data Flow Management Requirements for Virtual Testing of Highly Au-
tomated Vehicles
This paper presents a virtual co-simulation approach for highly automated ve-
hicle systems and uses it to demonstrate the data management requirements
for a co-simulation platform such as AVL Model. CONNECTTM. The basis
for this is a real urban driving cycle for modern hybrid vehicles to investigate
emissions, consumption and range as well as the effects of highly automated
driving functions on these parameters.

The author was involved in discussions, supported conducting the study
and assisted in writing the paper.

Published in Proceedings of AVL German Simulation Conference and pre-
sented orally by René Degen in September 2022, Regensburg, Germany.

Paper VIII

Stereoscopic Camera-Sensor Model for the Development of Highly Auto-
mated Driving Functions within a Virtual Test Environment
This paper documents the development of a sensor model for depth estimation
of virtual three-dimensional scenarios. For this purpose, the geometric and al-
gorithmic principles of stereoscopic camera systems are recreated in a virtual
form. The model is implemented as a subroutine in the Epic Games Unreal
Engine. Its architecture consists of several independent procedures which en-
able a local depth estimation and a reconstruction of an entire three-dimen-
sional scenery. In addition, a separate program for calibrating the model is
presented.

The author was involved in discussions, assisted in writing the paper and
supported implementation as well as evaluation.

Published in Journal of Transportation Technologies in January 2023.

Paper IX

Development and Analysis of a Detail Model for Steer-by-Wire Systems
This paper presents an innovative nonlinear detailed model of a Steer-by-Wire
system. The detailed model represents all characteristics of a real Steer-by-
Wire system. In the context of a dominance analysis of the detailed model, all
dominant characteristics of a Steer-by-Wire system, including parameter de-
pendencies, are identified. Through model reduction, a reduced model of the
Steer-by-Wire system is then developed, which can be used for a subsequent
robust control design. Furthermore, this paper compares the Steer-by-Wire
system with a conventional electromechanical power steering and shows sim-
ilarities as well as differences.
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The author was involved in discussions, assisted in writing the paper and
supported implementation as well as evaluation.
Published in IEEE Access Journal in January 2023.

Paper X

Design of a Model-Based Optimal Multivariable Control for the Individ-
ual Wheel Slip of a Two-Track Vehicle
This paper presents a model-based optimal multivariable control for the wheel
slip, which allows specifying the wheel slip and thus the tire force individually
for each wheel. The plant model consists of a multibody two-track model of a
vehicle, a tire model, an air resistance model and a motor model. In addition,
the contact forces of the individual wheels are calculated dynamically. The
resulting nonlinear model is linearized and used for the design of a linear op-
timal static state-space controller with reference and disturbance feedforward.
The contact point velocities at the wheels are defined as the controlled varia-
bles, since they are proportional to the wheel slip and thus to the driving forces
within the operating range of the controller. Furthermore, the rates of change
of the contact point velocities are also chosen as controlled variables to set the
damping of the closed-loop system. The four drive torques of the wheels rep-
resent the control variables. Therefore, a true multivariable control is devel-
oped. In the first step of the analysis, the linearized closed-loop system is in-
vestigated regarding stability, robustness and its dynamic behavior. The con-
trol system shows a high bandwidth, well-damped dynamic behavior and a
large phase margin. In the second step of the analysis, various simulations of
realistic experiments, such as an accelerated cornering maneuver or the
Fishhook road test, are performed with the nonlinear closed-loop system. The
results of these experiments confirm the high robustness and good dynamic
behavior of the control system in most cases. Moreover, the results demon-
strate how the control considers the dynamic contact forces of the wheels to
achieve the requested wheel slip at any time. Lastly, dominant transfer paths
are identified based on the gain matrix of the state-space controller, showing
which input and state variables have a significant influence on the control var-
iables.

The author was involved in discussions, assisted in writing the paper and
supported implementation as well as evaluation.

Published in SAE Technical Paper, presented orally by Robert Rosenthal
in July 2023, Stuttgart, Germany.

Paper XI

Methodical Data Collection for Light Electric Vehicles to Validate Simu-
lation Models and Fit Al-based Driver Assistance Systems
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This paper presents an approach to collect vehicle dynamic parameters for the
validation of simulation models. For this purpose, a measurement system is
developed to capture and monitor driving dynamic information of the device
under test in real time. This data is used to fit pre-developed simulation models
and DAS. To investigate the vehicle dynamic behavior in critical driving sit-
uations, an extensive test study is conducted. Therefore, different ordinary
driving situations in urban traffic scenarios are analyzed. Finally, the collected
measured data is compared with the simulation results of a multi-body model
for a multi-lane cargo vehicle.

The author developed the simulation model, the measurement setup and the
verification study. Additionally, he supervised the realization of the study.
Moreover, the author wrote most parts of the paper.

Published in Proceedings of Kolloguium Future Mobility in June 2022,
Ostfildern, Germany.
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Svensk Sammanfattning

Denna avhandling utforskar nédvéndigheten av intelligent data- och potenti-
alanalys inom mekatronisk produktutveckling. De stdndiga utmaningarna med
synkronisering och effektivitet understryker behovet av avancerade metoder.
Att utnyttja de betydande framstegen inom Al, sérskilt inom generativ Al, ger
oovertraffade mojligheter. Det finns dock fortfarande betydande utmaningar,
sdrskilt ndr det géller robusthet och tillforlitlighet.

Som svar pa detta kritiska behov introduceras en omfattande metodik som
undersoker hela utvecklingsprocessen genom den illustrativa V-modellen och
stravar efter att skapa ett robust Al-landskap. Metoden utforskar hur man skaf-
far sig lamplig och effektiv kunskap, tillsammans med metodisk implemen-
tering, for att hantera olika krav pa noggrannhet i olika utvecklingsstadier. Ett
ramverk for beslutsstdd ger anvindarna mojlighet att tolka procedurer och
modellresultat, sa att Al inte ldngre uppfattas som svarta lador utan kan han-
teras pa ett effektivt sitt.

I takt med att landskapet for mekatronisk produktutveckling utvecklas kan
man genom att integrera intelligenta data och utnyttja kraften i Al inte bara
hantera aktuella utmaningar utan ocksa positionera organisationer for 6kad
innovation och konkurrenskraft i det dynamiska marknadslandskapet.
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