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S U M M A R Y 

Distinguishing between different types of seismic events is a task typically performed manually 

b y expert anal ysts and can thus be both time and resource e xpensiv e. Analysts at the Swedish 

National Seismic Network (SNSN) use four different event types in the routine analysis: 
natural (tectonic) earthquakes, blasts (e.g. from mines, quarries and construction) and two 

different types of mining-induced events associated with lar ge, under ground mines. In order to 

aid manual event classification and to classify automatic event definitions, we have used fully 

connected neural networks to implement classification models which distinguish between the 
four event types. For each event, we bandpass filter the waveform data in 20 narrow-frequency 

bands before dividing each component into four non-overlapping time windows, corresponding 

to the P phase, P coda, S phase and S coda. In each window, we compute the root-mean-square 
amplitude and the resulting array of amplitudes is then used as the neural network inputs. We 
compare results achieved using a station-specific approach, where individual models are trained 

for each seismic station, to a regional approach where a single model is trained for the whole 
study area. An extension of the models, which distinguishes spurious phase associations from 

real seismic events in automatic event definitions, has also been implemented. When applying 

our models to e v aluation data distinguishing between earthquakes and blasts, we achieve an 

accuracy of about 98 per cent for automatic events and 99 per cent for manually analysed 

events. In areas located close to large underground mines, where all four event types are 
observed, the corresponding accuracy is about 90 and 96 per cent, respecti vel y. The accuracy 

when distinguishing spurious events from real seismic events is about 95 per cent. We find that 
the majority of erroneous classifications can be traced back to uncertainties in automatic phase 
picks and location estimates. The models are already in use at the SNSN, both for preliminary 

type predictions of automatic events and for reviewing manually analysed events. 

Key words: Machine learning; Neural networks, fuzzy logic; Statistical methods; Time-series 
analysis; Seismicity and tectonics. 
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1  I N T RO D U C T I O N  

Seismic waves produced by small earthquakes and blasts (e.g. min- 
ing or quarry blasts) can share similar characteristics. The task of 
distinguishing between different types of seismic events in regions 
where both earthquakes and blasts occur is important for a variety 
of reasons, for example, for understanding the drivers of natural 
seismicity and for seismic hazard assessment. Finding seismic dis- 
criminants capable of distinguishing between earthquakes and blasts 
has long been an active research topic. Many of the methods de- 
veloped for that purpose have exploited the amplitude or spectral 
ratios of different seismic phases. Examples for seismic events at 
regional distances include the P / S ratio (Baumgardt & Young 1990 ), 
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and the P / Lg ratio (Dysart & Pulli 1990 ; Baumgardt & Young 1990 ; 
Kim et al. 1993 ). At local distances, examples include the P / S ratio 
(O’Rourke et al. 2016 ) and the Rg / Sg ratio (Tibi et al. 2018 ; Kintner 
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In recent years, advances in machine learning have, in conjunc- 
tion with a widespread availability of large data sets, been a catalyst 
for progress in method development for seismic event classifica- 
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se images of event spectrograms as inputs into CNNs which are ca-
able of automatic feature extraction and e xpert-lev el classification
f earthquakes and e xplosiv e sources. 

Linville et al. ( 2019 ) applied a form of recurrent neural network;
ong-Shor t-Ter m-Memor y, and CNNs on images of event spec-

rograms to distinguish between e xplosiv e and tectonic sources at
ocal distances. They found that both methods were able to correctly
redict event labels in over 99 per cent of cases, once label errors
ssigned b y anal ysts had been accounted for. They also reported
lassification accuracy of over 98 per cent for shallow earthquakes,
ndicating limited effects of depth on event classification. Hour-
ade et al. ( 2023 ) expanded on the work of Linville et al. ( 2019 )
y increasing the frequency content of the used spectrograms and
hereby implementing a tool capable of classifying low-magnitude
v ents. The y also demonstrate the versatility of their approach by
uccessfull y appl ying it in dif ferent geo graphical areas. Kong et al.
 2022 ) combined physics-based features with a deep-learning ap-
roach, operating on waveforms and spectrograms, to distinguish
etween earthquakes and explosions. Their selected physics-based
eatures were high-frequency P / S amplitude ratios and the differ-
nce between local and coda duration magnitudes. They found that
he combined method outperformed models developed exclusi vel y
ith deep learning when applied to new regions, that is, the combi-
ation improved generalization performance. 

Other machine-learning-based methods for classifying seismic
 vents, using manuall y selected features, have also been successful.
or example, Kortstr öm et al. ( 2016 ) developed an algorithm to au-
omatically distinguish between earthquakes and e xplosiv e sources
ithin a regional seismic network located in Finland. Their method

pplied a supervised pattern recognition technique, support vector
achine, on computed waveform features, filtered in different fre-

uency bands. With e v aluation data consisting of 5435 automatic
vent detections, their method correctly predicted the source type
or 94 per cent of the events, with a 3 per cent risk of falsely iden-
ifying an event as an earthquake. Another example is the work
f Miao et al. ( 2020 ), who use an artificial neural network to dis-
riminate local and regional earthquakes from quarry and mining
lasts in eastern Kentucky with high accuracy. After conducting
ests with several types of input features, model architectures and
yperparameters, a trained model containing the authors’ preferred
ombination of input features and model architecture achieves a
igh precision ( > 97 per cent) when identifying both earthquakes
nd blasts, using single-station recordings. 

In Sweden, natural (tectonic) earthquakes, man-made blasts at
onstruction sites, quarries and in mines, and mining-induced events
requently occur in close spatial proximity. Located in a stable con-
inental region in nor ther n Europe, the large majority of seismic
vents detected in Sweden are man-made, that is, either blasts or
ining-induced events. The natural earthquakes detected in Sweden

y the Swedish National Seismic Network (SNSN) are mostly low
agnitude. The network detects earthquakes down to local mag-

itudes below −1 with an estimated magnitude of completeness
f about 0.5 and an average annual detection rate of about sev-
nteen earthquakes with local magnitude 2 or higher (Lund et al.
021 ). The task of distinguishing between different event types is
ypically performed by expert analysts and can thus be both time
nd resource e xpensiv e. At SNSN , anal ysts use four dif ferent e vent
ypes in the routine analysis; earthquakes, blasts and two different
ypes of mining-induced events associated with lar ge, under ground

ines. The main objective of this study is to develop an algorithm
apable of reliable automatic event classification for the four event
vent types detected in Sweden. Inspired by the study of Kortstr öm
t al. ( 2016 ) for a seismic network located in geological settings
omparable to Sw eden, w e ha ve opted to implement a classification
odel based on similar, manually selected features. The classifi-

ation is implemented as traditional, feed-forward, fully connected
eural networks; a machine-learning-based approach widely used
or classification tasks. As a first approach, we implement the clas-
ification on a station-specific basis, training separate models for
ach seismic station used in the study, with data recorded at the
tation. Subsequently, we train a larger, regional model with data
rom all stations and compare its performance to the station-specific
pproach. 

In Section 2 , we describe our method, starting with the neural
etw orks’ architecture, follo wed by the data processing steps and a
escription of how station-specific predictions are combined to form
 final prediction about an event’s class. In Section 3 , we introduce
he SNSN, the data used in this study and the seismicity of Sweden.
n Section 4 , we present our results, both indi viduall y on a station
asis and on a multistation basis for an e v aluation data set, spanning
ix months of seismic events. We also present the results of different
pplications of our method to seismic data. Finally, in Section 5 ,
e discuss the general implications of our results, compare with
ther similar studies and discuss the impact of various factors on
ur results. 

 M E T H O D  

e use fully connected artificial neural network models to classify
he source types of seismic events in Sweden. The seismic stations
perated by the SNSN are spread over a large geographical area,
ith notable differences in the types of seismic events and ambient
oise levels recorded at the different stations. For this reason, as a
rst approach, we develop station-specific models for each SNSN
tation, using data recorded at the stations. 

The neural network models consist of three hidden and two
ropout layers to reduce the risk of overfitting (Sri v astav a et al.
014 ). Each hidden layer consists of 256 nodes and a rectified
inear unit acti v ation function. The dropout la yers ha ve a dropout
ate of 0.5. The number and size of the hidden layers along with
ther neural network hyperparameters were decided through a grid-
earch-based e v aluation process where dif ferent combinations of
arameters were ranked in terms of their effect on the models’ per-
ormance. For the model training, the label, that is, source type of
he event, has been manually assigned. On most stations, the classi-
cation problem is treated as binary, that is, all events are assumed

o be either a natural (tectonic) earthquake or a blast. Here, the neu-
al network output consists of one node with a sigmoid acti v ation
unction. The node contains a value between 0 and 1 which repre-
ents the probability of the input event being an earthquake. On six
elected stations, the presence of mining-induced events increases
he number of possible classes from two to four. Here, the output
ayer contains a number of nodes equal to the number of possible
lasses, that is, four, with a softmax acti v ation function. In this case,
ach node will have a value between 0 and 1 with the individual val-
es summing to 1. Each node value then represents the probability
f the input event belonging to the corresponding class (Goodfellow
t al. 2016 ). All the anal ysis is implemented in the Python pro gram-
ing language. Data processing is done using NumPy (Harris et al.

020 ) and pandas (McKinney 2010 ). The models were constructed
sing the Keras deep learning API (Chollet et al. 2015 ), running
n top of the machine learning platform TensorFlow (Abadi et al.
015 ). Evaluation metrics for model performance are computed
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using sklearn (Pedregosa et al. 2011 ). Figures were generated using 
Matplotlib (Hunter 2007 ) and The Generic Mapping Tools (Wessel 
et al. 2019 ). 

For each station used in the study, we start by compiling a list 
of manuall y re vised seismic e vents with both P - and S -phase ar- 
ri v als picked at the station, to use for model training. For each event 
we correct the associated waveforms for instrument response and 
rotate the horizontal components into radial and transverse coor- 
dinates. Each component is subsequently processed in the same 
way as suggested by Kortstr öm et al. ( 2016 ). First, it is bandpass 
filtered in a narrow-frequency band. Then, it is divided into four 
non-overlapping time windows corresponding to P phase, P coda, 
S phase and S coda, using the manually picked P - and S -phase 
arri v als (see Fig. 1 ). All time windows have equal length, corre- 
sponding to half the differential time between the P - and S -phase 
arri v als. Finall y, the root-mean-square (RMS) amplitude is com- 
puted in each time window. This process is repeated for a total of 
20 narrow-frequency bands, resulting in a total of 3 × 4 × 20 = 

240 RMS amplitudes which represent our neural network inputs. 
The passbands used are the ones suggested by Kortstr öm et al. 
( 2016 ), ranging from 1 to 41 Hz with a bandwidth of 3 and 1 Hz 
overlap between adjacent bands, that is, 1–3, 2–5, 4–7, . . . , 36–39, 
38–41 Hz. 

Fig. 1 shows example waveform segments where the vertical 
components of seismic event records have been divided into the 
prescribed time windows. The upper panel is from an earthquake 
which occurred at a depth of approximately 20 km, while the lower 
panel is from a near-surface quarry blast. Rg waves are often promi- 
nent features on seismograms of shallow events of all types, in- 
cluding both blasts and earthquakes, at the local distances used in 
this study (B åth 1975 ). The lower panel of Fig. 1 shows how the 
Rg wave generated by the local-distance near-surface event is most 
prominent within the time window we associate with S coda. Lg 
waves are often prominent features in high-frequency seismograms 
at regional distances beyond 150 km (Furumura et al. 2014 ). At 
the local distances used in this study, the relative amplitude and the 
time separation between the Lg and S phases are typically too small 
to reliably distinguish the Lg phase which ef fecti vel y merges into 
the S phase (Press & Ewing 1952 ). 

For the model training, available data are randomly split with a 
50, 25 and 25 per cent ratio into training, validation and test data, 
respecti vel y. On most stations the number of blasts is much larger 
than the number of earthquakes in the data, which leads to class im- 
balance. To limit prediction bias caused by the class imbalance, we 
apply the Synthetic Minority Over-Sampling Technique (Chawla 
et al. 2002 ) on stations where the number of earthquakes in the data 
is less than 80 per cent of the number of blasts. We use an over- 
sampling ratio of 0.8, that is, we supplement the earthquake class 
with synthetic examples until the ratio between earthquakes and 
blasts reaches 0.8. The oversampling ratio was determined through 
an e v aluation process where dif ferent ratios were applied to model 
training on all stations. The selected ratio of 0.8 is the one which 
resulted in the highest average validation set accuracy over all sta- 
tions. When fitting the model we use a batch size of 64. This means 
that 64 events from the training data are passed through the network 
on each iteration, before model parameters are updated. When all 
training data have passed once through the network, it is termed 
an epoch. We continue training for a maximum of 500 epochs, that 
is, the network will work through the entire training data no more 
than 500 times. At the end of each epoch the model’s classification 
accuracy on the validation set is estimated. We stop training once 
the validation accuracy has not impro ved o ver 20 epochs. We select 
the final model parameters as the ones corresponding to the epoch 
where the highest validation accuracy was achieved. Depending on 
the size of the training data, our average training time per epoch 
ranges from 0.2 to 0.9 s. This is when using an 11th Gen Intel(R) 
Core(TM) i7-11700 @ 2.50GHz with 8 cores and 32 GB of RAM. 
For an average-sized training set containing about 3000 events, the 
average training time per epoch is approximately 0.6 s. 

To make a final prediction about the class of a new seismic event, 
we first generate individual class predictions from all stations lo- 
cated within a 10–200 km distance of the event’s epicentre that have 
at least one phase pick available from either manual analysis or au- 
tomatic phase association. The 10 km distance limit ensures that the 
time windows are long enough to contain meaningful information 
while the 200 km limit reflects the typical range of manual phase 
picks available for the data. For missing P- or S -phase picks we 
compute synthetic arri v al times based on the local velocity model 
of the SNSN, the same velocity model as used for manual analy- 
sis and automatic e vent detections. Gi ven that w e ha ve predictions 
from at least two stations, we compute a final probability distribu- 
tion from the individual station predictions according to eq. ( 1 ), as 
the the arithmetic means of the individual station distributions. 

P = [ P ( c 1 ) , P ( c 2 ) , P ( c 3 ) , P ( c 4 ) ] 

= 

1 

n 

⎡ 

⎣ 

n ∑ 

j= 1 
P ( c 1 , j ) , 

n ∑ 

j= 1 
P ( c 2 , j ) , 

n ∑ 

j= 1 
P ( c 3 , j ) , 

n ∑ 

j= 1 
P ( c 4 , j ) 

⎤ 

⎦ , 

n ≥ 2 (1) 

where P ( c i ) is the final probability of an event belonging to class i , n
is the total number of stations which generated individual distribu- 
tions and P ( c i , j ) is the probability of an event belonging to class i , 
computed at station j . On stations where the classification problem 

is binary, P ( c 3, j ) = P ( c 4, j ) = 0. The predicted class is taken be the
one corresponding to the highest probability in the final distribution. 
The prediction is assigned an integer quality factor (QF) between 0 
and 99 which represents the highest probability in the final distri- 
bution and the number of stations used to generate the prediction. 
It is designed to rank prediction reliability, as we associate higher 
station count with higher reliability. The QF is computed according 
to eq. ( 2 ). 

QF = floor 

((
max ( P ) − 1 

n 

2 

)
× 100 

)
. (2) 

We e v aluate the performance of our models using several metrics. 
For each class, we adopt the following notation: true positives (TP): 
number of e vents correctl y predicted to belong to the class. False 
positives (FP): number of events erroneously predicted to belong 
to the class. True ne gativ es (TN): number of events correctly pre- 
dicted to belong to a different class. False ne gativ es (FN): number of 
e vents erroneousl y predicted to belong to a different class. We define 
the e v aluation metrics in a traditional w ay (Burkov 2019 ). Accuracy 
represents the ratio between the number of correct event predictions 
and the total number of event predictions for all the data; accuracy 
= (TP + TN)/(TP + FP + TN + FN). It provides an overall summary 
of the model’s performance across all classes. For a given class, 
precision represents how many, out of all events predicted to be- 
long to the class, are correctly predicted; precision = TP/(TP + FP). 
Recall represents how many, out of all events which truly belong 
to the class, are correctly predicted; recall = TP/(TP + FN). The 
F1-score is defined as a harmonic mean of precision and recall 
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Figure 1. Vertical component of seismic records for two seismic events in Sweden. The letters represent the four non-overlapping time windows. P : P phase, 
Pc : P coda, S : S phase and Sc : S coda. The upper record is from an earthquake with local magnitude 0.7, recorded at an epicentral distance of 36 km. The lower 
record is from a quarry blast with local magnitude 1.5, recorded at an epicentral distance of 38 km. It contains a (relati vel y) long-period Rg wave starting in 
the S -phase window and most prominent in the S -coda window. 
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Sasaki et al. 2007 ): 

F 1 = 

2 × precision × recall 

precision + recall 
. (3) 

he F1-score can take values ranging from 0 to 1. An F1-score
f 0 for a given class indicates that either precision or recall for
he class is equal to 0, whereas an F1-score of 1 indicates both
recision and recall are equal to a maximum value of 1 (Sasaki et al.
007 ). We use the F1-score as our primary e v aluation metric for the
tation-specific models because it provides a balanced measure of
he models’ performance by considering both precision and recall
or each class. 

In addition to classifying real seismic events, we also train an-
ther set of station-specific classification models, with the aim of
istinguishing real seismic events from spurious phase associations.
he network architecture of these event-or-not models is identical

o the event classification models but the length and positioning
f the time windows is slightly adjusted. We extend and shift the
ime windows to include a noise window before the first P -phase
rri v al to include an estimate of signal-to-noise ratio, one P -phase
indo w, one S -phase windo w and one post- S -coda window. The

ength of each window equals the differential time between the P -
nd S -phase arri v als. The training data for the event-or-not mod-
ls contains a mixture of real seismic events and spurious phase
ssociations with a label indicating whether or not an event has
een deemed to be a real seismic event during manual analysis. The
lassification problem is thus formulated as a binary problem; for a
iven automatic event detection, is it a real seismic event (irrespec-
i ve of e vent class) or spurious phase associations? The models are
pplied in an identical way to the event classification models, with
n arithmetic mean of station-specific predictions used to generate
he final prediction. 
 DATA  

he SNSN (Lund et al. 2021 ) is the primary monitoring institution
or seismic activity in Sweden. The network currently comprises
7 permanent seismic stations, each equipped with a broadband
nstrument providing continuous real-time data, with a sampling rate
f 100 samples per second. Each station is connected via cellular
etwork to a central computer in Uppsala (Lund et al. 2021 ). Fig. 2
hows the locations of SNSN stations in operation in 2022 August.

Currently, all major seismic events occurring in Sweden are sub-
ect to routine manual analysis at SNSN. The analysis includes tasks
uch as phase picking, event location and classification, magnitude
stimation and focal mechanism generation. Historicall y, anal ysts
t SNSN ha ve ha ve distinguished between three different source
ypes for seismic events occurring in Sweden. These are natural
arthquakes, man-made blasts, typically related to industry, and
ining-induced events. Since 2020, the class of mining-induced

vents has been further sub-divided into two separate classes, ow-
ng to a difference in source mechanics and frequency content.
ig. 3 shows the revised locations of all blasts (a) and earthquakes
b) in Sweden and neighbouring countries registered and classified
y SNSN between the years 2010 and 2021. Events outside of Swe-
en are generally not classified as earthquakes or blasts unless in
ollaboration with neighbouring seismologists (Lund et al. 2021 ).
he figure shows that blast locations are widely distributed over the
ountry. The two biggest sources of blasts are the large underground
ron ore mines in Kiruna and Malmberget in northern Sweden (see
ig. 3 a). In the souther n par t of the country, most blasting events
riginate from construction work and quarry blasting (Lund et al.
021 ). The earthquake locations are mostly concentrated around
ostglacial faults, major continuous fault scarps in nor ther n Swe-
en where fault movement took place at or near the time when the
ce receded at the end of the latest glaciation, ca 9500 yr ago (Juh-
in & Lund 2011 ; Lindblom et al. 2015 ), and around lake V änern,

art/ggae018_f1.eps
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Figure 2. SNSN station locations, 2022 August, shown in triangles. (1) 
stations UMAU and BLMU (closely located), (2) stations UDD and HFB1 
(closely located) and (3) station ARNU. 
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the large lake in southwestern Sweden. The two most seismically 
active postglacial faults in Sweden currently are the Burtr äsk and 
P ärvie faults (see Fig. 3 (b). Mining-induced events are exclusi vel y 
observed in the vicinity of lar ge under ground mines, most notably 
Kiruna and Malmberget. 

The primary system used for automatic detection and event 
definition at SNSN is the South Iceland Lowland (SIL) system 

(B ö ð varsson et al. 1999 ; Lund et al. 2021 ). On average, the system 

defines 100 to 200 automatic events per day, whereof about 30–40 
are typically confirmed to be real earthquakes, blasts or mining- 
induced events via routine manual analysis (Lund et al. 2021 ). 
SNSN has collected and manuall y re vised digital seismic data con- 
tinuously since 2000 August. Between the years 2000 and 2020, ap- 
proximately 171 000 analyst-reviewed seismic events were recorded 
b y SNSN , whereof about 11 000 have been classified as earthquakes 
and about 160 000 as man-made (blasts or mining-induced, Lund 
et al. 2021 ). In some areas the netw ork detects earthquakes to belo w 

local magnitude −1 but its magnitude of completeness is approxi- 
mately 0.5. The detected earthquakes are generally low magnitude, 
with an average annual rate of 17 events with local magnitude 
M 2 + (Lund et al. 2021 ). This e xtensiv e availability of labelled 
training data makes SNSN well positioned to take advantage of su- 
per vised lear ning based techniques to automate par ts of its routine 
analysis. 

The data used for model training in this study are waveform data 
from manuall y anal ysed seismic e vents, recorded in the years 2010–
2021, by all permanent seismic stations in operation by SNSN at 
the start of 2022 (SNSN 1904 ). Separate models were developed 
for each SNSN station, using event data recorded at the station. 
The event classification problem is treated as binary on most sta- 
tions, with two possible classes of ev ents observ ed; earthquakes 
and blasts. On stations within a 70 km distance radius from one 
of the mines in Kiruna and Malmberget, the number of possible 
classes increases to four due to the presence of two types of mining- 
induced events in addition to earthquakes and b lasts. F ig. 4 shows 
the number of events in the data set used for each station, before 
oversampling and capping. An event is included in a station’s data 
set if it has been located within a 10–200 km distance from the sta- 
tion and both P - and S -phase picks are available at the station from 

manual analysis. For computational efficiency reasons, the number 
of blasts and mining-induced events from the Kiruna and Malm- 
berget mines in the rele v ant stations’ data set are capped at 1000 
events per class from each mine. The figure shows that the data 
for all stations south of station ARNU (marked with a dashed line, 
see also Fig. 2 ) contain significant class imbalance where the ratio 
between number of blasts and number of earthquakes in the data is 
high. This is consistent with Fig. 3 which show that the majority 
of earthquakes recorded in Sweden by SNSN occur north of station 
ARNU. 

The majority of automatic event detections by the SIL system 

at SNSN comes from spurious phase associations (Lund et al. 
2021 ). The spurious phase associations are typically distinguished 
from real earthquakes, blasts and mining-induced events via rou- 
tine manual analysis. It is therefore of practical value to SNSN for 
the automatic event classification to also have the capability of dis- 
tinguishing spurious phase associations from real seismic events. 
For this event-or-not classification, the data used for model training 
consist of spurious phase associations from the SIL system in con- 
junction with real, manually analysed seismic events, recorded in 
the years 2010–2021. Automatic phase picks from the SIL system 

are used for time window selection for the spurious phase associa- 
tions and manual phase picks are used for the real seismic events. 
An event is included in a station’s data set if it has been located 
(automatically or manually) within a 10–200 km distance from the 
station and both P - and S -phase picks are available at the station 
from automatic phase association (spurious phase associations) or 
manual analysis (real seismic events). Each station’s event-or-not 
data set contains two event classes; spurious phase associations 
and real seismic events. Due to the large numbers of spurious 
phase associations available for some SNSN stations, the size of 
the event-or-not data sets is capped at 1000 events from each class 
and thus each station’s event-or-not data set contains at most 2000 
events. 

4  R E S U LT S  

This section presents the results from the method described in Sec- 
tion 2 and different applications on seismic data. 

4.1 Station-specific models 

Fig. 5 shows the F1-score achieved on the test data (25 per cent of 
each station’s data set) for each individual station. The displayed 
score is computed as a macro average, that is, an unweighted mean 
of the F1-score for each individual class. The figure shows that all 
stations within the network achieve a good general performance 
with an F1-score of over 0.95 on all stations and a mean score of 
approximately 0.98 over the whole network. For stations trained 
to distinguish between four different classes the mean score is ap- 
proximately 0.96 but for stations with only two classes it is 0.99. 
The high F1-score achieved on all stations indicates that the station 
models’ predicted classes agree with analyst assigned classes on the 
large majority of events from all classes. The figure also shows that 
most of the southern stations maintain a relati vel y stable F1-score, 
whereas some of the nor ther n stations display a quasi-linear trend 
of increasing F1-score with decreased latitude. In addition to some 
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Figure 3. Locations of blasts (a) and earthquakes (b) recorded by SNSN in Sweden and neighbouring countries, 2010–2021. Mines: (3) Kiruna, (4) Malmberget. 
Postglacial faults: (5) P ärvie and (6) Burtr äsk. 

Figure 4. Number of events from each class used for model training. Each bar represents the class distribution on a single station. The dashed vertical line 
represents station ARNU, south of which significant class imbalance is observed on all stations. Station ordering is from north on the left to south on the right. 

n  

c  

t  

e  

m  

w  

a  

n  

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/236/3/1728/7517072 by Biologibiblioteket user on 27 February 2024
or ther n stations being trained to distinguish between four event
lasses instead of two, we also observe positive correlation between
he stations’ F1-score and the ratio between number of blasts to
arthquakes in their training data. This suggests that stations with
ore class imbalance perform slightly better overall than stations
here the class distribution is more balanced. We believe this to be
 result of stations with significant class imbalance having higher
umbers of synthetic, statistically similar earthquakes in their test
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Figure 5. F1-score at individual stations. Each bar represents the F1-score computed at a single station. The score is a macro average, that is, an unweighted 
mean of the calculated F1-score for each individual class. The dashed vertical line represents station ARNU, south of which significant class imbalance is 
observed on all stations. Station ordering is from north on the left to south on the right. Note that the vertical axis starts at 0.9. 
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data, and thus less feature variability, resulting in better classifica- 
tion performance. 

4.2 Multistation predictions 

To e v aluate the generalization performance of our multistation clas- 
sification models we applied them to all seismic events that occurred 
in Sweden and were analysed by the SNSN, from 2022 January to 
June. For each event we used the relevant station-specific models 
to generate class probability distributions, computed a final predic- 
tion for the event and compared the result with the analyst assigned 
class. The total number of events was 6220. From these, 4933 events 
were detected automatically by the SIL system, for which automatic 
phase picks could be used for time window selection. This allowed 
for e v aluating predictions both of automatic and manuall y anal ysed 
events. 

Table 1 (left) shows the results for all manually analysed events 
located at least 25 km away from the mines in Kiruna and Malmber- 
get; a total of 2707 events. In general, the classification problem here 
is binary, with only two classes of events observed; blasts and earth- 
quakes. Occasional exceptions occur at other underground mines, as 
demonstrated by the four mining-induced events listed in the table, 
but their numbers were not sufficient to include in the training of the 
station-specific models. Overall, the predicted class agrees with the 
analyst assigned class for 2690 events, resulting in a classification 
accuracy of 99.4 per cent. The F1-score exceeds 0.98 for both blasts 
and earthquakes. The seven earthquakes erroneously predicted to 
be blasts have local magnitudes ranging from 0.1 to 0.7, with an 
average of 0.4. 

Table 1 (right) shows the results for events located less than 
25 km away from either Kiruna or Malmberget mine; a total of 3513 
events. This is where the two classes of mining-induced events are 
primarily observed and thus instances of all four event classes are 
observed, although only one natural earthquake was detected during 
the e v aluation period. Most erroneous classifications inv olve b lasts 
predicted as high-frequency mining-induced events and vice-versa. 
Overall, the predicted class agrees with the analyst assigned class for 
3374 events, resulting in a classification accuracy of 96.0 per cent. 
With the exception of earthquake class, the F1-score exceeds 0.95 
for each individual event class. 

Table 2 shows the corresponding results for the automatic SIL 

detections. Of the 1847 events located at least 25 km away from the 
mines in Kiruna and Malmberget (left), the predicted class agrees 
with the analyst assigned class on 1811, resulting in a classification 
accuracy of 98.1 per cent. Both the blast and earthquake classes 
receive an F1-score above 0.95. Of the 3086 events located less 
than 25 km away from the mines in Kiruna and Malmberget (right), 
the predicted class agrees with the analyst assigned class on 2770, 
resulting in a classification accuracy of 89.8 per cent. The F1-score 
for each individual class exceeds 0.90 with the exception of the 
earthquake class which has a relati vel y high number of FPs and only 
one TP, resulting in low precision and, consequently, low F1-score. 
Again, the majority of erroneous classifications are associated with 
the high-frequency mining-induced event class. Fig. 6 summarizes 
the classification accuracy achieved for the automatic and manually 
anal ysed e vents. 

4.3 Quality factor threshold 

One way of taking the final predictions’ QF (eq. 2 ) into consider- 
ation for the event classification is to define a threshold value and 
prioritize predictions with QF above the threshold. Fig. 7 shows 
how the classification accuracy and event retention, defined as the 
proportion of events which prediction QF exceeds a given threshold 
value, change as a function of QF threshold when using manual 
phase picks (dashed curves) and automatic SIL phase picks (solid 
curves) for time window selection. For a given QF threshold, a 
point on the dark curves represents the classification accuracy for 
the subset of events which prediction quality is at least as high as 
the threshold. A point on the lighter curves represents the size of 
the subset, relative to the total number of events. We find that a QF 

threshold of about 70 provides a decent trade off between accuracy 
and event retention, with classification accuracy of about 99 per cent 
for 93 per cent of the events when using manual phase picks and 
about 98 per cent for 80 per cent of the events when using automatic 
SIL phase picks. 
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Table 1. Generalization performance of the event classification for manually analysed events at SNSN between 2022 January and June. Left: events located at 
least 25 km away from the mines in Kiruna and Malmberget. Right: events located less than 25 km away from the mines in Kiruna and Malmberget. 

Predicted class Predicted class 
Analyst B E H L Re Analyst B E H L Re 

B 2297 6 0 0 0.997 B 1437 0 47 0 0.968 
E 7 393 0 0 0.983 E 0 1 0 0 1 
H 4 0 0 0 0 H 77 1 1584 8 0.949 
L 0 0 0 0 – L 0 0 7 351 0.980 

Pr 0.995 0.985 – – Pr 0.949 0.5 0.967 0.978 
F1 0.996 0.984 – – F1 0.959 0.667 0.958 0.979 

Notes . Event classes, B: blasts, E: earthquakes, H: high-frequency mining-induced events and L: low-frequency mining-induced events. Metrics, Re: recall, Pr: 
precision and F1: F1-score. 

Table 2. Generalization performance of the event classification for automatic event detections by the SIL system at SNSN between 2022 January and June. 
Left: events located at least 25 km away from the mines in Kiruna and Malmberget. Right: events located less than 25 km away from the mines in Kiruna and 
Malmberget. 

Predicted class Predicted class 
Analyst B E H L Re Analyst B E H L Re 

B 1482 22 0 0 0.985 B 1087 14 49 0 0.945 
E 10 329 0 0 0.971 E 0 1 0 0 1 
H 4 0 0 0 0 H 132 80 1396 22 0.856 
L 0 0 0 0 – L 3 2 14 286 0.938 

Pr 0.991 0.937 – – Pr 0.890 0.010 0.957 0.929 
F1 0.988 0.954 – – F1 0.917 0.020 0.904 0.933 

Notes . Event classes, B: blasts, E: earthquakes, H: high-frequency mining-induced events, L: low-frequency mining-induced events. Metrics, Re: recall, Pr: 
precision and F1: F1-score. 

Figure 6. Classification accuracy for seismic events in Sweden analysed by SNSN, 2022 January to June. The vertical axis depicts accuracy; the proportion 
of events where the predicted class agrees with analyst assigned class. Filled bars indicate events where manually assigned phase picks were used to divide the 
seismic records into the prescribed time windows. Unfilled bars indicate events where automatic phase picks from the SIL system were used. Event categories, 
A: all events, B: events located at least 25 km away from the mines in Kiruna and Malmberget and C: events located less than 25 km away from the mines in 
Kiruna and Malmberget. 
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.4 Shallow earthquakes 

hallow earthquakes, here defined as earthquakes occurring at
epths above 5 km, represent a case study for our classification
odel, due to the potential for generating significant surface wave

nergy. For the seismic events recorded by SNSN, significant sur-
ace wave energy is more typically observed from blasting events
lose to the surface than earthquakes. Reliable depth estimates for
hallow earthquakes are also typically challenging to establish at re-
ional networks, due to the lack of station coverage suf ficientl y close
o the event. To evaluate the model performance when predicting
he event class of shallow earthquakes we compiled e v aluation data
onsisting of 20 such events, with origin times outside the period
sed for model training, generated class predictions and compared
ith analyst assigned classes. We found that 19 out of the 20 earth-
uakes generated predictions matching manually assigned classes,
ndicating that the method is relati vel y robust to predicting the class
f shallow earthquakes and that depth-sensiti ve ef fects alone do not
lay a decisive role in the classification. 
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Figure 7. Effect of different QF threshold values on classification accuracy and event retention for all events during the e v aluation period. Dashed curves 
represent events where manual phase picks are used for time window selection and solid curves represent events where automatic SIL picks are used. Dark 
curves represent classification accuracy and lighter curves represent event retention, that is, the proportion of events with final prediction QF above the 
corresponding threshold value. 
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4.5 Feature importance 

The neural networks used in this study contain 240 manually se- 
lected input features. The features represent RMS amplitudes com- 
puted in different time windows, filtered in different frequency 
bands. One way of ranking individual features in terms of their 
relative importance to the model predictions is through a method 
referred to as per mutation impor tance, first described by Breiman 
( 2001 ) for random forests. In essence, the method estimates how 

a model’s performance score, for example, classification accuracy, 
is affected when a single feature is randoml y shuf fled. We imple- 
mented per mutation impor tance on all the station-specific models 
and computed the importance of each feature as a mean decrease of 
validation-set accuracy when the feature was shuffled. Fig. 8 shows 
the mean and standard deviation of the feature importance for each 
model input feature, over all SNSN stations. 

We find that, in general, features corresponding to P -phase and P - 
coda time windows at intermediate to high frequencies (12–41 Hz) 
are of high importance. For most frequency bands, their importance 
significantly outweighs the importance of the S -phase and S -coda 
windows in the same bands. The reason for the high relative im- 
portance of these features is unclear to us and may be of interest 
to further in vestigate. To wards the lower end of the spectrum, three 
features stand out in terms of importance. Two of these features 
correspond to the S -coda time windows on the vertical and radial 
components in the lowest passband, corresponding to 1–3 Hz. The 
average importance of these features is among the highest of all the 
features. We interpret the importance of these features as an indica- 
tion that the presence of Rg surface waves plays an important role 
in the classification on many stations. The models’ apparent robust- 
ness when predicting shallow earthquakes does, however, suggest 
that the presence of significant Rg wave energy, by itself, is not de- 
cisive to the final classification. The third important feature on the 
lower end of the spectrum corresponds to the S -phase time window 

on the transverse component, also in the lowest passband. A pos- 
sible explanation for the importance of this feature is the presence 
of Lg surface waves. It should be noted that, overall, the standard 
deviations of the computed feature importances are high compared 
to their mean values, as displayed in Fig. 8 . In other words, the 
importance of each individual feature varies considerably from one 
station model to another. 

4.6 Weighting of station predictions 

During method development we tested different weighting schemes, 
where individual station predictions w ere w eighted based on station- 
event distance before computing the final class prediction for an 
event. Fig. 9 shows the mean classification accuracy as a function 
of station-event distance in left-adjusted bins of 10 km width, com- 
puted over all stations used in the study for events in the e v aluation 
data, 2022 January to June. The figure shows that beyond epicentral 
distances of 120 km, the mean accuracy starts decreasing after re- 
maining relati vel y stable for shorter distances. We belie ve that this 
result can partly be attributed to more pronounced path effects at 
greater station-event distances, making the different classes more 
challenging to distinguish. 

With Fig. 9 in mind, we tested weighting schemes where station 
predictions at station-event distances beyond 120 km were down- 
weighted before computing final predictions. For example, we tested 
a weighting scheme where all predictions up to 120 km station-event 
distance were equally weighted and then downweighted predictions 
linearly with distance beyond 120 km. In general, we found the dif- 
ference in classification accuracy to be minimal with and without 
weighting. While applying the different weighting schemes did in- 
crease the average QF of the final predictions, it did not increase the 
overall number of predictions matching analyst assigned classes. 
Conversely, we found that for three events in the evaluation data, 
assigning the weights led to final predictions which disagreed with 
manually assigned classes where they pre viousl y had agreed, prior to 
assigning the weights. The common factor shared by these ‘flipped’ 
e vents w as that they only had one or two stations within a 120 km 

station-event distance. When one of these nearby stations produced 
a false class prediction, the downweighing of more distant stations 
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Figure 8. Mean importance of model input features over all station-specific models. Each point represents the importance of a single input feature, computed 
as the mean decrease of validation-set accuracy when the feature was randomly shuffled. Vertical lines from each point represent standard deviations. Different 
subfigures denote different time windows; top left: P phase, top right: P coda, bottom left: S phase and bottom right: S coda. The labels on the horizontal axis 
indicate passband of the filter applied to compute the feature. The three points shown for each passband correspond to the sensor components; vertical (solid 
line), radial (dashed line) and transverse (dotted line). 

Figure 9. Mean classification accuracy as a function of station-event epicentral distance for individual station predictions during the e v aluation period. Each 
vertical bar represents the mean classification accuracy over all individual station predictions from stations within a 10 km station-event epicentral distance 
range. Note that the vertical axis starts at 80 per cent. 
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esulted in erroneous final predictions. Due to the minimal observed
ifference and for the sake of simplicity we have opted to assign
niform weights and compute final predictions as arithmetic means
f all individual station predictions. 

.7 Transferability of model parameters 

uring 2022, two permanent SNSN stations, Uddeholm (UDD) and
me å (UMAU), were decommissioned and replaced with nearby

tations from the Hagfors array (HFB1), operated by the Swedish
efence Research Agency, and Bullmark (BLMU), respecti vel y

see Fig. 2 ). Since our classification models are station specific,
hen a new station is introduced into the netw ork, we w ould typ-
cally need to wait for the station to collect enough data to train
ts own prediction model before having it available for class pre-
ictions. To test the transferability of station-specific model param-
ters we conducted tests where the classification models from the
ecommissioned stations, UDD and UMAU, were used to gener-
te predictions for events recorded at stations HFB1 and BLMU,
ithout appl ying an y additional model training. We found that for

vents recorded on station HFB1 in the first two months of 2023,
redictions made using the model trained for station UDD gener-
ted class predictions with 95 per cent accuracy. For events recorded
t station BLMU, in the same period, the model trained for station
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UMAU generated class predictions with 94 per cent accuracy. For 
comparison, the classification accuracy of station UMAU on its own 
test data was approximately 98 per cent. 

These results offer encouragement that models trained for specific 
stations can be applied to data recorded on other nearby stations 
whilst maintaining relati vel y high classification accuracy. To further 
study the transferability of specific station model parameters we 
compiled a list of 120 events recorded at station BLMU during 
2023 January and February and used station models from all other 
SNSN stations to generate class predictions. Fig. 10 shows the 
resulting accuracy results. We find that the classification accuracy 
ranges from about 60 to 96 per cent for the different station models, 
with an average of 83 per cent. In general, we observe a negative 
correlation between accuracy and distance from BLMU with some 
outliers, including the model which achieved the highest accuracy 
of about 96 per cent, from a station located about 400 km away from 

BLMU. Notably, the model which achieved the lowest accuracy of 
about 60 per cent also comes from a station located about 400 km 

away from BLMU. 
These results encouraged us to test the feasibility of training one 

large classification model for the whole region as an alternative to 
the station-specific model approach. For this purpose, we started 
with the binary classification case and trained one model with all 
the blasts and earthquakes used in the original station-specific train- 
ing data, excluding blasts associated with the mines in Kiruna and 
Malmberget. We subsequently applied the model, in the same way 
as the station-specific models, to all manually analysed blasts and 
earthquakes from the same e v aluation period as before, 2022 Jan- 
uary to June, excluding events located less than 25 km away from 

the mines in Kiruna and Malmberget. Of these 2703 events (see 
Table 1 ), 2690 were correctly classified by the model, the exact 
same number as were correctly classified by the station-specific 
models, yielding an accuracy of 99.3 per cent. Of the 13 events 
mis-classified by the single model, ten were also mis-classified by 
the station-specific models. When we apply the single model to 
data collected by a new station (BLMU), which was not part of the 
training data, we find that the single model achieves a classification 
accuracy of 97.4 per cent, outperforming all the station-specific 
models (see Fig. 10 ). This suggests that the single model is superior 
to the station-specific models when introducing new stations in the 
station network. 

As a second test, we repeated the one model approach, this time 
including the two mining-induced event classes and trained the 
model using all the training data used for the station-specific ap- 
proach, including events associated with the Kiruna and Malmber- 
get mines. This time the overall classification accuracy during the 
e v aluation period was 90.7 per cent, a significant decrease from 

the 97.4 per cent accuracy achieved using the station-specific mod- 
els (see Fig. 6 ). The decrease in accuracy was most significant for 
events located at least 25 km away from the mines in Kiruna and 
Malmberget where the accuracy dropped from 99.3 to 86.4 per cent 
with the addition of the mining-induced event classes to the model. 
For events located less than 25 km away from the mines the accuracy 
drop off was smaller, going from 96.0 to 94.5 per cent. 

4.8 Ev ent-or -not classification 

During 2022 June, the SIL system produced 1554 automatic event 
detections in Sweden with locations more than 50 km away from the 
mines in Kiruna and Malmberget. From these, 1221 were deemed 
to be spurious phase associations by analysts and 333 were real 
seismic events. Table 3 shows the results from comparing the out- 
put of the event-or-not classification to analyst assigned labels. The 
classification agreed with the analyst on 1173 of the spurious phase 
associations and 300 of the real seismic events, resulting in a clas- 
sification accuracy of 94.8. The F1-scores are 0.881 for the real 
seismic event class and 0.967 for the spurious phase associations. 
As demonstrated by the high recall achieved for the spurious event 
class, the classification is able to correctly identify over 97 per cent 
of the spurious events. The SIL system also detects a large num- 
ber of events, both spurious associations and real events, close 
to the mines in Kiruna and Malmberget. Due to their high fre- 
quency of occurrence, many of the smaller mining-induced events 
are typically not manually analysed and thus the accuracy of the 
event-or-not classification has not been determined close to the 
mines. 

5  D I S C U S S I O N  

The results demonstrate that station-specific classification models 
based on fully connected neural networks are well suited to the task 
of classifying the seismic events detected in Sweden. The models 
are already in use at SNSN and have proven to be a useful addition 
to automatic event analysis, providing reliable preliminary class 
predictions to automatic ev ent detections. The y are also applied as a 
revision tool after manual analysis has been completed, highlighting 
potential mistakes and helping to classify ambiguous events. The 
event-or-not classification will be used to screen out the majority 
of spurious event detections prior to manual revision, thus reducing 
analyst workload. 

5.1 Impact of various factors on predictions 

5.1.1 Class imbalance 

The models’ high-performance scores involving the earthquake 
class, under-represented in most stations’ training data, are an 
important achiev ement. The y demonstrates the positiv e effect of 
oversampling the training data, as the models are able to cor- 
rectly identify a large majority of the earthquakes in the e v alua- 
tion period (high recall). Before applying actions to compensate 
for the class imbalance, for e xample, ov ersampling, many of the 
station models trained on the imbalanced data would predict al- 
most all new events to belong to the over-represented class (blasts), 
leading to low-performance scores for the earthquake class. We 
tested alternative methods to compensate for the class imbalance, 
including undersampling the blast class and assigning different 
weights to events, proportional to the relative size of their class. 
All the tested methods offered significant improvement to the per- 
formance scores of the stations with imbalanced training data. We 
found that in our case, oversampling the earthquake class offered 
the most overall improvement in perfor mance scores, par ticularly 
for stations with very few earthquakes ( < 30) in their training 
data. 

5.1.2 Accuracy of phase picks and event locations 

The classification accuracy is slightly lower when automatic phase 
picks are used for the time window selection than when manual 
phase picks are used. This can partly be attributed to a higher 
number of phase picks being available after manual revision and 
thus more stations being available to generate predictions. Another 
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Figure 10. Classification accuracy for data recorded at station BLMU, using station models trained for other permanent SNSN stations. The dashed line 
indicates the corresponding accuracy when using one model trained with all the blasts and earthquakes used in the original station-specific training data, 
excluding blasts associated with the mines in Kiruna and Malmberget. 

Table 3. Generalization performance of the event-or-not 
classification for automatic SIL event detections, 2022 
June. 

Predicted class 
Analyst Real Spurious Re 

Real 300 48 0.862 
Spurious 33 1173 0.973 

Pr 0.901 0.961 
F1 0.881 0.967 

Notes . Metrics, Re: recall, Pr: precision and F1: F1-score. 
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eason is the higher uncertainty of the automatic phase picks com-
ared to manual ones, which leads to less accurate time window
elections. Automatic event locations generally have higher uncer-
ainty than manually revised ones and thus calculations of theoret-
cal phase arri v al times and rotation of components also become
ess accurate. We have found that the main limiting factor of our
ethod, when using automatic phase picks, is its sensitivity to the

iming of the phase picks being accurate. Most events, for which
he models generate a final class prediction which contradicts the
ater manually assigned class, share the common feature that the
iming of their phase picks is inaccurate, leading to an inaccurate
ime window selection and erroneous class predictions. This can

anifest itself in different ways. For example, if an automatic P- or
 -phase pick is missing at a given station for an event which epi-
enter, depth and/or origin time are poorly constrained, the missing
hase arri v al needs to be computed theoreticall y and can lead to
ignificant inaccuracies. Another source of inaccurate phase picks
ccurs when automatic phase association mixes up P and S phases,
eading to erroneous time window selections. Fig. 11 shows an ex-
mple of a seismic trace from a mining-induced event in the Kiruna
ine where the P -phase arri v al has been automatically picked as

n S -phase arri v al. Once the P -phase arri v al has been theoretically
omputed, based on the erroneous S -phase pick, the consequent
ime window selection leads to an erroneous class prediction. Mov-
ng forward, we see increasing accuracy of automatic phase picks as
ne way of further improving the event classification. The accuracy
esults for the manually analysed ev ents serv e as a benchmark to
he classification’s potential when pick quality is optimal. 

In general, the models described in this study are capable of
lassifying seismic events in Sweden to a high degree of accuracy,
rrespective of their location. The accuracy is, ho wever , lo wer for
vents located close to the mines in Kiruna and Malmberget, com-
ared to events at further distances away from the mines. This can
rimarily be attributed to the station models having four classes to
istinguish instead of two. Another reason for lower accuracy close
o the mines when using automatic phase picks for the time window
election is a higher relative number of events with inaccurate phase
icks/association in the SIL system compared to events further away
rom the mines. Finally, the waveform features from events associ-
ted with the mines, particularly blasts and high-frequency mining-
nduced events often share similar features, making them hard to
istinguish, even for human analysts. In practice, analysts often rely
n an event’s origin time to distinguish between blasts and mining-
nduced events in Kiruna and Malmberget, since the blasts typically
ccur during the same specific hours each day. 

.1.3 Mislabelled events in the training data 

n this study, we have not explicitly estimated the effects of misla-
elled events in the training data on the results. We have however
dentified se veral e vents in the training data, where our model pro-
uces a final predicted class with a high QF which disagrees with
he analyst assigned class. For many of these events, closer manual
nspection has led us to conclude that the model is correct and a

istake was made during the manual analysis. Such examples con-
rm the presence of mislabelled events in the training data although

heir extent and effect on the final results are difficult to quantify.
he examples also highlight the capability of the model to identify
lassification mistakes in the data archives and provide the opportu-
ity to re vie w specific e vents. Currentl y at SNSN , the model is run
or each calendar month, after manual analysis has been completed.
n average, it detects 1–2 e vents e very month where an event was
islabelled during manual analysis. The application of the model
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Figure 11. Vertical component from a mining-induced event in the Kiruna mine where an automatic S -phase pick has been erroneously assigned to the arri v al 
of the P phase, leading to erroneous time window selection. 
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thus allows us to fix mistakes and reduce the number of errors in 
the event catalogue. 

5.1.4 Rotation of horizontal components 

One step in our data processing is the rotation of the horizontal 
data components into radial and transverse coordinates. The idea 
behind applying this rotation is to better capture individual seismic 
phases on the horizontal components, such as the Rg phase on the 
radial component and the S / Lg phase on the transverse component. 
Rotating the horizontal components also means that the computed 
waveform features are less sensitive to the direction from which 
seismic phases arrive at a station and thus helps with transferability 
of model parameters from one station to another. Ho wever , rotat- 
ing the horizontal components requires an estimate of an event’s 
location to compute the backazimuth. For automatic event detec- 
tions, the uncertainty in an event’s location can be high, leading to 
wrong rotations. We have seen that some of the erroneous classi- 
fications made by our model, particularly for events located close 
to the mines in Kiruna and Malmberget, can be traced to erroneous 
location estimates and subsequent rotations rather than low-phase 
pick accuracy. 

5.1.5 Station-specific models or not? 

Our results on parameter transferability (Fig. 10 ) show that models 
trained on data recorded at a specific station have the capacity to 
be applied to data recorded on a different station and maintain high 
classification accuracy. Sweden is part of the Fennoscandian Shield, 
an area of low seismicity in nor ther n Europe (Gregersen et al. 
2021 ). It is feasible that the relati vel y uniform and stable Swedish 
bedrock, with its low levels of attenuation, contributes to fav ourab le 
conditions for model parameter transferability between different 
stations. Ho wever , Fig. 10 also shows that the while the accuracy 
achie ved on dif ferent stations tends to decrease with distance, it 
is not a simple linear relationship. Both the lowest and highest 
accuracy scores (about 60 and 96 per cent) are achieved at stations 
located about 400 km away from the recording station. 

Our results from testing the feasibility of using one model for the 
whole region (Section 4.7 ), as opposed to the station-specific ap- 
proach, suggest that both approaches represent feasible alternatives 
for seismic event classification in Sweden. Our primary reasons 
for starting with station-specific models were the large geograph- 
ical spread of the seismic stations operated by the SNSN and the 
variability in the types of seismic events and ambient noise levels 
recorded by the different stations. In nor ther n Sweden, the primary 
source of seismic events classified by the SNSN as ‘blasts’ are 
mining blasts originating from the underground mines in Kiruna 
and Malmberget. In contrast, the majority of ‘blasts’ recorded in 
other parts of the country result from quarry blasting and construc- 
tion work. Most earthquakes recorded in northern Sweden can be 
associated with known postglacial faults whereas the sources of 
earthquakes recorded in southern Sweden are typically not as clear. 
We hypothesized that station-specific models would allow us to bet- 
ter capture the individual characteristics of each seismic station, 
thus making for a more reliable class prediction. 

Our results suggest that when events associated with the two 
mines are included, where four event classes are involved, the 
station-specific approach remains fav ourab le to the one model ap- 
proach in terms of prediction accuracy. For the binary classification 
of blasts and earthquakes, using the one model approach has proved 
to be equally effective as the station-specific approach and thus 
both approaches represent feasible alternatives. Arguments for se- 
lecting the one model approach might include less work managing 
model updates and more seamless integration of new stations into 
the classification. With the good performance achieved by the one 
model approach, we have recently started testing the application of 
the model to data from neighbouring stations outside of the SNSN. 
The results look generall y promising, especiall y in regions with ge- 
ological structure similar to Sweden. Fig. 10 demonstrates that in 
the case of BLMU, a new station which was added to the SNSN, 
applying the one model approach to data collected by the station 
outperforms all the individual, station-specific models. We hypoth- 
esize that this difference in performance can primarily be attributed 
to the significantly larger training data set involved in the one-model 
approach compared to any station-specific model, allowing for more 
sophisticated learning of the model features. A potential way of fur- 
ther developing the methodology presented in this study may be to 
attempt to extract the best from both scenarios by adapting ideas 
from the field of transfer learning, a subfield of machine learning. 
With the knowledge learned from the one model approach we may 
improve the station-specific models by using the large model as a 
base to fine-tune the station-specific models. 

5.2 Comparison to other methods 

The accurac y achiev ed in our study for the binary classification 
of blasts and natural earthquakes (98 per cent for automatic event 
detections and 99 per cent for manually analysed events) is compa- 
rable to other recent studies devoted to the same purpose in different 
regions. In contrast to many of the more recent studies on seismic 
event classification (Hourcade et al. 2023 ; Kong et al. 2022 , 2021 ; 
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inville et al. 2019 ; Tibi et al. 2019 ) our method does not rely on
mages of e vent spectro grams and thus does not require the applica-
ion of CNNs. Whether the method generalizes as well to different
eographical areas as, for example, the method proposed by Hour-
ade et al. ( 2023 ) has not yet been tested. Our method also depends
n manual feature selection. The feature selection is inspired by the
ork of Kortstr öm et al. ( 2016 ), for a seismic network located in
eological settings comparable to Sweden. Our accuracy results for
istinguishing between blasts and earthquakes are somewhat better
han Kortstr öm et al. ( 2016 ) which suggests the suitability of the
elected features for event classification, at least in the stable conti-
ental region of the Fennoscandian Shield. Our accuracy involving
our event classes (90 per cent for automatic event detections and
6 per cent for manually analysed events) is more difficult to com-
are to other studies but suggests that the method is also capable of
erforming event classification involving multiple event classes to
 high accuracy. 

 C O N C LU S I O N S  

he main objective of this study is to develop an algorithm capable
f reliably predicting the source types of seismic events detected in
weden. Such an algorithm will allow a reduction in the time spent
 y anal ysts establishing the source type of automaticall y detected
eismic events. We have developed station-specific event classifica-
ion models using traditional fully connected artificial neural net-
orks. The models distinguish between four different event classes

epresentati ve of anal ysis routines at the SNSN; natural (tectonic)
arthquakes, blasts (from e.g. quarries, mines and construction) and
wo types of mining-induced events, with a high degree of accu-
ac y. An e xtension of the models is capable of distinguishing the
ajority of spurious phase associations from real seismic events of

nterest. 
The classification accuracy achieved by the models when distin-

uishing between earthquakes and blasts is 98 per cent for automatic
vent detections and 99 per cent for manually analysed events, com-
arable to other studies dedicated to the same purpose in different
eographical areas. The models also maintain high classification ac-
uracy in areas close to the underground mines in Kiruna and Malm-
erget, with four different event classes to distinguish, 90 per cent
or automatic event detections and 96 per cent for manually analysed
vents. Most erroneous classifications for automatic event detec-
ions can be traced back to uncertainties in automatic phase picks
nd/or association, leading to erroneous time window selections.
ther reasons for erroneous classifications include high automatic

ocation estimate uncertainties, leading to erroneous rotations of
he horizontal data components. The accuracy of the event-or-not
lassification, distinguishing spurious phase associations from real
eismic events, is about 95 per cent for events located more than
0 km away from the mines in Kiruna and Malmberget. 

The most important features, on average, for the model predic-
ions are computed from time windows associated with P phase and
 coda at intermediate to high frequencies (12–41 Hz) as well as
 phase and S coda at low frequencies (1–3 Hz), corresponding to
ime windows where surface wave energy ( Rg / Lg ) is strong. Mod-
ls trained on data recorded at specific stations have the capacity
o be applied to data recorded on a different station and maintain
igh classification accuracy. Training one model for the whole re-
ion results in equally high accuracy when distinguishing blasts
nd earthquakes as training station-specific models does. With the
ddition of the mining-induced event classes, the station-specific
pproach performs better. The models are already in use at the
NSN, where they serve as a tool to assign preliminary type predic-

ions to automatic event detections and to re vie w manuall y anal ysed
vents, identifying potential mistakes. The models will also be used
o e v aluate which e vents to subject to manual analysis in the future.
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discriminate anthropogenic from natural low magnitude seismic events,
Geophys. J. Int., 232 (3), 2119–2132. 

unter , J .D . , 2007. Matplotlib: A 2d graphics environment, Comput. Sci.
Eng., 9 (3), 90–95. 

uhlin , C. & Lund, B., 2011. Reflection seismic studies over the end-glacial
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