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SUMMARY

Distinguishing between different types of seismic events is a task typically performed manually
by expert analysts and can thus be both time and resource expensive. Analysts at the Swedish
National Seismic Network (SNSN) use four different event types in the routine analysis:
natural (tectonic) earthquakes, blasts (e.g. from mines, quarries and construction) and two
different types of mining-induced events associated with large, underground mines. In order to
aid manual event classification and to classify automatic event definitions, we have used fully
connected neural networks to implement classification models which distinguish between the
four event types. For each event, we bandpass filter the waveform data in 20 narrow-frequency
bands before dividing each component into four non-overlapping time windows, corresponding
to the P phase, P coda, S phase and S coda. In each window, we compute the root-mean-square
amplitude and the resulting array of amplitudes is then used as the neural network inputs. We
compare results achieved using a station-specific approach, where individual models are trained
for each seismic station, to a regional approach where a single model is trained for the whole
study area. An extension of the models, which distinguishes spurious phase associations from
real seismic events in automatic event definitions, has also been implemented. When applying
our models to evaluation data distinguishing between earthquakes and blasts, we achieve an
accuracy of about 98 per cent for automatic events and 99 per cent for manually analysed
events. In areas located close to large underground mines, where all four event types are
observed, the corresponding accuracy is about 90 and 96 per cent, respectively. The accuracy
when distinguishing spurious events from real seismic events is about 95 per cent. We find that
the majority of erroneous classifications can be traced back to uncertainties in automatic phase
picks and location estimates. The models are already in use at the SNSN, both for preliminary
type predictions of automatic events and for reviewing manually analysed events.

Key words: Machine learning; Neural networks, fuzzy logic; Statistical methods; Time-series
analysis; Seismicity and tectonics.

and the P/Lg ratio (Dysart & Pulli 1990; Baumgardt & Young 1990;

I INTRODUCTION Kim et al. 1993). At local distances, examples include the P/S ratio

Seismic waves produced by small earthquakes and blasts (e.g. min-
ing or quarry blasts) can share similar characteristics. The task of
distinguishing between different types of seismic events in regions
where both earthquakes and blasts occur is important for a variety
of reasons, for example, for understanding the drivers of natural
seismicity and for seismic hazard assessment. Finding seismic dis-
criminants capable of distinguishing between earthquakes and blasts
has long been an active research topic. Many of the methods de-
veloped for that purpose have exploited the amplitude or spectral
ratios of different seismic phases. Examples for seismic events at
regional distances include the P/S ratio (Baumgardt & Young 1990),

(O’Rourke et al. 2016) and the Rg/Sg ratio (Tibi et al. 2018; Kintner
et al. 2020). Methods based on amplitude or spectral ratios have, in
general, performed well on the task of seismic event classification.

In recent years, advances in machine learning have, in conjunc-
tion with a widespread availability of large data sets, been a catalyst
for progress in method development for seismic event classifica-
tion. Several recent studies have demonstrated the suitability of
deep-learning based methods, in particular convolutional neural
networks (CNNs), a subclass of artificial neural networks, for the
task of seismic event classification (Linville et al. 2019; Tibi et al.
2019; Kong et al. 2021, 2022; Hourcade ef al. 2023). These studies
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use images of event spectrograms as inputs into CNNs which are ca-
pable of automatic feature extraction and expert-level classification
of earthquakes and explosive sources.

Linville ef al. (2019) applied a form of recurrent neural network;
Long-Short-Term-Memory, and CNNs on images of event spec-
trograms to distinguish between explosive and tectonic sources at
local distances. They found that both methods were able to correctly
predict event labels in over 99 per cent of cases, once label errors
assigned by analysts had been accounted for. They also reported
classification accuracy of over 98 per cent for shallow earthquakes,
indicating limited effects of depth on event classification. Hour-
cade et al. (2023) expanded on the work of Linville e al. (2019)
by increasing the frequency content of the used spectrograms and
thereby implementing a tool capable of classifying low-magnitude
events. They also demonstrate the versatility of their approach by
successfully applying it in different geographical areas. Kong et al.
(2022) combined physics-based features with a deep-learning ap-
proach, operating on waveforms and spectrograms, to distinguish
between earthquakes and explosions. Their selected physics-based
features were high-frequency P/S amplitude ratios and the differ-
ence between local and coda duration magnitudes. They found that
the combined method outperformed models developed exclusively
with deep learning when applied to new regions, that is, the combi-
nation improved generalization performance.

Other machine-learning-based methods for classifying seismic
events, using manually selected features, have also been successful.
For example, Kortstrom et al. (2016) developed an algorithm to au-
tomatically distinguish between earthquakes and explosive sources
within a regional seismic network located in Finland. Their method
applied a supervised pattern recognition technique, support vector
machine, on computed waveform features, filtered in different fre-
quency bands. With evaluation data consisting of 5435 automatic
event detections, their method correctly predicted the source type
for 94 per cent of the events, with a 3 per cent risk of falsely iden-
tifying an event as an earthquake. Another example is the work
of Miao et al. (2020), who use an artificial neural network to dis-
criminate local and regional earthquakes from quarry and mining
blasts in eastern Kentucky with high accuracy. After conducting
tests with several types of input features, model architectures and
hyperparameters, a trained model containing the authors’ preferred
combination of input features and model architecture achieves a
high precision (>97 per cent) when identifying both earthquakes
and blasts, using single-station recordings.

In Sweden, natural (tectonic) earthquakes, man-made blasts at
construction sites, quarries and in mines, and mining-induced events
frequently occur in close spatial proximity. Located in a stable con-
tinental region in northern Europe, the large majority of seismic
events detected in Sweden are man-made, that is, either blasts or
mining-induced events. The natural earthquakes detected in Sweden
by the Swedish National Seismic Network (SNSN) are mostly low
magnitude. The network detects earthquakes down to local mag-
nitudes below —1 with an estimated magnitude of completeness
of about 0.5 and an average annual detection rate of about sev-
enteen earthquakes with local magnitude 2 or higher (Lund et al.
2021). The task of distinguishing between different event types is
typically performed by expert analysts and can thus be both time
and resource expensive. At SNSN, analysts use four different event
types in the routine analysis; earthquakes, blasts and two different
types of mining-induced events associated with large, underground
mines. The main objective of this study is to develop an algorithm
capable of reliable automatic event classification for the four event
event types detected in Sweden. Inspired by the study of Kortstrom
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et al. (2016) for a seismic network located in geological settings
comparable to Sweden, we have opted to implement a classification
model based on similar, manually selected features. The classifi-
cation is implemented as traditional, feed-forward, fully connected
neural networks; a machine-learning-based approach widely used
for classification tasks. As a first approach, we implement the clas-
sification on a station-specific basis, training separate models for
each seismic station used in the study, with data recorded at the
station. Subsequently, we train a larger, regional model with data
from all stations and compare its performance to the station-specific
approach.

In Section 2, we describe our method, starting with the neural
networks’ architecture, followed by the data processing steps and a
description of how station-specific predictions are combined to form
a final prediction about an event’s class. In Section 3, we introduce
the SNSN, the data used in this study and the seismicity of Sweden.
In Section 4, we present our results, both individually on a station
basis and on a multistation basis for an evaluation data set, spanning
six months of seismic events. We also present the results of different
applications of our method to seismic data. Finally, in Section 5,
we discuss the general implications of our results, compare with
other similar studies and discuss the impact of various factors on
our results.

2 METHOD

We use fully connected artificial neural network models to classify
the source types of seismic events in Sweden. The seismic stations
operated by the SNSN are spread over a large geographical area,
with notable differences in the types of seismic events and ambient
noise levels recorded at the different stations. For this reason, as a
first approach, we develop station-specific models for each SNSN
station, using data recorded at the stations.

The neural network models consist of three hidden and two
dropout layers to reduce the risk of overfitting (Srivastava et al.
2014). Each hidden layer consists of 256 nodes and a rectified
linear unit activation function. The dropout layers have a dropout
rate of 0.5. The number and size of the hidden layers along with
other neural network hyperparameters were decided through a grid-
search-based evaluation process where different combinations of
parameters were ranked in terms of their effect on the models’ per-
formance. For the model training, the label, that is, source type of
the event, has been manually assigned. On most stations, the classi-
fication problem is treated as binary, that is, all events are assumed
to be either a natural (tectonic) earthquake or a blast. Here, the neu-
ral network output consists of one node with a sigmoid activation
function. The node contains a value between 0 and 1 which repre-
sents the probability of the input event being an earthquake. On six
selected stations, the presence of mining-induced events increases
the number of possible classes from two to four. Here, the output
layer contains a number of nodes equal to the number of possible
classes, that is, four, with a softmax activation function. In this case,
each node will have a value between 0 and 1 with the individual val-
ues summing to 1. Each node value then represents the probability
of the input event belonging to the corresponding class (Goodfellow
etal. 2016). All the analysis is implemented in the Python program-
ming language. Data processing is done using NumPy (Harris et al.
2020) and pandas (McKinney 2010). The models were constructed
using the Keras deep learning API (Chollet et al. 2015), running
on top of the machine learning platform TensorFlow (Abadi et al.
2015). Evaluation metrics for model performance are computed
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using sklearn (Pedregosa et al. 2011). Figures were generated using
Matplotlib (Hunter 2007) and The Generic Mapping Tools (Wessel
et al. 2019).

For each station used in the study, we start by compiling a list
of manually revised seismic events with both P- and S-phase ar-
rivals picked at the station, to use for model training. For each event
we correct the associated waveforms for instrument response and
rotate the horizontal components into radial and transverse coor-
dinates. Each component is subsequently processed in the same
way as suggested by Kortstrom et al. (2016). First, it is bandpass
filtered in a narrow-frequency band. Then, it is divided into four
non-overlapping time windows corresponding to P phase, P coda,
S phase and S coda, using the manually picked P- and S-phase
arrivals (see Fig. 1). All time windows have equal length, corre-
sponding to half the differential time between the P- and S-phase
arrivals. Finally, the root-mean-square (RMS) amplitude is com-
puted in each time window. This process is repeated for a total of
20 narrow-frequency bands, resulting in a total of 3 x 4 x 20 =
240 RMS amplitudes which represent our neural network inputs.
The passbands used are the ones suggested by Kortstrom et al.
(2016), ranging from 1 to 41 Hz with a bandwidth of 3 and 1 Hz
overlap between adjacent bands, that is, 1-3, 2-5, 4-7, ..., 36-39,
3841 Hz.

Fig. 1 shows example waveform segments where the vertical
components of seismic event records have been divided into the
prescribed time windows. The upper panel is from an earthquake
which occurred at a depth of approximately 20 km, while the lower
panel is from a near-surface quarry blast. Rg waves are often promi-
nent features on seismograms of shallow events of all types, in-
cluding both blasts and earthquakes, at the local distances used in
this study (Béth 1975). The lower panel of Fig. 1 shows how the
Rg wave generated by the local-distance near-surface event is most
prominent within the time window we associate with S coda. Lg
waves are often prominent features in high-frequency seismograms
at regional distances beyond 150 km (Furumura ez al. 2014). At
the local distances used in this study, the relative amplitude and the
time separation between the Lg and S phases are typically too small
to reliably distinguish the Lg phase which effectively merges into
the S phase (Press & Ewing 1952).

For the model training, available data are randomly split with a
50, 25 and 25 per cent ratio into training, validation and test data,
respectively. On most stations the number of blasts is much larger
than the number of earthquakes in the data, which leads to class im-
balance. To limit prediction bias caused by the class imbalance, we
apply the Synthetic Minority Over-Sampling Technique (Chawla
et al. 2002) on stations where the number of earthquakes in the data
is less than 80 per cent of the number of blasts. We use an over-
sampling ratio of 0.8, that is, we supplement the earthquake class
with synthetic examples until the ratio between earthquakes and
blasts reaches 0.8. The oversampling ratio was determined through
an evaluation process where different ratios were applied to model
training on all stations. The selected ratio of 0.8 is the one which
resulted in the highest average validation set accuracy over all sta-
tions. When fitting the model we use a batch size of 64. This means
that 64 events from the training data are passed through the network
on each iteration, before model parameters are updated. When all
training data have passed once through the network, it is termed
an epoch. We continue training for a maximum of 500 epochs, that
is, the network will work through the entire training data no more
than 500 times. At the end of each epoch the model’s classification
accuracy on the validation set is estimated. We stop training once
the validation accuracy has not improved over 20 epochs. We select

the final model parameters as the ones corresponding to the epoch
where the highest validation accuracy was achieved. Depending on
the size of the training data, our average training time per epoch
ranges from 0.2 to 0.9 s. This is when using an 11th Gen Intel(R)
Core(TM) 17-11700 @ 2.50GHz with 8 cores and 32 GB of RAM.
For an average-sized training set containing about 3000 events, the
average training time per epoch is approximately 0.6 s.

To make a final prediction about the class of a new seismic event,
we first generate individual class predictions from all stations lo-
cated within a 10-200 km distance of the event’s epicentre that have
at least one phase pick available from either manual analysis or au-
tomatic phase association. The 10 km distance limit ensures that the
time windows are long enough to contain meaningful information
while the 200 km limit reflects the typical range of manual phase
picks available for the data. For missing P- or S-phase picks we
compute synthetic arrival times based on the local velocity model
of the SNSN, the same velocity model as used for manual analy-
sis and automatic event detections. Given that we have predictions
from at least two stations, we compute a final probability distribu-
tion from the individual station predictions according to eq. (1), as
the the arithmetic means of the individual station distributions.

P = [P(c)). P(ca). P(c3). P(cs)]
1 n n n n
=~ | Do P Yo P(eay) Y P(esy), Y Plesy) |
j=1 Jj=1 Jj=1 Jj=1
n>2 0]

where P(c;) is the final probability of an event belonging to class 7, n
is the total number of stations which generated individual distribu-
tions and P(c; ;) is the probability of an event belonging to class i,
computed at station j. On stations where the classification problem
is binary, P(cs3 ;) = P(cs,j) = 0. The predicted class is taken be the
one corresponding to the highest probability in the final distribution.
The prediction is assigned an integer quality factor (QF) between 0
and 99 which represents the highest probability in the final distri-
bution and the number of stations used to generate the prediction.
It is designed to rank prediction reliability, as we associate higher
station count with higher reliability. The QF is computed according
to eq. (2).

QF = floor ((maX(P) - ni2> X 100> . 2)

We evaluate the performance of our models using several metrics.
For each class, we adopt the following notation: true positives (TP):
number of events correctly predicted to belong to the class. False
positives (FP): number of events erroneously predicted to belong
to the class. True negatives (TN): number of events correctly pre-
dicted to belong to a different class. False negatives (FN): number of
events erroneously predicted to belong to a different class. We define
the evaluation metrics in a traditional way (Burkov 2019). Accuracy
represents the ratio between the number of correct event predictions
and the total number of event predictions for all the data; accuracy
= (TP+TN)/(TP+FP+TN+FN). It provides an overall summary
of the model’s performance across all classes. For a given class,
precision represents how many, out of all events predicted to be-
long to the class, are correctly predicted; precision = TP/(TP+FP).
Recall represents how many, out of all events which truly belong
to the class, are correctly predicted; recall = TP/(TP+FN). The
Fl-score is defined as a harmonic mean of precision and recall
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Figure 1. Vertical component of seismic records for two seismic events in Sweden. The letters represent the four non-overlapping time windows. P: P phase,
Pc: P coda, S: S phase and Sc: S coda. The upper record is from an earthquake with local magnitude 0.7, recorded at an epicentral distance of 36 km. The lower
record is from a quarry blast with local magnitude 1.5, recorded at an epicentral distance of 38 km. It contains a (relatively) long-period Rg wave starting in

the S-phase window and most prominent in the S-coda window.

(Sasaki et al. 2007):

F 2 x precision X recall
l =

G)

precision + recall

The Fl-score can take values ranging from 0 to 1. An Fl-score
of 0 for a given class indicates that either precision or recall for
the class is equal to 0, whereas an Fl-score of 1 indicates both
precision and recall are equal to a maximum value of 1 (Sasaki et al.
2007). We use the F1-score as our primary evaluation metric for the
station-specific models because it provides a balanced measure of
the models’ performance by considering both precision and recall
for each class.

In addition to classifying real seismic events, we also train an-
other set of station-specific classification models, with the aim of
distinguishing real seismic events from spurious phase associations.
The network architecture of these event-or-not models is identical
to the event classification models but the length and positioning
of the time windows is slightly adjusted. We extend and shift the
time windows to include a noise window before the first P-phase
arrival to include an estimate of signal-to-noise ratio, one P-phase
window, one S-phase window and one post-S-coda window. The
length of each window equals the differential time between the P-
and S-phase arrivals. The training data for the event-or-not mod-
els contains a mixture of real seismic events and spurious phase
associations with a label indicating whether or not an event has
been deemed to be a real seismic event during manual analysis. The
classification problem is thus formulated as a binary problem; for a
given automatic event detection, is it a real seismic event (irrespec-
tive of event class) or spurious phase associations? The models are
applied in an identical way to the event classification models, with
an arithmetic mean of station-specific predictions used to generate
the final prediction.

3 DATA

The SNSN (Lund et al. 2021) is the primary monitoring institution
for seismic activity in Sweden. The network currently comprises
67 permanent seismic stations, each equipped with a broadband
instrument providing continuous real-time data, with a sampling rate
of 100 samples per second. Each station is connected via cellular
network to a central computer in Uppsala (Lund ez al. 2021). Fig. 2
shows the locations of SNSN stations in operation in 2022 August.

Currently, all major seismic events occurring in Sweden are sub-
ject to routine manual analysis at SNSN. The analysis includes tasks
such as phase picking, event location and classification, magnitude
estimation and focal mechanism generation. Historically, analysts
at SNSN have have distinguished between three different source
types for seismic events occurring in Sweden. These are natural
earthquakes, man-made blasts, typically related to industry, and
mining-induced events. Since 2020, the class of mining-induced
events has been further sub-divided into two separate classes, ow-
ing to a difference in source mechanics and frequency content.
Fig. 3 shows the revised locations of all blasts (a) and earthquakes
(b) in Sweden and neighbouring countries registered and classified
by SNSN between the years 2010 and 2021. Events outside of Swe-
den are generally not classified as earthquakes or blasts unless in
collaboration with neighbouring seismologists (Lund et al. 2021).
The figure shows that blast locations are widely distributed over the
country. The two biggest sources of blasts are the large underground
iron ore mines in Kiruna and Malmberget in northern Sweden (see
Fig. 3a). In the southern part of the country, most blasting events
originate from construction work and quarry blasting (Lund ef al.
2021). The earthquake locations are mostly concentrated around
postglacial faults, major continuous fault scarps in northern Swe-
den where fault movement took place at or near the time when the
ice receded at the end of the latest glaciation, ca 9500 yr ago (Juh-
lin & Lund 2011; Lindblom et al. 2015), and around lake Vénern,
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Figure 2. SNSN station locations, 2022 August, shown in triangles. (1)
stations UMAU and BLMU (closely located), (2) stations UDD and HFB1
(closely located) and (3) station ARNU.

the large lake in southwestern Sweden. The two most seismically
active postglacial faults in Sweden currently are the Burtrdsk and
Pérvie faults (see Fig. 3(b). Mining-induced events are exclusively
observed in the vicinity of large underground mines, most notably
Kiruna and Malmberget.

The primary system used for automatic detection and event
definition at SNSN is the South Iceland Lowland (SIL) system
(Bodvarsson ef al. 1999; Lund et al. 2021). On average, the system
defines 100 to 200 automatic events per day, whereof about 30—40
are typically confirmed to be real earthquakes, blasts or mining-
induced events via routine manual analysis (Lund er al. 2021).
SNSN has collected and manually revised digital seismic data con-
tinuously since 2000 August. Between the years 2000 and 2020, ap-
proximately 171 000 analyst-reviewed seismic events were recorded
by SNSN, whereof about 11 000 have been classified as earthquakes
and about 160 000 as man-made (blasts or mining-induced, Lund
et al. 2021). In some areas the network detects earthquakes to below
local magnitude —1 but its magnitude of completeness is approxi-
mately 0.5. The detected earthquakes are generally low magnitude,
with an average annual rate of 17 events with local magnitude
M 2+ (Lund et al. 2021). This extensive availability of labelled
training data makes SNSN well positioned to take advantage of su-
pervised learning based techniques to automate parts of its routine
analysis.

The data used for model training in this study are waveform data
from manually analysed seismic events, recorded in the years 2010—
2021, by all permanent seismic stations in operation by SNSN at
the start of 2022 (SNSN 1904). Separate models were developed
for each SNSN station, using event data recorded at the station.
The event classification problem is treated as binary on most sta-
tions, with two possible classes of events observed; earthquakes
and blasts. On stations within a 70 km distance radius from one
of the mines in Kiruna and Malmberget, the number of possible
classes increases to four due to the presence of two types of mining-
induced events in addition to earthquakes and blasts. Fig. 4 shows

the number of events in the data set used for each station, before
oversampling and capping. An event is included in a station’s data
set if it has been located within a 10-200 km distance from the sta-
tion and both P- and S-phase picks are available at the station from
manual analysis. For computational efficiency reasons, the number
of blasts and mining-induced events from the Kiruna and Malm-
berget mines in the relevant stations’ data set are capped at 1000
events per class from each mine. The figure shows that the data
for all stations south of station ARNU (marked with a dashed line,
see also Fig. 2) contain significant class imbalance where the ratio
between number of blasts and number of earthquakes in the data is
high. This is consistent with Fig. 3 which show that the majority
of earthquakes recorded in Sweden by SNSN occur north of station
ARNU.

The majority of automatic event detections by the SIL system
at SNSN comes from spurious phase associations (Lund ef al
2021). The spurious phase associations are typically distinguished
from real earthquakes, blasts and mining-induced events via rou-
tine manual analysis. It is therefore of practical value to SNSN for
the automatic event classification to also have the capability of dis-
tinguishing spurious phase associations from real seismic events.
For this event-or-not classification, the data used for model training
consist of spurious phase associations from the SIL system in con-
junction with real, manually analysed seismic events, recorded in
the years 2010-2021. Automatic phase picks from the SIL system
are used for time window selection for the spurious phase associa-
tions and manual phase picks are used for the real seismic events.
An event is included in a station’s data set if it has been located
(automatically or manually) within a 10-200 km distance from the
station and both P- and S-phase picks are available at the station
from automatic phase association (spurious phase associations) or
manual analysis (real seismic events). Each station’s event-or-not
data set contains two event classes; spurious phase associations
and real seismic events. Due to the large numbers of spurious
phase associations available for some SNSN stations, the size of
the event-or-not data sets is capped at 1000 events from each class
and thus each station’s event-or-not data set contains at most 2000
events.

4 RESULTS

This section presents the results from the method described in Sec-
tion 2 and different applications on seismic data.

4.1 Station-specific models

Fig. 5 shows the F1-score achieved on the test data (25 per cent of
each station’s data set) for each individual station. The displayed
score is computed as a macro average, that is, an unweighted mean
of the F1-score for each individual class. The figure shows that all
stations within the network achieve a good general performance
with an Fl-score of over 0.95 on all stations and a mean score of
approximately 0.98 over the whole network. For stations trained
to distinguish between four different classes the mean score is ap-
proximately 0.96 but for stations with only two classes it is 0.99.
The high F1-score achieved on all stations indicates that the station
models’ predicted classes agree with analyst assigned classes on the
large majority of events from all classes. The figure also shows that
most of the southern stations maintain a relatively stable F1-score,
whereas some of the northern stations display a quasi-linear trend
of increasing F1-score with decreased latitude. In addition to some

20z Arenigad /g uo Jesn jaxejolqiaibololg Aq 220/41.62/82.1/€/9¢2/2101e/[B/woo dno-olwapeoe//:sdpy woly papeojumod


art/ggae018_f2.eps

Classification of seismic events in Sweden 1733

Figure 3. Locations of blasts (a) and earthquakes (b) recorded by SNSN in Sweden and neighbouring countries, 2010-2021. Mines: (3) Kiruna, (4) Malmberget.

Postglacial faults: (5) Pérvie and (6) Burtrisk.
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Figure 4. Number of events from each class used for model training. Each bar represents the class distribution on a single station. The dashed vertical line
represents station ARNU, south of which significant class imbalance is observed on all stations. Station ordering is from north on the left to south on the right.

northern stations being trained to distinguish between four event
classes instead of two, we also observe positive correlation between
the stations’ Fl-score and the ratio between number of blasts to
earthquakes in their training data. This suggests that stations with

more class imbalance perform slightly better overall than stations
where the class distribution is more balanced. We believe this to be
a result of stations with significant class imbalance having higher
numbers of synthetic, statistically similar earthquakes in their test
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Figure 5. Fl-score at individual stations. Each bar represents the F1-score computed at a single station. The score is a macro average, that is, an unweighted
mean of the calculated F1l-score for each individual class. The dashed vertical line represents station ARNU, south of which significant class imbalance is
observed on all stations. Station ordering is from north on the left to south on the right. Note that the vertical axis starts at 0.9.

data, and thus less feature variability, resulting in better classifica-
tion performance.

4.2 Multistation predictions

To evaluate the generalization performance of our multistation clas-
sification models we applied them to all seismic events that occurred
in Sweden and were analysed by the SNSN, from 2022 January to
June. For each event we used the relevant station-specific models
to generate class probability distributions, computed a final predic-
tion for the event and compared the result with the analyst assigned
class. The total number of events was 6220. From these, 4933 events
were detected automatically by the SIL system, for which automatic
phase picks could be used for time window selection. This allowed
for evaluating predictions both of automatic and manually analysed
events.

Table 1 (left) shows the results for all manually analysed events
located at least 25 km away from the mines in Kiruna and Malmber-
get; atotal of 2707 events. In general, the classification problem here
is binary, with only two classes of events observed; blasts and earth-
quakes. Occasional exceptions occur at other underground mines, as
demonstrated by the four mining-induced events listed in the table,
but their numbers were not sufficient to include in the training of the
station-specific models. Overall, the predicted class agrees with the
analyst assigned class for 2690 events, resulting in a classification
accuracy of 99.4 per cent. The F1-score exceeds 0.98 for both blasts
and earthquakes. The seven earthquakes erroneously predicted to
be blasts have local magnitudes ranging from 0.1 to 0.7, with an
average of 0.4.

Table 1 (right) shows the results for events located less than
25 km away from either Kiruna or Malmberget mine; a total of 3513
events. This is where the two classes of mining-induced events are
primarily observed and thus instances of all four event classes are
observed, although only one natural earthquake was detected during
the evaluation period. Most erroneous classifications involve blasts
predicted as high-frequency mining-induced events and vice-versa.
Overall, the predicted class agrees with the analyst assigned class for
3374 events, resulting in a classification accuracy of 96.0 per cent.

With the exception of earthquake class, the F1-score exceeds 0.95
for each individual event class.

Table 2 shows the corresponding results for the automatic SIL
detections. Of the 1847 events located at least 25 km away from the
mines in Kiruna and Malmberget (left), the predicted class agrees
with the analyst assigned class on 1811, resulting in a classification
accuracy of 98.1 per cent. Both the blast and earthquake classes
receive an Fl-score above 0.95. Of the 3086 events located less
than 25 km away from the mines in Kiruna and Malmberget (right),
the predicted class agrees with the analyst assigned class on 2770,
resulting in a classification accuracy of 89.8 per cent. The F1-score
for each individual class exceeds 0.90 with the exception of the
earthquake class which has a relatively high number of FPs and only
one TP, resulting in low precision and, consequently, low F1-score.
Again, the majority of erroneous classifications are associated with
the high-frequency mining-induced event class. Fig. 6 summarizes
the classification accuracy achieved for the automatic and manually
analysed events.

4.3 Quality factor threshold

One way of taking the final predictions’ QF (eq. 2) into consider-
ation for the event classification is to define a threshold value and
prioritize predictions with QF above the threshold. Fig. 7 shows
how the classification accuracy and event retention, defined as the
proportion of events which prediction QF exceeds a given threshold
value, change as a function of QF threshold when using manual
phase picks (dashed curves) and automatic SIL phase picks (solid
curves) for time window selection. For a given QF threshold, a
point on the dark curves represents the classification accuracy for
the subset of events which prediction quality is at least as high as
the threshold. A point on the lighter curves represents the size of
the subset, relative to the total number of events. We find that a QF
threshold of about 70 provides a decent trade off between accuracy
and event retention, with classification accuracy of about 99 per cent
for 93 per cent of the events when using manual phase picks and
about 98 per cent for 80 per cent of the events when using automatic
SIL phase picks.
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Table 1. Generalization performance of the event classification for manually analysed events at SNSN between 2022 January and June. Left: events located at
least 25 km away from the mines in Kiruna and Malmberget. Right: events located less than 25 km away from the mines in Kiruna and Malmberget.

Predicted class Predicted class
Analyst B E H L Re Analyst B E H L Re
B 2297 6 0 0 0.997 B 1437 0 47 0 0.968
E 7 393 0 0 0.983 E 0 1 0 0 1
H 4 0 0 0 0 H 77 1 1584 8 0.949
L 0 0 0 0 - L 0 0 7 351 0.980
Pr 0.995 0.985 - - Pr 0.949 0.5 0.967 0.978
F1 0.996 0.984 - - F1 0.959 0.667 0.958 0.979

Notes. Event classes, B: blasts, E: earthquakes, H: high-frequency mining-induced events and L: low-frequency mining-induced events. Metrics, Re: recall, Pr:
precision and F1: Fl-score.

Table 2. Generalization performance of the event classification for automatic event detections by the SIL system at SNSN between 2022 January and June.
Left: events located at least 25 km away from the mines in Kiruna and Malmberget. Right: events located less than 25 km away from the mines in Kiruna and
Malmberget.

Predicted class Predicted class
Analyst B E H L Re Analyst B E H L Re
B 1482 22 0 0 0.985 B 1087 14 49 0 0.945
E 10 329 0 0 0.971 E 0 1 0 0 1
H 4 0 0 0 0 H 132 80 1396 22 0.856
L 0 0 0 0 - L 3 2 14 286 0.938
Pr 0.991 0.937 - - Pr 0.890 0.010 0.957 0.929
F1 0.988 0.954 - - F1 0.917 0.020 0.904 0.933

Notes. Event classes, B: blasts, E: earthquakes, H: high-frequency mining-induced events, L: low-frequency mining-induced events. Metrics, Re: recall, Pr:
precision and F1: F1-score.
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Figure 6. Classification accuracy for seismic events in Sweden analysed by SNSN, 2022 January to June. The vertical axis depicts accuracy; the proportion
of events where the predicted class agrees with analyst assigned class. Filled bars indicate events where manually assigned phase picks were used to divide the
seismic records into the prescribed time windows. Unfilled bars indicate events where automatic phase picks from the SIL system were used. Event categories,
A: all events, B: events located at least 25 km away from the mines in Kiruna and Malmberget and C: events located less than 25 km away from the mines in
Kiruna and Malmberget.

4.4 Shallow earthquakes to the event. To evaluate the model performance when predicting
the event class of shallow earthquakes we compiled evaluation data
consisting of 20 such events, with origin times outside the period
used for model training, generated class predictions and compared
with analyst assigned classes. We found that 19 out of the 20 earth-
quakes generated predictions matching manually assigned classes,
indicating that the method is relatively robust to predicting the class
of shallow earthquakes and that depth-sensitive effects alone do not
play a decisive role in the classification.

Shallow earthquakes, here defined as earthquakes occurring at
depths above 5 km, represent a case study for our classification
model, due to the potential for generating significant surface wave
energy. For the seismic events recorded by SNSN, significant sur-
face wave energy is more typically observed from blasting events
close to the surface than earthquakes. Reliable depth estimates for
shallow earthquakes are also typically challenging to establish at re-
gional networks, due to the lack of station coverage sufficiently close

20z Arenigad /g uo Jesn jaxejolqiaibololg Aq 220/41.62/82.1/€/9¢2/2101e/[B/woo dno-olwapeoe//:sdpy woly papeojumod


art/ggae018_f6.eps

1736 G. Eggertsson et al.

= 100 100
o

2. 99 —
a 59
m 98 30 —
= == T
8 @
o 97 £
© ©
_5 96 60
] w
_g 95 %
:': A =
O

O 93

0 10 20 30 40

50 60 70 80 90

Quality factor threshold

Figure 7. Effect of different QF threshold values on classification accuracy and event retention for all events during the evaluation period. Dashed curves
represent events where manual phase picks are used for time window selection and solid curves represent events where automatic SIL picks are used. Dark
curves represent classification accuracy and lighter curves represent event retention, that is, the proportion of events with final prediction QF above the

corresponding threshold value.

4.5 Feature importance

The neural networks used in this study contain 240 manually se-
lected input features. The features represent RMS amplitudes com-
puted in different time windows, filtered in different frequency
bands. One way of ranking individual features in terms of their
relative importance to the model predictions is through a method
referred to as permutation importance, first described by Breiman
(2001) for random forests. In essence, the method estimates how
a model’s performance score, for example, classification accuracy,
is affected when a single feature is randomly shuffled. We imple-
mented permutation importance on all the station-specific models
and computed the importance of each feature as a mean decrease of
validation-set accuracy when the feature was shuffled. Fig. 8 shows
the mean and standard deviation of the feature importance for each
model input feature, over all SNSN stations.

We find that, in general, features corresponding to P-phase and P-
coda time windows at intermediate to high frequencies (12—41 Hz)
are of high importance. For most frequency bands, their importance
significantly outweighs the importance of the S-phase and S-coda
windows in the same bands. The reason for the high relative im-
portance of these features is unclear to us and may be of interest
to further investigate. Towards the lower end of the spectrum, three
features stand out in terms of importance. Two of these features
correspond to the S-coda time windows on the vertical and radial
components in the lowest passband, corresponding to 1-3 Hz. The
average importance of these features is among the highest of all the
features. We interpret the importance of these features as an indica-
tion that the presence of Rg surface waves plays an important role
in the classification on many stations. The models’ apparent robust-
ness when predicting shallow earthquakes does, however, suggest
that the presence of significant Rg wave energy, by itself, is not de-
cisive to the final classification. The third important feature on the
lower end of the spectrum corresponds to the S-phase time window
on the transverse component, also in the lowest passband. A pos-
sible explanation for the importance of this feature is the presence
of Lg surface waves. It should be noted that, overall, the standard

deviations of the computed feature importances are high compared
to their mean values, as displayed in Fig. 8. In other words, the
importance of each individual feature varies considerably from one
station model to another.

4.6 Weighting of station predictions

During method development we tested different weighting schemes,
where individual station predictions were weighted based on station-
event distance before computing the final class prediction for an
event. Fig. 9 shows the mean classification accuracy as a function
of station-event distance in left-adjusted bins of 10 km width, com-
puted over all stations used in the study for events in the evaluation
data, 2022 January to June. The figure shows that beyond epicentral
distances of 120 km, the mean accuracy starts decreasing after re-
maining relatively stable for shorter distances. We believe that this
result can partly be attributed to more pronounced path effects at
greater station-event distances, making the different classes more
challenging to distinguish.

With Fig. 9 in mind, we tested weighting schemes where station
predictions at station-event distances beyond 120 km were down-
weighted before computing final predictions. For example, we tested
aweighting scheme where all predictions up to 120 km station-event
distance were equally weighted and then downweighted predictions
linearly with distance beyond 120 km. In general, we found the dif-
ference in classification accuracy to be minimal with and without
weighting. While applying the different weighting schemes did in-
crease the average QF of the final predictions, it did not increase the
overall number of predictions matching analyst assigned classes.
Conversely, we found that for three events in the evaluation data,
assigning the weights led to final predictions which disagreed with
manually assigned classes where they previously had agreed, prior to
assigning the weights. The common factor shared by these “flipped’
events was that they only had one or two stations within a 120 km
station-event distance. When one of these nearby stations produced
a false class prediction, the downweighing of more distant stations
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Figure 8. Mean importance of model input features over all station-specific models. Each point represents the importance of a single input feature, computed
as the mean decrease of validation-set accuracy when the feature was randomly shuffled. Vertical lines from each point represent standard deviations. Different
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Figure 9. Mean classification accuracy as a function of station-event epicentral distance for individual station predictions during the evaluation period. Each
vertical bar represents the mean classification accuracy over all individual station predictions from stations within a 10 km station-event epicentral distance

range. Note that the vertical axis starts at 80 per cent.

resulted in erroneous final predictions. Due to the minimal observed
difference and for the sake of simplicity we have opted to assign
uniform weights and compute final predictions as arithmetic means
of all individual station predictions.

4.7 Transferability of model parameters

During 2022, two permanent SNSN stations, Uddeholm (UDD) and
Umed (UMAU), were decommissioned and replaced with nearby
stations from the Hagfors array (HFB1), operated by the Swedish
Defence Research Agency, and Bullmark (BLMU), respectively
(see Fig. 2). Since our classification models are station specific,

when a new station is introduced into the network, we would typ-
ically need to wait for the station to collect enough data to train
its own prediction model before having it available for class pre-
dictions. To test the transferability of station-specific model param-
eters we conducted tests where the classification models from the
decommissioned stations, UDD and UMAU, were used to gener-
ate predictions for events recorded at stations HFB1 and BLMU,
without applying any additional model training. We found that for
events recorded on station HFB1 in the first two months of 2023,
predictions made using the model trained for station UDD gener-
ated class predictions with 95 per cent accuracy. For events recorded
at station BLMU, in the same period, the model trained for station
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UMAU generated class predictions with 94 per cent accuracy. For
comparison, the classification accuracy of station UMAU on its own
test data was approximately 98 per cent.

These results offer encouragement that models trained for specific
stations can be applied to data recorded on other nearby stations
whilst maintaining relatively high classification accuracy. To further
study the transferability of specific station model parameters we
compiled a list of 120 events recorded at station BLMU during
2023 January and February and used station models from all other
SNSN stations to generate class predictions. Fig. 10 shows the
resulting accuracy results. We find that the classification accuracy
ranges from about 60 to 96 per cent for the different station models,
with an average of 83 per cent. In general, we observe a negative
correlation between accuracy and distance from BLMU with some
outliers, including the model which achieved the highest accuracy
of about 96 per cent, from a station located about 400 km away from
BLMU. Notably, the model which achieved the lowest accuracy of
about 60 per cent also comes from a station located about 400 km
away from BLMU.

These results encouraged us to test the feasibility of training one
large classification model for the whole region as an alternative to
the station-specific model approach. For this purpose, we started
with the binary classification case and trained one model with all
the blasts and earthquakes used in the original station-specific train-
ing data, excluding blasts associated with the mines in Kiruna and
Malmberget. We subsequently applied the model, in the same way
as the station-specific models, to all manually analysed blasts and
earthquakes from the same evaluation period as before, 2022 Jan-
uary to June, excluding events located less than 25 km away from
the mines in Kiruna and Malmberget. Of these 2703 events (see
Table 1), 2690 were correctly classified by the model, the exact
same number as were correctly classified by the station-specific
models, yielding an accuracy of 99.3 per cent. Of the 13 events
mis-classified by the single model, ten were also mis-classified by
the station-specific models. When we apply the single model to
data collected by a new station (BLMU), which was not part of the
training data, we find that the single model achieves a classification
accuracy of 97.4 per cent, outperforming all the station-specific
models (see Fig. 10). This suggests that the single model is superior
to the station-specific models when introducing new stations in the
station network.

As a second test, we repeated the one model approach, this time
including the two mining-induced event classes and trained the
model using all the training data used for the station-specific ap-
proach, including events associated with the Kiruna and Malmber-
get mines. This time the overall classification accuracy during the
evaluation period was 90.7 per cent, a significant decrease from
the 97.4 per cent accuracy achieved using the station-specific mod-
els (see Fig. 6). The decrease in accuracy was most significant for
events located at least 25 km away from the mines in Kiruna and
Malmberget where the accuracy dropped from 99.3 to 86.4 per cent
with the addition of the mining-induced event classes to the model.
For events located less than 25 km away from the mines the accuracy
drop off was smaller, going from 96.0 to 94.5 per cent.

4.8 Event-or-not classification

During 2022 June, the SIL system produced 1554 automatic event
detections in Sweden with locations more than 50 km away from the
mines in Kiruna and Malmberget. From these, 1221 were deemed
to be spurious phase associations by analysts and 333 were real

seismic events. Table 3 shows the results from comparing the out-
put of the event-or-not classification to analyst assigned labels. The
classification agreed with the analyst on 1173 of the spurious phase
associations and 300 of the real seismic events, resulting in a clas-
sification accuracy of 94.8. The Fl-scores are 0.881 for the real
seismic event class and 0.967 for the spurious phase associations.
As demonstrated by the high recall achieved for the spurious event
class, the classification is able to correctly identify over 97 per cent
of the spurious events. The SIL system also detects a large num-
ber of events, both spurious associations and real events, close
to the mines in Kiruna and Malmberget. Due to their high fre-
quency of occurrence, many of the smaller mining-induced events
are typically not manually analysed and thus the accuracy of the
event-or-not classification has not been determined close to the
mines.

S DISCUSSION

The results demonstrate that station-specific classification models
based on fully connected neural networks are well suited to the task
of classifying the seismic events detected in Sweden. The models
are already in use at SNSN and have proven to be a useful addition
to automatic event analysis, providing reliable preliminary class
predictions to automatic event detections. They are also applied as a
revision tool after manual analysis has been completed, highlighting
potential mistakes and helping to classify ambiguous events. The
event-or-not classification will be used to screen out the majority
of spurious event detections prior to manual revision, thus reducing
analyst workload.

5.1 Impact of various factors on predictions

5.1.1 Class imbalance

The models’ high-performance scores involving the earthquake
class, under-represented in most stations’ training data, are an
important achievement. They demonstrates the positive effect of
oversampling the training data, as the models are able to cor-
rectly identify a large majority of the earthquakes in the evalua-
tion period (high recall). Before applying actions to compensate
for the class imbalance, for example, oversampling, many of the
station models trained on the imbalanced data would predict al-
most all new events to belong to the over-represented class (blasts),
leading to low-performance scores for the earthquake class. We
tested alternative methods to compensate for the class imbalance,
including undersampling the blast class and assigning different
weights to events, proportional to the relative size of their class.
All the tested methods offered significant improvement to the per-
formance scores of the stations with imbalanced training data. We
found that in our case, oversampling the earthquake class offered
the most overall improvement in performance scores, particularly
for stations with very few earthquakes (< 30) in their training
data.

5.1.2 Accuracy of phase picks and event locations

The classification accuracy is slightly lower when automatic phase
picks are used for the time window selection than when manual
phase picks are used. This can partly be attributed to a higher
number of phase picks being available after manual revision and
thus more stations being available to generate predictions. Another
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Figure 10. Classification accuracy for data recorded at station BLMU, using station models trained for other permanent SNSN stations. The dashed line
indicates the corresponding accuracy when using one model trained with all the blasts and earthquakes used in the original station-specific training data,

excluding blasts associated with the mines in Kiruna and Malmberget.

Table 3. Generalization performance of the event-or-not
classification for automatic SIL event detections, 2022

June.

Predicted class
Analyst Real Spurious Re
Real 300 48 0.862
Spurious 33 1173 0.973
Pr 0.901 0.961
F1 0.881 0.967

Notes. Metrics, Re: recall, Pr: precision and F1: Fl-score.

reason is the higher uncertainty of the automatic phase picks com-
pared to manual ones, which leads to less accurate time window
selections. Automatic event locations generally have higher uncer-
tainty than manually revised ones and thus calculations of theoret-
ical phase arrival times and rotation of components also become
less accurate. We have found that the main limiting factor of our
method, when using automatic phase picks, is its sensitivity to the
timing of the phase picks being accurate. Most events, for which
the models generate a final class prediction which contradicts the
later manually assigned class, share the common feature that the
timing of their phase picks is inaccurate, leading to an inaccurate
time window selection and erroneous class predictions. This can
manifest itself in different ways. For example, if an automatic P- or
S-phase pick is missing at a given station for an event which epi-
center, depth and/or origin time are poorly constrained, the missing
phase arrival needs to be computed theoretically and can lead to
significant inaccuracies. Another source of inaccurate phase picks
occurs when automatic phase association mixes up P and S phases,
leading to erroneous time window selections. Fig. 11 shows an ex-
ample of a seismic trace from a mining-induced event in the Kiruna
mine where the P-phase arrival has been automatically picked as
an S-phase arrival. Once the P-phase arrival has been theoretically
computed, based on the erroneous S-phase pick, the consequent
time window selection leads to an erroneous class prediction. Mov-
ing forward, we see increasing accuracy of automatic phase picks as
one way of further improving the event classification. The accuracy

results for the manually analysed events serve as a benchmark to
the classification’s potential when pick quality is optimal.

In general, the models described in this study are capable of
classifying seismic events in Sweden to a high degree of accuracy,
irrespective of their location. The accuracy is, however, lower for
events located close to the mines in Kiruna and Malmberget, com-
pared to events at further distances away from the mines. This can
primarily be attributed to the station models having four classes to
distinguish instead of two. Another reason for lower accuracy close
to the mines when using automatic phase picks for the time window
selection is a higher relative number of events with inaccurate phase
picks/association in the SIL system compared to events further away
from the mines. Finally, the waveform features from events associ-
ated with the mines, particularly blasts and high-frequency mining-
induced events often share similar features, making them hard to
distinguish, even for human analysts. In practice, analysts often rely
on an event’s origin time to distinguish between blasts and mining-
induced events in Kiruna and Malmberget, since the blasts typically
occur during the same specific hours each day.

5.1.3 Mislabelled events in the training data

In this study, we have not explicitly estimated the effects of misla-
belled events in the training data on the results. We have however
identified several events in the training data, where our model pro-
duces a final predicted class with a high QF which disagrees with
the analyst assigned class. For many of these events, closer manual
inspection has led us to conclude that the model is correct and a
mistake was made during the manual analysis. Such examples con-
firm the presence of mislabelled events in the training data although
their extent and effect on the final results are difficult to quantify.
The examples also highlight the capability of the model to identify
classification mistakes in the data archives and provide the opportu-
nity to review specific events. Currently at SNSN, the model is run
for each calendar month, after manual analysis has been completed.
On average, it detects 1-2 events every month where an event was
mislabelled during manual analysis. The application of the model
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Figure 11. Vertical component from a mining-induced event in the Kiruna mine where an automatic S-phase pick has been erroneously assigned to the arrival

of the P phase, leading to erroneous time window selection.

thus allows us to fix mistakes and reduce the number of errors in
the event catalogue.

5.1.4 Rotation of horizontal components

One step in our data processing is the rotation of the horizontal
data components into radial and transverse coordinates. The idea
behind applying this rotation is to better capture individual seismic
phases on the horizontal components, such as the Rg phase on the
radial component and the S/Lg phase on the transverse component.
Rotating the horizontal components also means that the computed
waveform features are less sensitive to the direction from which
seismic phases arrive at a station and thus helps with transferability
of model parameters from one station to another. However, rotat-
ing the horizontal components requires an estimate of an event’s
location to compute the backazimuth. For automatic event detec-
tions, the uncertainty in an event’s location can be high, leading to
wrong rotations. We have seen that some of the erroneous classi-
fications made by our model, particularly for events located close
to the mines in Kiruna and Malmberget, can be traced to erroneous
location estimates and subsequent rotations rather than low-phase
pick accuracy.

5.1.5 Station-specific models or not?

Our results on parameter transferability (Fig. 10) show that models
trained on data recorded at a specific station have the capacity to
be applied to data recorded on a different station and maintain high
classification accuracy. Sweden is part of the Fennoscandian Shield,
an area of low seismicity in northern Europe (Gregersen et al.
2021). It is feasible that the relatively uniform and stable Swedish
bedrock, with its low levels of attenuation, contributes to favourable
conditions for model parameter transferability between different
stations. However, Fig. 10 also shows that the while the accuracy
achieved on different stations tends to decrease with distance, it
is not a simple linear relationship. Both the lowest and highest
accuracy scores (about 60 and 96 per cent) are achieved at stations
located about 400 km away from the recording station.

Our results from testing the feasibility of using one model for the
whole region (Section 4.7), as opposed to the station-specific ap-
proach, suggest that both approaches represent feasible alternatives
for seismic event classification in Sweden. Our primary reasons
for starting with station-specific models were the large geograph-
ical spread of the seismic stations operated by the SNSN and the
variability in the types of seismic events and ambient noise levels
recorded by the different stations. In northern Sweden, the primary

source of seismic events classified by the SNSN as ‘blasts’ are
mining blasts originating from the underground mines in Kiruna
and Malmberget. In contrast, the majority of ‘blasts’ recorded in
other parts of the country result from quarry blasting and construc-
tion work. Most earthquakes recorded in northern Sweden can be
associated with known postglacial faults whereas the sources of
earthquakes recorded in southern Sweden are typically not as clear.
We hypothesized that station-specific models would allow us to bet-
ter capture the individual characteristics of each seismic station,
thus making for a more reliable class prediction.

Our results suggest that when events associated with the two
mines are included, where four event classes are involved, the
station-specific approach remains favourable to the one model ap-
proach in terms of prediction accuracy. For the binary classification
of blasts and earthquakes, using the one model approach has proved
to be equally effective as the station-specific approach and thus
both approaches represent feasible alternatives. Arguments for se-
lecting the one model approach might include less work managing
model updates and more seamless integration of new stations into
the classification. With the good performance achieved by the one
model approach, we have recently started testing the application of
the model to data from neighbouring stations outside of the SNSN.
The results look generally promising, especially in regions with ge-
ological structure similar to Sweden. Fig. 10 demonstrates that in
the case of BLMU, a new station which was added to the SNSN,
applying the one model approach to data collected by the station
outperforms all the individual, station-specific models. We hypoth-
esize that this difference in performance can primarily be attributed
to the significantly larger training data set involved in the one-model
approach compared to any station-specific model, allowing for more
sophisticated learning of the model features. A potential way of fur-
ther developing the methodology presented in this study may be to
attempt to extract the best from both scenarios by adapting ideas
from the field of transfer learning, a subfield of machine learning.
With the knowledge learned from the one model approach we may
improve the station-specific models by using the large model as a
base to fine-tune the station-specific models.

5.2 Comparison to other methods

The accuracy achieved in our study for the binary classification
of blasts and natural earthquakes (98 per cent for automatic event
detections and 99 per cent for manually analysed events) is compa-
rable to other recent studies devoted to the same purpose in different
regions. In contrast to many of the more recent studies on seismic
event classification (Hourcade et al. 2023; Kong et al. 2022, 2021;

20z Arenigad /g uo Jesn jaxejolqiaibololg Aq 220/41.62/82.1/€/9¢2/2101e/[B/woo dno-olwapeoe//:sdpy woly papeojumod


art/ggae018_f11.eps

Linville et al. 2019; Tibi et al. 2019) our method does not rely on
images of event spectrograms and thus does not require the applica-
tion of CNNs. Whether the method generalizes as well to different
geographical areas as, for example, the method proposed by Hour-
cade et al. (2023) has not yet been tested. Our method also depends
on manual feature selection. The feature selection is inspired by the
work of Kortstrom et al. (2016), for a seismic network located in
geological settings comparable to Sweden. Our accuracy results for
distinguishing between blasts and earthquakes are somewhat better
than Kortstrom et al. (2016) which suggests the suitability of the
selected features for event classification, at least in the stable conti-
nental region of the Fennoscandian Shield. Our accuracy involving
four event classes (90 per cent for automatic event detections and
96 per cent for manually analysed events) is more difficult to com-
pare to other studies but suggests that the method is also capable of
performing event classification involving multiple event classes to
a high accuracy.

6 CONCLUSIONS

The main objective of this study is to develop an algorithm capable
of reliably predicting the source types of seismic events detected in
Sweden. Such an algorithm will allow a reduction in the time spent
by analysts establishing the source type of automatically detected
seismic events. We have developed station-specific event classifica-
tion models using traditional fully connected artificial neural net-
works. The models distinguish between four different event classes
representative of analysis routines at the SNSN; natural (tectonic)
earthquakes, blasts (from e.g. quarries, mines and construction) and
two types of mining-induced events, with a high degree of accu-
racy. An extension of the models is capable of distinguishing the
majority of spurious phase associations from real seismic events of
interest.

The classification accuracy achieved by the models when distin-
guishing between earthquakes and blasts is 98 per cent for automatic
event detections and 99 per cent for manually analysed events, com-
parable to other studies dedicated to the same purpose in different
geographical areas. The models also maintain high classification ac-
curacy in areas close to the underground mines in Kiruna and Malm-
berget, with four different event classes to distinguish, 90 per cent
for automatic event detections and 96 per cent for manually analysed
events. Most erroneous classifications for automatic event detec-
tions can be traced back to uncertainties in automatic phase picks
and/or association, leading to erroneous time window selections.
Other reasons for erroneous classifications include high automatic
location estimate uncertainties, leading to erroneous rotations of
the horizontal data components. The accuracy of the event-or-not
classification, distinguishing spurious phase associations from real
seismic events, is about 95 per cent for events located more than
50 km away from the mines in Kiruna and Malmberget.

The most important features, on average, for the model predic-
tions are computed from time windows associated with P phase and
P coda at intermediate to high frequencies (1241 Hz) as well as
S phase and S coda at low frequencies (1-3 Hz), corresponding to
time windows where surface wave energy (Rg/Lg) is strong. Mod-
els trained on data recorded at specific stations have the capacity
to be applied to data recorded on a different station and maintain
high classification accuracy. Training one model for the whole re-
gion results in equally high accuracy when distinguishing blasts
and earthquakes as training station-specific models does. With the
addition of the mining-induced event classes, the station-specific
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approach performs better. The models are already in use at the
SNSN, where they serve as a tool to assign preliminary type predic-
tions to automatic event detections and to review manually analysed
events, identifying potential mistakes. The models will also be used
to evaluate which events to subject to manual analysis in the future.

ACKNOWLEDGMENTS

The work presented in this study was made possible by the thor-
ough manual analysis work undertaken by analysts at the SNSN
in the years 2010-2022. The authors wish to thank the Swedish
Defence Research Agency for use of data from the Hagfors array,
and LKAB for information on events in the mines. The suggestions
of an anonymous reviewer and the associate editor improved the
manuscript, which we thank them for.

DATA AVAILABILITY

This study uses manual and automatic event definitions, and wave-
form data, from 80000 seismic events recorded by the SNSN
(1904). Subsets of the data are available upon request to the SNSN:
https://doi.org/10.18159/SNSN

REFERENCES

Abadi, M. et al., 2015. TensorFlow: Large-scale machine learning on het-
erogeneous systems, Software available from tensorflow.org, last accessed
9 January 2024.

Béth, M., 1975. Short-period rayleigh waves from near-surface events, P/ys.
Earth planet. Inter., 10(4), 369-376.

Baumgardt, D.R. & Young, G.B., 1990. Regional seismic waveform dis-
criminants and case-based event identification using regional arrays, Bull.
seism. Soc. Am., 80(6B), 1874—1892.

Bodvarsson, R., Rognvaldsson, S.T., Slunga, R. & Kjartansson, E., 1999.
The sil data acquisition system—at present and beyond year 2000, P/ys.
Earth planet. Inter, 113(1-4), 89-101.

Breiman, L., 2001. Random forests, Mach. Learn., 45, 5-32.

Burkov, A., 2019. The Hundred-page Machine Learning Book, Vol. 1, An-
driy Burkov, Quebec City, QC, Canada.

Chawla, N.V,, Bowyer, K.W,, Hall, L.O. & Kegelmeyer, W.P,, 2002. Smote:
synthetic minority over-sampling technique, J. Artif. Intell. Res., 16,321—
357.

Chollet, F. et al., 2015. Keras, https://keras.io., last accessed 9 January 2024.

Dysart, P.S. & Pulli, J.J., 1990. Regional seismic event classification at the
noress array: seismological measurements and the use of trained neural
networks, Bull. seism. Soc. Am., 80(6B), 1910-1933.

Furumura, T., Hong, T.-K. & Kennett, B.L., 2014. Lg wave propagation in
the area around japan: observations and simulations, Prog. Earth planet.
Sei., 1, 1-20.

Goodfellow, 1., Bengio, Y. & Courville, A., 2016. Deep Learning, MIT
Press, http://www.deeplearningbook.org.

Gregersen, S., Lindholm, C., Korja, A., Lund, B., Uski, M., Oinonen,
K., Voss, PH. & Keiding, M., 2021. Seismicity and Sources of
Stress in Fennoscandia, pp. 177-197, Cambridge University Press,
doi:10.1017/9781108779906.

Harris, C.R. et al., 2020. Array programming with NumPy, Nature,
585(7825), 357-362.

Hourcade, C., Bonnin, M. & Beucler, E., 2023. New cnn-based tool to
discriminate anthropogenic from natural low magnitude seismic events,
Geophys. J. Int., 232(3), 2119-2132.

Hunter, J.D., 2007. Matplotlib: A 2d graphics environment, Comput. Sci.
Eng., 9(3), 90-95.

Juhlin, C. & Lund, B., 201 1. Reflection seismic studies over the end-glacial
burtrdsk fault, skellefted, sweden, Solid Earth, 2(1), 9-16.

20z Arenigad /g uo Jesn jaxejolqiaibololg Aq 220/41.62/82.1/€/9¢2/2101e/[B/woo dno-olwapeoe//:sdpy woly papeojumod


https://doi.org/10.18159/SNSN
http://dx.doi.org/10.1016/0031-9201(75)90064-3
http://dx.doi.org/10.1016/S0031-9201(99)00032-1
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1613/jair.953
https://keras.io
http://dx.doi.org/10.1186/2197-4284-1-10
http://www.deeplearningbook.org
http://dx.doi.org/10.1038/s41586-020-2649-2
http://dx.doi.org/10.1093/gji/ggac441
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.5194/se-2-9-2011

1742 G. Eggertsson et al.

Kim, W.-Y., Simpson, D. & Richards, P.G., 1993. Discrimination of earth-
quakes and explosions in the eastern united states using regional high-
frequency data, Geophys. Res. Lett., 20(14), 1507-1510.

Kintner, J.A., Michael Cleveland, K., Ammon, CJ. & Nyblade, A.,
2020. Testing a local-distance r g/s g discriminant using observations
from the bighorn region, wyoming, Bull. seism. Soc. Am., 110(2),
727-741.

Kong, Q., Chiang, A., Aguiar, A.C., Fernandez-Godino, M.G., Myers, S.C.
& Lucas, D.D., 2021. Deep convolutional autoencoders as generic fea-
ture extractors in seismological applications, Artif. Intell. Geosci., 2,
96-106.

Kong, Q., Wang, R., Walter, W.R., Pyle, M., Koper, K. & Schmandt, B.,
2022. Combining deep learning with physics based features in explosion-
earthquake discrimination, Geop/ys. Res. Lett., 49(13), €2022GL098645.
https://doi.org/10.1029/2022GL098645.

Kortstrom, J., Uski, M. & Tiira, T., 2016. Automatic classification of seismic
events within a regional seismograph network, Comput. Geosci., 87, 22—
30.

Lindblom, E., Lund, B., Tryggvason, A., Uski, M., Bodvarsson, R., Juhlin,
C. & Roberts, R., 2015. Microearthquakes illuminate the deep structure
of the endglacial pérvie fault, Northern Sweden, Geop/hys. J. Int., 201(3),
1704-1716.

Linville, L., Pankow, K. & Draelos, T., 2019. Deep learning models augment
analyst decisions for event discrimination, Geophys. Res. Lett., 46(7),
3643-3651.

Lund, B., Schmidt, P., Hossein Shomali, Z. & Roth, M., 2021. The Modern
Swedish National Seismic Network: two decades of intraplate microseis-
mic observation, Seismol. Res. Lett., 92(3), 1747-1758.

McKinney, W. 2010. Data structures for statistical computing in
python, in Proceedings of the 9th Python in Science Conference,
pp. 56-61.

Miao, F,, Carpenter, N.S., Wang, Z., Holcomb, A.S. & Woolery, E.W., 2020.
High-accuracy discrimination of blasts and earthquakes using neural net-
works with multiwindow spectral data, Seismol. Res. Lett., 91(3), 1646—
1659.

O’Rourke, C.T., Baker, G.E. & Sheehan, A.F,, 2016. Using p/s amplitude
ratios for seismic discrimination at local distancesusing p/s amplitude
ratios for seismic discrimination at local distances, Bull. seism. Soc. Am.,
106(5), 2320-2331.

Pedregosa, F. et al., 2011. Scikit-learn: machine learning in Python, J. Mach.
Learn. Res., 12, 2825-2830.

Press, F. & Ewing, M., 1952. Two slow surface waves across North America,
Bull. seism. Soc. Am., 42(3), 219-228.

Sasaki, Y. et al., 2007. The truth of the f-measure, Teach Tutor Mater, 1(5),
1-5.

SNSN, 1904. Swedish National Seismic Network, Uppsala University, Upp-
sala, Sweden. Other/Seismic network, https://doi.org/10.18159/SNSN.
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R.,
2014. Dropout: a simple way to prevent neural networks from overfitting,

J. Mach. Learn. Res., 15(1), 1929-1958.

Tibi, R., Koper, K.D., Pankow, K.L. & Young, C.J., 2018. Depth discrimi-
nation using rg-to-sg spectral amplitude ratios for seismic events in Utah
recorded at local distancesdepth discrimination using rg-to-sg spectral
amplitude ratios for seismic events in utah, Bull. seism. Soc. Am., 108(3A),
1355-1368.

Tibi, R., Linville, L., Young, C. & Brogan, R., 2019. Classification of local
seismic events in the utah region: a comparison of amplitude ratio methods
with a spectrogram-based machine learning approach, Bull. seism. Soc.
Am., 109(6), 2532-2544.

Wessel, P, Luis, J., Uieda, L., Scharroo, R., Wobbe, F., Smith, WH. &
Tian, D., 2019. The generic mapping tools version 6, Geochem. Geophys.
Geosyst., 20(11), 5556-5564.

20z Arenigad /g uo Jasn jxejolqiqiboloig Aq 2204 1.G2/8221/€/9€2/3101He/B/wod dno-olwspese//:sdpy wouy papeojumoq

© The Author(s) 2024. Published by Oxford University Press on behalf of The Royal Astronomical Society. This is an Open Access
article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.


http://dx.doi.org/10.1029/93GL01267
http://dx.doi.org/10.1785/0120190188
http://dx.doi.org/10.1016/j.aiig.2021.12.002
http://dx.doi.org/10.1029/2022GL098645
https:\begingroup \count@ "002F\relax \relax \uccode `~\count@ \uppercase {\gdef {\relax \protect $\relax \sim $}}\endgroup \setbox \thr@@ \hbox {}\dimen \z@ \wd \thr@@ \begingroup \count@ "002F\relax \relax \uccode `~\count@ \uppercase {\gdef {\relax \protect $\relax \sim $}}\endgroup \setbox \thr@@ \hbox {}\dimen \z@ \wd \thr@@ doi.org\begingroup \count@ "002F\relax \relax \uccode `~\count@ \uppercase {\gdef {\relax \protect $\relax \sim $}}\endgroup \setbox \thr@@ \hbox {}\dimen \z@ \wd \thr@@ 10.1029\begingroup \count@ "002F\relax \relax \uccode `~\count@ \uppercase {\gdef {\relax \protect $\relax \sim $}}\endgroup \setbox \thr@@ \hbox {}\dimen \z@ \wd \thr@@ 2022GL098645
http://dx.doi.org/10.1016/j.cageo.2015.11.006
http://dx.doi.org/10.1093/gji/ggv112
http://dx.doi.org/10.1029/2018GL081119
http://dx.doi.org/10.1785/0220200435
http://dx.doi.org/10.1785/0220190084
http://dx.doi.org/10.1785/0120160035
http://dx.doi.org/10.1785/BSSA0420030219
https://doi.org/10.18159/SNSN
http://dx.doi.org/10.1785/0120170257
http://dx.doi.org/10.1785/0120190150
http://dx.doi.org/10.1029/2019GC008515
https://creativecommons.org/licenses/by/4.0/

	1 INTRODUCTION
	2 METHOD
	3 DATA
	4 RESULTS
	5 DISCUSSION
	6 CONCLUSIONS
	ACKNOWLEDGMENTS
	DATA AVAILABILITY
	REFERENCES

