
A Theory of Cartesian Arrays
(with Applications in Quantum

Circuit Verification)

Yu-Fang Chen1 , Philipp Rümmer2,3(B) , and Wei-Lun Tsai1

1 IIS, Academia Sinica, Taipei, Taiwan
2 University of Regensburg, Regensburg, Germany

ph r@gmx.net
3 Uppsala University, Uppsala, Sweden

Abstract. We present a theory of Cartesian arrays, which are multi-
dimensional arrays with support for the projection of arrays to sub-
arrays, as well as for updating sub-arrays. The resulting logic is an
extension of Combinatorial Array Logic (CAL) and is motivated by the
analysis of quantum circuits: using projection, we can succinctly encode
the semantics of quantum gates as quantifier-free formulas and verify
the end-to-end correctness of quantum circuits. Since the logic is expres-
sive enough to represent quantum circuits succinctly, it necessarily has a
high complexity; as we show, it suffices to encode the k-color problem of a
graph under a succinct circuit representation, an NEXPTIME-complete
problem. We present an NEXPTIME decision procedure for the logic and
report on preliminary experiments with the analysis of quantum circuits
using this decision procedure.

1 Introduction

There has been extensive research on logics to reason about array data-types in
programs. Arrays can concisely represent the values of an unbounded number of
memory locations, and have been successfully applied to verify industrial-scale
programs [11,15,29]. An array formula encoding the semantics of a program path
is typically linear in the number of program statements. Much of the existing
work focuses on one-dimensional arrays and uses nesting to handle the case of
multiple dimensions.

|00000〉 69%
|00001〉 1%

. . .

|11111〉 1%

Fig. 1. A quantum state.

This paper studies a logic called Cartesian Array
Logic (CaAL), in which multi-dimensional arrays are
treated as first-class citizens. The motivation for
designing this logic comes from developing a tailor-
made theory for reasoning about quantum circuits or
programs, which need a fundamentally different rep-
resentation of states than classical programs. Quan-
tum states exist in a superposition of classical states.
Figure 1 gives an example of a 5-qubit quantum state,
c© The Author(s) 2023
B. Pientka and C. Tinelli (Eds.): CADE 2023, LNAI 14132, pp. 170–189, 2023.
https://doi.org/10.1007/978-3-031-38499-8_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-38499-8_10&domain=pdf
http://orcid.org/0000-0003-2872-0336
http://orcid.org/0000-0002-2733-7098
https://doi.org/10.1007/978-3-031-38499-8_10

A Theory of Cartesian Arrays 171

which can be interpreted as a probability distribution over 25 classical states;
every classical state, which can be seen as a string of n bits, is associated with
a probability of being observed.

Current SMT-based solutions for reasoning about quantum programs [3]
encode program paths to a Satisfiability Modulo Theories (SMT) formula over
the theory of real numbers. For a n-qubit quantum program, the direct encoding
uses 2n variables to represent the execution of a quantum circuit, one variable
per classical state. The formula representing a quantum circuit is exponential in
the circuit size.

In the Cartesian Array Logic designed in this paper, one can instead encode
an n-qubit quantum state as an array s : (Bn ⇒ C) that maps each classical
state to a complex number c encoding the probability of this classical state being
observed. The squared absolute value |c|2 is the probability that the complex
number c encodes. Quantum gates, the basic operating units of a quantum circuit,
can be viewed as functions that transform one quantum state to another. We
show that CaAL can concisely encode the semantics of quantum gates, so that
a path formula becomes linear in the circuit size. The semantics of a quantum
circuit is the composition of the gate encodings.

Structure of the Paper. The syntax and formal semantics of the CaAL logic
will be given in Sect. 2. In the same section, we show that this logic is quite
expressive, it can easily encode the satisfiability problem of a quantified Boolean
formula (QBF). We show that deciding the logic is, in fact, NEXPTIME-hard
by a polynomial reduction from the k-color problem of a succinct circuit repre-
sentation of graphs [23]. As an application, in Sect. 3, we show that the logic can
concisely encode the semantics of quantum circuits, using B

n as the index type
and C as the value type. In Sect. 4, we present a decision procedure for CaAL,
extending the classical approach of read-over-write propagation used for arrays.
In the worst case, our procedure might perform an exponential number of such
propagations; hence, if the underlying logic can be decided in NP, our logic can
be decided in NEXPTIME. The preliminary experimental results of applying
this decision for quantum circuit verification can be found in Sect. 5.

Contributions of the paper are (i) a new array logic, CaAL, with native support
for multi-dimensional arrays; (ii) the proof the satisfiability problem of CaAL is
NEXPTIME-hard; (iii) a linear encoding of the semantics of quantum circuits in
CaAL; (iv) an NEXPTIME decision procedure for CaAL without nested array
sorts; and (v) a preliminary evaluation of our approach using standard quantum
circuits.

Related Work on Verification of Quantum Circuits. Although quantum states
can be naturally represented as arrays, the connection between array theories
and quantum circuit verification is novel, to the best of our knowledge. In the
past, people have considered automated quantum circuit verification based on
automata [7], various types of equivalence checking [1,9,19,33], abstract inter-
pretation [24,34], and model checking [13,21,32]. However, techniques based on

172 Y.-F. Chen et al.

satisfiability modulo theories (SMT) are still lacking. The closest work to ours
is a symbolic execution and verification framework of quantum circuits [3]. The
work encodes quantum circuit verification problems into SMT with the theory of
real numbers, using variables in trigonometric functions, e.g., sinx, which might
lose precision in corner cases. As mentioned, their approach requires 2n variables
to encode a n-qubit circuit in the worst case. As far as we know, our work is
the first SMT-based approach that allows a precise and succinct encoding and
verification of quantum circuits.

Related Work on Array Theories. There is a large body of research on array
decision procedures for SMT, going back to the 1980s, and most SMT solvers
implement at least the theory of extensional arrays (with operations read and
write/store) in our paper, as standardized in SMT-LIB [2]. Stump et al. [29]
presented a decision procedure for this theory and formed the basis for many later
procedures. An extension of the theory, called Combinatorial Array Logic (CAL),
with functions for constant arrays and for the point-wise extension of functions
was presented by De Moura et al. [11]. CAL served as the main inspiration for
our work and is in this paper extended further by adding projections and updates
of sub-arrays. An extension of CAL with cardinality constraints was presented
by Raya et al. [25]. Christ et al. [8] present an algorithm for the theory of arrays
where lemmas are created lazily based on weak equivalences; this method was
later extended to handle constant arrays [20].

There are also many more generalized decision procedures for arrays. For
instance, Ganesh et al. [16] focus on the combined theory of arrays and bit-
vectors and present a decision procedure based on pre-processing, bit-blasting,
and linear arithmetic solving. Brummayer et al. present a decision procedure for
the same theory that introduces lemmas lazily, guided by congruence closure [6].
An extended array theory tailored to software, including operations memset and
memcpy, was presented by Falke et al. [12]. More recently, several theories of
finite arrays were proposed. Bonacina et al. [5] extend the standard theory of
arrays with an abstract notion of length, and present a decision procedure based
on the CDSAT framework. Wang et al. [31] consider a logic extending CAL with
a length function, as well as operations for concatenation, slicing, and repetition
of arrays, and identify a decidable fragment. Sheng et al. [27] propose a theory
of sequences that combines the standard array operations with a length func-
tion, concatenation, and slicing. All those logics cannot directly encode quantum
circuits in a similar style as CaAL, however, since no projection operation is
available.

2 A Theory of Cartesian Arrays

2.1 Preliminaries

We work in the setting of multi-sorted first-order logic with equality; see, e.g.,
[18]. A signature is a tuple Σ = (ΣS , ΣF , ΣP) consisting of a set ΣS of sorts,

A Theory of Cartesian Arrays 173

a set ΣF of function symbols, and a set ΣP of predicates. Predicates and func-
tions have fixed arity and argument sorts, and functions have a fixed result
sort. Given a signature Σ and a set X of sorted variables, we define the usual
notions of Σ-terms, Σ-atoms, Σ-literals, Σ-formulas, and Σ-sentences. Formulas
are evaluated over Σ-structures M = (D, I) that interpret every sort σ ∈ ΣS

as a non-empty domain I(σ) ⊆ D, predicates p ∈ ΣP as relations I(p), and
functions f ∈ ΣF as set-theoretical functions I(f). We slightly abuse notation;
we assume that also variables x ∈ X are mapped to values I(x) by M . The
evaluation of terms, formulas, etc., is defined as is common; the equality sym-
bol = is assumed to be interpreted as the equality relation on D. A theory T
over Σ is a set of Σ-sentences. A Σ-formula φ is called T -satisfiable if there is a
Σ-structure M satisfying both the T -axioms and φ.

2.2 Definition of the Theory of Cartesian Arrays

Cartesian arrays are introduced in the context of a base signature ΣB and a
base ΣB-theory TB , which provides the index and value sorts for arrays. The
signature ΣCaAL = (ΣS

CaAL, ΣF
CaAL, ΣP

CaAL) of CaAL is then defined as follows.
The set of sorts is the least set ΣS

CaAL such that (i) ΣS
B ⊆ ΣS

CaAL, and (ii)
σ, τ ∈ ΣS

CaAL and n ∈ N>0 imply (σn ⇒ τ) ∈ ΣS
CaAL. A sort (σn ⇒ τ) is an

array sort of arity n with index sort σ and value sort τ .

Table 1. Operations included in ΣF
CaAL for each sort (σn ⇒ τ).

·[·, . . . , ·] : (σn ⇒ τ) × σn → τ Reading of array values

store : (σn ⇒ τ)×σn×τ → (σn ⇒ τ) Updating of array values

K : τ → (σn ⇒ τ) Construction of constant arrays

mapf : (σn ⇒ τ1) × · · · × (σn ⇒
τk) → (σn ⇒ τ)

Point-wise extension of base
function f : τ1 × · · · × τk → τ

proj k : (σn ⇒ τ) × σ → (σn−1 ⇒ τ) For n > 1 and k ∈ {1, . . . , n},
projection to n − 1 of the
indexes

arrayStorek : (σn ⇒
τ) × σ × (σn−1 ⇒ τ) → (σn ⇒ τ)

For n > 1 and k ∈ {1, . . . , n},
update of a sub-array

The set ΣF
CaAL includes ΣS

B , as well as the operations listed in Table 1 for
every array sort (σn ⇒ τ). The operators ·[·, . . . , ·] and store are the functions
for reading from and writing to arrays, as in the standard theory of arrays. K
and mapf correspond to the functions introduced in CAL [11]; in particular,
any base function f ∈ ΣF

B is lifted to an operator on arrays using mapf . The
operators proj and arrayStore are specific to our theory CaAL, and can be
used to project an n-dimensional array to an (n − 1)-dimensional sub-array by
fixing the value of the k’th index, and to update the corresponding portion of
the original array, respectively. The set ΣP

CaAL coincides with ΣP
B . Semantics is

defined by the axiom schemata in Table 2.

174 Y.-F. Chen et al.

Example 1. We illustrate the use of two-dimension arrays s, s′ : (B2 ⇒ C)
to encode two-qubit quantum states. Suppose that s represents the state
1√
2
(|00〉 + |11〉), and s′ = X2(s) is the quantum state after applying an X gate

(the quantum version of a “not”-gate) on the 2nd qubit of s. The matrix repre-
sentations of s and s′ are as follows; note that the results of x2 = 0 and x2 = 1
are swapped in s and s′.

s =

(x1=0 x1=1

x2=0
1√
2

0
x2=1 0 1√

2

)
, s′ =

(x1=0 x1=1

x2=0 0 1√
2

x2=1
1√
2

0

)
.

The projection proj 1(s, k) maps the matrix s to its k’th column vector,
specifically the column with x1 = k. In CaAL, we can construct s′ from s
as s′ = arrayStore2(arrayStore2(K(0), 1, proj 2(s, 0)), 0, proj 2(s, 1)). To compute
the sum of the two matrices, we use map+(s, s′), which is also utilized for other
quantum gate operations.

Several extensions of the theory of Cartesian arrays are possible but beyond
the scope of this paper. Those include (i) arrays with multiple different index
sorts, as opposed to just n copies of the same index sort σ; and (ii) a theory that
also includes point-wise extensions of predicates.

Table 2. Axioms of the Theory of Cartesian Arrays. As shorthand notation, we write
ī : σn for a vector of n index variables i1 : σ, . . . , in : σ.

∀a : (σn ⇒ τ), ī : σn, x : τ.

store(a, ī, x)[ī] = x
(1)

∀a : (σn ⇒ τ), ī : σn, j̄ : σn, x : τ.

ī = j̄ ∨ store(a, ī, x)[j̄] = a[j̄]
(2)

∀a, b : (σn ⇒ τ). ∃ī : σn.

a = b ∨ a[ī] �= b[ī]
(3)

∀x : τ, ī : σn.

K(x)[ī] = x
(4)

∀a1 : (σn ⇒ τ1), . . . , ak : (σn ⇒ τk), ī : σn.

mapf (a1, . . . , ak)[ī] = f(a1[ī], . . . , ak[ī])
(5)

∀a : (σn ⇒ τ), ī : σn.

proj k(a, ik)[i1, . . . , ik−1, ik+1, . . . , in] = a[ī]
(6)

∀a : (σn ⇒ τ), b : (σn−1 ⇒ τ), ī : σn.

arrayStorek(a, ik, b)[ī] = b[i1, . . . , ik−1, ik+1, . . . , in]
(7)

∀a : (σn ⇒ τ), b : (σn−1 ⇒ τ), ī : σn, j : σ.

j = ik ∨ arrayStorek(a, j, b)[ī] = a[ī]
(8)

A Theory of Cartesian Arrays 175

2.3 Complexity of Satisfiability in CaAL

We now study the hardness of satisfiability of quantifier-free CaAL formu-
las. The quantified Boolean formula problem (QBF) generalizes the Boolean
satisfiability problem by allowing existential and universal quantifiers to be
applied to variables. Its satisfiability problem is PSPACE-complete [28]. With-
out loss of generality, we can assume that QBF formulas are in prenex nor-
mal form Q1x1.Q2x2. · · · Qnxn.φ, which consists of a Boolean formula φ over n
Boolean variables x1, . . . , xn, and a prefix of quantifiers Q1, Q2, . . . , Qn ∈ {∀,∃}.

To reduce the satisfiability problem of QBF to CaAL, we assume that the
base theory provides a sort B with the standard operations. This sort will be
used for both index and values. An array toCaAL(φ) : (Bn ⇒ B) encoding the
semantics of φ is defined recursively as follows:

– toCaAL(xk) = arrayStorek(K(0), 1,K(1)).
– toCaAL(¬φ) = map¬(toCaAL(φ)).
– toCaAL(φ1 ∧ φ2) = map∧(toCaAL(φ1), toCaAL(φ2)).

Observe that arrayStorek(K(0), 1,K(1))[i1, . . . , ik, . . . , in] = ik, and note that
the size of toCaAL(φ) is linear in the size of φ. We can construct a CaAL formula
that is equisatisfiable with Q1x1. · · · Qnxn.φ as follows:

QElim(Q1x1. · · · Qnxn.φ) =

(q1[0] 	1 q1[1]) ∧
n∧

i=2

qi−1 = map�i
(proj i(qi, 0), proj i(qi, 1)) ∧ qn = toCaAL(φ)

where 	i = ∧ when Qi = ∀, and 	i = ∨ otherwise. Note that the
QBF formula Q1x1. · · · Qnxn.φ is valid if and only if the CaAL formula
QElim(Q1x1. · · · Qnxn.φ) is satisfiable.

Theorem 1. The satisfiability problem of CaAL over B is PSPACE-hard.

This lower bound can be improved, however. The k-colorability problem for
graphs with succinct circuit representation is NEXPTIME-complete [23]. This
problem can be reduced to the satisfiability problem of CaAL in polynomial time
as well.

Consider an undirected graph with 2n nodes, and let φ(x̄, x̄′) be a Boolean
circuit encoding the edge relation of the graph: φ(x̄, x̄′) evaluates to true when-
ever there is an edge (x̄) → (x̄′) in the graph. The k-colorability of the graph
can be characterized as the following formula, where c : (Bn → N) is an array
representing the color of each node:

∀x̄, x̄′ : Bn. φ(x̄, x̄′) → c[x̄] �= c[x̄′] ∧ c[x̄] < k ∧ c[x̄′] < k .

In a similar way as for QBF, we encode φ as an array formula φ′ of linear size,
in which aφ : (Bn ×B

n ⇒ B) is an array variable representing the edge relation.

176 Y.-F. Chen et al.

We then create two intermediate arrays a, b : (Bn×B
n ⇒ N) and use the following

formula in CaAL to encode the relation ∀x̄, x̄′ : Bn. a[x̄, x̄′] = c[x̄]∧b[x̄, x̄′] = c[x̄′]:

EqColor(a, b, c) ≡

a = an ∧ c = a0 ∧
n∧

j=1

projj+n(aj , 0) = projj+n(aj , 1) = aj−1 ∧

b = bn ∧ c = b0 ∧
n∧

j=1

projj(bj , 0) = projj(bj , 1) = bj−1

Then we encode the k-color problem with the following CaAL formula:

φ′ ∧ EqColor(a, b, c) ∧ mapf (aφ, a, b) = K(1)

where f(e, col1 , col2) ≡ e → (col1 �= col2 ∧ col1 < k ∧ col2 < k).

Theorem 2. The satisfiability problem of CaAL is NEXPTIME-hard.

3 Array Semantics of Quantum Circuits

As an application, we show that CaAL can encode the semantics of quantum
circuits. Below, we only give a short overview of quantum circuits and define
notations; for more details, see, e.g., the textbook of Nielsen and Chuang [22].

In a n-qubit quantum, a state is a superposition of computational basis states
{|j〉 | j ∈ {0, 1}n}. For example, for a system with three qubits x1, x2, and x3,
the computational basis state |101〉 (in Dirac notation) denotes a state in which
both x1 and x3 are set to 1, and x2 is set to 0. A n-qubit quantum state s is then
denoted as a formal sum

∑
j∈{0,1}n cj · |j〉, where c0, c1, . . . , c2n−1 ∈ C are com-

plex probability amplitudes satisfying the constraint that
∑

j∈{0,1}n |cj |2 = 1.
Intuitively, |cj |2 is the probability that when we measure the quantum state
s in the computational basis, we obtain the basis state |j〉. The constraint∑

j∈{0,1}n |cj |2 = 1 states that probabilities need to sum up to 1 for all compu-
tational basis states.

We can record a quantum state as an array that maps a computational basis
state to its complex probability amplitudes. The state s is represented as an
array s : (Bn ⇒ C) satisfying s[j] = cj for all j ∈ {0, 1}n; slightly abusing
notation, we denote both the state and the array by s.

A Theory of Cartesian Arrays 177

3.1 Quantum Circuits

|x1〉 H

|x2〉

Fig. 2. The EPR circuit, consisting
of an H and a CX gate with control
qubit (•) and target qubit (⊕).

A quantum circuit consists of a sequence of
quantum gates. Each quantum gate defines
a specific transformation of quantum states.
For example, the Pauli-X gate (the quantum
version of classical “not” gate) on the k-th
qubit transforms a state s to s′ satisfying ∀i ∈
{0, 1}k−1, b ∈ {0, 1}, j ∈ {0, 1}n−k : s′[ibj] =
s[ib̄j], i.e., it negates the k-th index bit.

Another example is the Pauli-Z gate on
the k-th qubit, which transforms a state s
to s′ satisfying ∀i ∈ {0, 1}k−1, b ∈ {0, 1}, j ∈ {0, 1}n−k : s′[ibj] = ite(b,−1 ·
s[ibj], s[ibj]). Here, probability amplitudes are multiplied with −1 when b is 1,
and are unchanged otherwise.

A H gate, or Hadamard gate, on the k-th qubit transforms a state s to s′

satisfying ∀i ∈ {0, 1}k−1, b ∈ {0, 1}, j ∈ {0, 1}n−k :

s′[ibj] = ite(b,
s[i0j] − s[i1j]√

2
,
s[i0j] + s[i1j]√

2
).

Notice that the amplitude of a basis state of s′ is affected by the amplitude of
two basis states of s, enabling a more diverse superposition. The division with√

2 is for normalizing the probability sum.
A more advanced class of gates are multiple-qubit gates. The CX gate

(“controlled-X”) on the control qubit c and target qubit t applies an X gate to t
when c is 1, and is identity otherwise. Formally, assuming c < t, the gate trans-
forms a state s to s′ satisfying ∀i1 ∈ {0, 1}c−1, bc ∈ {0, 1}, i2 ∈ {0, 1}t−c−1, bt ∈
{0, 1}, i3 ∈ {0, 1}n−t :

s′[i1bci2bti3] = ite(bc, s[i1bci2b̄ti3], s[i1bci2bti3]).

The Toffoli gate CCX (“controlled-controlled-X gate”) has two control qubit c,
d and applies the X gate to the target qubit t only when c = d = 1.

We have introduced enough quantum gates to define the EPR circuit (Fig. 2),
named after Einstein, Podolsky, and Rosen for constructing the Bell state, i.e.,
a 2-qubit circuit converting a basis state |00〉 to a maximally entangled state
1√
2
(|00〉 + |11〉). Starting from a state s (represented s that maps 00 to 1 and

others to 0, the circuit first applies H on the first qubit x1 (denoted H1 in this
paper) to produce the quantum state s′ with s′[00] = s′[10] = 1√

2
and s′[11] =

s′[01] = 0. Then a CX1,2 converts it further to s′′ with s′′[00] = s′′[11] = 1√
2

and s′′[01] = s′′[10] = 0. Notice that CX1,2 converts |10〉 to |11〉, i.e., when x1

is 1, it negates x2.

Note on Complexity. Simulation of a quantum circuit is bounded-error quantum
polynomial time (BQP) hard, a complexity class that is incomparable with NP,

178 Y.-F. Chen et al.

Table 3. Semantics of quantum gates in Cartesian array logic. We use s and s′ to
denote the quantum state before and after executing the circuit.

Gate Formula

Xk proj k(s′, 0) = proj k(s, 1) ∧
proj k(s′, 1) = proj k(s, 0)

Yk proj k(s′, 0) = map∗(−ω2)proj k(s, 1) ∧
proj k(s′, 1) = map∗(ω2) proj k(s, 0)

Zk proj k(s′, 0) = proj k(s, 0) ∧
proj k(s′, 1) = map∗(−1)proj k(s, 1)

Sk proj k(s′, 0) = proj k(s, 0) ∧
proj k(s′, 1) = map∗(ω2) proj k(s, 1)

Tk proj k(s′, 0) = proj k(s, 0) ∧
proj k(s′, 1) = map∗(ω) proj k(s, 1)

Hk proj k(s′, 0) = map(.+.)/
√
2(proj k(s, 0), proj k(s, 1)) ∧

proj k(s′, 1) = map(.−.)/
√
2(proj k(s, 0), proj k(s, 1))

Rx(π
2
)k proj k(s′, 0) = map(.+(−ω2)∗.)/

√
2(proj k(s, 0), proj k(s, 1)) ∧

proj k(s′, 1) = map((−ω2)∗.+.)/
√
2(proj k(s, 0), proj k(s, 1))

Ry(π
2
)k proj k(s′, 0) = map(.−.)/

√
2(proj k(s, 0), proj k(s, 1)) ∧

proj k(s′, 1) = map(.+.)/
√
2(proj k(s, 0), proj k(s, 1))

CXc,t proj c(s
′, 0) = proj c(s, 0) ∧

proj t(proj c(s
′, 1), 0) = proj t(proj c(s, 1), 1)∧

proj t(proj c(s
′, 1), 1) = proj t(proj c(s, 1), 0)

CZc,t proj c(s
′, 0) = proj c(s, 0) ∧

proj t(proj c(s
′, 1), 0) = proj t(proj c(s, 1), 0)∧

proj t(proj c(s
′, 1), 1) = map∗(−1)proj t(proj c(s, 1), 1)

CCXc,d,t proj c(s
′, 0) = proj c(s, 0) ∧

proj d(s′, 0) = proj d(s, 0) ∧
proj t(proj d(proj c(s

′, 1), 1), 0) = proj t(proj d(proj c(s, 1), 1), 1) ∧
proj t(proj d(proj c(s

′, 1), 1), 1) = proj t(proj d(proj c(s, 1), 1), 0)

as it can compute exactly the probability amplitudes of a quantum state after
executing a circuit. We will show that the Cartesian array logic can encode the
semantics of quantum circuits, so one can also use the logic for quantum circuit
simulation. Hence, exponential time is the best deterministic algorithm we can
hope for when solving CaAL formulas.

3.2 Interpretation of Quantum Gates

We show the encoding of quantum gates in CaAL in Table 3. Notice that this
gate set includes several universal gates (e.g., H, CX, and T [10]) that can

A Theory of Cartesian Arrays 179

approximate any quantum gate to an arbitrary precision requirement. Arbitrary
degree rotation can also be supported using the theory of reals as the base theory.
This paper presents a precise encoding that only requires a theory of integers.
In the figure, we use s and s′ to denote the quantum states (encoded as arrays)
before and after executing a quantum gate. To encode s′ = Xk(s), negating the
k-th qubit, we use proj k(s′, 0) = proj k(s, 1) ∧ proj k(s′, 1) = proj k(s, 0): index
k = 0 in s′ equals the case of k = 1 in s. The handling of Z, S, and T gates
is similar, using the map function to multiply the array values with different
constants. Note that here we use ω to represent e

πi
4 = cos π

4 + i sin π
4 = 1√

2
+ i√

2
,

the unit vector that is at an angle of 45◦ to the positive real axis in the complex
plane. Later we will show that this representation allows a precise algebraic
representation of complex numbers using a five-tuple of integers. Observe that
ω4 = −1. The Y gate combines the two constructions; it negates the k-th index
qubit and multiplies each projection with different constant coefficients. For
the H, Rx(π

2), and Ry(π
2) gates, we use a binary map function to update the

amplitudes. For the controlled gates, we use the projection function to classify
the cases according to the control bits and apply the X or Z gate only when all
controlled bits are 1.

Example 2. We use CaAL to verify the correctness of the EPR circuit Fig. 2: the
circuit transforms the state |00〉 to 1√

2
(|00〉 + |11〉). For this, the initial state of

the circuit is encoded as an array expression, the H and CX gates are encoded
according to Table 3, and the intended final state of the circuit is represented as
a negated equation:

s0 = store(K(0), (0, 0), 1)

∧ proj 1(s1, 0) = map(.+.)/
√
2(proj 1(s0, 0), proj 1(s0, 1))

}
s1 = H1(s0)∧ proj 1(s1, 1) = map(.−.)/

√
2(proj 1(s0, 0), proj 1(s0, 1))

∧ proj 1(s2, 0) = proj 1(s1, 0) }
s2 = CX1,2(s1)∧ proj 2(proj 1(s2, 1), 0) = proj 2(proj 1(s1, 1), 1)

∧ proj 2(proj 1(s2, 1), 1) = proj 2(proj 1(s1, 1), 0)

∧ s2 �= store(store(K(0), (1, 1),
1√
2
), (0, 0),

1√
2
)

The formula is unsatisfiable if and only if the EPR circuit correctly performs
the transformation.

Representation of Complex Numbers. To achieve accuracy with no loss of pre-
cision, in this paper, when working with C, we use a subset of the complex
numbers that the following algebraic encoding can express (cf. [7,30,35]):

(1√
2

)
k(a + bω + cω2 + dω3), (9)

180 Y.-F. Chen et al.

Table 4. Tableau proof rules of the decision procedure for CaAL.

a = store(b, ī, v)
idx

v = a[̄i]

a = K(v) w = a′ [̄i] a ∼ a′
K ⇓

v = w

a = store(b, ī, v) w = a′[j̄] a ∼ a′
store ⇓

ī = j̄ w = b[j̄]

a = store(b, ī, v) w = b′[j̄] b ∼ b′
store ⇑

ī = j̄ w = a[j̄]

a = mapf (b1, . . . , bm) w = a′ [̄i] a ∼ a′
map ⇓

w = f(b1 [̄i], . . . , bm [̄i])

a = mapf (b1, . . . , bm) w = b′ [̄i] b′ ∼ bk for some k ∈ {1, . . . , m}
map ⇑

a[̄i] = f(b1 [̄i], . . . , bk−1 [̄i], w, bk+1 [̄i], . . . , bm [̄i])

a = projk(b, j) w = a′ [̄i] a ∼ a′
proj ⇓

w = b[i1, . . . , ik−1, j, ik, . . . , in−1]

a = projk(b, j) w = b′ [̄i] b ∼ b′
proj ⇑

j �= ik w = a[i1, i2, . . . , ik−1, ik+1, . . . , in]

a = arrayStorek(b, j, c) w = a′ [̄i] a ∼ a′
arrayStore ⇓

j = ik ∧ w = c[i1, . . . , ik−1, ik+1, . . .] j �= ik ∧ w = b[̄i]

a = arrayStorek(b, j, c) w = b′ [̄i] b ∼ b′
arrayStore ⇑1

j = ik w = a[̄i]

a = arrayStorek(b, j, c) w = c′ [̄i] c ∼ c′
arrayStore ⇑2

w = a[i1, . . . , ik−1, j, ik, . . . , in−1]

a : (σn ⇒ τ) b : (σn ⇒ τ)
ext

a = b ∃ī : σn. a[̄i] �= b[̄i]

i1, . . . , ik : σ
freshIdx ∃j : σ. j �= i1 ∧ · · · ∧ j �= ik

a : (σn ⇒ τ) ī : σn

read ∃v : τ. v = a[̄i]

v = a[̄i] w = b[j̄] a ∼ b
readCong

ī �= j̄ ī = j̄ ∧ v = w

where a, b, c, d, k ∈ Z. A complex number is then represented by a five-tuple
(a, b, c, d, k). Although the considered set of numbers is only a small subset of C,
it is closed under the operations needed to encode quantum gates, and it can arbi-
trarily closely approximate any complex number. For this, note that (a, 0, c, 0, k)
represents 1√

2
k (a + cω2) = a√

2
k + ci√

2
k , and pick suitable a, c, and k. The repre-

sentation is also sufficient to describe a set of quantum gates that can implement
universal quantum computation (Table 3).

A Theory of Cartesian Arrays 181

4 A Decision Procedure for Cartesian Arrays

We now present a decision procedure for quantifier-free CaAL. Our calculus is an
extension of the calculus for CAL [11] with rules for the proj and arrayStore oper-
ations. For the sake of presentation, we use the setting of analytic tableaux [14],
although the same proof rules can be used also in a model-constructing calcu-
lus [11].

As a simplifying assumption, in this section we furthermore require that
the index sorts σ of an array sort (σn ⇒ τ) represent infinite domains. This
assumption can be lifted in the same way as for CAL [11], but the details are
orthogonal to the task of supporting the new array operations.

4.1 Preliminaries

A tableau [14] is a finite tree growing downwards, in which each node is labelled
with a formula, the root is labelled with the formula to be refuted, and the
children of each node are derived from the formulas on the branch leading to
the node using one of the available proof rules. We assume a tableau calculus
equipped with a set of standard rules [14]: (i) α- and β-rules for eliminating
Boolean connectives ∧,∨; (ii) δ-rules for eliminating existential quantifiers ∃;
(iii) rules for reasoning about positive and negative equalities x = y between
variables, which include rules for closing proof branches; (iv) rules implementing
a decision procedure for the base theory TB .

Our calculus operates on flat formulas, which are formulas in which func-
tions f only occur in equations y = f(x̄) in positive positions, i.e., underneath
an even number of negations, with y, x̄ being variables. Every formula can be
converted to a flat formula by introducing a linear number of new variables.

We define proof rules using the following notation:

φ1 φ2 · · · φk
rule

ψ1 · · · ψm

The rule is applicable if the premises φ1, . . . , φk occur on a proof branch, and
has the effect of expanding the tableau: the proof branch is split into m new
branches, to which the formulas ψ1, . . . , ψm, respectively, are appended.

In the premises of a rule, we frequently include assumptions x ∼ y that
require that the equality x = y follows from positive equalities between variables
on the proof branch. We also use premises x : σ, stating that x is a variable of
sort σ occurring on the proof branch.

4.2 Proof Rules

The rules of our calculus are shown in Table 4. The rules idx,K⇓, store⇓, store⇑,
map⇓,map⇑ coincide with the rules used for CAL [11], and define the semantics
of the operators K, store, and map. Extensionality is implemented by the rule ext,
which can be applied for any two array variables a, b of the same type occurring
on a branch.

182 Y.-F. Chen et al.

The semantics of proj and arrayStore is defined, in a similar way as for store,
by upward and downward propagation of array reads. Since arrayStorek(b, j, c)
combines two arrays b, c into a single new array, downward propagation has to
route reads either to b or to c. Upward propagation from c is always possible,
while reads on b can only be propagated if they are not overwritten by c.

For sake of presentation, we write the conclusion in the rules map⇓,map⇑,
and ext in non-flat form, and assume that the transformation to a flat formula
happens implicitly by adding existentially quantified variables representing the
sub-terms.

Congruence reasoning is necessary only for array reads, and implemented
using the rule readConq. For simplicity, in our formulation the rule splits over
the cases ī �= j̄ and ī = j̄, and effectively searches for an arrangement of the
index variables satisfying a formula. An actual implementation could rely on
equality propagation being performed by a theory combination procedure.

As one of the more tricky points, the completeness of the calculus sometimes
requires new array reads to be generated. This aspect is covered by the rules ε	

and εδ in CAL [11], which are rules that can, however, not directly be used in
our setting of multi-dimensional arrays. To obtain completeness, our calculus
sometimes has to construct reads by combining different index variables occur-
ring on a branch, and sometimes invent index values that are distinct from all
indexes occurring in a formula. The introduction of corresponding new reads is
handled by the rules freshIdx and read.

Example 3. Consider arrays a, b : (Z2 ⇒ Z), and the formulas

proj 1(a, i) = K(42) ∧ proj 2(a, j) = K(43) (10)
a = K(42) ∧ b = store(a, (i, i), 43) ∧ proj 1(b, i) = K(43) (11)

Both formulas are unsatisfiable, but cannot be refuted using the rules discussed
so far. In (10), no reads a[· · ·] exist, so that no propagations can be performed
by any of the rules. It is necessary to identify the constraints on the value a[i, j]
as contradictory. The rule read can be used to introduce a new formula ∃v. v =
a[i, j] on a proof branch, after which the rules proj ⇑ and K⇓ can be applied.

To show that (11) is unsatisfiable, we need to consider a point (i, j) with
j �= i and derive that a[i, j] = b[i, j] = 42, and contradicting proj 1(b, i) = K(43).
The introduction of a fresh index value j (different from i) is handled by the
rule freshIdx, which relies on the index sort σ representing an infinite domain.
Once the existence of an index j �= i has been asserted, the rule read can be used
to introduce an equation v = a[i, j], and the contraction be derived.

4.3 Correctness and Complexity

Theorem 3. The presented tableau calculus is sound and complete for flat
quantifier-free CaAL formulas: there is a closed tableau for a formula φ if and
only if φ is unsatisfiable.

A Theory of Cartesian Arrays 183

Proof. Soundness: As usual, we identify each proof branch with the conjunction
of its formulas and a tableau with the disjunction of its proof branches. It can
be shown that the tableau before expansion using a proof rule is equi-satisfiable
to the tableau before the expansion, modulo the array axioms in Table 2.

Completeness: We make the simplifying assumption that φ only contains
arrays with (infinite) index sort σ and value sort τ , and in particular that array
sorts are not nested. Completeness for the general case follows by recursively
applying model construction.

Consider then the systematic construction of a tableau for a formula φ by
exhaustively applying proof rules under the following restrictions: (i) regularity,
i.e., rules are only applied if they lead to new formulas being added to each
generated branch; (ii) rule freshIdx can only be applied once on a branch, only
after ext has been applied to all pairs a, b of array variables on the branch, and
choosing i1, . . . , ik as the set of all variables of sort σ on the branch.

Observe that this systematic application of rules terminates: the calculus
never introduces new array variables so that only finitely many applications
of ext are possible. Note that ext and freshIdx are the only rules introducing
new index variables. Since freshIdx is applied at most once on a branch, the set
of index variables is bounded, and there is only a bounded number of array
reads v = a[̄i].

Assume now that a tableau for φ cannot be closed, i.e., has at least one
branch B that cannot be closed, although all possible rule applications have
been performed. We extract a model of φ from B. Suppose that MT = (DT , IT)
is a model that interprets the non-array-variables (including index variables),
satisfying all literals on B that do not contain array variables, and denote the
equivalence class of an array variable a on B by [a] = {b | a ∼ b}. Extending IT ,
we construct an interpretation I with I((σn ⇒ τ)) = IT (σ)n → IT (τ) being a
function space, and the theory functions ·[·], store,K,mapf , proj and arrayStore
having their expected meaning. I is constructed in such a way that all array
literals on B are satisfied; the satisfaction of compound formulas on B, and in
particular of φ, then follows like in the standard Hintikka construction [14].

The interpretation I(a) of an array variable a : (σn ⇒ τ) is derived from
the array reads on [a] occurring on B. The main difficulty is to consistently
interpret the (infinitely many) elements of the array that are not mentioned
explicitly on B. For this, denote the index variable introduced by the unique
freshIdx application on B by ε, and observe that its value IT (ε) is distinct from
the value of all other index variables. We will use values read from IT (ε)-locations
as default values for the arrays. Let

Ra = {(〈IT (i1), . . . , IT (in)〉, IT (v)) | v = b[̄i] occurs on B and a ∼ b}

be the set of array reads for a : (σn ⇒ τ). The relation Ra describes a non-empty,
consistent (but partial) valuation of the array elements, due to the exhaustive
application of rules read and readCong.

The gaps in Ra will be filled with default values introduced by ε. For this, we
define a precedence ordering � ⊆ IT (σ)∗ ×IT (σ)∗ over index vectors; intuitively,

184 Y.-F. Chen et al.

c̄ � d̄ if c̄ and d̄ agree in all components, unless dk = IT (ε), which is interpreted
as don’t-care:

〈c1, . . . , ck〉 � 〈d1, . . . , dm〉 iff k = m and ∀i ∈ {1, . . . , k} : ci = di ∨ di = IT (ε)

The value of array variable I(a) ∈ I((σn ⇒ τ)) is then:

I(a) =
{

(c̄, x) | (d̄, x) ∈ Ra, where c̄ � d̄
and for all (d̄′, x′) ∈ Ra : if c̄ � d̄′ then d̄ � d̄′

}

To see that I(a) is functionally consistent, note that whenever (d̄, x) and (d̄′, x′)
exist in Ra such that c̄ � d̄ and c̄ � d̄′, then there is also some (d̄′′, x′′) ∈ Ra such
that c̄ � d̄′′ � d̄, d̄′. This is because the rule read has been applied exhaustively.

It remains to be shown that I satisfies all array literals. By construction,
equations a = b will be satisfied. To see that equations v = a[̄i] hold, note that
I(a) ⊇ Ra. Equations a �= b are satisfied due to the exhaustive application of
ext: there has to be some vector ī of index variables such that a[̄i] �= b[̄i].

All other array literals are positive equations of the form x = f(ȳ),
and hold because exhaustive propagation of read atoms was performed. As
an example, consider an equation a = proj k(b, j); it has to be shown that
I(a) = {(〈c1, . . . , ck−1, ck+1, . . . , cn〉, x) | (c̄, x) ∈ I(b), ck = IT (j)}. Observe
that Ra = {(〈c1, . . . , ck−1, ck+1, . . . , cn〉, x) | (c̄, x) ∈ Rb, ck = IT (j)} due to the
rules proj ⇓ and proj ⇑. Consider then a point (c̄, x) ∈ I(a), defined by (d̄, x) ∈
Ra, and the corresponding index vectors c̄′ = 〈c1, . . . , ck−1, IT (j), ck, . . . , cn−1〉
and d̄′ = 〈d1, . . . , dk−1, IT (j), dk, . . . , dn−1〉 in Rb, and show that (c̄′, x) ∈ I(b) is
defined by (d̄′, x) ∈ Rb. ��

The proof of the theorem highlights the restrictions necessary to obtain a
decision procedure for CaAL: all rules should be applied under the condition of
regularity, and the rule freshIdx has to be restricted to at most one application
per branch, and only after applications of ext have been performed.

To evaluate runtime, like in the proof of Theorem 3 we make the assumption
that there are no nested array sorts, i.e., index and value sorts are themselves
not arrays. To avoid degenerate cases when evaluating runtime, we assume that
a formula φ cannot be smaller than the maximum arity of occurring array vari-
ables. We then get:
Lemma 1. The satisfiability problem of quantifier-free CaAL formulas φ with-
out nested array sorts is in NEXPTIME, assuming that the satisfiability problem
of the base theory is in NP.

Proof. This follows from the proof of Theorem 3. On every branch, the rule ext
can be applied at most quadratically often, and the number of index variables
occurring on a branch is polynomial in the size of the input formula φ. The
number of distinct read atoms v = a[̄i] that can be introduced on a branch,
and therefore the number of rule applications altogether is then polynomially
bounded by the number of variables in φ, and exponentially bounded in the
maximum arity of array variables in φ. After exhaustive application of the rules
in Table 4, solving an at most exponential number of base theory formulas (with
at most exponential size) on a branch is in NEXPTIME. ��

A Theory of Cartesian Arrays 185

4.4 Optimizations

The calculus and decision procedure are primarily designed with simplicity in
mind, rather than focusing on practical efficiency. Although the procedure’s com-
plexity may not be reduced below NEXPTIME, incorporating various optimiza-
tions can yield significant practical improvements. Two obvious improvements
to be considered are: (i) The detection of linear array variables, which are
essentially variables that are assigned to at most once in array literals [11]. It is
enough to perform upward propagation (rules ⇑) only for non-linear variables.
(ii) The restriction of the number of reads introduced using the rule read.
In practice, only a few of the generated equations are actually needed to ensure
completeness. Instead of generating all possible reads eagerly, a procedure could
focus on the other rules first, and only introduce additional reads when it is
detected that default values are missing for some sub-arrays. We believe that
other refinements presented in [11] can be carried over to our decision procedure
as well.

Table 5. Experimental results. We list the circuit name, the number of qubits and
gates in the circuit, the verification result, and the execution time.

circuit qubits gates result time circuit qubits gates result time

H2 1 2 OK 3.1 s H2 (bug) 1 2 bug 3.0 s

BV 1 3 OK 3.2 s BV (bug) 1 3 bug 3.3 s

BV 2 5 OK 6.4 s BV 5 13 OK 1m 59.0 s

BV 3 8 OK 16.8 s BV 6 15 OK 9m 13 s

BV 4 10 OK 43.2 s BV 7 18 OK 50m 54 s

GroverSingle-Comp 2 17 OK 5.2 s GroverSingle-Comp 4 85 OK 51.7 s

GroverAll-Comp 2 17 OK 6.8 s GroverAll-Comp 4 85 OK 3m 53 s

GroverSingle-Iter 1 9 OK 3.2 s GroverAll-Iter 1 9 OK 3.8 s

GroverSingle-Iter 2 15 OK 4.9 s GroverAll-Iter 2 15 OK 14.2 s

GroverSingle-Iter 3 21 OK 8.4 s GroverAll-Iter 3 21 OK 37.9 s

GroverSingle-Iter 4 27 OK 17.1 s GroverAll-Iter 4 27 OK 4m 51 s

GroverSingle-Iter 5 33 OK 46.9 s GroverAll-Iter 5 33 OK 57m 2 s

5 Preliminary Experimental Result

We have implemented the decision procedure proposed for CaAL, the encoding
of quantum gates using array operations, and of complex numbers as five-tuples
of integers in the SMT solver Princess [26]. The implementation is still a proof
of concept and largely unoptimized, so that the results reported in this section
should be considered preliminary. We evaluate the performance of CaAL based
on a set of benchmarks for quantum circuit verification. All experiments were
conducted on a server with an AMD EPYC 7742 64-core processor (1.5 GHz),
1,152 GiB of RAM, and a 1 TB SSD running Ubuntu 20.04.5 LTS but were run

186 Y.-F. Chen et al.

with only one core for the sake of fairness. Files to reproduce the experiment
can be found in https://zenodo.org/record/7970588. The experimental results
are shown in Table 5. Specifically, we tested four different verification problems
with different circuit sizes.

– H2: Two consecutive H gates equal to identity.
– BV: The (complex) amplitudes of the output quantum state from a Bernstein-

Vazirani’s [4] circuit have no imaginary parts.
– GroverXXX-Comp: The Grover’s [17] circuit has a probability of 90% to find

the correct answer.
– GroverXXX-Iter: Each Grover iteration [17] increases the possibility of finding

the correct answer.

For Grover’s algorithm, XXX = Single means we check the correctness of
the circuit against a specific oracle, and XXX = All means we check against all
possible oracles. We manually injected two bugs (by altering one gate) into two
examples to demonstrate bug-catching capability. With a timeout of 60min, our
implementation can analyze circuits with at most 7 qubits and at most 85 gates,
which are still relatively small circuits. Analyzing the results, we discovered that,
in particular, the H gates used to create a superposition state at the beginning
of a circuit are challenging for the array decision procedure, as they lead to an
exponential number of array reads being created.

6 Conclusions

We have presented CaAL, an expressive logic of extensional arrays, with opera-
tions for reading and storing values, creating constant arrays, a point-wise exten-
sion of functions on array values to arrays, projection of arrays, and updating
array slices. We have established that checking the satisfiability of quantifier-
free CaAL formulas is NEXPTIME-complete, for a base theory in NP and non-
nested arrays. The root cause for the complexity of CaAL (as opposed to the
NP complexity of CAL and the standard theory of arrays) is that formulas can
be constructed in which a cell in one array has dependencies to an exponential
number of cells in another array. In our decision procedure, such situations lead
to an exponential number of reads generated during propagation. High degrees
of dependency are typical, however, for quantum circuits.

We believe that CaAL is a suitable framework for reasoning about quantum
circuits. Due to the expressiveness of the logic, the encoding of quantum gates
becomes remarkably succinct and elegant (Table 3), and easily understandable
both for researchers in quantum circuit verification and people in automated rea-
soning. While theoretically optimal, we consider the decision procedure proposed
for CaAL only as a first step: the high complexity of CaAL implies that brute-
force approaches like saturation are unlikely to scale to interesting instances. As
future work, we therefore plan to explore the use of abstraction methods and of
more succinct array representations in the decision procedure, thus making it
possible to exploit the highly structured nature of typical quantum circuits in

https://zenodo.org/record/7970588

A Theory of Cartesian Arrays 187

the solving process. We also plan to investigate whether interesting fragments of
CaAL with lower complexity can be identified.

Acknowledgements. This work has been partially funded by the Swedish Research
Council (VR) under grant 2018-04727, the Swedish Foundation for Strategic Research
(SSF) under the project WebSec (Ref. RIT17-0011), the Wallenberg project UPDATE,
and the NSTC QC project under Grant no. NSTC 111-2119-M-001-004- and 112-2119-
M-001-006-.

References

1. Amy, M.: Towards large-scale functional verification of universal quantum circuits.
In: Quantum Physics and Logic (2018)

2. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB standard: version 2.6. Tech-
nical report, Department of Computer Science, The University of Iowa (2017).
www.SMT-LIB.org

3. Bauer-Marquart, F., Leue, S., Schilling, C.: symqv: automated symbolic verification
of quantum programs. In: Chechik, M., Katoen, J.P., Leucker, M. (eds.) FM 2023.
LNCS, vol. 14000, pp. 181–198. Springer, Cham (2023). https://doi.org/10.1007/
978-3-031-27481-7 12

4. Bernstein, E., Vazirani, U.V.: Quantum complexity theory. In: Kosaraju, S.R.,
Johnson, D.S., Aggarwal, A. (eds.) Proceedings of the Twenty-Fifth Annual ACM
Symposium on Theory of Computing, May 16–18, 1993, San Diego, CA, USA, pp.
11–20. ACM (1993). https://doi.org/10.1145/167088.167097

5. Bonacina, M.P., Graham-Lengrand, S., Shankar, N.: CDSAT for nondisjoint
theories with shared predicates: arrays with abstract length. In: Déharbe, D.,
Hyvärinen, A.E.J. (eds.) Proceedings of the 20th Internal Workshop on Satisfiabil-
ity Modulo Theories Co-located with the 11th International Joint Conference on
Automated Reasoning (IJCAR 2022) Part of the 8th Federated Logic Conference
(FLoC 2022), Haifa, Israel, 11–12 August 2022. CEUR Workshop Proceedings, vol.
3185, pp. 18–37. CEUR-WS.org (2022). https://ceur-ws.org/Vol-3185/paper9712.
pdf

6. Brummayer, R., Biere, A.: Lemmas on demand for the extensional theory of arrays.
J. Satisf. Boolean Model. Comput. 6(1–3), 165–201 (2009). https://doi.org/10.
3233/sat190067

7. Chen, Y., Chung, K., Lengál, O., Lin, J., Tsai, W., Yen, D.: An automata-based
framework for verification and bug hunting in quantum circuits (2023). https://
doi.org/10.48550/arxiv.2301.07747, https://arxiv.org/abs/2301.07747. To appear
at PLDI 2023

8. Christ, J., Hoenicke, J.: Weakly equivalent arrays. In: Lutz, C., Ranise, S. (eds.)
FroCoS 2015. LNCS (LNAI), vol. 9322, pp. 119–134. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24246-0 8

9. Coecke, B., Duncan, R.: Interacting quantum observables: categorical algebra and
diagrammatics. New J. Phys. 13(4), 043016 (2011). https://doi.org/10.1088/1367-
2630/13/4/043016

10. Dawson, C.M., Nielsen, M.A.: The Solovay-Kitaev algorithm. arXiv preprint quant-
ph/0505030 (2005)

11. De Moura, L., Bjørner, N.: Generalized, efficient array decision procedures. In:
2009 Formal Methods in Computer-Aided Design, pp. 45–52. IEEE (2009)

http://www.smt-lib.org/
https://doi.org/10.1007/978-3-031-27481-7_12
https://doi.org/10.1007/978-3-031-27481-7_12
https://doi.org/10.1145/167088.167097
https://ceur-ws.org/Vol-3185/paper9712.pdf
https://ceur-ws.org/Vol-3185/paper9712.pdf
https://doi.org/10.3233/sat190067
https://doi.org/10.3233/sat190067
https://doi.org/10.48550/arxiv.2301.07747
https://doi.org/10.48550/arxiv.2301.07747
https://arxiv.org/abs/2301.07747
https://doi.org/10.1007/978-3-319-24246-0_8
https://doi.org/10.1088/1367-2630/13/4/043016
https://doi.org/10.1088/1367-2630/13/4/043016

188 Y.-F. Chen et al.

12. Falke, S., Merz, F., Sinz, C.: Extending the theory of arrays: memset, memcpy, and
beyond. In: Cohen, E., Rybalchenko, A. (eds.) VSTTE 2013. LNCS, vol. 8164, pp.
108–128. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54108-
7 6

13. Feng, Y., Yu, N., Ying, M.: Model checking quantum Markov chains. J. Comput.
Syst. Sci. 79(7), 1181–1198 (2013). https://doi.org/10.1016/j.jcss.2013.04.002

14. Fitting, M.C.: First-Order Logic and Automated Theorem Proving, 2nd edn.
Springer, New York (1996). https://doi.org/10.1007/978-1-4612-2360-3

15. Ganesh, V., Dill, D.L.: A decision procedure for bit-vectors and arrays. In: Damm,
W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 519–531. Springer, Hei-
delberg (2007). https://doi.org/10.1007/978-3-540-73368-3 52

16. Ganesh, V., Dill, D.L.: A decision procedure for bit-vectors and arrays. In: Damm,
W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 519–531. Springer, Hei-
delberg (2007). https://doi.org/10.1007/978-3-540-73368-3 52

17. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Miller,
G.L. (ed.) Proceedings of the Twenty-Eighth Annual ACM Symposium on the
Theory of Computing, Philadelphia, Pennsylvania, USA, 22–24 May 1996, pp.
212–219. ACM (1996). https://doi.org/10.1145/237814.237866

18. Harrison, J.: Handbook of Practical Logic and Automated Reasoning. Cambridge
University Press, Cambridge (2009)

19. Hietala, K., Rand, R., Hung, S.H., Wu, X., Hicks, M.: Verified optimization in a
quantum intermediate representation. arXiv preprint arXiv:1904.06319 (2019)

20. Hoenicke, J., Schindler, T.: Solving and interpolating constant arrays based on
weak equivalences. In: Enea, C., Piskac, R. (eds.) VMCAI 2019. LNCS, vol. 11388,
pp. 297–317. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11245-
5 14

21. Mateus, P., Ramos, J., Sernadas, A., Sernadas, C.: Temporal Logics for Reasoning
about Quantum Systems, pp. 389–413. Cambridge University Press, Cambridge
(2009). https://doi.org/10.1017/CBO9781139193313.011

22. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information:
10th Anniversary Edition, 10th edn. Cambridge University Press, USA (2011)

23. Papadimitriou, C.H., Yannakakis, M.: A note on succinct representations of graphs.
Inf. Control 71(3), 181–185 (1986)

24. Perdrix, S.: Quantum entanglement analysis based on abstract interpretation. In:
Alpuente, M., Vidal, G. (eds.) SAS 2008. LNCS, vol. 5079, pp. 270–282. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-69166-2 18

25. Raya, R., Kunčak, V.: NP satisfiability for arrays as powers. In: Finkbeiner, B.,
Wies, T. (eds.) VMCAI 2022. LNCS, vol. 13182, pp. 301–318. Springer, Cham
(2022). https://doi.org/10.1007/978-3-030-94583-1 15

26. Rümmer, P.: A constraint sequent calculus for first-order logic with linear integer
arithmetic. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS
(LNAI), vol. 5330, pp. 274–289. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-89439-1 20

27. Sheng, Y., et al.: Reasoning about vectors using an SMT theory of sequences. In:
Blanchette, J., Kovács, L., Pattinson, D. (eds.) IJCAR 2022. LNCS, vol. 13385, pp.
125–143. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-10769-6 9

28. Sipser, M.: Introduction to the theory of computation. ACM SIGACT News 27(1),
27–29 (1996)

29. Stump, A., Barrett, C.W., Dill, D.L., Levitt, J.: A decision procedure for an exten-
sional theory of arrays. In: Proceedings 16th Annual IEEE Symposium on Logic
in Computer Science, pp. 29–37. IEEE (2001)

https://doi.org/10.1007/978-3-642-54108-7_6
https://doi.org/10.1007/978-3-642-54108-7_6
https://doi.org/10.1016/j.jcss.2013.04.002
https://doi.org/10.1007/978-1-4612-2360-3
https://doi.org/10.1007/978-3-540-73368-3_52
https://doi.org/10.1007/978-3-540-73368-3_52
https://doi.org/10.1145/237814.237866
http://arxiv.org/abs/1904.06319
https://doi.org/10.1007/978-3-030-11245-5_14
https://doi.org/10.1007/978-3-030-11245-5_14
https://doi.org/10.1017/CBO9781139193313.011
https://doi.org/10.1007/978-3-540-69166-2_18
https://doi.org/10.1007/978-3-030-94583-1_15
https://doi.org/10.1007/978-3-540-89439-1_20
https://doi.org/10.1007/978-3-540-89439-1_20
https://doi.org/10.1007/978-3-031-10769-6_9

A Theory of Cartesian Arrays 189

30. Tsai, Y., Jiang, J.R., Jhang, C.: Bit-slicing the Hilbert space: scaling up accu-
rate quantum circuit simulation. In: 58th ACM/IEEE Design Automation Confer-
ence, DAC 2021, San Francisco, CA, USA, 5–9 December 2021, pp. 439–444. IEEE
(2021). https://doi.org/10.1109/DAC18074.2021.9586191

31. Wang, Q., Appel, A.W.: A solver for arrays with concatenation. J. Autom. Reason.
67(1), 4 (2023). https://doi.org/10.1007/s10817-022-09654-y

32. Xu, M., Fu, J., Mei, J., Deng, Y.: Model checking QCTL plus on quantum Markov
chains. Theor. Comput. Sci. 913, 43–72 (2022). https://doi.org/10.1016/j.tcs.2022.
01.044

33. Xu, M., et al.: Quartz: superoptimization of quantum circuits. In: Proceedings
of the 43rd ACM SIGPLAN International Conference on Programming Language
Design and Implementation, pp. 625–640 (2022)

34. Yu, N., Palsberg, J.: Quantum abstract interpretation. In: Proceedings of the 42nd
ACM SIGPLAN International Conference on Programming Language Design and
Implementation, pp. 542–558 (2021)

35. Zulehner, A., Wille, R.: Advanced simulation of quantum computations. IEEE
Trans. Comput. Aided Des. Integr. Circuits Syst. 38(5), 848–859 (2019). https://
doi.org/10.1109/TCAD.2018.2834427

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1109/DAC18074.2021.9586191
https://doi.org/10.1007/s10817-022-09654-y
https://doi.org/10.1016/j.tcs.2022.01.044
https://doi.org/10.1016/j.tcs.2022.01.044
https://doi.org/10.1109/TCAD.2018.2834427
https://doi.org/10.1109/TCAD.2018.2834427
http://creativecommons.org/licenses/by/4.0/

	A Theory of Cartesian Arrays (with Applications in Quantum Circuit Verification)
	1 Introduction
	2 A Theory of Cartesian Arrays
	2.1 Preliminaries
	2.2 Definition of the Theory of Cartesian Arrays
	2.3 Complexity of Satisfiability in CaAL

	3 Array Semantics of Quantum Circuits
	3.1 Quantum Circuits
	3.2 Interpretation of Quantum Gates

	4 A Decision Procedure for Cartesian Arrays
	4.1 Preliminaries
	4.2 Proof Rules
	4.3 Correctness and Complexity
	4.4 Optimizations

	5 Preliminary Experimental Result
	6 Conclusions
	References

