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ABSTRACT
Evidence-based strategies suggest ways to reduce the gender gap
in computing. For example, elective classes are valuable in enabling
students to choose in which directions to expand their computing
knowledge in areas aligned with their interests. The availability of
electives of interest may also make computing programs of study
more meaningful to women. However, research on which elective
computing topics are more appealing to women is often class or
institution specific. In this study, we investigate differences in en-
rollment within undergraduate-level elective classes in computing
to study differences between women and men. The study combined
data from nine institutions from both Western Europe and North
America and included 272 different classes with 49,710 student
enrollments. These classes were encoded using ACM curriculum
guidelines and combined with the enrollment data to build a hier-
archical statistical model of factors affecting student choice. Our
model shows which elective topics are less popular with all students
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(including fundamentals of programming languages and parallel
and distributed computing), and which elective topics are more pop-
ular with women students (including mathematical and statistical
foundations, human computer interaction and society, ethics, and
professionalism). Understanding which classes appeal to different
students can help departments gain insight of student choices and
develop programs accordingly. Additionally, these choices can also
help departments explore whether some students are less likely to
choose certain classes than others, indicating potential barriers to
participation in computing.
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1 INTRODUCTION
In most parts of the world, women are less likely to study comput-
ing and less likely to work in tech-related industries than are men
[67]. Women’s participation in technical fields of study varies both
by cultural beliefs about appropriate gender roles and by nations’
educational policies [19]. According to Organization for Economic
Co-operation and Development data, women are underrepresented
among computer science (CS) degree recipients in nearly all coun-
tries in the industrialized world [19, 28]. For example, in 2018,
European women earned only about 20 percent of information and
communication technology bachelor’s degrees [33], while in the
United States, 22 percent of bachelor’s degrees in computing were
awarded to women in 2021 [34]. Australia’s figures are consistent
with these, as women earned about one-fifth of all bachelor’s de-
grees in CS in 2021 [87]. In 2022, 26 percent of CS bachelor’s degrees
in New Zealand were awarded to women [69]. Less data is available
for Latin American countries and other parts of the world. A small
group of nine universities presented data at the Microsoft Latin
American Research Summit in 2011. The percentage of women in
these computing departments ranged from single digits to low 20s.

The continued underrepresentation of women in computing is
deeply concerning both from the viewpoint of social justice and
from the need for a highly qualified technical workforce. Com-
puting professionals work on the cutting edge of technology, are
placed into influential positions, work creatively, enjoy freedom
relative to other fields, and earn some of the highest salaries among
professionals [36]. Too many women are missing out on these
benefits. Economic well-being is more than a financial or mate-
rial goal; it has a well-established, measurable effect on women’s
health. Five decades of research in Western and Eastern Europe,
North America, the Middle East, and other locations demonstrate
that economic factors such as higher occupational class and in-
come are positively associated with women’s better physical and
mental health [4, 5, 23, 46, 52, 54, 56, 64, 77, 93]. Women’s low
participation deprives organizations of the well-documented con-
tributions of gender-diverse teams for problem solving, decision
making, product development, and avoidance of algorithmic bias
[6, 29, 41, 44, 72, 88, 92].

While we do not intend to be gender essentialist – a belief that
women and men have fundamental differences that are consistent
across cultures – it is important to point out that women are less
likely than men to participate in technical fields of study across
most, but not all, countries of the world. Patterns of behavior can be
explained not only by innate differences but also by differences in
socialization and the stereotypes people are exposed to, and there
are many social cues pushing women away from computing. These
include social stereotypes about who studies computing and the
judgments the people around women and girls make as to whether
computing is suitable for them. Stereotypes also shape the social
environment women face in computing, which can be hostile and
discriminatory. It is plausible that the differences in average men’s
and women’s behavior influenced by these social pressures lead
to different choices being made within computing degrees, thus
potentially creating the possibility of designing computing degrees
that are more appealing to women. Whilst eradicating such social

pressures would be ideal, this is infeasible in anything but the long
term, so appealing to women within these constraints is important.

Although CS has become an increasingly popular field of study,
and the most rapidly changing field for the past 30 years, this
change may not be reflected in current CS curricula [48, 53, 79, 94].
Irrelevant curriculum might be one of the reasons why women are
underrepresented in CS and technology-related fields. However,
the ability to select from elective classes provides an opportunity to
allow students to make informed decisions as to their education and
career pathways. Further, it is plausible that offering more elective
courses that counteract CS stereotypes could make a CS degree
more interesting to women [20]. Additionally, integrating a range
of perspectives into the CS curriculum has the potential to promote
diverse thinking, a crucial element in cultivating critical thinking
skills that can motivate women to stay in CS [80, 90].

Research into why students choose CS [59], why they leave
classes [78], and what support they find during classes [50] has
been carried out over the years. However, research into these issues
is limited and are often single-institution studies that are difficult
to generalize. When looking beyond CS at the STEM fields, the
research is similarly minimal; the work that exists includes a study
that explored the motivations of women in choosing STEM sub-
jects across many colleges in Turkey [31]. Furthermore, for women
students enrolled in a CS undergraduate program, there is little
research into how their choices differ from those of men in se-
lecting the specific electives that make up their program. Elective
classes allow students to choose the classes that make up their
degree and may encourage students to immerse themselves in new
areas [35, 49, 79]. Students take electives not only because they are
interesting but because these classes help them to improve skills
necessary for their careers [55]. The ability to choose empowers
students to take ownership of their educational pathway.

Our work builds upon a systematic review of the evidence of
effectiveness in broadening participation that was carried out by
Working Group 3 at ITiCSE 2021 [66]. Among their recommenda-
tions was the following advice:

“Make connections from computing to your students’ lives and
interests (Make it Matter), but don’t assume you know what those
interests are; find out! [66, p. 80]”. This statement prompted the
creation of our working group.

In this working group, we aimed to find out whether women
and men tend to take classes with different content when they have
a choice. We specifically relate features of the curriculum content
(which we refer to as content features) to enrollment numbers —
we do not collate or analyze data relating to non-content features
of electives, such as the instructor for the class. By carrying out a
multi-national multi-institution study, we aimed to identify how
much of the variability in elective choice is due to specific content
features — which we assume is constant between institutions and
nations — and how much is due to non-content features, which we
assume varies between electives, institutions, and nations.

In particular, we compiled data on elective classes from multi-
ple institutions, coded for class content, and related them to the
numbers of women and men who elect those classes. By so doing,
we can address whether women and men tend to have different
interests in studying CS. The study uses Bayesian networks to de-
termine the impact of curriculum content on elective choice. We
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theorize and connect with related studies to discuss what drives
the choices and discuss the study’s implications for improving the
gender balance of computing.

We address the following research questions:
RQ1: Do women and men enroll in elective classes differently?
RQ2: How does elective class enrollment vary by class content?

How is this different for women and men?
In this study, we only explore elective classes because the pop-

ularity of these classes gives us data about the popularity of the
content that they cover. Institutions can use our results not only to
redefine their elective offerings but also to re-evaluate the content
coverage of the core/compulsory classes that students must take as
part of their broader program of study.

As a result of answering our research questions, our contribu-
tions to the research community include:

• A multi-institutional, multi-national dataset on undergrad-
uate computing elective class enrollment, including class
topic content and student numbers by gender – 272 classes
involving 49,710 enrollments across 9 institutions;

• A Bayesian model built from this data to identify how and to
what extent class enrollment is related to content and gender

We start by explaining the context and terminology of the re-
search in Section 2 before outlining how the existing literature
relates to our work in Section 3. Section 4 describes our data and
data processing steps, the codes we used to categorize the data,
the process of coding we used, and the approach to analysis and
modeling. Section 5 explores how the results answer the research
questions from various perspectives, and the implications of these
are discussed in Section 6. We discuss the scope and limitations
of the work in Section 7 and outline intentions for future work in
Section 8. The paper is concluded in Section 9.

2 TERMINOLOGY
Given the international context of this work, a common terminology
was established for a program of study, class, compulsory class,
elective class, and class cohort, which can be found in Table 1. In
our study, students in a university setting are enrolled in a program
of study for CS. The term class is used in this paper to refer to the
individual element of study that is taught to a group of students.
In some countries, this may be referred to as a module or a course.
Within any given program of study, a class taken by all students is
referred to as a compulsory class. Where students have a choice or
optional element, this is referred to as an elective class. The number
and type of electives may be large, running across multiple fields of
study. Elective classes may be selected by CS students and non-CS
students.

An example program of study with three compulsory classes is
illustrated in Figure 1. In this example, the third year of the Bachelor
of Computer Science program consists of compulsory classes and
elective classes. The CS student must take all three compulsory
classes and any three of the elective classes. A non-CS student may
select a CS elective as part of their own, separate program of study.
We have also included in this diagram the tags that we would apply
to them within the context of this study, which are described in
Section 4.2.3 and Tables 3 and 4.

3 RELATED LITERATURE
Research on enhancing diversity in post-secondary CS programs,
particularly concerning women’s participation, has explored a mul-
titude of factors within cultural, social, and educational systems.
These factors encompass a spectrum of influences, including cul-
turally specific expectations for individuals, socialization processes
that may guide individuals of different genders toward distinct oc-
cupations, the culture within the computing discipline, secondary
educational policies, and prior experiences (e.g., the availability and
compulsory or elective nature of computer science in secondary
schools). Additionally, these factors can also include post-secondary
efforts to promote diverse enrollment in computing degree pro-
grams, policies (e.g., admission barriers for students with or with-
out prior computing experience), support systems (e.g., mentoring,
role models, advising, extracurricular groups), pedagogy, classroom
experiences (e.g., collaborative learning opportunities), student-
student and student-faculty interactions, and the relevance and
meaningfulness of the curriculum for women [1, 25, 73]. The focus
of the study presented here is within the latter: the content of the
curriculum, and specifically, topic choice within CS degrees.

Below, we briefly discuss how the outputs of the prior ITiCSE
working group that inspired this research relate to our goals in
Section 3.1. We then discuss existing work on students’ elective
choices in Section 3.2. Exploring existing scholarship allows us
to understand better what aspects of computing are appealing to
students in general and introduces frameworks and theories that
look at how people make choices. We then analyze literature that
looks either specifically at women’s choices or contrasts women’s
and men’s choices in Section 3.3.

We aim to maintain a focus on the external and societal factors
that influence choices in CS while avoiding any language that might
imply that these choices are inherently gendered. Our discussion
here also emphasizes the need for cultural sensitivity and the lim-
itations of generalizing findings across different global contexts.
The literature we discuss in this section is largely situated in the
United States as there is very little research from elsewhere, and
the data we are using in this paper is from institutions from North
America and Western Europe. This limits the global applicability
of our conclusions, as we are aware that trends around women in
computing vary across the globe, as discussed in Section 1.

3.1 Project Motivation Background
One of the earliest studies of women’s interests related to CS was an
ethnography conducted at an elite, private university in the United
States [62]. In their study, Margolis and Fisher found that while
women and men shared many interests, men were more likely to
express interest in hacking and in studying the computer itself,
while women were more likely to express interest in the context
in which computing was applied, the link between computing and
other disciplines, and computing’s contributions to society. Other
researchers supported the generalizability of these findings through
quasi-experimental and interventional studies [8, 9, 40]. The Na-
tional Center for Women & Information Technology’s (NCWIT)
Engagement Practices Framework [30] is based on these and other
studies related to connecting the content of the curriculum (degree
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Table 1: Terminology used in this paper with examples and explanations

Keyword Example Explanation

Program of Study Bachelors in Computer Science The title of the program of study.

Class Text Mining The title of the individual element of study whether core or elective.

Compulsory class Bachelor Thesis This is a required class that students in the Bachelor in Computer
Science must take in year three of the program of study.

Elective class Computational Intelligence This is a class that students in the Bachelors in Computer Science may
choose to take as one of their 3 optional classes in year three of the
program of study.

Class Cohort Fall 2023 Text Mining Students The group of students that attend a particular iteration of a class in a
given term.

Cohort Third year honors students A group of students choosing from the same list of elective classes.

Figure 1: Elective classes in a Program of Study. Electives are coded with ACM-defined curricular areas (e.g. DM, AI) and/or
CAH-defined application areas (e.g. 17) as described in Section 4.2.3

programs, assignments, examples) to women’s interests (in addition
to effective teaching and classroom practices).

Using the NCWIT framework as a guide, a working group from
ITiCSE 2021 carried out a systematic literature review to identify
empirical support for the recommendations of teaching practices
that support engagement by women in computing programs [66].
That literature review focused on the computing topics and appli-
cation areas that influenced the program choices that women made
in addition to interactive approaches to pedagogy, collaborative
teaching, and a focus on socially relevant issues. The 2021 ITiCSE
working group noted that “most of the work [. . . ] evaluated interven-
tions implemented at only one institution” and identified the need
to “disentangle effects”. The study presented here focuses only on
topics and application areas and intends to address this criticism.

3.2 Students’ Choices in Computing
A great deal of scholarship discusses what leads students to make
the choices they do. In this section, we first discuss theory around,
then empirical studies on, student choice. Expectancy-value theory
[32] postulates that student motivation comprises two factors: stu-
dents’ expectations for success and their perceptions of the value
of doing something. Both are required to motivate a student. The
premise states that a student will be more motivated to take a class
if they are expecting to do well and perceive there is value to taking
the class. By contrast, if students think they will do well, but see
no value in the class, the theory postulates that they will not be
motivated to take it. The reverse is also true: if students see value,
but do not think they will be successful, they are less likely to take
the class.

What counts as success goes beyond academic performance,
which is explained by other theories, such as social learning theory
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[7] and field theory [63]. Social learning theory emphasizes that
people interact with and learn from learning environments. In this
view, students are psychologically embedded in a classroom social
space and the experience of this learning environment shapes their
expectations, values, and then, their motivation. This is different
from thinking about motivation as though it’s an inherent and
unchangeable feature of a person and different from a deficit model,
which implies something is missing in the student herself [65].
In addition to physical space, educational learning environments
include affiliations with other students and faculty and a sense
of belonging. Affiliation is the sense of friendship with students
and teachers, getting to know them, learning collaboratively, and
enjoying working together. Belonging is a student’s feeling of being
accepted, valued, included, and encouraged by other students and
teachers. [38]. In classrooms where students feel they belong and
that they are supported interpersonally, they are more motivated
to engage in important academic tasks and events [82].

Field theory is similarly concerned with the experience of an
individual in a social and physical space. A field, or social space,
consists of actors who interact, cooperate, and compete with one
another [13]. Drawing from the physical sciences, the notion of
field focuses attention on how elements within a space or setting
are influenced by other elements in the setting and the setting’s
characteristics [63]. A football field illustrates the relationship well:
the positions in the field are occupied by agents, who then follow
rules and operate within borders and on turf with specific features
(e.g., artificial or natural). The game is competitive, with agents
using strategies to maintain or improve their positioning vis a
vis other players and features of the playing field. Educational
settings can be viewed as socially reproductive fields. When the
setting is competitive, those who benefit the most often hail from
socially, economically, or educationally advantageous positions
[14]. Bourdieu refers to these people as the dominant class, people
who are deeply embedded in the system with their practices and
discourses. These possess higher levels of social capital, which is
then used for leverage in the field. When a field (such as CS) is
dominated by a subgroup (such as men), then the rules of the game
are set by this subgroup, who then define what is "proper" computer
science in a way that is arbitrary and to their advantage.

In CS research, educational advantage has been referred to as
preparatory privilege [61]. Those with preparatory privilege are
students with prior programming experience, knowledge, and/or
skills not held by their less-prepared counterparts. They often have
positive views and dispositions towards the discipline that aligns
with their future goals. These students may also share a common
language and discourse related to CS, and a specific style of commu-
nication and interaction with their peers of the same position and
with their teachers [47]. Those who do not share that common lan-
guage and communication style are likely to have greater difficulty
feeling they belong.

Beyond issues related to the social setting, there are very prac-
tical aspects of student choices. In addition to completing a set of
required classes within a program of study, students often need to
complete a set of elective classes to fulfill graduation requirements.
Electives allow students to explore or to focus on areas of interest,
though students do not always desire to take electives nor do they
always get to take the electives they wish to take. Recent research

on elective choices has examined students’ reasons, which often
reflect interests. For example, a study of why students choose to
enroll in Massive Open Online Courses (MOOCs) highlighted four
clusters of students: those concerned with good grades, those who
wanted to learn, those who wanted to be with or make friends,
and those who both wanted to learn and get good grades [58]. An-
other study of students in the sciences found that students were
most concerned with career usefulness, good grades, and ease of
getting credit [71]. Interestingly, that study suggested that men
may be more likely than women to take classes for social reasons,
which is consistent with a recent study of CS majors [49, 71]. The
study also found that social science classes were taken more for
interest than STEM classes, that humanities classes were taken for
self-development, and that CS, engineering, or physics class-taking
stemmed from a desire for career skills [55].

Some research has been done on students’ elective choices within
CS. Elective classes are available from the CS department itself as
well as other departments for multidisciplinary learning [79]. Elec-
tives give students the flexibility of focus, providing students the
opportunity to choose different paths in the program of study [60],
and which may ultimately support different career paths. Electives
may also give a different perspective on the current career with inte-
gration or collaboration of other fields. In CS, offering students more
elective choices can promote autonomy, which can encourage life-
long interest and may encourage broader participation [35]. When
students initially start choosing classes, they may not have an inter-
est but are trying to find out if they have an interest or will enjoy
the class for other reasons [43]. A recent survey-based study asked
students the importance of seven concerns when choosing classes,
though the paper was non-specific as to whether the classes were
elective or compulsory [49]. Consistent with the NCWIT Engage-
ment Practices framework, personal interest in the class content
was considered most important, with no differences found between
women and men. Interest was followed closely by a non-content-
related factor, class credits that contribute to one’s degree program,
and a factor that could be both content- and non-content-related,
preparing the student for future work. Other typical non-content
related factors included fitting into students’ schedules and know-
ing another student in the class. The study presented in this paper
addresses only content-related factors.

3.3 Women’s Choices in Computing
Interests are not necessarily inherent to gender. Instead, stereotypes
and social expectations play a role in forming values and beliefs,
which in turn influence students’ educational and career choices
and success [18]. This understanding is crucial when considering
the Things–People dimension, which has been used to explain
differences in men’s and women’s preferences [22, 83]. While it
has been observed that “men may show a preference for working
with things and women for working with people” with women
expressing stronger ‘Social’ and ‘Artistic’ interests than men, these
trends should not be viewed as essential differences. These are more
likely reflective of societal pressures, where men are often expected
to prioritize income as breadwinners, and womenmay have broader
leeway to pursue interests that are less directly tied to financial
outcomes.
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In the context of computing, these findings are mirrored. Large-
scale studies have indicated that women are more likely than men
to prioritize helping others and maintaining a work-family balance,
while men place more value on earning potential [11, 12]. These
differing values can lead to different elective choices. Research
by Kilkenny et al. [49] and Payton et al. [74] supports this, show-
ing that women CS majors often seek to understand and address
community challenges. Cohoon [24] further found that women’s
participation in CS is bolstered when they perceive their involve-
ment as meaningful and socially contributive. The presence of
electives that appeal to women’s interests may also attract women
to the major.

However, it is essential to recognize that the social climate within
CS and related fields can be unwelcoming to women and that these
negative forces can deter women from pursuing and remaining
in computing fields, which is a critical aspect that requires more
immediate and prominent attention in discussions about gender
and CS.

A few studies have delved into specific elective choices of stu-
dents within CS departments. For instance, a study in Greece found
that over six years, women tended to select more theoretical com-
puting classes, while men appeared to choose systems classes, al-
though the study did not statistically test these observations [51].
They also noted that women enrolled in more humanities and social
sciences classes. Another study found that while women may not
be attracted to traditional gaming projects, they are more drawn
to serious game projects, which avoid endorsement of the geek
gaming culture [84].

When it comes to publication trends, women have been found
to contribute more to fields such as human-centered computing
and less to areas like computer vision and algorithms [2, 16, 26, 89].
In summary, while research has examined why women pursue CS
majors and what retains women, little is known about what topics
they pursue when they have a choice. The study presented below
provides insights into the elective classes of undergraduate women,
choices that may influence later CS subfield choices.

4 METHODS
Our study focused on bringing together data from nine institutions
to answer our research questions about women students and elec-
tive classes. Details of the nine institutions, the computing programs
they offer, and the data they contributed are given in Appendix A.
We used convenience sampling techniques for data collection —
collecting data only from the authors’ institutions — to collect data
regarding undergraduate student enrollment in elective classes and
class descriptions that are presented to students. We then engaged
in two stages of coding the class descriptions, followed by using
our coding and enrollment data to model women’s elective class
enrollment using Bayesian techniques. An overview of our data
collection and analysis methods can be seen in Figure 2.

All authors that retrieved data from their institution approved
this research with their respective ethics review boards. In most
cases, the ethics boards declared that this research was not human
subjects research due to the level of anonymization within the data
being requested.

Figure 2: An overview of the data collection and coding pro-
cess

4.1 Enrollment Data
4.1.1 Data Collection. After receiving approval from their respec-
tive institutions, the authors requisitioned data for all CS elective
classes at their institution. The data was expected to include over-
all enrollment numbers, as well as a separation of the number of
women and men enrolled in that class in a given academic year.
The data on gender were extracted directly from local information
systems, which are based on student self-reports. A summary of
this data can be seen in Table 2.

Our data represented class enrollment across three academic
years (2020-2021, 2021-2022, 2022-2023) whenever possible. In one
case (Kiel University), only one year was provided. Collecting
this class data over multiple institutions and years allowed us to
treat non-content-related features, e.g. instructor characteristics,
as "noise" in the system — we did not collect data on these non-
content-related factors.

Any data regarding students who did not identify as a woman
or a man (e.g., non-binary) were not included due to low sample
sizes increasing the risk of identification of the student (and thus
de-anonymization). Students were included in the data regardless of
their program of study. All the data was historical, meaning the data
represents the enrollment in the class at the end of the class; the data
does not reflect students who initially enrolled and subsequently
withdrew from the elective class. We did not collect data on whether
a student may have been repeating a class, either due to being able
to take electives multiple times or failing and needing to take the
elective again. One exception to this was Uppsala University, where
the data consisted of only first-time registered students in the class.
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Cohort sizes were also gathered to capture the proportion of
students enrolled in an elective compared to all the students who
had the potential to enroll in that elective. As defined in Table 1, a
cohort is a group of students choosing from the same list of elective
classes.

In some cases, it was challenging to determine the cohort to-
tal. Open universities, such as UOC Spain, often have a different,
flexible approach to structuring classes and student progression
compared to traditional universities. This flexibility means that
students can enroll in classes at different times, take classes in any
order, and complete them at their own pace. As a result, there is no
fixed starting point or progression timeline for a specific group of
students, making it challenging to form traditional cohorts. Further
details of the institutional contexts for each of the contributing
departments are given in Appendix A.

4.1.2 Data Processing, Cleaning, and Validation. Once data were
received from the institution, the data were standardized in terms of
format. Any enrollment data were rounded to the nearest multiple
of three to minimize the risk of de-anonymization.

For each institution, a set of validation checks was carried out by
a working group leader to identify if any of the following situations
were true:

• Missing enrollment data for cohorts at an institution.
In some cases it was difficult to identify exactly what the
cohort was, i.e. the group of students that had access to
the same set of CS electives, particularly where there were
students from other programs taking classes within CS de-
partments.

• Classes that had enrollment higher than the specified
quota. Few classes had reported quotas, or the maximum
number of students allowed to enroll in that class (this may
also be referred to as a “cap" on enrollment in some con-
texts). For the few that did, none of the raw enrollment data
exceeded the stated quota.

• Classes that had enrollment higher than the specified
cohort. The only time this happened was when the cohort of
CS majors was smaller than the number of students choosing
the elective because the full cohort was difficult to identify.
This was because access to classes was very open — even to
the public — so adjustments to the cohort size were made to
reflect this. See Appendix A.8 for details

• Uneven distribution of class enrollment across aca-
demic years. Having decided that our sample would be
taken from three academic years, enrollment data outside
this time frame were removed. Where there was uneven
distribution, this highlighted some missing data that was
followed up for inclusion in the final dataset.

Questions on the completeness and accuracy of the data were
followed up with the author based at the institution.

In cases where researchers received identifiable data from their
institution, that researcher worked to anonymize the data for inclu-
sion in this study. These data were then shared privately amongst
the group via a shared Google Drive while these validation checks
were carried out. Once the data were cleaned and validated, they

were moved into a publicly accessible GitHub repository1, where
they will stay, along with the scripts used to process the data. This
allows for clarification, verification, reproduction, and use in future
studies by us or others — see Section 8.

4.2 Class Descriptions
4.2.1 Data Collection. The authors gathered textual descriptions
of the elective class content as provided to students, based on the
electives for which they submitted enrollment data. Class descrip-
tions are often publicly available documents or websites. In some
cases, class descriptions were scraped from these public-facing web-
sites. In other cases, class descriptions were gathered by hand (i.e.,
copied and pasted from a site into a document).

Three of the institutions included in this study provide class
descriptions in a language other than English. Each of these cases,
and how the descriptions were translated, are described below.

UOC. Class descriptions were only available in Spanish and Cata-
lan. Theywere translated using Google Translate and then reviewed
to ensure they were intelligible. The adequacy of the aforemen-
tioned approach was deemed sufficient for coding.

Uppsala University. Class descriptions were available in Swedish
and English. For this study, the English class descriptions were
chosen, as they provided sufficient information for coding purposes.

Kiel University. Some class descriptions were in German. These
were translated into English by two scholars bilingual in German
and English and subsequently reviewed by three additional bilingual
scholars to ensure the translation had been done properly.

4.2.2 Data Processing, Cleaning, and Validation. Any duplicate
entries were removed, and the results were compared with total
enrollment data as a validity check.

4.2.3 Coding. Our coding process aimed to provide quantitative
elective characteristic data based on topic areas from the ACM cur-
riculum guidelines from 2023 [53] and non-computing application
areas taken from the top level of the Common Aggregation Hier-
archy (CAH), developed by the UK Higher Education Standards
Agency (HESA) [42]. The codes used for computing topics and ap-
plication areas are summarized in Table 3 and Table 4 respectively.

When looking for appropriate software for coding, the goal was
to find something that was accessible for all authors, collaborative
in nature, and appropriate for the coding goals. Ultimately, the
decision was made to use DiscoverText [81], which fulfilled the
requirements mentioned above.

As researchers coding qualitatively, we recognize that our back-
grounds and experiences can influence our interpretations of both
our qualitative and quantitative data. In our group, eight authors
identified as women and four authors identified as men. The group
consisted of graduate students, researchers, and faculty to capture
a range of perspectives, with some researchers being members of
groups supporting women’s empowerment in computing (NCWIT
and ACM-W).

There were multiple stages of coding involved with the elective
descriptions. Each of these stages is described in detail below.

1https://github.com/stevenaeola/iticse2023_wg6
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Table 2: Number of elective classes and enrollments rounded to the nearest multiple of three

Institution Academic Year Number of
electives
available

Women
elective
enrolments

Men elective
enrolments

All elective
enrolments

Kiel University 2022 13 81 468 549
Durham University 2020 24 225 1260 1485
Durham University 2021 27 129 924 1053
Durham University 2022 27 354 1002 1356
University of Edinburgh 2020 23 384 1311 1695
University of Edinburgh 2021 37 510 1446 1956
University of Edinburgh 2022 42 501 1614 2115
University of Glasgow 2020 24 375 1476 1851
University of Glasgow 2021 24 519 1800 2319
University of Glasgow 2022 26 414 1620 2034
Kennesaw State University 2020 52 540 2181 2721
Kennesaw State University 2021 53 489 1932 2421
Kennesaw State University 2022 51 465 1845 2310
Universitat Oberta de Catalunya 2020 28 414 3459 3873
Universitat Oberta de Catalunya 2021 28 504 4053 4557
Universitat Oberta de Catalunya 2022 29 609 4752 5361
University of Toronto 2020 11 138 780 918
University of Toronto 2021 11 153 1032 1185
University of Toronto 2022 12 123 819 942
Uppsala University 2020 15 225 636 861
Uppsala University 2021 15 189 636 825
Uppsala University 2022 15 195 702 897
Virginia Tech 2020 22 354 1485 1839
Virginia Tech 2021 20 354 1662 2016
Virginia Tech 2022 20 501 2070 2571

Table 3: Computing curriculum areas defined by ACM 2023
used for coding [53]

Title Code Area

Algorithms and Complexity AL Software
Architecture and Organization AR Systems
Artificial Intelligence AI Applications
Data Management DM Systems
Foundations of Programming Lan-
guages

FPL Software

Graphics and Interactive Techniques GIT Applications
Human-Computer Interaction HCI Applications
Mathematical and Statistical Founda-
tions

MSF Underpinning

Networking and Communication NC Systems
Operating Systems OS Systems
Parallel and Distributed Computing PDC Systems
Security SEC Systems
Society, Ethics and Professionalism SEP Underpinning
Software Development Fundamentals SDF Software
Software Engineering SE Software
Specialized Platform Development SPD Applications
Systems Fundamentals SF Systems

Stage Zero - Trial coding. The goal of the trial coding stagewas for
the authors to familiarize themselves with the codebook, dataset,
and the coding software, DiscoverText. In addition, the authors
wanted to ensure that the ACM topic areas and non-computing
application areas, as can be found in Tables 3 and 4, were usable for
coding. Each of the authors was assigned 50 class descriptions for
the trial. During this process, the authors found that some codes
were difficult to distinguish, while other codes were found to be
too broad. Take, for example, the codes Software Engineering and
Software Development Fundamentals. Both of these topics seem
to apply to certain classes, even though the codes themselves are
distinguishable in the ACM guidelines. Other classes were difficult
to code because the topics covered, such as Information Systems,
were not mentioned in the ACM guidelines. And, some application
areas were found to apply to many classes, such as Engineering and
Technology (CAH10). While some discussions were had between
the authors during this process, the goal was not yet to reach a high
level of agreement between coders. Instead, authors were encour-
aged to familiarize themselves with the codes and class descriptions
and to code as they see fit.

Stage One - Main Coding. After trial coding, all authors engaged
with the main coding stage. This entailed each author coding 142
elective classes using the ACM and CAH codes. Each elective class
was coded by six authors.
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Table 4: Non-CS application areas defined by HESA in the
CAH, as used for coding [42]. CAH code 8 was a duplicate
and was removed. CAH11 covers computing, and so was also
removed.

Title Code

Medicine and dentistry 01
Subjects allied to medicine 02
Biological and sport sciences 03
Psychology 04
Veterinary sciences 05
Agriculture, food and related studies 06
Physical sciences 07
Mathematical sciences 09
Engineering and technology 10
Geographical and environmental studies 12
Architecture, building and planning 13
Humanities and liberal arts 14
Social sciences 15
Law 16
Business and management 17
Communications and media 18
Language and area studies 19
Historical, philosophical and religious studies 20
Creative arts and design 21
Education and teaching 22

After this stage, some elective classes were excluded because it
was decided the class was not within our scope, either because it
wasn’t an undergraduate class or because it wasn’t a computing
elective. Additionally, we coded some classes that did not have
corresponding enrollment data which were subsequently excluded
from the analysis. After these exclusions, we had 272 elective classes
in our analysis.

A Krippendorff alpha value was also calculated for the main
round of coding (𝛼=0.50). This value is not high according to some
measures of significance. However, it is worth noting the context:
there were several degrees of freedom across multiple dimensions of
the process (6 participants making judgments on 272 classes using
37 possible codes), and the ratification process addressed the most
controversial classes. We consider the initial level of agreement
and the steps taken to improve consensus to be reasonable in this
context.

Stage Two - Ratification & Consensus. To address classes that had
low agreement in the codes assigned, the authors collaborated to
ratify codes to resolve disagreements. This stage involved authors
working in groups of two to three to discuss a specific content
code or group of codes, from ACM or CAH. All classes associated
with a certain ACM code were investigated and discussed by the
group, which ultimately assigned each class a ‘1’ if the class did
contain that content or a ‘0’ if it did not. All ACM codes with low
reliability were discussed in turn in this manner; HCI, NC, PDC, and
SF were the only ACM areas that were not reviewed again in this
stage because they had high reliability from the Stage One coding.

Policies regarding coding the ACM areas were codified during this
process (see Appendix B).

Following this, 17 out of 272 of the elective classes were iden-
tified as not having at least one code assigned by the majority of
coders in Stage One, or a group of coders in Stage Two, leading to
high inter-coder disagreement for these classes. Examples include
Quantum Computing, Game Design, and Information Systems. For
such cases, the decision was made to discuss the issues and reach
a consensus among the authors. Game Design, for example, was
coded with Graphics and Interactive Techniques (GIT) and Spe-
cialized Platform development (SPD), with an application area of
Creative Arts and Design (CAH21). Similar coding rules were de-
signed for other classes with high inter-coder disagreement. For
the complete list of coding policies that we developed and used, see
Appendix B.

4.2.4 Interdisciplinary Content. Classes that focused strongly on
interdisciplinary content proved difficult to code. These electives
tended to assume a prior level of competency in a wide range
of disciplines such as mathematics, architecture, and biology. For
example, in classes focusing on quantum computing, linear algebra,
algorithms, circuit models, graph theory, calculus, modeling, and
cloud computing all feature in the content section of one class.
Given the description provided, there is no single code that stands
out clearly as a viable representation of the class content. This
applies to several frequently encountered classes, including game
design, big data, computer vision, bioinformatics, and information
systems.

In some cases, policies were established to code such classes in
specific ways to ensure that the coding was consistent. However,
in many cases it was not clear exactly which codes should be used
consistently and which classes were interdisciplinary, leading to
discussion and a lack of consensus on some of these codes and
classes.

A possible solution to this issue was to create additional codes
to use with the dataset. However, this would also introduce several
confounds. If new codes were introduced, the entire dataset would
have to be re-coded by all the participants. We decided early in the
process to use an existing code book, and attempting to change this
later would have caused substantial threats to the validity of the
coding process.

Nevertheless, it is worth noting that, in our experience, the ACM
curriculum and CAH areas lacked the coverage and nuance to
effectively code every class. Despite this, many classes did fall
neatly across one or two codes, making this a problem that was not
encountered with concerning frequency.

4.3 Data Analysis and Modeling
Our data were analyzed using a hierarchical Bayesian network, in
which content-related factors (i.e., ACM topics and CAH applica-
tion areas) and non-content-related factors are represented as latent
variables. The content-related factors have the same values across
all electives and institutions, and the model identifies the best fit.
The non-content-related factors are independent for each elective
class, but they are identically distributed (i.e., same standard de-
viation). The model identifies the best-fit value for the standard
deviation of the non-content-related factors.
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4.3.1 Bayesian modeling. The Bayesian approach is rooted in the
idea that probabilities reflect the degree of belief or evidence in
support of an outcome. A Bayesian model expresses a prior set of
beliefs, encoded as a probability distribution. When new evidence is
available, the probabilities representing beliefs are updated in light
of the new evidence, but also taking into account previous evidence
or beliefs. This is captured in Bayes’ theorem, which relates the
new (posterior) probability to the old (prior) distribution through
the newly available evidence.

In a Bayesian network, a set of different variables is defined and
are related to one another. For example, the standard deviation of
one variable may itself be another variable in the network. This
means that Bayesian networks can be used to represent situations
where observed data are random variables whose distributions have
parameters that depend on a range of different features. A classic
example is to consider the effect of an educational intervention
by carrying it out in multiple schools. Each school by itself is not
large enough to provide statistically significant results, but the
characteristics of the schools vary so we can’t simply aggregate all
the results. The Bayesian network approach is to have the effect
of the intervention modeled in one variable, parameterized by an
unknown mean and standard deviation, and the effect of each in-
dividual school modeled by another variable. Sometimes we have
an unknown parameter that is used in more than one place in a
model. For example, our model may assume that the same standard
deviation of test results applies in all schools, but with different
means. This is referred to as a ‘pooled’ parameter because it is
shared by more than one of the distributions in the model.

The prior distributions of these unknown parameters are set
up to be appropriately ‘vague’, i.e. a wide distribution of values
is likely. Each observation, i.e. a real data point, provides more
evidence about the likelihood of certain parameter values. Once
all of the observations have been taken into account, through re-
peated applications of Bayes’ theorem, we have new (posterior)
distributions for the parameter values. This is all complicated by
the fact that we usually can’t solve the equations that arise from the
multiple applications of Bayes’ theorem analytically, so we have to
use numerical estimation, often using a Monte-Carlo Markov Chain
simulation. Once this process is complete we will have new esti-
mates for the distribution of our unknown parameters, for which
we can find a mean and standard deviation, in the usual way. We
can also find what is referred to as a ‘credible interval’ for each
parameter, i.e. upper and lower limits between which a certain pro-
portion of the distribution lies. This is the Bayesian analog of the
‘confidence interval’ used in classical frequentist approaches. For a
more complete introduction to Bayesian modeling see Nicenboim
and Vasishth [68].

4.3.2 Scoring and ranking electives. Central to our model is the
evidence we have relating students’ enrollment in certain elective
classes. We assume that the way students choose electives is to rank
the options available to them and then choose from the top of the list
downwards. In our model, we aim to construct a scoring function
for electives, which will vary from student to student, so that the
ranking that students carry out agrees with the scoring function:
higher-scoring electives are picked in preference to lower-scoring
ones. This is an oversimplification because the choice of electives

may not be independent of each other: there may be combinations
of electives that are not allowed or there may be restrictions on
the number of students that can take particular electives. We don’t
know what this scoring function is directly, and we can only see
its effects when choices are made between electives, but can try to
infer how it operates.

Theories such as Expectancy-Value Theory (EVT) [91] and The-
ory of Planned Behavior (TPB) [3] identify a range of factors that
affect people’s decisions. The likelihood of any particular action
being followed depends on the characteristics of the action and how
important the different characteristics are to the person deciding.
The importance of these factors is represented by weights, which
vary from person to person and are socially and culturally influ-
enced. These theories are used to predict decisions about whether or
not a person will do something, but we follow the same idea to con-
struct elective scores and hence ranked lists of electives and hence
sets of chosen electives. Each elective has its own fixed characteris-
tics, but individuals weigh these characteristics in different ways
and so score the electives differently and make different choices.

4.3.3 Content-related and non-content-related scoring. We sepa-
rate the characteristics affecting elective choice into features based
on the content — computing topics and application areas — and
non-content-related features, e.g. instructor. We start with the as-
sumption that the score (𝑆) given by a learner (𝐿) to an elective
class (𝐸) will be distributed as follows:

𝑆𝐿 (𝐸) ∼ N (`𝐶𝐿 (𝐸), 𝜎
𝐶
𝐿 (𝐸)) + N (`𝑁𝐶

𝐿 (𝐸), 𝜎𝑁𝐶
𝐿 (𝐸))

This says that the score is formed from the sum of two normally
distributed variables, corresponding to a content-related score and
a non-content-related score.

`𝐶
𝐿
(𝐸) is the mean of the content-related term, which depends

on the learner and the content of 𝐸, and 𝜎𝐶
𝐿
(𝐸) is the standard

deviation of the the content-related term. There are similar terms,
`𝑁𝐶
𝐿

(𝐸) and 𝜎𝑁𝐶
𝐿

(𝐸), for the non-content (𝑁𝐶) related factors.
The content-related factors are based on the curriculum coding

we carried out. Although different students choose different elec-
tives, we assume there will be some trend in the choices made. In
coding electives, we ended up with a binary association of con-
tent features with electives, so each topic and application area was
labeled as either present or absent within the elective. A further sim-
plifying assumption is that the distribution of the content-related
score for an elective depends only on the presence or absence of
these content features so that the distribution of the content-related
score is the same for electives with the same content at different
institutions. Assuming that the scores are normally distributed and
that students have the same standard deviation in their scoring
of electives, this simplifies down to saying the distribution of the
content-related score depends only on the contribution that indi-
vidual content features make to the mean of the distribution. More
popular topics will have a higher mean than less popular topics.
The contributions from different topics are added together, so if
an elective includes a popular topic and an unpopular topic these
features will tend to cancel each other out. Figure 3 shows how
this works: each of the classes has a binary pattern of features that
describe its content. Each content feature has a parameter in the
model which is included in the score summation for the elective if
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Figure 3: Topic-related features of classes are combined with
parameters for topic weights, that can be positive or negative.

the content feature is present in the elective. High values of param-
eters correspond to topics and application areas that are popular.
Once the scores for the electives are calculated, they are ranked
based on the score, and the top-ranked electives are selected.

We didn’t collect any data on the non-content-related characteris-
tics (e.g. instructor characteristics) so all of the non-content-related
characteristics are combined into a single value per elective within
the model. We assume that the non-content-related score is also
normally distributed.

When ranking based on scores, the result depends only on the
difference between the scores, so if we add a constant to all of
the scores it does not affect the ranking, and hence on elective
choices. Therefore we can fix themean of the distribution of the non-
content-related score without affecting the outcome, as it is added
to all elective scores. As we are characterizing the non-content-
related score as noise, it makes sense to fix its mean to be zero. The
non-content score was then parameterized only by its standard
deviation and appeared essentially as noise since we did not collect
data about the possible non-content features. The content score is
slightly more complex because the mean of the distribution depends
on the content area itself — we are expecting some topics and
applications to score higher than others. We can fix the mean and
standard deviation of the content factor distributions arbitrarily
— the absolute value of the mean is unimportant because we are
only considering orderings. The size of the standard deviation for
the distribution of content weightings is also arbitrary: all that is
important is its size relative to the standard deviation of the non-
content-related features. If the variance of the non-content score is

noticeably larger than that of the content score, the non-content
noise will hide any noticeable structure from the content features.
We arbitrarily fix the mean and standard deviation of the content
weighting distribution to be 1000 and 200 respectively.

We have described a lot of assumptions that we have made in
building the model. If these assumptions are incorrect, then there
will be no discernible pattern in the content-related scores, and
students will choose electives independently of the content-related
score that we calculate. This would show up in the model as small
values for the individual content scores and/or large variance for
the non-content-related score.

4.3.4 Gender effects. With no information to distinguish the stu-
dents, their prior class scoring distribution would be identical. How-
ever, we can include different versions of each parameter for women
and men. For content-related features, this was done by providing
a parameter for the overall popularity score and another param-
eter for the difference between the popularity with women and
men. These we combined to define the mean of the content-related
portion of the score as follows:

`𝐶𝑤𝑜𝑚𝑒𝑛 (𝐸) = `𝐶
𝑜𝑣𝑒𝑟𝑎𝑙𝑙

+ 1
2
`𝐶
𝑑𝑖 𝑓 𝑓

`𝐶𝑚𝑒𝑛 (𝐸) = `𝐶
𝑜𝑣𝑒𝑟𝑎𝑙𝑙

− 1
2
`𝐶
𝑑𝑖 𝑓 𝑓

We separately modeled the non-content variance for women
and men, to see whether content-related features had different
importance according to gender.

4.3.5 Modeling in STAN. We removed from the model any content
features (ACM topics or CAH application areas) that were not
identified as tags by a majority of coders for at least two electives.
If there are no electives tagged, then there is no data for the model
to base its estimation of content feature weights. Because of this,
we excluded Systems Fundamentals (SF) from the ACM topic list
which, as the name suggests, is foundational content more likely
to be taught early on as a core part of a program. The other ACM
topic that was identified as foundational is Software Development
Fundamentals (SDF), but this is included because there are elective
classes in SDF offered mainly to non-CS students.

We determine the weightings of the content features by finding
the optimal value of the parameters to fit the data through Monte
Carlo Markov Chain (MCMC) simulation. The whole model was
implemented in Stan probabilistic programming language [86] and
the full model is listed in Appendix D. Bayes modeling and Stan in
particular have been used for a wide range of applications, including
previous research in computing education [10]. Various Python
libraries were used to prepare the data for the Stan model and to
analyze and visualize the results.

MCMC estimates the posterior by repeated random sampling.
In general, the more samples that are taken, the better the ap-
proximation to the posterior distributions, but the more time the
computation takes. Once a model seems to converge, the intent
is to increase the number of samples until the estimate is ‘good
enough’, which can be measured by a variable referred to as 𝑅. The
usual guidance is that a value of less than 1.1 for 𝑅 is desirable, but
the closer to 1 the better.
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5 RESULTS
5.1 Elective Class Enrollment
Our first research question (Do women and men enroll in elective
classes differently?) focuses not on the content of the classes and
whether that contributes to choices, but on whether or not women
and men make different choices. We address this by looking at the
electives individually and comparing the proportion of all women
who can choose to take the elective, rather than the proportion of
all people in the class who are women, to the proportion of all men
who choose to take the elective. We do this by calculating the odds
ratio, dividing the proportion of women choosing an elective by
the proportion of men taking an elective. If this ratio is one, then
the class is equally popular with women and men; if it is greater
than one then it is more popular with women than with men.

To calculate the odds ratio, we need to know the size of the cohort
from which the students taking the elective are drawn. Figure 4
shows the distribution of the natural log of these odds ratios, where
the log transformation was taken to allow for symmetry about the
x-axis to enhance interpretability and also to relate to effect size.
Here, the zero on the y-axis corresponds with an odds ratio of one,
i.e. equal popularity. Small, medium, and large effect sizes corre-
spond with log odds of 0.3628, 0.9069, and 1.4510 respectively [21],
and these are indicated as horizontal lines in Figure 4. All of the
odds ratio calculations aggregate over all available offerings of the
elective—typically the same class offered across multiple academic
years.

We calculate the confidence interval for each elective and also
plot them on Figure 4 where they indicate statistical significance at
the 95% significance level. When considered independently, 59 of
the 272 electives show statistically significant differences between
enrollment for women and men. Combining these by using the
binomial distribution, the probability of these occurring by chance
is 0, to as many decimal places as we can calculate. For comparison,
if the number of significantly different individual electives was only
22, then we would have 𝑝 < 0.05, and 26 classes or more would
give 𝑝 < 0.005. Because we have 59 modules with significantly
different enrollments, we see that there is a highly significant dif-
ference between the elective choices of women and men, positively
answering RQ1: women and men choose electives differently.

As seen in Figure 4, it is notable that substantially fewer of
the electives are more popular with women (bar above the x-axis)
than with men (bar below the x-axis). We can also see in Tables 5a
and 5b that a substantial number of electives have a notable effect
size: all classes with an odds ratio indicating a moderate effect size
(equivalent to Cohen’s 𝑑 > 0.4) are included in the tables, where
the total rounded class size is 15 or more.

In Table 5, we see the most relatively popular and least relatively
popular elective classes in our data set. These are specific classes at
a specific institution in our data. Some of these align with reports in
the literature. For example, HCI was introduced as an intervention
to encourage women’s participation [62] and there are two HCI-
related classes listed in Table 5a. Other themes within the topics and
application areas reflect prior work, including a focus on society and
community [24, 49, 74], such as with IT, Ethics, and Organization
or Public Engagement in Computer Science. There are also different
electives with the same title (Natural Language Processing) that

are very different in terms of popularity: in one case all of the
women in the cohort chose it, but in the other case no women chose
it. This demonstrates that, while there are significant differences
between the electives the women andmen choose, it looks like these
differences are not solely based on content or non-content factors,
but on a combination of the two. Teasing out the contributions of
these different factors is the subject of our next set of results. The
coding scheme we use does not allow us to go into the specifics
of every sub-topic (e.g. Natural Language Processing is part of the
Artificial Intelligence topic with the ACM classification) but the
broad patterns identified within the ACM topics are covered next.

5.2 Elective Content: Gender-based Differences
Our second research question (How does elective class enrollment
vary by class content? How is this different for women and men?)
brings in our computing topics and non-computing application area
coding analysis. Using the results of coding the class descriptions
(as detailed in Section 4.2.3) in a hierarchical Bayesian network
(described in Section 4.3), we could determine how popular different
elective class topics were with students, both overall and comparing
women and men.

5.2.1 Overall Popularity of Topics. Table 6 shows the number of
classes tagged with each ACM computing topic and CAH non-CS
application area.

Software Development Fundamentals (SDF) proves to be the
most popular of all topics, as can be seen in Table 6 and also in
Figures 5a, 6a and 6b. SDF is the topic of Introduction to Comput-
ing classes offered at Kennesaw State University and Universitat
Oberta de Catalunya. Traditionally, SDF classes have been included
in the mandatory/compulsory curriculum of computing programs.
However, these two universities have taken a different approach
by utilizing this class as a more gradual introduction to program-
ming, intending to develop more pathways for students to pursue
a computing academic career.

The othermost popular ACM topics overall are SEC (Security), SE
(Software Engineering), and HCI. The interpretation of the posterior
mean values has to be done with care, because of the height of the
credible interval. While Figures 5 and 6 order the bars by the mean
of the posterior distribution (marked with a dot), where the line
joining the dots is close to horizontal there is little certainty about
the ordering because the credible intervals have significant overlap.
FPL (Foundations of Programming Languages) and PDC (Parallel
and Distributed Computing) show a markedly unpopular overall
opinion and a reasonably tight credible interval. OS (Operating
Systems) and AR (Architecture) are also unpopular overall, but
with a broader credible interval—largely because they are only
associated with a small number of electives (five each). SDF only
labels two electives, which is why it has such a broad credible
interval, but it is so markedly popular that the bottom end of its
credible range is still higher than the top end of any other topic.

Within the CAH application areas shown in Figure 5c, the credi-
ble intervals are generally much broader than for the ACM topics,
again because of the small number of associated electives. Only
CAH17 (Business and Management) has more than ten electives,
and so has a tighter interval. We have good evidence that CAH03
(Biological and sport sciences), CAH21 (Creative arts and design),
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Figure 4: A graph of the natural log of the odds ratio for the proportion of women to men taking an elective class for every
elective class in our dataset. The log odds ratio in our distribution is proportional to effect size in normally distributed data.
Bars on the left indicate higher odds of men taking a class; bars on the right indicate higher odds of women taking a class.
Horizontal dashed lines indicate effect sizes as calculated from [21]. Vertical error bars show 95% confidence intervals where
they do not include 0, i.e. where the difference is statistically significant.

CAH16 (Law) and CAH17 (Business and management) are overall
more popular than CAH22 (Education), but otherwise, the outcomes
for application areas are inconclusive — the credible intervals over-
lap so there is not strong evidence of difference.

5.2.2 Differences in content popularity between women and men.
Figures 5b and 5d show the popularity difference for women and
men in computing topics and non-computing areas. The magni-
tudes of these differences are generally smaller than the differences
between topics overall, which is to be expected. Also, as we might
expect, the credible intervals are relatively large because they rely
on data about women’s choices. There is less of this data because the
model is working on subsets of the whole dataset, and imbalanced

subsets at that. There is good evidence that FPL (Foundations of Pro-
gramming Languages) is more popular with women than with men.
Yet, this is not to say that FPL is often chosen with women, given
that the overall popularity of FPL is low. However, we can say that
FPL is less unpopular with women than with men. GIT (Graphical
and Interactive Techniques, which would include games electives)
and AL (Algorithms and Complexity) are also more popular with
men than women, according to our model results.

Figure 5d shows the differences between the popularity of differ-
ent application areas for women and men. This graph is character-
ized by very wide credible intervals compared with the magnitude
of the differences. This reflects the small amount of data, due both
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Elective WY MY WA MA ln(OR)

Natural Language Processing 18.0 108.0 18.0 126.0 inf
Big Data System Administration 12.0 6.0 819.0 2880.0 1.963284
Machine Learning for Enterprise Applications 9.0 6.0 846.0 2796.0 1.609438
Public Engagement in Computer Science 6.0 9.0 42.0 237.0 1.440362
IT, Ethics and Organisation 57.0 63.0 129.0 394.0 1.425369
Advanced Interaction Design 60.0 75.0 129.0 394.0 1.307941
Advanced Computer Vision 15.0 75.0 18.0 126.0 1.223775
Human-Computer Interaction Capstone 54.0 81.0 708.0 3378.0 1.212196
Creative Computing Studio 51.0 81.0 708.0 3378.0 1.150461
Foundations of Health Information Technology 84.0 111.0 1257.0 4365.0 1.009582
Learning Analytics 12.0 54.0 18.0 126.0 0.980829
Computational Cognitive Science 27.0 33.0 285.0 873.0 0.979772

(a) Elective classes with the highest proportion of women to men enrolled.

Elective WY MY WA MA ln(OR)

Deep Learning 0.0 33.0 846.0 2796.0 -inf
Automatic Graph Drawing 0.0 15.0 39.0 168.0 -inf
Algorithmic Intelligence in Robotics 0.0 21.0 150.0 813.0 -inf
Natural Language Processing 0.0 24.0 846.0 2796.0 -inf
Parallel Scientific Computing 0.0 33.0 18.0 126.0 -inf
HPC & Parallel Programming 0.0 30.0 1257.0 4365.0 -inf
Neural networks and deep learning 6.0 111.0 39.0 168.0 -2.371227
Theory of Computation 3.0 69.0 708.0 3378.0 -1.589291
Machine Vision 6.0 72.0 1257.0 4365.0 -1.251864
Low-Level Parallel Programming 12.0 102.0 129.0 394.0 -1.225486
Reinforcement Learning 21.0 84.0 54.0 123.0 -1.219240
Computational Complexity 3.0 48.0 42.0 237.0 -1.194403

(b) Elective classes with the lowest proportion of women to men enrolled.

Table 5: Elective classes at individual institutions with large magnitude log odds ratio.𝑊𝑌 and𝑀𝑌 are the number of women
and men taking the class respectively, and𝑊𝐴 and 𝑀𝐴 are the total number of women and number of men in the cohort
respectively. 𝑙𝑛(𝑂𝑅) is the natural log of the computed odds ratio, which acts as an effect size calculation in our model. Only
electives with a rounded class size of at least 15 and at least a medium effect size (𝑑 > 0.5) are included.

to the small number of elective classes involved and also the rela-
tively small number of women within the whole dataset. There is a
slight uptick at the positive end of the graph, with CAH02 (Subjects
allied to medicine), CAH22 (Education and teaching), and CAH15
(Social Sciences) perhaps showing a tendency of popularity with
women. This would be in line with national-level HESA statistics
in the UK, where these three areas are all in the top six subjects
chosen by women at the degree level.

In the model, the contribution of a particular topic to average
elective popularity for a woman is equal to the overall popularity
of the topic plus half the popularity difference between women and
men. We can easily calculate the means of these distributions, but
there is not a simple way to find the credible interval. Thus, Figure 6
plots these mean values without error bars. We should take care
though, because the credible interval will generally be wider than
the originals. There is a discussion of how these findings relate to
the literature in Section 6.

5.2.3 Importance of non-content features. All non-content features
for an elective (e.g. instructor characteristics) are combined into
a single parameter. The non-content features are assumed to be
independent and normally-distributed variables, with a mean of
zero and an unknown, but shared (pooled), standard deviation.
Based on the data provided, the model updates the distribution of
this standard deviation. The larger the non-content-related standard
deviation, the less impact the content-related factors will have on
student choices.

Separate standard deviation (𝜎) parameters are included in the
model and the summary of their posterior distributions is given in
Table 7. What is most noticeable is that the mean of the standard
deviation for non-content (women) is noticeably lower than that
for the non-content (men). Further, the upper bound of the credible
interval for the standard deviation for non-content (women) is less
than the lower bound of the credible interval for non-content (men).
This means that we have credible evidence that women are less in-
fluenced than men by non-content features in their elective choices.
This, in turn, means that offering popular elective content should
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Code Title Elective
count

Overall
popularity

Popularity
difference
in women
and men

Popularity
with
women

Popularity
with men

AL Algorithms and complexity 42 -302.6 -39.6 -322.4 -282.8
AR Architecture and organization 7 -299.5 -35.2 -317.1 -281.9
AI Artificial intelligence 65 -94.3 -38.8 -113.7 -74.9
DM Data management 20 -97.1 53.2 -70.5 -123.8
FPL Foundations of programming languages 23 -555.3 242.7 -434.0 -676.6
GIT Graphics and interactive techniques 19 -119.7 -67.0 -153.2 -86.2
HCI Human-computer interaction 10 -45.7 56.5 -17.4 -74.0
MSF Mathematical and statistical foundations 22 -139.5 98.5 -90.3 -188.8
NC Networking and communication 16 -116.1 -19.9 -126.1 -106.2
OS Operating systems 5 -315.0 53.9 -288.0 -341.9
PDC Parallel and distributed computing 11 -544.1 34.8 -526.7 -561.4
SEC Security 40 -32.9 -22.5 -44.1 -21.6
SEP Society, ethics and professionalism 32 -67.1 65.1 -34.6 -99.7
SDF Software development fundamentals 2 274.6 13.1 281.1 268.1
SE Software engineering 20 -43.9 -4.3 -46.1 -41.7
SPD Specialized platform development 20 -165.2 -33.1 -181.8 -148.7
02 Subjects allied to medicine 4 -65.5 56.9 -37.1 -93.9
03 Biological and sport sciences 5 37.3 -8.5 33.1 41.6
04 Psychology 4 -41.3 21.0 -30.8 -51.8
07 Physical sciences 2 -357.9 -55.3 -385.5 -330.2
15 Social sciences 7 -155.8 57.1 -127.2 -184.3
16 Law 3 16.8 7.1 20.3 13.2
17 Business and management 18 -36.5 -10.6 -41.7 -31.2
21 Creative arts and design 4 34.6 15.6 42.4 26.7
22 Education and teaching 5 -298.9 43.3 -277.2 -320.5
Table 6: Content codes with the number of applicable electives and means of posterior popularity estimates

disproportionately increase the popularity of electives with women.
We also report the values for 𝑅 achieved after 100,000 samples in
our model. Because these are all less than 1.1, we have confidence
that they are a good estimate of the true posterior distribution.

6 DISCUSSION
Whilst it is clear that women have a wide range of interests and that
patterns of preferred classes mirror those of men to a fair extent,
there are also interesting differences. To return to our research
questions, we can conclude the following:

RQ1: Do women and men enroll in elective classes differently?
The data indicates that the enrollment patterns in elective classes
do differ between women and men, with more available classes
that appeal to men than to women. If degree curricula favor sub-
disciplines that do not appeal to women or are not inclusive of
women, then this creates an issue in equity of access to computing
degrees as a whole. This can be interpreted from a Bourdieusian
perspective, as the rules of the field – which control which sub-
disciplines are selected – are being defined by men.

The results presented in Section 5.1 illustrate that there are far
more classes that appeal to men than to women, with classes that
are proportionally more appealing to women being clearly in the
minority. When the available elective classes are unappealing to

women, it may reduce the chance that they pursue the degree
program or may result in greater attrition of women.

RQ2: How does elective class enrollment vary by class content?
How is this different for women and men? Class enrollment varies
substantially between women and men across different topic ar-
eas, with System Development Fundamentals, Security, Software
Engineering, HCI and Society, Ethics, and Professionalism as the
most popular topics. The least popular topics for the population
as a whole were Foundations of Programming Languages, Parallel
and Distributed Computation, Operating Systems, Algorithms and
Complexity, and Architecture.

The finding that HCI (Human-Computer Interaction) is the most
popular non-foundational elective with women is consistent with
research on the Things-Humans dimension, suggesting that women
are more interested in humans than are men and that men are more
interested in things [22, 83]. However, at fourth place in men’s top
five, men were not far behind women in terms of the appeal of
HCI classes. The HCI appeal to women at the undergraduate level
no doubt contributes to research findings that women in research
careers publish heavily in HCI journals [2].

As the number of jobs in AI continues to increase [57], we ex-
pected AI classes to be a popular elective choice. In terms of gender,
we also noticed that while AI appears to be in the top five choices
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(a) Popularity of ACM computing curriculum topics across all
students

(b) Difference of popularity inACMcomputing curriculum topics

(c) Popularity of CAH non-CS application areas across all stu-
dents

(d) Difference of popularity in CAH non-CS application areas

Figure 5: Mean posterior popularity of content features as generated by our model. Credible intervals of 96% are marked.

Variable Mean c3 c97 r_hat

𝜎 content_all 244.788 174.532 321.948 1.01
𝜎 content_women_men_diff 100.235 49.119 155.191 1.02
𝜎 (non-content women) 280.006 262.019 297.610 1.05
𝜎 (non-content men) 331.048 309.642 352.383 1.07

Table 7: Summary of posterior distributions for standard deviation parameters within the model. c3 and c97 refer to the lower
and upper bounds on the credible interval.

for men, it did not appear to be one of the top five choices for
women. This might indicate that women students are hesitant to
take classes in AI despite its growing popularity. A recent interview-
based study suggests that women and men perceive AI to require
mathematical skill [70], which may put off women because of lower
self-efficacy in math [37]. Interestingly, MSF (Mathematical and Sta-
tistical Foundations), which is also mathematics-heavy, was more

popular than AI for women. In the United States, women typically
make up about 40 percent of mathematics and statistics majors, and
high school girls make up more than half of Advanced Placement
statistics and calculus class-takers. Thus, we speculate that a factor
other than mathematics itself, such as the belief that one might
belong in the social setting or possibly a competing goal, such as
the desire to take a class more focused on humans than on things,
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(a) Popularity of ACM computing curriculum topics among
women

(b) Popularity of ACM computing curriculum topics among men

(c) Popularity of CAH non-CS application areas among women (d) Popularity of CAH non-CS application areas among men

Figure 6: Estimates of overall mean popularity of content features as generated by our model

leads to women’s lower election of AI classes. The finding may also
reflect the fact that our data goes back to 2020 and so some of it is
from a period before the recent AI explosion, when students may
be less likely to view AI as exciting and leading to remunerative
careers. A factor in the lower levels of popularity for women may
be that AI careers are now viewed as having high earning poten-
tial, which the literature suggests would motivate men more than
women [45]. The relatively low popularity of AI electives among
women motivates further investigation into why students are not
taking AI classes and how we might support them, in case there
are barriers. Given that AI is now so influential in shaping modern
life, and also increasingly provides exciting, dynamic, and socially
meaningful careers, we must encourage women to study AI. The
social and ethical implications of AI are becoming more and more
relevant as its impact on society increases, so the higher interest
of women in Society, Ethics and Professionalism (SEP) and, as evi-
denced in the literature, in social good and altruistic activities in
general, mean they are an essential part of the future workforce.

Prior literature suggests that women have greater interest than
men in classes that integrate social issues [24, 49, 51]. Thus, we ex-
pected to see women showing high enrollment in classes with a SEP
component and that their enrollment in SEP classes would be much
greater than men’s. As Lee et al. [55] mention, men might choose
classes for career aspirations and take fewer humanities classes.
However, these findings suggest that men do not understand the
degree to which SEP topics might help them with their career goals.
Considering that SEP covers topics about ethics, interacting with
teams, and professionalism that can be important in the workplace,
it is important to investigate why men are less inclined to take these
classes [75]. That the prior literature is not supported in terms of
the appeal of these classes to women is perhaps because SEP is a
broad topic, which may reflect prosocial values, but also may in-
clude a range of other issues. Additionally, very few elective classes
are predominantly SEP; the tag was most often used for classes
that focused primarily on another area but contained a significant
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SEP element. Exploring the other tags of SEP-tagged classes may
provide more insight into this question.

Non-content factors being less influential for women than men
was also an interesting result for us. It provides further support
for studies in which men noted choosing classes for social reasons
more than women [49, 71]. While our results cannot confirm if the
men in our data chose classes for social reasons, they do indicate
that they might have more non-content reasons to choose classes
than women. These results also suggest strong possibilities for
improving women’s uptake: if we can get the content right such
that they will appeal to women, the related uptake is likely to be
high. Non-content factors are harder to control and influence.

Prior work also suggested differences in enrollment in informa-
tion security classes based on gender [70]. While we did notice that
men took these classes more than women, the gap was not as big as
some of the other gaps we observed. This might be because security
did not appear to be a very popular topic overall. However, since
we still did see a slight gap, it is important to continue investigating
if women might face challenges such as stereotypes, as suggested
by [70] to take classes in information security.

7 SCOPE AND LIMITATIONS
The scope of our study concentrated on how undergraduate elective
classes with different contents are chosen by women and men stu-
dents. The bounded study does not consider data regarding students
who did not identify either as a woman or a man (e.g., non-binary)
due to low sample sizes. It was felt that this could increase the risk
of de-anonymization, thereby identifying individual students.

There are some limitations that we faced during our study. The
limitations are grouped here into three categories: construct validity,
internal validity, and external validity.

Where classes are listed as electives, we have assumed that it is
open to all students in the relevant cohort to take that class, and
hence not taking that class is a deliberate choice. However, this
is not necessarily the case. We are aware that a small number of
the classes have quotas and so are not available to all students.
Quotas are particularly relevant for education classes, where only
two classes were tagged, one of which has a low quota; hence the
apparent unpopularity of this topic may be because students are
prevented from taking the class. The results obtained would be
more informative if quotas were factored in. It is also possible that
some classes had quotas that were not reported — particularly given
the recent trend of rising student numbers in computing.

Construct validity as a limitation started with operational def-
initions. The operational definition of electives may vary across
institutions. We mitigated this by classifying each class using the
ACM 2023 curriculum guidelines, ensuring consistency. However,
it’s important to note that the actual content covered in each class
may differ from what was described and coded. The second limita-
tion we faced under construct validity is Unmeasured/Confounding
variables. Our results are based solely on the coding of classes us-
ing class descriptions and learning outcomes. This approach does
not account for other factors in detail, such as social influences
or time constraints, which could influence the participation and
outcomes of students in elective classes. All non-content factors
are grouped together and only the overall size of the impact is

estimated, although it is differentiated between women and men.
We also assume that elective choices are independent of each other
and that topics independently affect topic scores. We did not col-
lect data on the choices of individual students — this would have
made de-anonymization a distinct possibility — so we can’t assess
the independence of choice with our data set. Incomplete Assess-
ment is the third dimension of construct validity in our limitations.
Our study focused on coding classes offered by the participating
institutions, and we did not capture if students were learning com-
puting material outside of these classes (e.g., through MOOCs or
textbooks). The potential influence of alternative learning sources
on students’ computing knowledge and skills was not considered.
The last item that appeared on our construct validity limitation
is Code Applicability, which is to use a standardized approach to
coding. To mitigate bias, we used the 2023 ACM curriculum guide-
lines to develop our initial coding scheme. While these guidelines
provide a useful framework, they may overlook important nuances
and variations in the offerings of different universities.

Selection bias is the first item of internal validity limitations that
we considered. The universities and classes included in our study
were not randomly selected. Researchers who applied to be part
of the working group may have had specific interests or observa-
tions in mind, introducing a potential bias. The classes studied were
based on convenience sampling from these universities. Attrition/-
Mortality is another element of internal validity. Since we were
interested in looking at the choices students made when they en-
rolled in elective classes, we did not include students who dropped
the class. Thus we cannot make assumptions about why students
might drop a class.

External validity is one of the final limitations considered here.
Generalizability was challenging because, while we aimed for diver-
sity in the data, our data set consists of universities from Western
Europe and North America. As a result, the findings may not fully
represent the choices and patterns observed in other contexts and
geographical regions. Time-frame effects also can be considered
as a limitation as we included data from the most recent years
(2020, 2021, 2022). Notably, this included years that were affected by
COVID-19, which could have influenced student choices if classes
were online. In some cases, this made classes available that might
otherwise have been restricted due to time or space restrictions.

8 FUTUREWORK
We would like to explore these results on a regional basis - that is,
are women in a certain region making different choices to women in
other regions? There was insufficient data to carry out that research
given the relatively low number of institutions from which we
have data and all of our institutions are from similar regions (the
US, Canada, and Western Europe). Individual differences between
institutions such as size, intake, and online/face-to-face teaching
are likely to be at least as influential as any overarching regional
differences. However, the worldwide differences in access to CS
degrees for women described in Section 1 suggest that this could be
a fruitful area for research. To carry out such research, we would
need to choose specific regions to target and recruit a sufficient
number of institutions from each region, ideally attempting to
include similar institutions in each region. Readers interested in
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carrying out such research for particular countries or types of
institutions are invited to read through the descriptions of our
institutions in Appendix A and make use of the data from any
institution that meets their criteria.

The data we currently have is only on aggregate numbers taking
elective classes. It would be interesting to look further into how
students choose combinations of classes to explore whether topic
areas tend to be chosen together. As commented earlier, this would
require a much more detailed data set on elective choices made by
individual students and would make de-anonymization a distinct
possibility.

We currently have only quantitative data, which helps highlight
what choices women are making, but does not give us any insight
into why they are making these choices. For this, we would like
to conduct qualitative research within our institutions. This could
take multiple forms, for example:

• Interviews and/or focus groups with students who have
recently chosen elective classes (i.e., registered for classes)
or are about to choose elective classes to understand how
and why they made those choices.

• Think-aloud methods for students going through the regis-
tration process or a simulated registration process, to eluci-
date how they are making their choices. This can give more
accurate information than interviews or focus groups as
people are not always good at explaining or understanding
how they made choices, and post-hoc rationalizations can
unconsciously influence feedback.

• Large-scale surveys asking students to choose reasons for
their elective classes.

• Presenting elective descriptions to high school students to
get their views onwhat looks appealing. This could help craft
degrees that are more relevant and meaningful for women.

We only considered how class titles and descriptions influence
class choice from one point of view: how they map into the ACM
and CAH codes. However, there are many other ways in which
these could be influencing students. One of the key findings of the
literature is that women are strongly influenced by factors such
as social good and humans over things, and we did not see this
reflected as strongly as expected in our results. However, this may
well be because we are using SEP (Society, Ethics, and Profession-
alism) as a proxy for these factors. SEP includes IDEA (Inclusion,
diversity, equity and accessibility) in its definition, which makes
SEP broader than just social issues, such as social well-being and hu-
man connections. A more thorough approach would be to identify
themes that the literature suggests we may expect to be influencing
women and perform thematic analysis on the class titles and de-
scriptions, including allowing for emerging codes. Correlating these
with class choice would be much more informative in understand-
ing the extent to which these factors are affecting women’s choices.
However, performing this for a significant number of classes would
be extremely time consuming.

There are characteristics of classes that merit further investi-
gation, either from a gender perspective or simply an analysis of
the CS curriculum structure in different institutions. We have no
account of the stage of study, the number of credits, or the notional
learning hours associated with the electives. Although this would

require more detailed work, mapping the different levels of study
across institutions and national boundaries could highlight where
there are differences in what content is covered, in howmuch depth,
and at what level.

This research is exclusively concerned with inequality from a
gender point of view, but there are other important axes of in-
equality in computing, such as race and ethnicity, socio-conomic
status, and neurodiversity. If class registration data disaggregated
by such factors is available, a similar analysis could be done for
these characteristics.

We also recognize that we have reduced this conversation around
gender in computing to merely one of women and men. There
are many theoretical perspectives on how gender is defined and
experienced, and although there is no space in this paper to fully
explore them, the reader is referred to [15, 27] as starting points for
further reading. These perspectives can, and should, be integrated
into future work to deepen the understanding of gender dynamics
in CS.

9 CONCLUSION
The problem of gender inequality in computing is complex and
deep. Making meaningful steps towards resolving this gap requires
not only action on multiple fronts but also a deeper understanding
of the causes of the problem and the different ways in which it
could be alleviated. This paper focused on the differences between
women andmen in the enrollment of undergraduate-level computer
science elective classes. Our data and results showed that there is a
difference between women and men in the choice of elective classes,
and this difference appears across a variety of subjects. The research
in this paper explores a specific aspect of this problem that has so
far been largely neglected in the literature: namely, once women
are in computing degrees, what topics in computing are most and
least appealing to them, judged by the elective classes they choose
to take. We used multi-institutional, multi-national data to analyze
this question, with up to three years of data from nine institutions:
six in Western Europe and three in North America. We hypothesize
that a better understanding of the answer to this question can allow
computing departments to develop degree programs (both core and
elective content) that are more popular with women, hence taking
steps towards improved equality. The limitations of this study, as
we stated above, will light future work by helping to develop a
body of research on what topics within computing appeal most
to women, with the ultimate goal of improving gender equality in
computing.
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Appendices

A INSTITUTIONAL CONTEXTS
The degree programs vary by institution and country. Here, we describe the degree programs at each of the institutions we gathered data
from to help elucidate the nuances.

A.1 Kiel University
Kiel University which is also known as Christian-Albrechts-Universität zu Kiel (CAU) is the oldest and largest university of Schleswig-Holstein
founded in 1665. CAU has 27,000 students and around 3,700 members of staff. CAU offers degrees from 8 different faculties which are
Faculty of; Theology, Law, Medicine, Art and Humanities, Agricultural and Nutritional Sciences, Mathematics and Natural Sciences, Business,
Economics and Social Sciences, and Engineering. Besides faculties, there are also joint facilities of the faculties. The Department of Computer
Science is formed within the Faculty of Engineering.

The Computer Science Department at Kiel University offers 3 bachelor’s degree programs which are BSc Computer Science students,
BSc Business Information Technology, and BSc/BA Two Subject Study Program: Computer Science + A second Discipline. Both Computer
Science and Business Information Technologies offer master’s and Ph.D. degree programs.

A.2 Durham University
Durham University is a top university in the United Kingdom. Out of 114 UK universities who offer a CS degree, Durham University ranks
within the top 10 for overall score and top 15 for overall student entry standards [39]. Globally, for Computer Science, Durham University is
within the 301-350 of 650 University ranking for overall score [85].

The data from Durham University includes single and joint honours degrees. A single honours degree has the majority of the student’s
credits directed towards a single subject, e.g. Computer Science. A joint honours degree has a significant portion of the degree credits
directed towards a second program e.g. Computer Science with Mathematics. The Curricula 2020 ACM report [17] describes this concept
with their discussion of “X + Computing” or “Computing + X”. Computing + X programs are described as a Computer Science program with
an extension to a Non-Computer Science field. The aim is to allow Computer Science students to explore interests external to computer
science. X + Computing programs enable students not registered on CS degrees to study how Computer Science impacts their field. For
example, a Biology student may wish to explore Bio-informatics to further enhance their discipline-based skills.

Electives at Durham University are limited to students in level 3 (L3) and level 4 (L4) of their degree. Level 3 is equivalent to Senior year
(4th year) at colleges in the United States and leads to a BSc qualification, whilst students that opt to continue to level 4 convert their BSc to
a masters-level MEng. The CS program at this institution offers minimal choice for students at level 1 (equivalent to Sophomore/year 2 in
the US) and level 2 (equivalent to Junior/year 3). In level one, students have 20 of 120 credits available to choose an elective to study in a
different department; however, in level two all classes are compulsory (for single honours students). In L3 and L4 students only have one
compulsory final year project class. If a student is completing a 4-year degree, they have a project preparation class in their 3rd year in place
of a final year project.

A.3 Kennesaw State University
Kennesaw State University is a highly regarded institution located in the United States. It holds the distinguished Carnegie Classification
of R2, which designates it as a doctoral university with "high research activity." This classification places KSU among the top 6 percent of
colleges and universities nationwide classified as either R1 or R2 institutions.

Within Kennesaw State University, the College of Computing and Software Engineering (CCSE) is a home for nearly 5,000 students,
including approximately 3,800 undergraduate students). CCSE has an experienced team of faculty and staff and offers innovative programs
in Computer Science, Software Engineering, Computer Game Design and Development, Information Technology, and Data Science and
Analytics.

CCSE provides a comprehensive range of academic options, including minors, certificates, bachelor’s, master’s, and Ph.D. programs. Many
of these programs are highly ranked by US News and World Report and Princeton Review. The college recognizes that computing is most
impactful when it intersects with other fields and encourages collaboration between CCSE students and faculty members and those from
other disciplines. This interdisciplinary approach enables the application of computing in innovative ways to solve today’s most challenging
problems.

All undergraduate programs in CCSE are 120 credit hours and let students choose 4-7 electives (12-21 credit hours) in their junior and
senior years, equivalent to levels 2 and 3 in the English education system, or 3 and 4 in the Scottish system. These elective classes allow
students to tailor their education and pursue specific interests within their program. Additionally, the college offers an Introduction to
Computing class (CS0) designed to assist students who are undecided about their major.

Given that all undergraduate degrees in CCSE are accredited by the Computing Accreditation Commission of ABET or by the Engineering
Accreditation Commission of ABET, every student is required to complete a capstone project. This capstone project serves as a comprehensive
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and integrative experience for students in their final year of study, providing a platform for showcasing their mastery of the subject matter
and the application of their skills and knowledge acquired throughout their academic journey.

A.4 University of Edinburgh
The University of Edinburgh, founded in 1583, is one of Scotland’s four ancient universities and one of the world’s top universities, ranked
15th overall in the QS World University Ranking [85], and 23rd in the world for Computer Science.

The School of Informatics was formed in 1998 from the merger of the Department of Artificial Intelligence, the Department of Computer
Science and the Department of Cognitive Science, and is a major international research institution. It is one of the oldest Informatics
institutions in the world, with the formation of both the first AI research group and the Computer Unit (foundation of Computer Science) in
1963 - the 60th anniversaries of AI and CS research are being celebrated this year - and the foundation of the School of Epistemics (later
Cognitive Science) in 1969.

The student intake is highly selective and highly international, with around 1200 undergraduate students in the school and a large number
of both taught and research postgraduate students. The majority of undergraduates take four-year degrees resulting in a BSc or BEng
qualification, with a minority continuing for a fifth year to achieve a masters-level MInf. BScs are awarded in Computer Science, Artificial
Intelligence, Artificial Intelligence and Computer Science, and Cognitive Science, and BEngs are awarded in Computer Science, and Software
Engineering. Joint UG degrees are offered in Computer Science and Maths, Physics or Management Science. Five-year MInf degrees are
offered in Informatics.

The four years of an undergraduate degree in a Scottish university - unlike 3-year English degrees - correspond directly with the four
years of a US degree. At the University of Edinburgh, students have a choice of electives outwith the school in first and second year, with
compulsory classes in Informatics and Mathematics. In third, fourth and fifth year (for those progressing to MInf degrees), all classes are
elective, with the exception of a compulsory dissertation. In practice, there is significant overlap in class choice between the different degrees
and students have flexibility to change their degree title if they want to make a choice of electives that fits another degree better. Cognitive
Science students, as well as a wide choice of electives in Informatics, have compulsory and elective classes in other schools. Hence we
consider all degrees as a single cohort for the purpose of this research, as any student is able to take almost any of the available electives.
Third-year students take 70 credits of compulsory classes and choose 50 credits from a range of electives. Fourth- and fifth-year students
must do a 40-credit dissertation and then choose 80 credits from any of the 3rd-year electives (20 credits maximum) or a larger range of
electives at a higher level.

A.5 University of Glasgow
The University of Glasgow is a Russell Group university in the UK and one of the four ancient universities in Scotland. The University of
Glasgow ranks within the top 20 universities for Computing Science in the UK and within the top 150 universities worldwide. The university
enrolls roughly 26,000 students across the institution.

The University of Glasgow offers four-year BSc programmes in Computing Science and Software Engineering. The taught content of the
Software Engineering programme is very similar to the Computing Science programme with one additional compulsory class in the fourth
year of study and a compulsory summer internship between the third and fourth year, so the programmes are comparable for the purpose of
this work. Students do not have any elective choices in the first and second year of study, so only data from the third and fourth year are
considered here. In their third and fourth years of study, students must make up 120 credits worth of computing classes. In the third year of
study, students have 50 credits of compulsory classes and a 30 credit compulsory team project, so must take four 10 credit elective classes. In
the fourth year of study, students have a 40 credit individual project, so are able to select up to eight 10-credit elective classes. The elective
classes are selected from the same pool across both years, which means that some students may take particular electives in either their third
or fourth year of study.

A.6 Universitat Oberta de Catalunya
The Universitat Oberta de Catalunya (UOC, Open University of Catalonia in English) is a pioneering institution in online education based in
Catalonia, Spain. Established in 1994, UOC offers a wide range of undergraduate and postgraduate programmes entirely delivered through
their innovative online learning platform. UOC students span a wide range of ages, from recent high school graduates to mid-career
professionals and older adults [76, p. 22]. Many UOC students have family responsibilities and work commitments, making the flexibility of
online education a crucial aspect of their academic journey.

Students taking the four-year Computer Science Engineering programme have to enroll into 72 ECTS from elective classes (all classes are
6 ECTS but one which is 12 ECTS, so they need to take 11 or 12 elective classes). There are 29 different elective classes that can be taken by
students at any moment. Elective classes are organized in learning itineraries, and it is imperative for students to undertake a minimum
enrollment of all elective classes offered within their selected elective itinerary.

A.7 University of Toronto
The University of Toronto is a large research-intensive university located in Toronto, Ontario, Canada. It is recognized as one of the top
universities globally. It is Canada’s oldest and most esteemed university, ranking first in Canada and 21st worldwide with a QS ranking of 21
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as of 2023. The university has a QS ranking of 12 for computer science. Across its three campuses, approximately 97,066 students attend the
university in 2023.

The university offers a four-year HBSc program in computer science. Students in the campus where our data comes from are admitted into
a general entry program as they enter the university. After taking some required classes in the first year, students can declare to specialize in
computing or major in it, with the former being more restrictive on the number of classes taken by students. For simplicity, we only include
electives that both majors and specialist students can optionally take. Students are not offered elective choices in their first and second
years of the program, however, in the third and fourth years, they can choose a number of elective classes (from either third or fourth year).
Specialist students often need to take more electives (2 in 2023) than students majoring in computer science (2.5 credits in 2023). Students
can also take some independent classes (research opportunities or projects), but they are not required to do so. These independent classes are
often taken by 1-2 students, so we include these from our dataset as not everyone who wants to take them is able to take them (lack of
supervision opportunities).

A.8 Uppsala University
Uppsala University is the oldest university in Sweden and the Nordic countries still in operation, founded in 1477. Uppsala University belongs
to the Coimbra Group of European universities and to the Guild of European Research-Intensive Universities. It is a prestigious university,
with a global QS ranking of 124 in 2022, and places within the 151-200 of top universities for Computer Science and Information Systems [85].

The data from Uppsala University is from the three-years Bachelors’ Programme in Computer Science. Students usually take elective
classes in their third year of studies, for a minimum of 25 credits. These elective classes, while offered by the Information Technology
department, are open for students from other departments and programmes as well.

Uppsala University has a unique accreditation system in the sense that elective classes can be 5, 7.5, or 10 credits. This means that while
some students might take three courses worth 7.5 credits, others will do a combination of 5 and 10 credit courses. In addition, while computer
science students are expected to take 25 credits in elective classes, they can also take more, especially if they are prolonging their education.
This is not uncommon among students from Sweden and the European Union, as education in Sweden for them is free.

To make the data workable for the statistical model, some parameters had to be estimated. For example, the minimum amount of elective
classes had been set to five, and the maximum to seven, a reasonable estimation given that elective classes are usually 5 credits. This number
was then multiplied by the amount of women and men students to calculate the total number of elective classes taken by these students.
We then had to estimate cohort size based on this number and total number of enrolment for the elective classes, in order to also include
non-computer science students in the cohort.

A.9 Virginia Tech
Virginia Tech is a large research university located in Eastern United States with more than 30,000 undergraduate students and a rapidly
growing CS department. CS is one of 13 departments within the College of Engineering. The CS department offers undergraduate Bachelor
of Science degree in three majors: Computer Science, Secure Computing, or Data-Centric Computing to more than 300 students per year
at the time of this publication. The Bachelor of Science degree in CS is accredited by the Computing Accreditation Commission of ABET.
Students are admitted as general engineering majors during their first year and can declare a CS major at the end of the first year if they
meet the CS department requirements. Most of the CS electives are available to third and fourth year students. Each student must complete a
Capstone class in their final year, and there are several options for that.

B CODING POLICIES
B.1 AI

Don’t include if the statistics are more basic or theoretical and not applied.
Always include if the elective mentions machine learning, classifiers, applying advanced statistical modeling, natural language

processing, computer vision, deep learning

B.2 AL
Don’t include if the focus is purely on programmatic development or mathematics without a strong focus on the algorithmic discussions
Only include if there is a reference to the discussion of the importance of algorithms or the manipulation of algorithms.
Always include if there is a core component of algorithms, including the application, manipulation, and investigation of algorithms.

B.3 AR
Don’t include if the contents of the syllabus are not specifically focused on architectural and organizational elements at a low level.
Only include if architectural models are presented in the syllabus and if the organizational aspect surrounds architectural elements

of the system. If it includes a reference to specific architectural components required to implement the Parallel and Distributed
Computing (PDC) architecture it should be included.

Always include if discussion of RISC, CISC, Quantum architectures, or similar are provided.
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B.4 DM
Don’t include if the class description includes big data, or information access or retrieval. These topics are covered by other codes.
Only include if there class description has a reference to storing and querying of data, and other core database concepts.

B.5 FPL
Don’t include if the class description includes theoretical Parallel & Distributed Computing content, as this is covered by the PDC

topic
Only include if reference to PDC is explicitly about parallel programming (i.e., not theoretical concepts of parallelism)
Always include if the class description references specific language paradigms covered by the FPL ACM Curriculum Topic

B.6 GIT
Don’t include if graphics or interactive techniques (GIT) are not explicitly called out within the syllabus. Neither should a syllabus

focusing on mathematical graphs.
Only include if The HCI element of the module has a strong relation to GIT.
Always include if Computer vision, graphic interaction, and areas relating to graphic hardware are integral to the syllabus

B.7 MSF
Don’t include if it involves maths or stats but these are not core, or if they are only used as a tool.
Only include if the class title or description explicitly talks about mathematical, statistical or logical concepts as a core learning

outcome.
Always include if class focuses on developing mathematical skills, including logic.

B.8 OS
Don’t include if the class is focused on OS administration or if the embedded systems are the primary focus of a class, which typically

were more appropriately described as SPD.
Only include if the class title or description explicitly references operating systems, in which students are required to learn how

operating systems work, and how they can be programmed and designed.

B.9 SDF
Don’t include if the elective has no programming or if the elective moves beyond basic computing principles
Only include if the elective is "focusing on concepts and skills that should be mastered early in a computer science program, typically

in the first year". Otherwise, choose SE if it’s about software design or processes
Always include if the elective discusses algorithmic or computational thinking or fundamental concepts or skills.

B.10 SE
Don’t include if it doesn’t cover software development or the software development cycle as a core learning outcome.
Only include if it focuses on the process of software development.
Always include if it focuses on the teamwork, planning and communication involved in the software development cycle.

B.11 SEC
Don’t include if security is only mentioned in passing in reference to other content (e.g., a networking class which mentions secure

communications methods)
Only include if security is a primary, explicit focus of the class
Always include if the class discusses forensics and cryptography in detail

B.12 SEP
Don’t include if the teamwork involved is software-engineering focused.
Only include if social, legal and ethical implications are a part of the core outcomes rather than a small element of the class.
Always include if the class description explicitly social, legal and ethical implications as a core focus, or if the class involves teamwork

which is not about software development.

B.13 SPD
Don’t include if the focus is purely on programmatic development without reference to the underlying architecture.
Only include if there is a reference to the discussion of the architecture or the impact of interaction with the architecture of the system.
Always include if there is a strong focus on the systems and hardware for specialized platforms.
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B.14 Common Aggregation Hierarchy (CAH)
Twenty-four general codes and 231 specific codes make up the Common Aggregation Hierarchy [42]. These range from creative art and
design to physical sciences. We used these categories, less the categories for computer science.

In general, we used the following policy in applying CAH codes. When classes were about computation applied to or integrated into
specific topics, we wanted to capture the nature of the topic by coding for it. For example, a class with the title “quantum computing” and
described as centrally concerned with physics was coded with the CAH code for physics. Similarly, a class titled “natural computing” and
described as centrally concerned with biological algorithms was coded with the CAH code for “biology.” Likewise, three classes focused
on health informatics, but which were not about biology or medicine, were coded with the CAH code for “subjects allied to medicine.” In
contrast, many classes require knowledge of mathematics or science in order to be successful. However, just because a student must use
some mathematics or science (or another competency), the class is not necessarily about that topic. In these cases, no CAH code was applied
to the class.

C AUTHORS’ OPINION SURVEY RESULT
We surveyed the authors prior to the model results being revealed. The two Working Group leaders abstained from voting. Our predictions
of topic and non-CS application areas, compared with the actual results of the model, for overall enrollment are presented in Figure 7. The
comparison of the predicted with the actual model in terms of the differential enrollment by women and men are presented in Figure 8.
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Figure 7: The authors’ opinion regarding the popularity of computing curriculum topics and non-CS application areas versus
model outcomes
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Figure 8: The authors’ opinion regarding the difference between women and men selection of computing curriculum topics and
non-CS application areas versus model outcomes
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D STAN PROBABLISTIC SOURCE CODE MODEL LISTING

da t a {
i n t < lower =1> COHORTS ;
a r r ay [COHORTS] in t < lower =0> cohort_women ;
a r r ay [COHORTS] in t < lower =0> cohort_men ;
a r r ay [COHORTS] r e a l < lower =0> mu_modules_taken ;

/ / number o f TOPICS i n c l u d i n g ACM cur r i cu l um a r e a s and CAH a p p l i c a t i o n a r e a s
i n t < lower =1> TOPICS ;
/ / Maximum number o f modules a v a i l a b l e per coho r t
i n t < lower =1> MAXMODULES ;

/ / a c t u a l number o f e l e c t i v e modules per coho r t
a r r ay [COHORTS] in t < lower =0> MODULES ;
/ / mapping o f t o p i c s to modules . Where t h e r e a r e mu l t i p l e code r s i t cou ld be e i t h e r
/ / 0 / 1 (OR) or 0 / 1 / 2 e t c ( PLUS )
matr ix < lower =0 >[MAXMODULES, TOPICS ] modu l e_ top i c s [COHORTS ] ;
a r r ay [COHORTS ,MAXMODULES] r e a l < lower =0> module_min_s tudents ;
a r r ay [COHORTS ,MAXMODULES] r e a l < lower =0> module_max_students ;
a r r ay [COHORTS ,MAXMODULES] in t < lower =0> module_women ;
a r r ay [COHORTS ,MAXMODULES] in t < lower =0> module_men ;

}

t r an s f o rmed da t a {
/ / c o n s t a n t s

i n t idea l_mu = 1 0 0 0 ;
i n t i d e a l _ s i gma = 2 0 0 ;
r e a l e p s i l on_ s i gma = 0 . 0 0 1 ;

/ / d e r i v e d v a l u e s
a r r ay [COHORTS] r e a l < lower =0> expected_modules_women ;
a r r ay [COHORTS] r e a l < lower =0> expected_modules_men ;
f o r ( c oho r t in 1 :COHORTS ) {

expected_modules_women [ coho r t ] = mu_modules_taken [ coho r t ] ∗ cohort_women [ coho r t ] ;
expected_modules_men [ coho r t ] = mu_modules_taken [ coho r t ] ∗ cohort_men [ coho r t ] ;

}
}

p a r ame te r s {
r e a l < lower= eps i l on_ s i gma > s i gm a _ t o p i c _ a l l ;
r e a l < lower= eps i l on_ s i gma > s igma_topic_women_men_di f f ;
r e a l < lower= eps i l on_ s i gma > sigma_nontopic_women ;
r e a l < lower= eps i l on_ s i gma > sigma_nontopic_men ;
v e c t o r [ TOPICS ] p o p u l a r i t y _ t o p i c _ a l l ;
/ ∗ popu l a r i t y_ top i c_women_men_d i f f w i l l be added ( . 5 x ) to women , s u b t r a c t e d ( 0 . 5 x ) from men ∗ /
v e c t o r [ TOPICS ] popu l a r i t y_ top i c_women_men_d i f f ;

a r r ay [COHORTS] v e c t o r [MAXMODULES] popular i ty_module_non_top ic_women ;
a r r ay [COHORTS] v e c t o r [MAXMODULES] popu la r i ty_modu le_non_ top i c_men ;

}
t r an s f o rmed pa rame te r s {

}

model {

s i gm a _ t o p i c _ a l l ~ e x p on en t i a l ( 1 . 0 / i d e a l _ s i gma ) ;
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s igma_topic_women_men_di f f ~ e x p on en t i a l ( 1 . 0 / i d e a l _ s i gma ) ;
s igma_nontopic_men ~ e x pon en t i a l ( 1 . 0 / i d e a l _ s i gma ) ;
sigma_nontopic_women ~ e xpon en t i a l ( 1 . 0 / i d e a l _ s i gma ) ;

/ / v e c t o r i s e d over TOPICS
p o p u l a r i t y _ t o p i c _ a l l ~ normal ( 0 , s i gm a _ t o p i c _ a l l ) ;
popu l a r i t y_ top i c_women_men_d i f f ~ normal ( 0 , s igma_topic_women_men_di f f ) ;

/ / v e c t o r i s e d over COHORTS

a r r ay [COHORTS] v e c t o r [MAXMODULES] p o p u l a r i t y _modu l e _ t o p i c _ a l l ;
a r r ay [COHORTS] v e c t o r [MAXMODULES] popu la r i ty_modu le_ top i c_women_men_d i f f ;
a r r ay [COHORTS] v e c t o r [MAXMODULES] popu lar i ty_module_ top ic_women ;
a r r ay [COHORTS] v e c t o r [MAXMODULES] popu l a r i t y_modu l e_ top i c_men ;

a r r ay [COHORTS] v e c t o r [MAXMODULES] popular i ty_module_women ;
a r r ay [COHORTS] v e c t o r [MAXMODULES] popular i ty_module_men ;

f o r ( c oho r t in 1 :COHORTS ) {
p o p u l a r i t y _modu l e _ t o p i c _ a l l [ c oho r t ] = modu l e_ top i c s [ coho r t ] ∗ p o p u l a r i t y _ t o p i c _ a l l ;
popu la r i ty_modu le_ top i c_women_men_d i f f [ c oho r t ] =

modu l e_ top i c s [ coho r t ] ∗ popu l a r i t y_ top i c_women_men_d i f f ;
popu lar i ty_module_ top ic_women [ coho r t ] = p o p u l a r i t y _modu l e _ t o p i c _ a l l [ c oho r t ] +

0 . 5 ∗ popu la r i ty_modu le_ top i c_women_men_d i f f [ c oho r t ] ;
popu l a r i t y_modu l e_ top i c_men [ coho r t ] = p o p u l a r i t y _modu l e _ t o p i c _ a l l [ c oho r t ] −

0 . 5 ∗ popu la r i ty_modu le_ top i c_women_men_d i f f [ c oho r t ] ;
popular i ty_module_non_top ic_women [ coho r t ] ~ normal ( 0 , s igma_nontopic_women ) ;
popu la r i ty_modu le_non_ top i c_men [ coho r t ] ~ normal ( 0 , s igma_nontopic_men ) ;
popular i ty_module_women [ coho r t ] = idea l_mu + popu lar i ty_module_ top ic_women [ coho r t ] +

popular i ty_module_non_top ic_women [ coho r t ] ;
popular i ty_module_men [ coho r t ] = idea l_mu + popu l a r i t y_modu l e_ top i c_men [ coho r t ] +

popu la r i ty_modu le_non_ top i c_men [ coho r t ] ;
i n t n_modules = MODULES[ coho r t ] ;

/ / p r i n t ( " c oho r t " , cohor t , " MAXMODULES " , MAXMODULES, " n_modules " , n_modules ) ;
v e c t o r [ n_modules ] r a t e _women_ r e l a t i v e ;
v e c t o r [ n_modules ] r a t e _men _ r e l a t i v e ;
v e c t o r [ n_modules ] rate_women ;
v e c t o r [ n_modules ] rate_men ;
f o r (m in 1 : n_modules ) {

r a t e _women_ r e l a t i v e [m] = pow ( 1 0 , ( popular i ty_module_women [ coho r t ] [m] ) ∗ ( − 1 . 0 / 4 0 0 ) ) ;
r a t e _men _ r e l a t i v e [m] = pow ( 1 0 , ( popular i ty_module_men [ coho r t ] [m] ) ∗ ( − 1 . 0 / 4 0 0 ) ) ;

}
/ / do i t aga in , now the r a t e _ r e l a t i v e v e c t o r s a r e comple te so we can f i n d the norm
f o r (m in 1 : n_modules ) {

/ / TODO change r a t e f o r upper cap in module_max_students
rate_women [m] = ( 1 . 0 / norm1 ( r a t e _women_ r e l a t i v e ) ) ∗

r a t e _women_ r e l a t i v e [m] ∗ expected_modules_women [ coho r t ] ;
rate_men [m] = ( 1 . 0 / norm1 ( r a t e _men _ r e l a t i v e ) ) ∗

r a t e _men _ r e l a t i v e [m] ∗ expected_modules_men [ coho r t ] ;
/ / TODO app ly bounds f o r upper and lower cap in module_min_s tudents and module_max_students
module_women [ cohor t ,m] ~ po i s s on ( 1 . 0 / rate_women [m] ) ;
module_men [ cohor t ,m] ~ po i s s on ( 1 . 0 / rate_men [m] ) ;

}
}

}
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