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Notations

Y The continuous response (dependent) variable
x The continuous true predictor (independent) variable
μ Mean of x
σxx Variance of x
β1c Slope in linear regression of Y on x
ρx,Y Correlation between x and Y
u Measurement error of predictor variable
σuu Variance of u

CV Coefficient of variation,CV =
�
σuu
μ

ρ Reliability ratio ρ = σxx
σxx+σuu

X The observed predictor variable, X = x+u
β1 Slope in linear regression of Y on X , β1 = ρβ1c

n Number of participants in main study
k Number of participants in reliability study
p Fraction of participants selected to reliability study, p = k/n
X1 Measurement of X in main study
X2 Measurement of X in reliability study
b Estimated slope in linear regression of X2 on X1

x ∼N (μ,σxx) x is normally distributed with mean μ and variance σxx



Introduction

In recent years there has been a growing interest in the implication of ran-
dom measurement variability, i.e. measurement errors, of biological vari-
ables (see e.g. [1], [2], [3], [4] and [5]). This thesis deals with the presence
of errors in measurement of continuous variables in biology with special
reference to variables related to insulin secretion and insulin action in hu-
mans. Repeated measurements on the same individual will vary around the
usual value because of measurement error. Measurement error is defined as
the deviation between an observed value and a usual value. The usual value
can be conceived as an individual’s long-term average value. With this defi-
nition the measurement error can be divided into technical error due to an
imprecise measurement method (e.g. a food frequency questionnaire) and
the individuals’s true biological variation over time (e.g. seasonal variation
of intake of vitamins). The size of measurement error can be assessed with
a validation study where observed values using an imprecise method are
compared with observations from a gold-standard method without error
or with a reliability study where observations are replicated with the same
method.

The implications of measurement errors are twofold:
• (i) in, e.g. a clinical trial the required number of patients increase with

the measurement error magnitude,
• (ii) measurement errors yield biased estimation of coefficients when re-

gression models or correlations are estimated [1]
The second of these problems is a theme of these studies.

As a motivating example the relation between insulin sensitivity, mea-
sured with the expensive and labour-intensive euglycaemic insulin clamp
technique [6], and fasting insulin is studied. The latter is measured with
noticeable error [7] while insulin sensitivity is measured with low error ([8]
and [9]).

A single fasting insulin measure is subject to random fluctuations, due
partly to the measurement technique and partly to any real but temporary
deviations from the usual fasting insulin level. The distribution of single
measures is therefore wider than the distribution of true usual values. The
term for the resulting underestimation of a predictor variable’s impact on a
response variable is regression dilution bias [10].

If insulin sensitivity and fasting insulin are related to each other in a re-
gression model where fasting insulin is measured once for each study par-
ticipant the regression dilution bias will yield an underestimation of the risk
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for insulin resistance for a high long-term average of fasting insulin (see
Figure 1). This underestimation would be smaller with two or more mea-
surements of fasting insulin for all participants and by use of the average of
these values in the regression model. A more cost-efficient approach is to
select a fraction of the participants for a replicate measurement of fasting
insulin and use the data from these participants to correct the regression
coefficient for the measurement error in fasting insulin.

Seasonality is an important source of biological variation. In this thesis
we study systematic seasonal variations of insulin sensitivity.

Reliability studies
Reliability of a measurement method of a continuous variable is the simi-
larity of repeated measurements administered on the same individual. The
amount of measurement error is the variation seen over such repeated ob-
servations. When one sample from an individual is measured repeatedly or
an individual is measured repeatedly with very short time intervals the vari-
ation is denoted technical measurement error. If an individual is measured
repeatedly over two or more occasions (e.g. with intervals of one week or
one month) the resulting variation is the total measurement error which is
the sum of technical measurement error and biological variation.

Depending upon the expected relative size of the technical measurement
error and biological variation and the scope of the study a reliability study
can be designed in different ways. The present studies are concerned with
the total measurement error and are concentrated on the simple reliability
design where a fraction of the participants in the main study are selected
for a replicate measurement, e.g. a number of weeks after the first mea-
surement. If the technical measurement error is expected to dominate the
total measurement error the design is modified so that replicate measure-
ments are analyzed of drawn samples from a fraction of the participants in
the main study.

The first measurement of the variable with measurement error for all n
participants in the main study is denoted X1 and the second measurement
of the k participants selected for the reliability study is denoted X2.

If it is not feasible to re-measure all participants in the main study, the
style of selection of participants to a reliability study is important. The rec-
ommendation is usually to select a random sub-sample or at least a rep-
resentative sample from the main study. In this thesis another and more
efficient style of selection is introduced.

Response models and measurement error models
These studies examine correction for regression dilution bias in linear re-
gression models. The simplest regression model is the structural response
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Figure 1: Log(insulin sensitivity vs. log(fasting insulin). Dashed black line is ordi-
nary regression line and solid red line is regression line corrected for measurement
error in measurement of fasting insulin.
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model relating the response variable Y to one random predictor variable x
in a linear fashion:

Y =β0c +β1c x+δ, (1)

where δ∼N (0,σδδ), x ∼N (μ,σxx) and δ and x are independent.
The model postulates that the x value is selected randomly from a normal

distribution with mean μ and variance σxx and that Y conditional on x is
selected randomly from a normal distribution with mean β0c +β1c x and
variance σδδ. The expected effect on Y of a one unit increase of x is thus
β1c units. An example of this model is when Y is insulin sensitivity and x is
fasting insulin. The interest is then in the change β1c of insulin sensitivity
for every pmol/l increase of fasting insulin concentration.

Model (1) is estimated without bias when the x values are measured with-
out errors. When this is not the case a model for the measurement error
structure must be assumed. The most common model is the classical mea-
surement error model (see e.g. [4], p. 3):

X = x+u, (2)

where u ∼N (0,σuu) and independent of δ and x.
Here, x is the unobservable true value of e.g. fasting insulin and u is a

normally distributed measurement error and thus X is the predictor vari-
able measured with error. The classical model assumes non-differential er-
rors, i.e. the distribution of X conditional on the distribution of x gives no
information on the distribution of Y .

Measures of reliability of a continuous variable
We assume that the design is such that all participants in the reliability
study have two measurements of the variable with measurement error. The
level of reliability is usually summarized in one measure. We will briefly dis-
cuss
• (i) the coefficient of variation (CV)
• (ii) the intra-class correlation coefficient (ICC)
• (iii) the slope b in the linear regression of the second measurement on

the first
CV has dominated the presentation of such data. The CV is defined

as the standard deviation of the differences of the first and second
measurements divided by the mean of the mean values of the first and
second measurements. The idea behind the use of CV as a measure of
reliability is that the mean and the intra-individual standard deviation of
a variable increases proportionally. This idea is contrary to the classical
measurement error model. When a variable displays a dependence
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between intra-individual variations and means, this dependence is
removed with, e.g. a logarithmic transformation.

Another approach to summarize reliability data is to calculate the ICC
[11]. ICC is defined as the ratio of the between-individuals variation and
the total variation (which is the sum of between-individuals variation and
measurement error). Hence, ICC is in the interval 0 to 1. ICC is estimated
from a one-way analysis of variance (ANOVA) model where individual is
the factor.

ICC is an unbiased estimator ofρ for a continuous variable when the style
of selection of participants to the reliability study is random sub-sampling.
If some other style of selection has been advocated, ICC will be a biased
estimator. A simple example illustrates this phenomenon: suppose that the
between-individuals variation and the measurement error are 1 unit each
and thus ICC is 1

2 . If selection to the reliability study is such that subjects
with extreme values are disregarded, the between-individuals variation will
be underestimated (say 0.5 instead of 1). According to the classical mea-
surement error model the measurement error variance is unchanged and
the ICC will be biased downwards (in this example it would be 1

3 ).
Yet another measure of reliability is the regression coefficient (the slope

b) in the linear regression of the second measurement X2 on the first X1

[11]. When random sub-sampling is used the ICC and b estimates the same
population quantity ρ. ICC is a slightly more efficient estimator than b es-
pecially for variables with high reliability. If selection is not random ICC is
biased as illustrated above. b is an unbiased estimator regardless of selec-
tion style based on the first measurement [12].

Regression dilution bias
When Y and X are measured the model

Y =β0+β1X +ε, (3)

where ε∼N (0,σεε), is estimated[13].
The reliability ratio is defined as ρ = σxx

σxx+σuu . It is well known (see e.g.
Fuller [1] p. 3) that

β1 = ρβ1c . (4)

Thus, the ordinary least squares estimator of the slope is biased towards
zero. The phenomenon is called regression dilution bias. In the example
this bias yields an underestimation of the change β1c of insulin sensitivity
for every pmol/l increase of fasting insulin when the latter variable is mea-
sured with random error.

If ρ were known, according to (4), an estimate of β1c would be β̂1c = β̂1/ρ.
In this case the standard error of β̂1c , se(β̂1c ), is se(β̂1)/ρ [1].
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When ρ is unknown it can be estimated from a reliability study. The es-
timator is denoted ρ̂ which is either the intra-class correlation coefficient
ICC or the regression coefficient in the linear regression of the second mea-
surement X2 on the first X1 (b). The estimator of β1c is then β̂1c = β̂1/ρ̂ [1].
Other estimators of β1c are described in the literature [11]. The standard er-
ror of β̂1c is complex and depends on the reliability design, the uncertainty
of the uncorrected estimator β̂1, the uncertainty of the reliability ratio ρ̂ and
the covariance of β̂1 and ρ̂ [14].

In paper I the slope b, in the linear regression of the second measurement
X2 on the first X1, was used as estimator of ρ and the resulting estimator of
β1c was called the regression based estimator. In paper II another estimator
of β1c based on the maximum likelihood method was examined.

Regression calibration
Several methods are available for correction of regression dilution bias in
general regression models, i.e. simple and multiple linear, logistic or pro-
portional hazards models [4]. One of the most powerful and easily adapted
general methods is the regression calibration method. The method is pro-
posed by Armstrong [15] for generalized linear models and Rosner et al.
[16] use the method for correction of logistic regression models and Pren-
tice [17] applies the method to proportional hazards models. The regression
calibration algorithm is suggested as a general approach by Carroll and Ste-
fanski [18] and Gleser [19].

Regression calibration is a statistical method for adjusting point and in-
terval estimates of effects obtained from regression models for bias due
to predictor measurement errors. The method is appropriate when a gold
standard is available in a validation study or when replicate measurements
are available in a reliability study.

Validation or reliability data are used to obtain estimated true predictor
values for all participants in the main study. These estimated true predictor
values are used instead of the measurement error prone observed predic-
tor values in ordinary regression estimation methods (e.g. OLS for linear
models). Standard errors and confidence intervals and p values for tests
of null hypotheses of zero effects are usually assessed with the bootstrap
method [20]. The Appendix contains a description of the regression cali-
bration method with application to the analysis in Paper III, i.e. linear and
logistic regression models with three continuous predictor variables.

Diabetes mellitus
The term diabetes mellitus is used to describe a variety of metabolic disor-
ders characterized by elevated blood glucose levels. The hormone insulin,
which is produced in the pancreatic β-cells, plays a central role in diabetes

16



mellitus. Insulin is a peptide hormone and the main regulator of glucose
uptake in muscle, liver and fat cells. An insufficient production and/or re-
sponse to insulin will therefore lead to hyperglycemia. Even when treated,
the disease often leads to more serious long time complications such as
nephropathy, nerve damage, cardiovascular disease and retinopathy.

Diabetes can broadly be classified into two main types. Type 1 diabetes,
which represents approximately 5-10 % of all cases of diabetes, is an au-
toimmune disease resulting in destruction of the insulin-producing β-cells
located in the pancreatic islets of Langerhans, and Type 2, which is esti-
mated to represent 90 % of all cases, is due to β-cell failure or various de-
grees of insulin resistance.

Type 1 diabetes usually has its onset before adulthood, whereas Type 2
diabetes most often develops in the middle aged and in the elderly.

In the early stages of Type 2 diabetes mellitus (T2DM) the muscle and fat
cells become non responsive to insulin (insulin resistant), and blood glu-
cose levels increase. The pancreas responds by making more insulin. In-
sulin resistant individuals have high blood levels of both insulin and glu-
cose. Eventually, however, the insulin-producing cells in the pancreas start
to malfunction, insulin secretion decreases, and frank diabetes develops.
The diagnostic criteria of T2DM according to the World Health Organiza-
tion is fasting plasma glucose > 7.0 mmol/l or > 11.1 mmol/l measured
two hours after an oral glucose tolerance test (OGTT) [21]. Left untreated
T2DM will result in severe complications due to the effect of chronic hyper-
glycemia. The complications include an overall increased risk for cardiovas-
cular disease, retinopathy that can lead to blindness and nephropathy that
progress until the kidneys fail completely. During the last century there has
been a dramatic increase in the incidence of T2DM world wide, to the point
that T2DM is referred to as an epidemic [22]. It is rapidly becoming one of
the largest common diseases in the world. Today, more than 230 million
people have T2DM worldwide and by the year 2025 numbers are believed
to reach 350 million (http://www.idf.org 2007). The dramatic rise in T2DM
incidence is mainly attributed to changes in human behavior and lifestyle
leading to increased obesity [23]. The best way to deal with this epidemic is
prevention and several studies have inferred that lifestyle intervention can
have great success in preventing the development of T2DM in individuals
with impaired glucose tolerance (IGT) which is a pre-stage to full T2DM
([24] and [25]).

This thesis concerns T2DM and the risk factors insulin resistance and β-
cell dysfunction.

Insulin variability
Insulin is secreted from the β-cells, located in the pancreatic islets of
Langerhans, in a pulsatile manner resulting in detection of high-frequency
insulin concentration oscillations in the peripheral circulation ([26]
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and [27]). These high frequency oscillations are caused by inter islet
coordinated insulin secretory bursts, at a frequency of 5–15 min per pulse
([28], [29], [26], [30] and [31]). The contribution of these insulin secretory
bursts to overall insulin secretion has been quantified in a canine model by
direct sampling across the pancreas [31] and in a human model employing
high-frequency sampling, a highly specific insulin assay, and validated
deconvolution analysis [32]. In both species, the contribution of pulsatile
insulin secretion is at least 70–75%.

Accordingly, variability in measurement of insulin is expected both in
fasting and post-prandial states. In a study of within-individuals variation
over 12 consecutive days of fasting insulin Widjaja et al. [33] find that
the analytical CV is 6.6% with the RIA method (PhRIA100, Pharmacia
Ltd, Uppsala, Sweden) and the within-individuals biological variation is
26%. Poulsen and Jensen [34] report an analytical CV of 7.5% for insulin
determined with the ELISA method (Dako Cytomation, Copenhagen,
Denmark).

This thesis corrects for the random variability of insulin measurements in
the fasting state (Papers I and II) and the early insulin response (EIR) from
an OGTT.

The EIR was defined as the ratio of the 30 min change in insulin con-
centration to the 30 min change in glucose concentration after oral glucose
loading. The size of measurement error of EIR and insulin sensitivity con-
tribute to the uncertainty of their relative impact on disease progression. No
previous studies address the problem of measurement error and the mag-
nitude of its implication on regression dilution bias for bivariable models
with insulin sensitivity measured with the gold-standard clamp technique
and EIR, when evaluating long-term effects on plasma glucose concentra-
tion or glucose tolerance (Paper III).

Seasonal variations
A variety of biological systems display fluctuations by season of the year.
Humans living at high latitudes are exposed to changing patterns of
diet, physical activity, light exposure, and outdoor temperature. These
populations have seasonal rhythms for cerebral [35] and myocardial
infarct ([35] and [36]), mood disorders [37], blood pressure ([38] and [39]),
serum cholesterol [40], calcium metabolism [41], growth hormone [42],
female gonodal hormone patterns [43], and thyroid hormones ([44], [45],
[46], [47] and [48]).

The incidences of Type 1 and Type 2 diabetes mellitus reveal seasonal
variations with peaks during the winter months ([49] and [50]). Seasonal
variations of HbA1c in diabetic patients ([51], [52], [53] and [54]) and of fast-
ing plasma glucose (FPG) in healthy individuals ([55] and [56]) are reported
but it is not known if these are due to seasonal variations of insulin sensi-
tivity. Results are inconclusive with some studies demonstrating a seasonal
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effect on insulin sensitivity with an increase of sensitivity during the warm
season ([57] and [58]) while other studies ([45], [59] and [60]) do not find this
variation. A study by Bunout et al. [61] reports an opposite seasonal effect
with decreased insulin sensitivity during the warm season in healthy elderly
people. While most of these studies use a repeated measures design there
are limitations in the number of participants. Further, the studies are con-
fined by the use of surrogate measures of insulin sensitivity based on fasting
values of insulin or on homeostasis model assessment-estimated insulin
resistance (HOMA-IR). In paper IV seasonal variations of insulin sensitiv-
ity measured with the gold-standard euglycaemic insulin clamp technique
and the surrogate marker (HOMA-IR) were studied.
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Aims of the studies

In these studies, aspects of measurement variability, within the field of in-
sulin secretion and insulin action, were investigated. The overall aim of the
thesis was to apply methods for regression dilution bias and for description
of measurement variability in the field of type 2 diabetes.

The specific aims of the studies were:
to develop a novel design for a reliability study in order to efficiently es-

timate corrected regression coefficients in simple linear regression models
with application to the relation between insulin sensitivity and fasting in-
sulin (Papers I and II),

to estimate the bivariate regression models between the response vari-
ables fasting glucose and HbA1c, respectively, and the predictors insulin
sensitivity and insulin secretion where the measurement error of the pre-
dictors have been taken into account (Paper III),

and to explore if the biological variations of insulin sensitivity, measured
with the euglycaemic insulin clamp technique, and insulin secretion are
due to seasonality and/or outdoor temperature and how this affects glucose
homeostasis (Paper IV).
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Material and methods

Participants
Papers I-IV were based on data from the population-based Uppsala Longi-
tudinal Study of Adult Men (ULSAM) (http://www.pubcare.uu.se/ULSAM).
All 2841 men born in 1920-1924 and living in the municipality of Uppsala,
Sweden, in 1970 were invited to attend a health survey. A total of 2322 men
(82 % of those invited), 49 to 51 years of age, participated. The men were
traced in the population register, using the individual 10-digit personal
identification number given to all Swedish citizens. Men who were still
alive and still living in the Uppsala region were invited for re-investigations
at ages 60 (number of participants = 1860), 71 (1221), and 77 (839) years.
The men who participated in the investigations at age 71 years and/or age
77 years were also invited to a fifth investigation at the age of 82 years
(number of participants = 530) [62].

The present studies used data from men who attended the investigations
at ages 71, 77 and 82 years.

In Papers I and II data from men who attended the investigation at age
71 years, and had measurements of fasting insulin and insulin sensitivity
index from a euglycaemic insulin clamp examination (n = 1139) were used.

Paper III included data from men examined at age 71 years and with
measurements of EIR, insulin sensitivity, fasting and 2-h plasma glucose
(n = 1128) and the follow-up groups who also had measurements of fast-
ing plasma glucose, HbA1c and attended the age 77 years investigation (n =
673) and the age 82 years investigation (n = 468).

In Paper IV data from men who attended the investigation at age 71 years,
were examined between October 1991 and May 1995, had measurements
of insulin and glucose from a 2-h OGTT and insulin sensitivity index from a
euglycaemic insulin clamp examination (n = 1117) were used.

In Papers III and IV data was used from a reliability study at age 71 years
where a subgroup of 20 participants was investigated twice within 4 to 6
weeks to determine the combined effects of biological variation and tech-
nical measurement error on insulin sensitivity, HOMA-IR, EIR, incremental
area under the insulin curve from an OGTT, fasting and 2-h plasma glucose
from an OGTT, body mass index, and waist circumference [63].

All examinations were made at the outpatient clinic for obesity and
metabolic diseases at Uppsala University Hospital. The Ethics Committee
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at the Faculty of Medicine, Uppsala University, Sweden, approved the
study. All participants gave written informed consent.

Data management and software tools
Data were extracted from the ULSAM database (www.pubcare.uu.se/ULSAM)
in SAS® format to specific SAS® analysis databases.

Software tools used were Maple® 8.00, SAS® for Windows v.9, R 2.6.2 and
LATEX.

Maple® was used for derivation of mathematical expressions. SAS® was
used for data management, descriptive results, Monte Carlo simulations,
bootstrap estimations and as a tool to check derived expressions. R was
used to produce graphs from data generated by SAS®. This document and
Papers I-II were produced with LATEX.

Clinical measurement methods

Oral glucose tolerance test
In an OGTT at age 71 years, blood samples were drawn immediately
before and 30, 60, 90 and 120 min after ingestion of 75 g anhydrous
D-glucose dissolved in 300 mL water. Plasma insulin was assayed by using
an enzymatic immunological assay (Enzymmun, Boehringer Mannheim,
Mannheim, Germany) gauged in an ES300 automatic analyzer (Boehringer
Mannheim). Plasma glucose was measured by the glucose dehydrogenase
method (Gluc-DH, Merck, Darmstadt, Germany).

The EIR was defined as the ratio of the 30 minutes change in insulin con-
centration to the 30 minutes change in glucose concentration after oral glu-
cose loading: (Ins30− Ins0)/(Gluc30−Gluc0).

The incremental area under the curve for insulin during the OGTT was
calculated with the trapezoidal method using the formula

Ins30min+2∗ Ins60min+2∗ Ins90min+ Ins120min−6∗ Ins0min

Insulin resistance based on the homeostasis model (HOMA-IR) was
computed with the formula: fasting plasma glucose (mmol/l) times fasting
serum insulin (mU/l) ([64] and [65]).

Euglycaemic insulin clamp
Insulin-mediated glucose disposal was estimated at age 71 years with a
euglycaemic insulin clamp as described by DeFronzo [6], with insulin
(Actrapid Human, Novo, Copenhagen, Denmark) infused at a constant rate
of 56 mU/body surface area (m2)/min during 120 minutes. This rate was
estimated to suppress hepatic glucose output almost completely also in
participants with type 2 diabetes. The target plasma glucose concentration
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was 5.1 mmol/l. Insulin sensitivity index (M/I) was calculated as glucose
disposal rate (mg glucose infused/(min x kg body weight)) divided
by the mean plasma insulin concentration (mU/l), during the last 60
min of the 120 min clamp, and multiplied by 100. The unit for M/I is
100x mg x min−1x kg−1/(mU x l−1).

The OGTT and the clamp procedure were separated in time by approxi-
mately one week [66].

Anthropometric measurements
At age 71 years, height was measured to the nearest whole centimeter, and
body weight to the nearest 0.1 kg. The BMI was calculated as the ratio of the
weight (in kilograms) to the height (in meters squared). The waist circum-
ference was measured midway between the lowest rib and the iliac crest.

Energy intake
An optically readable, pre-coded, 7-day food record was completed by 1050
men at the age 71 years investigation, for assessment of habitual dietary
intake. The design and validity of the food record used has been discussed
previously [67]. The total energy intake (kcal) was calculated as the mean of
the intakes over the seven days.

Measurements of temperature
The outdoor temperature in °C was recorded at the Swedish Air Force base
(F16), located 4 km north of Uppsala center, using calibrated scales. Data
was bought from the Swedish Meteorological and Hydrological Institute
(SMHI, Norrköping, Sweden) (http://www.smhi.se) as monthly mean val-
ues for each month from August 1991 to May 1995. For each participant the
mean temperature of the month for the clamp investigation and the two
preceding months, representing the last quarter of the year, was used as the
outdoor temperature exposure value.

Statistical methods

Paper I
In Paper I a novel design for a reliability study was developed. Using results
from the field of genetic statistics ([68], [69] and [70]) the variances of esti-
mators of a corrected regression coefficient were derived analytically under
this novel design and the design of random sub-sampling. The analytical re-
sults were compared with Monte Carlo simulations which imply that data
were generated according to the simple linear structural regression model
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and the classical measurement error model. This was repeated 10000 times
and at each time an estimate of the corrected regression coefficient was cal-
culated for both designs. The variances from the Monte Carlo distributions
were compared with the analytically derived variances. In a reality-based
example on the relation between the response insulin sensitivity and the
predictor fasting insulin with data from ULSAM variances from the analyt-
ical expressions were compared with variances from the bootstrap method
[20].

Paper II
In Paper II an improvement of the estimation of corrected regression coef-
ficients based on the random sub-sampling and the extreme selection de-
sign was developed. The regression based estimator [1], used in, e.g. Paper
I, does not fully utilize all information in the data. The method of maxi-
mum likelihood estimation was used to take advantage of all available data
by adapting a method due to Chan and Mak [71] to the design with ex-
treme selection of a sub-group of participants from the main study [72].
Further, profile-likelihood-based confidence intervals for the true regres-
sion coefficient [73] were compared with symmetric confidence intervals
based on asymptotic normality. The analytical results were compared with
Monte Carlo simulations. For each simulation an estimate of the corrected
regression coefficient was calculated for both designs and for the regression
based estimator used in Paper I and the maximum likelihood estimator. For
the maximum likelihood estimation the trust-region method [74], as im-
plemented in SAS®, was used. In addition, in the simulations the effect of
non-normal distributions of the true predictor on the estimators was high-
lighted. The variances from the Monte Carlo distributions were compared
with the theoretical analogues. The same reality-based example as in Paper
I was used to verify the derived variances with the bootstrap method.

Paper III
In Paper III, the reliability of the predictors M/I and EIR were displayed as
intraclass correlation coefficients (ICC) with standard errors [11] and as co-
efficients of variation (CV) with standard errors. The standard errors for the
CVs were calculated with the bootstrap method [20]. Reliability data were
inspected in Bland-Altman plots [75] to detect if measurement errors fol-
lowed a classical model, i.e. if the levels and variances of measurement er-
rors were independent of the levels of the predictor [4]. Measurement error
of the predictors M/I and EIR at age 71 years and the measurement errors
of the dependent variables were assumed to be independent [76] of each
other. In order to meet the assumptions of the regression models all con-
tinuous variables were transformed with a logarithmic function except for
M/I for which a square root transformation was appropriate.
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Associations between the predictors M/I, EIR, and their interaction [77]
from the 71 years investigation, and the response variables were examined
in linear regression models for continuous response variables (fasting and
2-h plasma glucose from an OGTT at age 71 years and HbA1c and fasting
plasma glucose at ages 77 and 82 years), and in logistic regression models
for response variables prevalent (age 71 years) and incident (from age 71
to 77 years and from age 71 to 82 years) type 2 diabetes. In the regression
models, the partial regression coefficients, uncorrected and corrected with
the regression calibration method ([4] and [78]) for the measurement error
structure of M/I, EIR, and their interaction, were estimated.

The regression calibration method uses reliability data to obtain
estimated true predictor values for all participants in the main study. These
estimated true predictor values are used instead of the measurement
error prone observed predictor values in ordinary regression estimation
methods (ordinary least squares estimation for linear regression models
and maximum likelihood estimation for logistic regression models). The
regression dilution bias for the estimators of regression coefficients is then
removed. With respect to standard errors for the regression calibration
corrected estimates, these will be underestimated by ordinary methods as
they do not take into account the variance contribution from the reliability
study. Since the computation of explicit formulas for the standard errors is
tedious, standard errors are typically obtained through bootstrapping [20].

The effects of predictors in models with interactions are difficult to in-
terpret and to illustrate, because the effect of one predictor depends on the
level of the other predictor(s). For the linear regression models, the effect
of a predictor was estimated as the change in the dependent variable from
mean levels for M/I and EIR to a decrease by one standard deviation for the
predictor of interest while the other predictor was constant [79]. For the lo-
gistic regression models the prevalence or incidence of type 2 diabetes was
calculated when M/I and EIR were at mean levels. The effect of a predictor
was estimated as the odds ratio to be or become diabetic for one standard
deviation decrease from the mean level for the predictor of interest while
the other predictor was constant.

The precisions of the estimated effects of M/I, EIR, and their difference
were estimated with bootstrap 95 % percentile confidence intervals [20]. P
values for the null hypotheses of no differences between EIR and M/I effects
were assessed with the bootstrap method [20].

For the effects on HbA1c, a pre-specified non-inferiority margin of 0.3
% ([80] and [81]) was used. Non-inferiority of the EIR versus the M/I mea-
surement error corrected effect was declared when the upper limit of the
bootstrap 95 % percentile confidence interval for the difference between
measurement error corrected effects of the predictors was less than 0.3 %.

A p-value of less than 0.05 was considered a statistically significant result.
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Paper IV
All continuous variables were summarized with number of observations
and mean (standard deviation) for winter (October-April) and summer
(May-September) season and for the whole year in Paper IV. The difference
between the means of the winter and the summer seasons was expressed
in % of the whole year mean.

The reliability of M/I, HOMA-IR, the incremental area under the insulin
curve OGTT, fasting plasma glucose, 2 h plasma glucose OGTT, BMI, and
waist circumference were displayed as intraclass correlation coefficients
(ICC) with standard errors [11] and as coefficients of variation (CV).

In order to meet the assumptions of the regression models fasting plasma
glucose, 2-h glucose OGTT, and BMI were transformed with a logarithmic
function while M/I and the incremental area under the insulin curve were
transformed with the square root function. Values from October 1991 to
May 1995 for the continuous dependent variables M/I, HOMA-IR, the in-
cremental area under the insulin curve, FPG and 2 h glucose OGTT and the
predictor variables outdoor temperature and an indicator variable for win-
ter/summer season (October-April/May-September; 0/1) were analyzed in
linear regression models. The models were examined for autocorrelation of
residuals with the Durbin-Watson test statistic (DW). No adjustment for au-
tocorrelation was made when DW was between 1.5 and 2.5 [82]. All models
were adjusted for age at examination.

The functional form of the relation between M/I and outdoor tempera-
ture was examined using a linear function and a sigmoid function based on
the cumulative normal distribution function. The criterion for best model
fit was the lowest value for the sum of the squared residuals. Three temper-
ature intervals were defined in the relation between M/I and outdoor tem-
perature: low temperature (LT), less than 0 °C, which corresponds to the
meteorological definition of winter in Sweden (http://www.smhi.se), inter-
mediate temperature (IT), greater than or equal to 0 and less than 10 °C,
which corresponds to the meteorological definition of spring or autumn in
Sweden, and high temperature (HT), greater than or equal to 10 °C, which
corresponds to the meteorological definition of summer in Sweden.

A p-value of less than 0.05 was considered a statistically significant result.
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Results and discussion

Paper I
Paper I [14] developed a novel design for reliability studies which makes
it possible to estimate the measurement error of a variable and also to es-
timate the corrected regression coefficient more precise than earlier. The
novelty is to use only the participants with extreme first measurement val-
ues for a replicate measurement (see Figure 2).

The estimator ofβ1c used in Paper I is β̂1c = β̂1/ρ̂ where β̂1 is the ordinary
least squares estimator of the slope in the linear regression of Y on X1 and
ρ̂ is the slope in the linear regression of the second measurement of the
predictor variable X2 on the first measurement X1. This estimator of the
corrected regression coefficient is termed the regression based estimator.

When the main study data are collected it is possible to calculate an es-
timate of the relative variance gain from the extreme selection design com-
pared with the random sampling design. Paper I is mainly theoretical but
also includes Monte Carlo simulations and a reality based example from
ULSAM on the relation between the response variable insulin sensitivity
and the predictor variable fasting insulin to support the theory.

Results from the Monte Carlo simulations are presented in Table 1. A
close agreement between expected and observed standard errors was seen
over the chosen ranges of ρ and p (the fraction of participants from the
main study selected to the reliability study). Extreme selection is superior
to random sampling in all combinations of simulations for estimation of ρ
but more importantly for estimation of β1c , where the standard error is ap-
proximately halved for p = 0.2 and ρ = 0.5,0.7 and the effect was almost as
dramatic when p = 0.3 and/or ρ = 0.9. In general, the precision gain of the
extreme selection design compared with the random sampling design was
more pronounced when the true relation between response and predictor
was strong and/or there was a large amount of error in measurement of the
predictor, i.e. when ρ had a low value.

The relation between insulin sensitivity and fasting insulin, which
was measured twice within one to two weeks for all participants, was
explored in the age 71 years investigation of ULSAM, where the latter
variable’s measurement error was estimated. The study data indicate that
logarithmic transformations of both variables were appropriate in order to
obtain linearity as well as normality and homoscedasticity of residuals. The
naive regression using only one measurement of fasting insulin resulted in
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X1X2 X2 Y

Figure 2: Schematic figure illustrating random sampling (X2 red) and extreme se-
lection (X2 blue) of participants to a reliability study. The X1 values are assumed to
be sorted from lowest value to highest value.
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Table 1: Estimates (E) and theoretical (T) standard errors for ρ̂ and β̂1c for n = 1000
participants in the main study, σxx = 1,σδδ = 1, β1c = 3 and k = np participants in
the reliability study. Random sub-sampling (r) and extreme selection (e). Estimated
results are based on 10000 Monte Carlo simulations for each combination of p and
ρ

p ρ E/T ρ̂r se(ρ̂r ) ρ̂e se(ρ̂e ) β̂1cr se(β̂1cr ) β̂1ce se(β̂1ce )

0.2 0.5 E 0.500 0.061 0.500 0.034 3.045 0.381 3.012 0.189

T 0.061 0.034 0.358 0.186

0.7 E 0.700 0.051 0.700 0.028 3.016 0.217 3.003 0.109

T 0.050 0.028 0.211 0.109

0.9 E 0.900 0.031 0.900 0.017 3.002 0.104 2.999 0.058

T 0.031 0.017 0.103 0.053

0.3 0.5 E 0.500 0.051 0.500 0.031 3.027 0.305 3.009 0.166

T 0.050 0.031 0.288 0.166

0.7 E 0.699 0.041 0.700 0.026 3.012 0.173 3.006 0.098

T 0.041 0.026 0.170 0.098

0.9 E 0.900 0.025 0.900 0.016 3.001 0.085 3.000 0.053

T 0.025 0.016 0.084 0.053
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Table 2: Results for estimates of the reliability ratio ρ and corrected regression coeffi-
cient β1c in the linear regression of log transformed insulin sensitivity on log trans-
formed fasting insulin for extreme selection (e) and random (r) fasting insulin re-
liability sub-sampling in the ULSAM study (p = 0.2 and p = 1.0). Standard errors
according to expressions and bootstrap estimation

Expressions Bootstrap

Selection ρ̂ se(ρ̂) β̂1c se(β̂1c ) ρ̂ se(ρ̂) β̂1c se(β̂1c )

r, p = 0.2 0.759 0.0459 -0.567 0.0421 0.758 0.0491 -0.569 0.0442

e, p = 0.2 0.759 0.0239 -0.566 0.0306 0.759 0.0281 -0.567 0.0318

p = 1.0 0.758 0.0193 -0.566 0.0288 0.758 0.0229 -0.567 0.0294

the estimated coefficient β̂1 = −0.430 (seβ̂1
= 0.0215). In this application

standard errors from derived expressions were compared and found to
agree will with standard errors from bootstrap sampling (Table 2).

The slope in the regression of insulin sensitivity on fasting insulin was
strengthened 32% when corrected for measurement error in the latter vari-
able. The importance of this finding is that when an individual has a high
long-term average of fasting insulin this is an indicator of more pronounced
insulin resistance than the naive regression implies (see Figure 1).

The standard error gain was 29% for the extreme selection estimate com-
pared with the random sampling estimate of β1c . The standard error for
the corrected regression coefficient using replicates from all participants
(p = 1.0) was only 8% lower than the standard error using extreme selection
with p = 0.2, indicating how marginal the information gained about ρ was
when also including the middle part of the distribution of the first measure-
ment of fasting insulin.

An important application of extreme selection for replicates is when the
aim is to relate change to initial value. For chronic diseases like T2DM or hy-
pertension it is of interest to investigate whether the natural rate of change
or the effect of an intervention is dependent on the patient’s baseline level
of a disease marker like fasting glucose or blood pressure. In the presence of
random measurement error at baseline the estimated coefficient in the re-
gression of change on baseline value will be biased (see, e.g. Blomqvist [83]
and Edland [84]). In a setting where only a baseline visit and one follow-up
visit are feasible for the participants in the main study the possibility to use
extreme selection for a reliability study of the baseline data should be con-
sidered. Reanalyses of 20-30 % of the participants in the main study with
extreme measurements will yield an unbiased estimator of the relation be-
tween change and initial value with a precision not far from that given by
selection of all participants for a replicate baseline measurement.
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Paper II
In Paper II [85] it was proved that, by adding information about the vari-
ance of the first measurement for participants that are not part of the re-
liability study and the information about the covariance between the sec-
ond measurement of the predictor and the response variable, an estimator
was obtained, based on the maximum likelihood method, that was supe-
rior to the regression based estimator. Tables 3 (normally distributed true
predictor) and 4 (non-normally distributed true predictor) summarizes re-
sults of Monte Carlo simulations that compared the regression based esti-
mator with a maximum likelihood estimator for combinations of values for
the true correlation between x and Y (ρx,Y ) and the reliability ratio ρ. In
these simulations the maximum likelihood estimator was superior to the
regression based estimator. This was especially true when the correlation
between the true predictor x and the response Y was strong and/or ρ was
low, i.e. when there was large amount of measurement error in the predic-
tor. The success rates of the profile-likelihood-based confidence intervals
were closer to the nominal level than were the symmetric confidence in-
tervals based on asymptotic normality and the regression based estimator.
Further, the latter intervals tended to have most upward misses.

A somewhat unexpected but positive finding was that the likelihood esti-
mator was more robust to non-normal distributions and more efficient for
small sample situations than the regression based estimator. The use of ad-
ditional sample information seemed to play a more important role for the
likelihood method’s superiority than the distributional assumption did.

Other authors like Schafer and Purdy [86] and Carroll et al. [4] prove su-
periority of the likelihood approach relative to regression based estimator
estimators.

Although computationally intensive, the maximum likelihood estimator
should be the first choice when the distributions of the response, the pre-
dictor and the measurement errors can be carefully assessed. This is espe-
cially true when there is an anticipated strong true linear relation between
response and predictor or when one awaits poor reliability in measurement
of the predictor. Our application, with the response variable insulin sen-
sitivity and the predictor fasting insulin, revealed that, in a real situation
with simple transformations of data, the maximum likelihood estimator be-
haved as expected.

Paper III
In paper III, M/I had high (ICC = 0.95) and EIR (ICC = 0.57) had low relia-
bility. The contribution of the measurement error to the total variance was
thus 5 % for M/I and 43 % for EIR.

The uncorrected effects on fasting plasma glucose at age 77 years were
larger for M/I than for EIR with a difference between effects of 0.10 mmol/l,
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Table 3: Regression based (RBE) and maximum likelihood estimates (MLE) of β1c

when x ∼ N (0,1), p = 0.2 and σδδ = 1. Random sub-sampling (rs) and extreme se-
lection (es). Estimated results are based on 10000 simulations for each combination.
(Theoretical standard errors in parentheses.)

n ρx,Y ρ β1c RBErs MLErs RBEes MLEes

200 0.35 0.9 0.374 β̂1c 0.378 0.375 0.374 0.374

se(β̂1c ) 0.081 (0.079) 0.076 (0.075) 0.077 (0.076) 0.076 (0.075)

Average width of 95% CI 0.318 0.298 0.297 0.295

Coverage rate 95% CI 0.953 0.949 0.947 0.947

Rate β1c > upper limit 0.030 0.026 0.026 0.024

Rate β1c < lower limit 0.017 0.025 0.028 0.029

0.85 0.5 1.614 β̂1c 1.802 1.665 1.640 1.633

se(β̂1c ) 1.494 (0.439) 0.334 (0.323) 0.263 (0.239) 0.227 (0.213)

Average width of 95% CI 4.055 1.254 1.002 0.903

Coverage rate 95% CI 0.899 0.956 0.946 0.947

Rate β1c > upper limit 0.101 0.026 0.054 0.027

Rate β1c < lower limit 0.000 0.018 0.000 0.026

1000 0.35 0.9 0.374 β̂1c 0.373 0.373 0.374 0.374

se(β̂1c ) 0.036 (0.035) 0.034 (0.034) 0.034 (0.034) 0.034 (0.033)

Average width of 95% CI 0.140 0.132 0.133 0.131

Coverage rate 95% CI 0.950 0.951 0.952 0.953

Rate β1c > upper limit 0.030 0.024 0.025 0.025

Rate β1c < lower limit 0.020 0.025 0.023 0.023

0.85 0.5 1.614 β̂1c 1.637 1.627 1.619 1.618

se(β̂1c ) 0.212 (0.196) 0.153 (0.144) 0.109 (0.107) 0.097 (0.095)

Average width of 95% CI 0.810 0.603 0.424 0.384

Coverage rate 95% CI 0.938 0.946 0.949 0.952

Rate β1c > upper limit 0.062 0.027 0.040 0.025

Rate β1c < lower limit 0.000 0.027 0.011 0.023
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Table 4: Regression based (RBE) and maximum likelihood estimates (MLE) of β1c

when x ∼ t (d f )/(d f /(d f − 2))0.5,(d f = 4), p = 0.2, and σδδ = 1. Random sub-
sampling (rs) and extreme selection (es). Estimated results are based on 10000 simu-
lations for each combination. (Theoretical standard errors in parentheses.)

n ρx,Y ρ β1c RBErs MLErs RBEes MLEes

200 0.35 0.9 0.374 β̂1c 0.382 0.375 0.364 0.370

se(β̂1c ) 0.086 (0.079) 0.078 (0.075) 0.076 (0.076) 0.076 (0.075)

Average width of 95% CI 0.329 0.303 0.295 0.297

Coverage rate 95% CI 0.956 0.951 0.944 0.947

Rate β1c > upper limit 0.025 0.024 0.037 0.030

Rate β1c < lower limit 0.019 0.026 0.019 0.023

0.85 0.5 1.614 β̂1c 2.135 1.667 1.514 1.645

se(β̂1c ) 4.009 (0.439) 0.354 (0.323) 0.229 (0.239) 0.228 (0.213)

Average width of 95% CI 16.215 1.308 0.886 0.917

Coverage rate 95% CI 0.887 0.952 0.857 0.951

Rate β1c > upper limit 0.113 0.028 0.143 0.024

Rate β1c < lower limit 0.000 0.020 0.000 0.026

1000 0.35 0.9 0.374 β̂1c 0.376 0.374 0.364 0.370

se(β̂1c ) 0.036 (0.035) 0.034 (0.034) 0.033 (0.034) 0.033 (0.033)

Average width of 95% CI 0.141 0.133 0.130 0.130

Coverage rate 95% CI 0.948 0.952 0.940 0.950

Rate β1c > upper limit 0.029 0.025 0.049 0.033

Rate β1c < lower limit 0.023 0.022 0.011 0.017

0.85 0.5 1.614 β̂1c 1.671 1.633 1.485 1.628

se(β̂1c ) 0.274 (0.196) 0.156 (0.144) 0.093 (0.107) 0.098 (0.095)

Average width of 95% CI 0.861 0.615 0.362 0.384

Coverage rate 95% CI 0.909 0.945 0.652 0.944

Rate β1c > upper limit 0.086 0.025 0.348 0.022

Rate β1c < lower limit 0.005 0.030 0.000 0.034
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95 % CI 0.00 to 0.21, p = 0.016. There was a similar but non-significant dif-
ference for uncorrected effects on fasting plasma glucose at age 82 years
(0.08 mmol/l, 95 % CI -0.09 to 0.20, p = 0.229). For HbA1c no uncorrected
differences between the effects of M/I and EIR were detected at age 77 years
(-0.03 %, 95 % CI -0.09 to 0.07, p = 0.51) or at age 82 years (-0.03 %, 95 % CI
-0.12 to 0.06, p = 0.28) (See Figure 3).

The models corrected for measurement error had smaller estimated
differences between effects of the two predictors, than in the uncorrected
models, with no statistically significant differences between the
measurement error corrected effects of M/I and EIR on fasting plasma
glucose at age 77 years (0.02 mmol/l, 95 % CI -0.13 to 0.15, p = 0.73)
or at age 82 years (0.02 mmol/l, 95 % CI -0.17 to 0.20, p = 0.85). The
measurement error corrected effect of EIR on HbA1c at age 82 years was
stronger than the measurement error corrected effect of M/I (-0.11 %, 95 %
CI -0.28 to -0.01, p = 0.034), with a difference of the same magnitude at age
77 years, although it did not reach statistical significance (-0.10 %, 95 % CI
-0.22 to 0.01, p = 0.067). The upper limits of the 95 % confidence intervals
for the difference of measurement error corrected effects on HbA1c were
below the non-inferiority margin 0.3 %.

The uncorrected effects on fasting plasma glucose and on 2-h glucose at
age 71 years were larger for M/I than for EIR, although not statistically sig-
nificant for fasting plasma glucose. The models corrected for measurement
error had larger effects for EIR than for M/I on fasting and 2-h plasma glu-
cose at age 71 years, with no statistically significant differences.

The results for response variables prevalent type 2 diabetes at age 71
years and incident type 2 diabetes from ages 71 to 77 years and from ages
71 to 82 years, were suggestive to be in the same direction as for the contin-
uous response variables, but differences between predictor effects were not
statistically significant neither for uncorrected nor for measurement error
corrected models.

Corrected for measurement errors, the partial longitudinal effects of M/I
and EIR, expressed per one standard deviation decrease from the mean
level of each predictor, on the increase of plasma glucose concentrations
and HbA1c, and the development of type 2 diabetes were of the same mag-
nitude over a time of follow-up of 11 years. Similar cross-sectional observa-
tions were made for fasting and 2-h plasma glucose, and prevalent type 2
diabetes. The relative importance of the attenuated first-phase insulin re-
sponse and insulin resistance for prediction of type 2 diabetes is under de-
bate, with some investigators favoring impaired insulin sensitivity [87]. The
results of the current study indicated that impairments of the same mag-
nitude, i.e. one standard deviation decrease, of M/I and EIR were equally
important for the elevation of glycaemia and type 2 diabetes, with the ex-
ception of HbA1c at 11 years follow-up, where a larger measurement error
corrected effect of EIR than that of M/I was inferred. The use of EIR, without
correction for ME underestimates the effect of an impaired first-phase in-
sulin response with 20 to 24 %, as estimated in the present study, when ad-
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Figure 3: The longitudinal effects (with 95 % CI) of M/I and EIR measured at base-
line at age 71 years on fasting plasma glucose (FPG) (mmol/l) and HbA1c (%) as
continuous response variables, uncorrected (thin black lines) and corrected (bold
red lines) for measurement error, at age 77 years in upper panel (A) and at age 82
years in lower panel (B). Effects were estimated from mean levels of both predic-
tors to mean level minus one standard deviation of each predictor while the other
predictor was constant
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justed for insulin sensitivity, on the plasma glucose concentrations, HbA1c
and development of type 2 diabetes.

The strength of this study was that ULSAM is a large and population-
based study, including 1128 investigations with the euglycaemic insulin
clamp to assess insulin sensitivity. The population was homogenous for
age, gender, and ethnicity. On the other hand the homogeneity of the
population was also a limitation and the results need to be confirmed
in women, in younger individuals, and in other ethnic groups. Most
of diabetes cases develop in ages younger than examined in our study.
In older ages there is less insulin resistance and more severe beta-cell
function disturbances which limits the generality of our results. Incident
diabetes was diagnosed on the use of diabetes medication and/or
fasting plasma glucose but not on 2-h plasma glucose because there
were no glucose tolerance tests at the age 77 years and the age 82 years
investigations. Exclusion of diabetes cases based solely on post-prandial
glucose can induce bias in the relative roles of insulin sensitivity and
secretion in prediction of diabetes. However, diabetes is currently
diagnosed, according to current guidelines [88], most often on fasting
glucose values solely.

The present study detected a low intra-individual variation (ICC = 0.95
and CV = 13 %) of repeated measurements of insulin sensitivity index from
a euglycaemic insulin clamp which is of a similar magnitude to prior studies
from Soop et al. [89] (CV = 6 %), Bokemark et al. [90] (CV = 19 %) and Mather
et al. [8] (CV = 10 %).

The high intra-individual variation in the measurement of EIR from an
OGTT (ICC = 0.57 and CV = 50 %) corroborated findings by Utzschneider et
al. [91] (AIR CV = 57 %), being higher than in the study of Cretti et al. [92]
(AIR CV = 36 %) in which the time interval between the measurements is
only 1-2 weeks.

Measurements of the acute insulin response (AIR) from an intravenous
glucose tolerance test (IVGTT) has higher precision than EIR after oral glu-
cose, as Hedstrand and Boberg [93] (CV = 20 %) and Abbate et al. [94] (CV =
21 %) reveal. Hanley et al. [95] report a strong independent effect of AIR for
incident type 2 diabetes after 5.2 years of follow-up (odds ratio = 0.32 for 1
SD increase of AIR), when adjusted for insulin sensitivity and a number of
other independent risk factors for type 2 diabetes. In a report from ULSAM
[96] with baseline at age 50 years and with 27 years of follow-up AIR is a
strong independent risk factor for incident Type 2 diabetes.

However, EIR at an OGTT is used in most epidemiological studies ([97],
[98] and [99]). As uncorrected EIR underestimates the effect of first phase
insulin response, due to large ME, on glucose tolerance by 20 to 24 %, we
want to emphasize that to use EIR without caution, i.e. correction for ME in
multivariable models including insulin sensitivity measurements, leads to
wrong conclusions.

Insulin resistance and impaired insulin secretion are risk factors for type
2 diabetes [66] in the sense that each factor is manageable and a target for
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the primary prevention of the disease. The results of this study imply that
interventions aimed at both these targets are equally important. The role of
the two risk factors for progression of type 2 diabetes can be more compa-
rable than suggested by previous studies [87].

Paper IV
Results of the study in Paper IV revealed that, during the winter season,
compared with the summer season, M/I was 12.0 % lower (4.84 vs. 5.44,
p = 0.0003), the incremental area under the insulin curve was 14.7 % higher
(1167 vs. 1003 mU/l, p = 0.007), fasting plasma glucose (5.80 vs. 5.71 mmol/l,
p = 0.28) and 2-h plasma glucose OGTT (8.35 vs. 8.27 mmol/l, p = 0.58) were
similar. Waist circumference was 1.5 % higher (95.0 vs. 93.7 cm, p = 0.03)
during the winter season, compared with the summer season. No statisti-
cally significant differences between winter and summer seasons were de-
tected for HOMA-IR, BMI or energy intake. All DW values were between 1.76
and 2.03.

The seasonal effect on the incremental area under the insulin curve,
when adjusted for M/I, was 6.1 % higher (p = 0.36) during winter vs.
summer season. Thus, variation of insulin sensitivity was compensated by
an insulin secretion variation resulting in only a small seasonal variation of
glucose concentrations. No statistically significant effects of season or of
outdoor temperature were detected on HOMA-IR.

There was a statistically significant direct association (p < 0.0001) be-
tween M/I and outdoor temperature. The average increase of M/I was 0.57
units (100x mg x min−1x kg−1/(mU x l−1)) (11.4 % of mean M/I) per 10 °C
increase of outdoor temperature. The effect of outdoor temperature on M/I
was statistically significant (p = 0.049) when adjusted for winter/summer
season while the effect of the latter became non-significant (p = 0.19), i.e.,
insulin sensitivity variation was explained by outdoor temperature varia-
tion to a higher extent than of winter/summer season.

The best fit for the relation between M/I and outdoor temperature was
a sigmoid function based on the cumulative normal distribution function
(see Figure 4) with the steepest M/I rise for temperatures in the IT interval
(0-10 °C) and saturations of the function for the LT (less than 0 °C) and HT
(greater than or equal than 10 °C) intervals.

This study noted that seasonal variations of insulin sensitivity, with de-
creased sensitivity during the winter season, were compensated by inverse
variations of insulin secretion resulting in only small variations of plasma
glucose. Seasonal variations of insulin sensitivity were directly associated
with the outdoor temperature independent of the winter/summer season
effect. The seasonal effect was not detected with the surrogate measure
HOMA-IR. Previous studies, using different measures of insulin sensitiv-
ity, present inconclusive results on seasonal variations of insulin sensitivity
([57], [58], [45], [59] and [60]). The compensatory seasonal variations of in-
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Figure 4: Monthly mean values of insulin sensitivity index M/I

(100x mg x min−1x kg−1/(mU x l−1)) from a euglycaemic insulin clamp vs. mean
of outdoor temperature (°C). For each participant the mean temperature of the
month for the clamp investigation and the two preceding months, representing
the last quarter of the year, was used as the outdoor temperature exposure value.
Monthly values from the time period October 1991 to May 1995. The solid line is
predicted M/I from a sigmoid model
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sulin secretion in our study corroborated findings by Fahle’n et al. [100] in
their study, using sum of insulin from a 2-h OGTT, of one hundred 50-year-
old men with myocardial infarction in Gothenburg, Sweden.

Antarctic residence (AR) exposes humans for extremely low temperatures
and is associated with environmentally related thyroid alterations (AR in-
creases the thyrotropin response to TSH-releasing hormone TRH and de-
creases FT4) that correlate with metabolic markers of thyroid hormone ac-
tivity on hepatic and adipose tissues [101]. Patients in a tempered climate,
on a fixed thyroid hormone dosage for hypothyroeosis, display seasonal
variations in TSH. Further, euthyroid individuals who spend an extended
number of months in polar regions prove to have a reflex TSH increase.
These seasonal responses are strongly defined at high latitudes where the
winter seasons are extended [102]. Furthermore, low normal FT4 levels are
significantly associated with decreased insulin sensitivity [103] and TSH is
negatively correlated to insulin sensitivity [104]. These associations are in
line with our result that outdoor temperature had a greater impact than
winter/summer season (which is a combined marker for temperature and
light exposure) on insulin sensitivity fluctuations. However, also vitamin D,
which is related to sun light exposure such that concentrations are higher
during the summer and lower during the winter [105], is directly associated
with insulin sensitivity [106]. In our study there were no data on thyroid
hormones or vitamin D status.

Clinically important seasonal variations of insulin sensitivity with a 12.0
% decrease during the winter compared with the summer season in a pop-
ulation based sample were revealed. This effect was stated for insulin sen-
sitivity measured with a euglycaemic insulin clamp, but not with the sur-
rogate marker homeostasis model assessment-estimated insulin resistance
(HOMA-IR). This implies that one can not adjust for the seasonal effect of
insulin sensitivity using HOMA-IR. In our reliability study (n = 20) the CV for
M/I was 13.9 % and for HOMA-IR the CV was 15.6 %. Sarafidis et al. [107]
present a CV of 23.5 % (n = 78) and Matthews et al. [64] found a CV of 31
% (n = 18) for HOMA-IR. A partial explanation of the discrepancy between
the seasonal effects on M/I and HOMA-IR is found in the different levels
of reliability for these variables. Another possible interpretation is that the
two variables measure different aspects of the underlying insulin sensitiv-
ity and that the temperature effect is present mainly in insulin sensitivity
in the peripheral tissue skeletal muscle manifested by the euglycaemic in-
sulin clamp [108] and less so in insulin sensitivity in the liver measured by
HOMA-IR [109]. Perhaps cold climate influences peripheral tissues insulin
sensitivity in skeletal muscles more than in a central organ like the liver.
Such a hypothesis is supported by findings from a recent rat study [110]
where weekly heat treatment of the animals during twelve weeks improves
insulin sensitivity in skeletal muscle. Also in diabetic mice hyperthermia
improves insulin sensitivity [111].

Our results have implications on glycaemic control in diabetic patients,
who have worsened control (increased HbA1c) during winter season. Dia-
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betic patients lack full ability to compensate with increased insulin secre-
tion for worsened insulin sensitivity, i.e. resistance due to low temperature,
as previously noted ([51], [52], [53] and [55]).

The results also have implications for design of clinical trials (CTs) with
insulin sensitivity as an end point and on the interpretation of the mode
of action of the drug tested, especially for a CT with rapid inclusion com-
bined with short duration of follow-up, i.e. phase II studies with durations
of up to 90 days. Pending on if the CT is started in the spring or the autumn
different results are obtained. The seasonal effect on insulin sensitivity is
also a problem in endpoint driven phase III trials where end of trial will be
performed during a short time period. An example would be a trial evalu-
ating effects of an anti-diabetic drug on cardiovascular disease where also
insulin sensitivity related variables will be evaluated (see, e.g. Dormandy et
al. [112]). The effect on the latter can be influenced by the time period when
the end of trial occurs. Further, competitive inclusions give short time for
inclusion and in combination with an endpoint driven trial design, where
the time period for study stopping is usually as short as a few weeks, larger
or smaller effects can be observed due to when in time these parts of the
trial occur. Also, in phase III trials with e.g. HbA1c as primary endpoint (the
usual endpoint for trials with anti-diabetic drugs) the seasonal effect can
induce problems in the interpretation of results. In a trial by Bays et al. [80]
with a treatment period of 24 weeks and in another trial by Home et al. [81]
with treatment during 18 months, patients who start their treatment during
the winter or during the summer will end their treatment on the opposite
season of the year and will thus be influenced by a maximum seasonal ef-
fect. Most often the inclusions of patients are not evenly distributed over
the inclusion time period. Many practical issues influence when inclusions
can take place, e.g. investigators and patients usually plan together the time
for inclusions to a study to avoid interference for the pre-defined visits with
vacations and holidays.

A sigmoid relation between temperature and insulin sensitivity is indi-
cated in Figure 4 where three temperature intervals are marked with dif-
ferent impacts of temperature on insulin sensitivity in a northern temper-
ate or subarctic climate: In temperature group HT (greater than or equal
than 10 °C) there is no or little association between temperature and M/I.
This interval represents, in an evolutionary perspective, normal tempera-
ture variations to which the human species have adapted during millions
of years. Temperature interval IT (greater than or equal to 0 and less than
10 °C) represents an adaption to the climate represented in the northern
part of the temperate climate zone or the subarctic climate zone. Such an
adaption may represent a preference for free fatty acids instead of glucose
as fuel for heat production in skeletal muscle and thus resulting in lowered
insulin sensitivity. This adaption represents a short time, in an evolutionary
perspective, from the end of the last ice age or even shorter as the climate
in Scandinavia deteriorated from the year ca 500 BC [35]. The levelling of
M/I seen in group LT (less than 0 °C) may in speculation represent selection
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of survivors. The humans, whose reaction on extreme cold temperatures is
development of high degrees of insulin resistance, can have been abolished
during evolution due to impaired reproductive ability. Thus, an adaption to
northern temperate or subarctic climate zones for insulin sensitivity was
observed in our study. Such hypotheses as speculated upon above can be
tested in ethnic stable populations living under cold climatic circumstances
for example in Siberia or in Canada or Greenland but should not be de-
tected in newly immigrated sub-arctic populations of mixed ethnicity, e.g.
in Canada.

The strength of this study was that the ULSAM study is large and
population-based, including 1117 investigations with the euglycaemic
insulin clamp to assess insulin sensitivity. The investigations were
performed around the calendar year over almost four years. The
population represents a homogenous sample considering age, gender,
and ethnicity, which reveal results, not easy to examine in populations
of mixed ethnicity living under similar climatic conditions. On the other
hand the homogeneity of the population should be considered for
extrapolation to women, younger individuals, and other ethnic groups. A
putative explanation for the deterioration of insulin sensitivity during the
winter season is decreased physical activity. This study could not examine
the association between current physical activity and insulin sensitivity,
because there are only study data on estimates of physical activity on the
average over the year. Most of the study participants (71 years of age)
were retired and had their professional career behind them and thus they
disposed of their own time as they wished. A frequent physical activity
was gardening during summer and during winter snow shovelling was
frequently performed. Thus, physical activity in this age group does
probably not vary much over the calendar year.

Further research, if type 2 diabetes patients are benefitted by a
reinforced pharmacological treatment in environments with cold
temperature, is needed.

In conclusion, seasonal variations of insulin sensitivity were compen-
sated by inverse variations of insulin secretion resulting in only small vari-
ations of plasma glucose in this population of Swedish elderly men. Insulin
sensitivity measured with euglycaemic insulin clamp was directly associ-
ated with outdoor temperature independent of the winter/summer season
effect. The seasonal or outdoor temperature effects could not be detected
with the surrogate measure HOMA-IR. The results have implications on gly-
caemic control in diabetic patients, as they lack full ability to compensate
with increased insulin secretion for worsened insulin sensitivity, i.e. resis-
tance due to low temperature. Our results also have implications for design
of clinical trials.

43





Conclusions

Paper I
• Selection of participants to a reliability study based on extreme values of

the measurement of a predictor in a main study, compared with random
sampling of participants, substantially improved precision of a corrected
slope in a simple linear regression model, as displayed in Paper I. This
precision gain was most pronounced when the true relation between re-
sponse and predictor was strong and/or when the measurement error of
the predictor was high.

• In an application on insulin sensitivity and fasting insulin the conclusion
was that an individual with a high long-term average of fasting insulin
was less insulin sensitive than the naive regression implied.

Paper II
• Extending the work in Paper I it was proved in Paper II that a maximum

likelihood estimator, by utilizing the full information of the main study
and the reliability study, increased the precision of the estimator of the
corrected slope in a simple linear regression model, for both random
sampling and extreme selection of participants to a reliability study.

• The maximum likelihood estimator had higher recision compared with
the regression based estimator utilized in Paper I. The precision gain was
strongest when there was a strong true linear relation between response
and predictor and/or when there was poor reliability in measurement of
the predictor.

Paper III
• Paper III was the first study that compared the relative importance of

insulin sensitivity and of insulin secretion, corrected for measurement
errors, on glucose concentrations, HbA1c and type 2 diabetes
cross-sectional and longitudinally. It was established that, corrected for
measurement errors, the partial effects of insulin sensitivity and insulin
secretion were similar, expressed per one standard deviation decrease
of each variable.
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• The results of the study imply that interventions aimed at improvement
of impaired insulin secretion can be as effective as interventions aimed
at enhanced insulin sensitivity.

Paper IV
• Seasonal variations of insulin sensitivity with a decrease during the win-

ter were compensated by inverse variations of insulin secretion resulting
in only small variations of plasma glucose. Seasonal variations of insulin
sensitivity were associated with the outdoor temperature. The seasonal
effect could not be detected with the surrogate measure HOMA-IR.

• The study results have implications on glycaemic control in diabetic pa-
tients and for the design of clinical trials with insulin sensitivity as end
point.
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General discussion

Application of methods for correction of regression
dilution bias
There is an extensive statistical literature on random measurement error
of predictor variables in regression models (see, e.g. [1], [4] and [5]), the
resulting bias in estimation of regression coefficients (regression dilution
bias) and methods for bias correction based on validation study or reliabil-
ity study data.

The rationale behind correction for regression dilution bias is that the
usual level of a predictor has an impact on disease progression. The mea-
sured values of the predictor, being the usual levels with the addition of ran-
dom fluctuations (which include both real but temporary deviations from
the usual level and technical measurement errors) unrelated to disease or
disease progression, will consequently yield an underestimation of the pre-
dictor’s true impact ([4], [10], [14] and [85]).

Because most prospective studies use only one baseline measurement
of each predictor systematic and substantial underestimations of the
strengths of the real associations between predictors and outcome
will occur for predictors with large intra-individual variability. This
phenomenon leads to conservative estimates of a predictor’s impact on
disease risk in univariable models. As a consequence, in a situation with
a positive association between a predictor with measurement error and
disease risk, high predictor levels imply lower disease risk than in the
case of no measurement error. In multivariable models, with ranking
of the importance of two or more predictors with different degrees of
intra-individual variability, it is essential to correct for the regression
dilution bias in order to correctly rank the per se effects of the predictors.

There are only few examples of applications of methods for correction for
regression dilution bias in epidemiological studies. The regression dilution
bias effect is well known and methods for bias correction are available in
standard statistical packages. In spite of this a literature survey by Jurek et
al. [113] reveals that out of 57 published papers in three leading epidemio-
logical journals 39 % do not mention regression dilution bias. None of the
57 papers corrects for this bias. The small number of practical applications
of the methods for correction for regression dilution bias can be explained
by limited training of biostatisticians and epidemiologists and of difficul-
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ties in funding two-stage designs with a main study and a reliability or a
validation study.

One of the first applications in medical research of methods for correc-
tion for regression dilution bias is MacMahon et al. [10]. The MacMahon
paper makes correction of the effect of diastolic blood pressure (DBP) on
the subsequent risk for stroke and coronary heart disease for the long-term
variability in DBP. They use the idea of extreme selection implicitly when
they estimate the reliability ratio ρ as ρ̂ = (x2U − x2L)/(x1U − x1L) where U
and L denote the upper and bottom quintile groups based on the first mea-
surement X1 (and x denotes a mean value). Their suggested estimator is
unbiased regardless of choice of size of the upper and bottom groups but
is less efficient than the regression based or the maximum likelihood es-
timator. In our experience the MacMahon paper and its followers Clarke
et al. ([114] and [115]) are the only epidemiological examples of the use of
data from participants with extreme first measurement values for correc-
tion of regression coefficients. MacMahon et al. use information in the tails
of a distribution where all participants have replicate measurements. How-
ever, they do not explicitly recommend a design where only the participants
with extreme first measurement values are selected for replicated measure-
ments. We recommend a reliability study design such that only the 20 to 30
% of the participants with extreme predictor values in the main study are
selected for a second measurement.

When is it correct to correct?
At first sight it seems appropriate to always correct for regression dilution
bias when validation or reliability data are at hand. There are circumstances
though, when correction is unappropriate or unnecessary.

When the aim of a study is to test the hypothesis of linear relation be-
tween two variables, but not to estimate the size of this relation, correction
for regression dilution bias is not necessary. A test of the hypothesis β1 = 0
in model 3 is at the same time a test for β1c = 0 in model 1 as these param-
eters only differ by a factor. However, the power of the test decreases with
increasing magnitude of measurement error.

If the reliability study is small its contribution to the length of the confi-
dence interval for the corrected regression coefficient can be so large that
the effort to collect replicates will not be worthwhile. In the introductory ex-
ample with logarithmic transformed insulin sensitivity as response variable
and logarithmic transformed fasting insulin as predictor variable the un-
corrected estimated regression coefficient is −0.43 with a 95 % confidence
interval from −0.47 to −0.39. If the fraction selected to the reliability study
is 2 % of the participants in the main study the corrected estimate is −0.57
with a 95 % confidence interval from −0.78 to −0.36. The example illus-
trates that, under certain circumstances, the corrected interval information
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will be that the upper limit is closer to zero compared with the uncorrected
interval information.

The assumption of independence between residuals δ in model 1 and
measurement errors u in model 2 is essential for the correction to be valid
[76]. The assumption implies that the measurement error of the response
and the predictor variables should be uncorrelated. A case in point is the
relation between 24 hour sodium excretion and blood pressure, where the
former variable has large intra-individual variation. In the INTERSALT
study this relation is corrected for measurement error of 24 hour sodium
excretion [116]. This correction is discussed by Smith and Phillips [117]
who question if the assumption of unrelated measurement error is
justified. The assumption implies that if on a certain day an individual has
a urinary sodium concentration which is above his or her average then this
does not imply that the blood pressure is likely to be above (or below) his
or her average the same day.

In Paper III, the measurement error of the predictors M/I and EIR at age
71 years and the measurement error of the dependent variables were as-
sumed to be independent [76] of each other. For the dependent variables
measured at ages 77 and 82 years this assumption is plausible. For the de-
pendent variables fasting plasma glucose and 2-h glucose measured at age
71 years the assumption can be questioned. However, similar results for
fasting plasma glucose measured at all three ages were detected.

In conclusion, each putative correction for regression dilution bias
should consider if the study objective is hypothesis testing or estimation,
the conceived length of the confidence interval for the corrected regression
coefficient, and ascertainment of the assumptions of the measurement
error model.
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Summary

The results in this thesis highlight the importance of considering measure-
ment errors and its effects on risk assessments. In the studies, aspects of
measurement errors in regression models, within the field of insulin secre-
tion and insulin action, were investigated.

The novel extreme selection design was developed for a reliability study
in order to efficiently estimate corrected regression coefficients in simple
linear regression models with application to the relation between insulin
sensitivity and fasting insulin (Paper I). This design was further improved
by a maximum likelihood estimator (Paper II). Using the extreme selection
design for a reliability study in combination with maximum likelihood es-
timation improves precision at a certain number of participants or alterna-
tively decreases the required number of participants at a certain precision.

The bivariate regression models between the response variables fasting
and 2-h glucose determined from an OGTT, and HBA1c, and the predic-
tors insulin sensitivity and insulin secretion where the measurement error
of the predictors have been taken into account, were estimated. We high-
lighted the importance of taking into account different magnitudes of mea-
surement errors when evaluating the relative impacts of risk factors (Paper
III).

An important source of biological variation over time is seasonality. Pre-
vious results on seasonal variation of insulin sensitivity are inconclusive
([57], [58], ([45], [59] and [60]). The study in Paper IV revealed seasonal
variations of insulin sensitivity that were related to outdoor temperature
and were compensated by inverse variations of insulin secretion. Paper IV
was the first study that explored seasonal variations of insulin sensitivity
measured with the gold-standard technique euglycaemic insulin clamp in
a population-based sample.
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Appendix. The regression calibration method

The regression calibration method uses validation or reliability data to
obtain estimated true predictor values for all participants in the main
study. These estimated true predictor values are used instead of the
measurement error prone observed predictor values in ordinary regression
estimation methods (e.g. ordinary least squares for linear models or
maximum likelihood estimation for logistic models). This section describes
the regression calibration method for linear and logistic regression models
with three continuous predictors when data from a main study with n
participants and data from a reliability study, where k participants made
one replicate measurement each, are available.

Estimation of true predictor values
Xi is the vector of observed predictors for i = 1, . . . ,n where n is the number
of participants in the main study.

Xi =

⎛
⎜⎝

X1,i = ln(Insulin secretion)i
X2,i = (Insulin sensitivity)0.5

i

Zi = (ln(Insulin secretion)(Insulin sensitivity)0.5)i

⎞
⎟⎠

A classical non-differential measurement error model Xi = xi +ui , where
xi is the vector of true values and ui is the vector of measurement errors,
is assumed. The vector of true predictors and the vector of measurement
errors are assumed to be normally distributed: xi ∼ N (μ,Σxx) and
ui ∼N (0,Σuu), respectively.

The sample covariance matrix SXX of the three predictor variables is cal-

culated as SXX =
∑n
i=1 XiXT

i
n−1 .

The covariance matrix Σuu of the measurement errors of insulin secre-
tion, insulin sensitivity and their product is estimated as the symmetric ma-
trix
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Σ̂uu =

⎡
⎢⎢⎢⎣

∑k
i=1 (X11,i−X12,i )2

2k

∑k
i=1 (X11,i−X12,i )(X21,i−X22,i )

2k

∑k
i=1 (X11,i−X12,i )(Z1,i−Z2,i )

2k∑k
i=1 (X21,i−X22,i )2

2k

∑k
i=1 (X21,i−X22,i )(Z1,i−Z2,i )

2k∑k
i=1 (Z1,i−Z2,i )2

2k

⎤
⎥⎥⎥⎦ .

Let X̄i =
∑ki
j=1 Xi j
ki

where ki = 2 for the k participants in the reliability study

and ki = 1 for the other n−k participants and let μ̂X =
∑n
i=1 X̄i
n .

Let Σ̂X̄ X̄ =
∑n
i=1 ki X̄i X̄Ti

ν where ν=∑n
i=1ki −

∑n
i=1k

2
i /
∑n
i=1ki .

Then Σxx is estimated as Σ̂xx = Σ̂X̄ X̄ − n−1
ν Σ̂uu.

A linear predictor of the true xi vector is: x̂i = μ̂X + (Σ̂xx +
Σ̂uu/ki )−1Σ̂xx(X̄i − μ̂X ).

The sample covariance matrix of the linear predictor is Sx̂x̂ =
∑n
i=1 x̂i x̂Ti
n−1 .

Linear regression models
Y is a continuous response variable. The linear model relating Y to x is:

Yi =βT xi +δi

for i = 1, . . . ,n where β=Σ−1
xx ΣxY =

⎛
⎜⎝
βx1

βx2

βz

⎞
⎟⎠ and δi ∼N (0,σδδ) (where ΣxY

is the covariance matrix between the true x values and Y ).
The corresponding model relating Yi to Xi is:

Yi =β∗TXi +εi

where εi ∼N (0,σεε) and

β∗ = (Σxx+Σuu)−1ΣxY =

⎛
⎜⎜⎝
β∗X1

β∗X2

β∗Z

⎞
⎟⎟⎠.

The measurement error corrected regression coefficients are estimated
with the regression calibration method [4] as follows.

The sample covariance matrix between Yi and Xi is SXY =
∑n
i=1 Xi Y T

i
n−1

and the sample covariance matrix between Yi and x̂i is Sx̂Y =
∑n
i=1 x̂i Y T

i
n−1 .

The regression calibration estimator of β is β̂RC = Sx̂x̂
−1Sx̂Y .
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Logistic regression models
Y is a binary response variable (0/1). The model relating Y to x is:

P (Yi = 1|xi ,β)= βT xi
1+βT xi

.

The measurement error corrected regression coefficients are estimated
with the regression calibration method by replacing x in model with x̂i and
using the maximum likelihood method to estimate β.

Standard errors and confidence intervals
Standard errors for the regression calibration corrected estimates will be
underestimated by ordinary methods as these methods do not take into ac-
count the variance in the estimation of x. Since the computation of explicit
formulas for the standard errors is tedious [18], standard errors are typically
obtained through bootstrapping [4].

Therefore, standard errors for the estimates, confidence intervals for the
parameters and p values for tests of null hypotheses of zero effects are as-
sessed with the bootstrap method [20].B bootstrap samples are drawn from
the n observations and all estimates are calculated in each bootstrap sam-
ple. 95% confidence intervals are calculated as the 2.5th and the 97.5th per-
centiles in the bootstrap distribution of the estimates. If the estimate > 0
the p-value is calculated as 2#(bootstrap estimates < 0)/B and if the esti-
mate < 0 the p-value is calculated as 2#(bootstrap estimates> 0)/B .
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