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Abstract
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In this thesis, we consider measures of association for ordinal variables from a theoretical
perspective. In particular, we study the phi-coefficient, the tetrachoric correlation coefficient
and the polychoric correlation coefficient. We also introduce a new measure of association for
ordinal variables, the empirical polychoric correlation coefficient, which has better theoretical
properties than the polychoric correlation coefficient, including greatly enhanced robustness.

In the first article, entitled *"On the relation between the phi-coefficient and the tetrachoric
correlation coefficient", we show that under given marginal probabilities there exists a
continuous bijection between the two measures of association. Furthermore, we show that the
bijection has a fixed point at zero for all marginal probabilities. Consequently, the choice of
which of these measures of association to use is for all practical purposes a matter of preference
only.

In the second article, entitled A generalized definition of the tetrachoric correlation
coefficient", we generalize the tetrachoric correlation coefficient so that a large class of
parametric families of bivariate distributions can be assumed as underlying distributions. We
also provide a necessary and sufficient condition for the generalized tetrachoric correlation
coefficient to be well defined for a given parametric family of bivariate distributions. With
examples, we illustrate the effects on the polychoric correlation coefficient of different
distributional assumptions.

In the third article, entitled A generalized definition of the polychoric correlation
coefficient", we generalize the polychoric correlation coefficient to a large class of parametric
families of bivariate distributions, and show that the generalized and the conventional polychoric
correlation coefficients agree on the family of bivariate normal distributions. With examples,
we illustrate the effects of different distributional assumptions on the polychoric correlation
coefficient. In combination with goodness-of-fit p-values, the association analysis can be
enriched with a consideration of possible tail dependence.

In the fourth article, we propose a new measure of association for ordinal variables,
named the empirical polychoric correlation coefficient. The empirical polychoric correlation
coefficient relaxes the fundamental assumption of the polychoric correlation coefficient so that
an underlying joint distribution is only assumed to exist, not to be of a particular parametric
family. We also provide an asymptotical result, by which the empirical polychoric correlation
coefficient converges almost surely to the true polychoric correlation under very general
conditions. Thus, the proposed empirical polychoric correlation coefficient has better theoretical
properties than the polychoric correlation coefficient.
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1. Ordinal variables

Some quantities can be measured with great accuracy. Time, for example, can
be measured with mind-blowing precision; on a scale of 10~'8 seconds. Other
quantities for which there are amazing measurement instruments are weight,
length, radiation, electric charge, just to name a few.

In the first half of the 20th century, one prominent application for statistical
methods was the agricultural sciences. A common type of study was based on
the following setup. A field is split into a number of subfields and the sub-
fields are then randomly given different treatments, such as for instance dif-
ferent quantities of fertilizer. In this application, the amount of fertilizer used
and the amount of agricultural production yielded can be measured with great
accuracy. Generally speaking, in that time period statistical methods were de-
veloped for these kinds of easily measured quantities.

In one in many ways related scientific discipline, medicine, the situation is
quite different. While it is often easy to measure the treatment, for example
the amount of a pharmaceutical given to a patient, it is often more difficult to
measure its effects. As an example, many pharmaceuticals are developed for
the purpose of giving a medicinal treatment equivalent to existing pharmaceu-
ticals, but with less severe side effects. However, the severity of a side effect is
not easily measured. In practice, patients are often asked to describe the sever-
ity of the side effect on a scale of some kind, and that type of measurement has
some inherent weaknesses, which will be discussed. Other variables that are
difficult to measure are quality, design, user-friendliness, esthetics, emotions,
opinions, utility, and many more.

Variables that can be measured only in terms of ranks are called ordinal
variables. One can loosely say that if the measurement of a quantity is blurred
to such an extent that it is only meaningful to compare different measurements
in terms of their ranks, then the measured quantity is an ordinal variable. For-
mally, for every pair of values of an ordinal variable there exists an order
relation, but no binary operations. Thus, values of an ordinal variable cannot
be, for instance, added or multiplied. In this thesis, we will in particular study
ordinal variables that have a range of finite cardinality, i.e. a range with a finite
number of elements. Such ordinal variables are sometimes also called ordered
categorical variables, and the cardinality of the range is called the number of
categories.

Consider again the example with medical side effects. Patients are asked
to describe the extent to which they have had some particular side effects



To what extent have you had the following side effects
since the start of the treatment?
Notatall - ~ To great extent

Tiredness O O ©) O @) O O
Dizziness O O ©) @) @) @) O
Sickness O o ©) O @) @) O
Diarrhea ) O ©) o @) @) O
Headache O @) ®) O @) O @)

Figure 1.1: Example of a questionnaire used for measuring the severity of side effects
of a pharmaceutical.

on a scale of one to seven, where one is “Not at all” and seven is “To great
extent”. An example of such a questionnaire is pictured in Figure 1.1. The
stated severity of a side effect is an ordinal variable, since it is only meaningful
to compare different observations in terms of their ranks. In this application,
it is not meaningful to define a binary operation, such as addition, on the set
of values of the variable. Furthermore, since the variable can only attain seven
separate values, the variable is a category variable with seven categories.

While ordinal variables are in practice very common, the statistical method-
ology is not as well developed for ordinal variables as for ordinary quantita-
tive variables. There are many reasons for this unfortunate fact. Noticeably,
the methodological difficulties of the statistical analysis of ordinal variables
start at the very definition of a random variable. By Kolmogorov’s construc-
tion, a random variable is a measurable function from a probability space to
an algebraical field, most commonly the real field R. The range of an ordinal
variable, on the other hand, is algebraically only a totally ordered set. Conse-
quently, for (random) ordinal variables it is not meaningful, nor algebraically
possible, to apply such a fundamental thing as the expectation operator, as an
example.

Because of the severity of these difficulties, a common approach to the sta-
tistical analysis of ordinal variables is to assume that the variables (in fact)
are not ordinal. Technically, this is done by assuming a metric. Consider the
example with medical side effects, say that a medical doctor finds an inge-
nious argument why category one in fact represents the value zero, and that
the distance between each pair of subsequent categories equals unity. Under
this convenient assumption, the medical doctor circumvents every statistical
problem associated with ordinal variables, and can then continue using any
ordinary statistical method he, or she, feels like, such as e.g. regression anal-
ysis, time series analysis, analysis of variance, factor analysis, and so on. At
the time of writing of this thesis, metric-assumptions based on the inverse nor-
mal distribution function are common. The problem with assuming a metric,
however, is that the choice of metric is completely arbitrary. The arbitrariness
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Data
\

Assumption set A — Statlsthal — Conclusion A
Analysis
Assumption set B — Machinery — Conclusion B

Figure 1.2: Flowchart of a statistical method that takes data and an assumption set and
yields a conclusion. In the chart, two conclusions are produced from a fixed data set
under two (both reasonable) assumption sets. If the conclusions (appreciably) differ,
then the statistical method is non-robust.

comes from the very nature of the problem. This is easily realized after con-
sidering the simple fact that if the metric was indeed known, then it would not
make sense to analyze the variable as an ordinal variable in the first place.

Fundamentally, statistical methods take empirical data in combination with
assumptions and yield statistical conclusions. If for a method, the statistical
analysis of a given data set yields conclusions that are more or less consis-
tent under different (reasonable) assumptions, then the statistical method is
said to be robust. If, on the other hand, the method yields conclusions that
are appreciably different under different, again reasonable, assumptions, then
the statistical method is non-robust. A flowchart of this process is pictured in
Figure 1.2.

Ideally, a statistical conclusion follows from empirical evidence only. For
non-robust statistical methods, however, the conclusion may be a direct, or
indirect, consequence of the assumptions. This is a serious problem, because
the purpose of statistical conclusions is that they should be interpretable as ex-
istence of empirical evidence. For example, if the conclusion of the statistical
analysis of the medical side effects, see Figure 1.1, is that the new pharma-
ceutical has less severe side effects than existing pharmaceuticals, then one
wants to be able interpret the conclusion as existence of empirical evidence
that the new pharmaceutical really has less severe side effects than existing
ones. One does not want the statistical conclusion to follow as a consequence
of anything else.

An equally serious problem is that non-robust statistical methods open up
the possibility for less experienced scientists, or perhaps scientists with con-
flicts of interest, to reverse-engineer the set of assumptions needed to reach a
desired conclusion. Once a set of assumptions suitable for the desired con-
clusion is found, a scientist can most often find some arguments why the
reverse-engineered set of assumptions is natural for the particular application.
For the scientific community, this situation can be quite difficult to deal with.
Statisticians have a special responsibility to raise awareness of this unfortu-
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nate reverse-engineering possibility. In the situation with an assumed metric
for an ordinal variable, described in a preceding paragraph, there is in general
no reason to believe that the statistical analysis of the ordinal variable will be
robust to changes of the metric-assumption.

In this thesis, we study measures of association for ordinal variables, with
a particular interest for robustness properties.
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2. Measures of association

Statistical independence between random variables is one of the most funda-
mental concepts of multivariate statistics. Random variables that are not in-
dependent are called dependent. Dependence relations between random vari-
ables is indeed one of the most studied subjects in statistics.

In almost all scientific disciplines, it is of great interest to study how vari-
ables are related to each other. If two random variables are dependent, then
one intuitively can say that they contain information on each other. As a con-
sequence, one can make predictions of a random variable, X, using informa-
tion provided by observations of other random variables that are interdepen-
dent with X. Furthermore, in applications one is often interested in controlling
the variable X by influencing other variables that are interdependent with X.
For example in medicine, one is interested in minimizing the severity of side
effects by adjusting other variables, such as, e.g., environmental factors and
levels of pharmaceutical substances, that are interdependent with the side ef-
fects. For another example, European governments are at the time of writing
of this thesis trying to control tobacco consumption by legislatively adjusting
variables that are believed to be interdependent with tobacco usage.

If two random variables, X and Y, are each completely determined by the
other, then X and Y are said to be perfectly dependent. It is easily realized
that perfect dependence corresponds to existence of a bijection between the
random variables, i.e. a function that is one-one and onto. A function f of a
random variable X is said to be a bijection almost surely if it is a bijection ev-
erywhere except possibly on a set with zero probability, i.e. P({o : X (®) —
f(X(w))notabijection}) = 0. If X = f(Y) is a bijection almost surely, then
the conditional variance Var(X|Y) equals zero. On the other hand, if the ran-
dom variables X and Y are independent, then Var(X|Y) = Var(X). This sug-
gests the existence of a continuum of dependence, with perfect dependence
and independence as the two extremes.

We define R(X,Y) to be a measure of dependence if, for random variables
X and Y, it satisfies the following properties.

(D1) R is defined for every pair of random variables.
(D2) R(X,Y) =R(Y,X).

(D3) 0<R(X,Y)<1.

(D4) R(X,Y)=0if and only if X and Y are independent.

(D5) R(X,Y) =1 if and only if each of X and Y is a bijection almost surely
of the other.
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(D6) If f and g are bijections almost surely, then R(f(X),g(Y)) =R(X,Y).
(D7) If (X,Y) and {(X,,Y,)}_, are pairs of random variables with joint dis-

n=1
tribution functions H and H, respectively, and if the sequence {H, } con-

verges to H, then lim,,_. R(X,,Y,) = R(X,Y).

These axioms were introduced in Rényi (1959) in a slightly modified form.
Property D7, which is a continuity property, was not included in Rényi (1959),
but in Schweizer & Wolff (1981).

If, in the setup above, bijections are restricted to strictly monotonic func-
tions, then it becomes possible to define positive and negative dependence, or
more commonly termed positive and negative association. A measure of asso-
ciation S(X,Y), where X and Y are random variables, satisfies the following
properties (Nelsen, 2006).

(E1) Sis defined for every pair of random variables.

(E2) S(X,Y)=S8(Y,X).

(E3) —1<8(X,Y)<1,8X,X)=1,and S(X,—X) = —1.

(E4) If X and Y are independent, then S(X,Y) = 0.

(E5) S(X,—Y)=S(—-X,Y)=-S(X,Y).

(E6) If f and g are strictly increasing functions almost surely, then
S(f(X),g(Y)) = S(X,Y).

(E7) If (X,Y) and {(X,,Y,)};_, are pairs of random variables with joint dis-
tribution functions H and H,, respectively, and if the sequence {H, } con-
verges to H, then lim,, ... S(X,,,Y,) = S(X,Y).

Properties E3 and E6, above, imply that whenever there exists a strictly in-
creasing function f such that f(X) =Y almost surely, then S(X,Y) = 1. Fur-
thermore, this in combination with Property ES yields that whenever there
exists a strictly decreasing function g such that g(X) =Y almost surely, then
S(X,Y) = —1. As a consequence, one can loosely say that a measure of asso-
ciation between X and Y contains information on the extent to which X and Y
can be represented as strictly monotonic functions of each other.

One often thinks of the linear correlation coefficient, defined by p(X,Y) =

Cov(X,Y)/(Var(X)Var(Y ))1/ 2. as a first choice of measure of association,
but in fact p does not satisfy Property E6 above, something which is easily
seen. However, the linear correlation coefficient satisfies a variant of Property
E6, where functions are restricted to first-degree polynomials. Therefore, the
linear correlation coefficient, p, is often referred to as a measure of linear
association.

Let X and Y be continuous random variables, and let ps be defined as
ps(X,Y)=p(F(X),G(Y)), where F and G are the distribution functions of X
and Y, respectively. Then pg is a measure of association, satisfying properties
E1-E7, called the Spearman grade correlation. The Spearman grade correla-
tion is the population analog of the well known Spearman rank correlation.
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Because measures of association are invariant under strictly increasing
transformations, it makes sense to standardize the distribution functions
of the random variables X and Y. Since distribution functions are strictly
increasing functions almost surely, it is easy to standardize the distribution
functions of X and Y to be standard-uniformly distributed, i.e. uniformly
distributed on the unit interval, I = [0, 1]. This is easy, because if F is the
distribution function of a random variable X, then F(X) has a (discrete or
continuous) standard uniform distribution, as is well known.

The joint distribution functions of pairs of uniformly distributed contin-
uous random variables constitute a special class of functions called copu-
las. Formally, a copula is a function C : I> — I such that for every u,v € I,
C(u,0) = C(0,v) =0, and C(u,1) = u, C(1,v) = v, and moreover, for all
uy < up, vy <vy, where uy, up, v and v, are elements of /,

C(uz,v2) —C(u2,v1) — C(uy,v2) + C(uy,vi) > 0.

By Sklar’s theorem, for every joint distribution function H with marginal
distribution functions F and G, there exists a copula C such that H(x,y) =
C(F(x),G(y)), for all points (x,y) in the domain of H. If F and G are contin-
uous, then C is unique, otherwise C is uniquely determined on the cartesian
product of the ranges of X and ¥ (Nelsen, 2006).

Copulas have many properties that are useful for the study of association.
For every copula C, the inequality max(u« + v —1,0) < C(u,v) < min(u,v)
holds. The functions max(u#+v— 1,0) and min(u, v) are copulas, which is eas-
ily verified from the definition, and are commonly denoted W and M, respec-
tively. Furthermore, the function I1(u,v) = uv is also a copula. The copulas
W, IT and M are of particular interest for the study of association because they
correspond to perfect negative dependence, independence and perfect positive
dependence, respectively. Moreover, copulas are useful because, as a result of
Property E6, measures of association for the random variables X and Y can be
expressed as functionals of the copula C of X and Y. For example, the Spear-
man grade correlation of random variables X and Y, with copula C, can be
written as

ps(X.¥) = ps(C) =12 [ car -3,
I

where A is the Lebesgue measure (Nelsen, 2006). This result will be used
extensively in this thesis.

Because the conditions in the definition of a copula are so easily checked,
the development of the theory of copulas has led to the discovery of many new
bivariate distributions. In a number of examples in this thesis, we use bivariate
distributions defined by their copulas, such as for example the Clayton, Frank
and Genest-Ghoudi families.

In figures 2.1, 2.2 and 2.3, the graphs of copulas W, IT and M, respectively,
are pictured. Also, in Figure 2.4, the graph of the copula corresponding to
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Figure 2.1: The copula W, representing perfect negative dependence between the two
random variables.

the bivariate normal distribution with correlation parameter p = 0.309 is pic-
tured. This particular copula will be of interest for an example in the next
section. The family of copulas corresponding to bivariate normal distributions
are commonly called Gaussian copulas.
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Figure 2.2: The copula I, representing independence between the two random vari-
ables.

Figure 2.3: The copula M, representing perfect positive dependence between the two
random variables.
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Figure 2.4: The copula corresponding to the bivariate normal distribution with cor-
relation parameter p = 0.309. This copula is also called the Gaussian copula with
parameter p = 0.309. Random variables with this copula are weakly positively asso-
ciated. Note that for all points of the domain, the graph is sandwiched by the graphs of
the copulas IT and M. This implies that the pair of random variables has a dependence
relation that is somewhere in between independence and perfect positive dependence.
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3. The tetrachoric and polychoric
correlation coefficients

The tetrachoric and polychoric correlation coefficients are measures of as-
sociation for ordinal variables. In this thesis, the tetrachoric and polychoric
correlation coefficients play prominent roles.

One interesting historical note on the tetrachoric and polychoric correlation
coefficients is that they were proposed by Karl Pearson. Karl Pearson (1857-
1936) was originally a physician who became interested in the theory of nat-
ural selection and evolution. In a series of 18 articles entitled “Mathematical
contributions to the theory of evolution”, Pearson suggested some methods
that could be useful for the study of evolution. In the first article in the se-
ries, for example, he used a concept borrowed from elasticity called bending
moments. This was the embryo of what today is known as moments of ran-
dom variables, and the Pearsonian method of moments. In the second article,
Pearson suggested a system of seven continuous distributions to complement
the normal distribution, which at the time was prevalent. These distributions
are today known as, e.g., the beta distribution, the gamma distribution, the chi-
square distribution, the exponential distribution and the F distribution. Later in
the series, Pearson explored the relation between linear regression and correla-
tion, and introduced the chi-square goodness-of-fit test. Especially noteworthy
is that the chi-square goodness-of-fit suggestion contained the embryo of what
is now known as statistical decision theory. In 1901, Pearson co-founded the
statistical journal Biometrika. Karl Pearson is by many considered one of the
fathers of modern statistics.

In the 7th of the 18 articles entitled ‘“Mathematical contributions to the the-
ory of evolution”, with subtitle “On the correlation of characters not quantita-
tively measurable”, Pearson introduced the fundamental idea of what has later
become known as the tetrachoric and polychoric correlation coefficients. The
idea is to consider a 2 x 2 contingency table as a dichotomization of a bivariate
standard normal distribution.

A 2 x 2 contingency table has four elements, but since the probabilities
sum up to one, the table is completely determined by the triple (px, py,pa),
where py and py are the marginal probabilities of “positive” values of the two
dichotomous variables X and Y, respectively, and p, is the joint probability
of “positive” values of both variables. Pearson suggested finding the parame-
ter of the bivariate standard normal distribution such that the volumes of the
distribution equal the joint probabilities of the contingency table. Of course,
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this parameter represents the linear correlation coefficient of the normally dis-
tributed random variables postulated. The equation can be written

pa:/ / O (x,y,ric)dxdy, (3.1
@1 (1—px) JO~1(1-py)

where @ is the univariate standard normal distribution function and ¢ is the
bivariate standard normal density function. By Pearson’s suggestion, the pa-
rameter ry. that solves the integral equation (3.1) can be considered the cor-
relation of the contingency table. The fact that Equation (3.1) always has a
unique solution, r;., for every contingency table is proved in the first article of
this thesis.

As an example, consider the contingency table (px,py,ps) =
(0.5,0.5,0.3). For this contingency table, the lower limits of integration in the
right hand side of Equation (3.1) are both ®~!(0.5) = 0. Thus, the integral
in the right hand side of Equation (3.1) is over the first quadrant of the real
plane, i.e. the upper-right quadrant in the standard coordinate axis system.

In figures 3.1, 3.2, 3.3 and 3.4, the graphs of density functions of bivari-
ate normal distributions with parameter values —0.8, 0, 0.309 and 0.8, re-
spectively, are pictured. The figures illustrate how Pearson imagined that one
could control the probability mass over the quadrant by adjusting the cor-
relation parameter, p. In Figure 3.1, the correlation parameter is p = —0.8,
and the probability mass over the first quadrant, which in this example corre-
sponds to the integral of Equation (3.1), equals 0.1024. Since this is less than
the corresponding joint probability of the contingency table, p, = 0.3, Equa-
tion (3.1) is not satisfied. In Figure 3.2, the correlation parameter is p = 0 and
the probability mass over the first quadrant is 0.25, which is also less than
the corresponding joint probability of the contingency table, p, = 0.3, and
thus Equation (3.1) is not satisfied with this parameter value either. However
in Figure 3.3, the correlation parameter is p = 0.309, and here the probability
mass over the first quadrant equals 0.3 and since the corresponding joint prob-
ability of the contingency table, p,, also equals 0.3, Equation (3.1) is satisfied.
Thus, the correlation of the contingency table (0.5,0.5,0.3), as of Pearson’s
reasoning, is 7y, = 0.309. The graph of the copula corresponding to this bi-
variate normal distribution, with correlation parameter p = 0.309, is pictured
in Figure 2.4. Finally, to conclude this example, in Figure 3.4, the correlation
parameter is p = 0.8 and the probability mass over the first quadrant is 0.3976,
which is greater than the corresponding joint probability of the contingency
table, p, = 0.3.

The article (Pearson, 1900) is 48 pages long, but the fundamental idea, for
which the article has become known, is presented in less than half a page. The
bulk of the article is about methods to approximate a solution to the integral
equation (3.1), above. This was done by method of series expansion. Later,
tetrachoric series were used, and it is most probably therefrom the name tetra-
choric correlation comes. Pearson (1900), however, refers to the measure of

20



association only as “the method of the present memoir”. Nowadays, the in-
tegral equation is easily solved using computer assisted numerical optimiza-
tion, and consequently, the method of series expansion has become obsolete.
In spite of this, the name lingers on.

The polychoric correlation coefficient was introduced by Ritchie-Scott
(1918), and is an extension of the tetrachoric correlation coefficient to general
ordinal variables, i.e. to general r X s contingency tables. The extension is not
trivial because the integral equation analogous to (3.1) does in general not
have a solution. Ritchie-Scott suggested to dichotomize the variables of the
r X s contingency table in all possible ways and then to find a tetrachoric
correlation coefficient for every dichotomization. The polychoric correlation
coefficient then corresponds to a weighted average of those so obtained
tetrachoric correlation coefficients.

Tallis (1962) suggested that a polychoric correlation coefficient can be fitted
to the contingency table with respect to a multiplicative loss function referred
to as a likelihood. Martinson & Hamdan (1971) merged the idea of Tallis
(1962) with the works of Pearson and Ritchie-Scott, along with some com-
putational simplifications. Martinson & Hamdan (1971) also provided some
additional suggestions of loss functions. Moreover, Olsson (1979) suggested
a slightly modified approach, allowing for reclassifications.

Since Pearson’s article was published at the turn of the 19th century, the
research on these measures of association has largely been confined to numer-
ical optimization algorithms and simulation studies. Theoretically, though, not
much has been written on the subject. The measures of association have not
even been given rigorous definitions, and a proof of existence and unique-
ness of a solution to the integral equation (3.1) has never been published. An
unfortunately flawed attempt was made by Juras & Pasaric (2006).

Many historians would say that Karl Pearson’s strength was not mathe-
matical rigor. Instead, Pearson’s great contribution to the theory of modern
statistics was to publish lots of ideas that kick-started scientific progress and
would constitute a foundation for statistics for many years. Other more rig-
orous statisticians would later derive the properties of many of the methods
Pearson suggested.

In this thesis, we take a close look at certain properties of some measures
of association for ordinal variables, including the tetrachoric and polychoric
correlation coefficients.
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Figure 3.1: The density function of the bivariate standard normal distribution with
correlation parameter p = —0.8. The probability mass over the upper-right quadrant

equals 0.1024.

Figure 3.2: The density function of the bivariate standard normal distribution with
correlation parameter p = 0. Random variables with this bivariate distribution are

independent. The probability mass over the upper-right quadrant equals 0.25.
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Figure 3.3: The density function of the bivariate standard normal distribution with

0.309. The probability mass over the upper-right quadrant

correlation parameter p

equals 0.3.

Figure 3.4: The density function of the bivariate standard normal distribution with
correlation parameter p = 0.8. The probability mass over the upper-right quadrant

equals 0.3976.
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4. Contributions in this thesis

In this thesis, we consider measures of association for ordinal variables from
a theoretical perspective. In particular, we study the phi-coefficient, the tetra-
choric correlation coefficient and the polychoric correlation coefficient. We
also introduce a new measure of association for ordinal variables, the empir-
ical polychoric correlation coefficient, which has better theoretical properties
than the polychoric correlation coefficient, including greatly enhanced robust-
ness.

All measures of association studied are given mathematically rigorous defi-
nitions, and all necessary assumptions are formally stated. We provide impor-
tant results on basic properties such as, e.g., necessary and sufficient con-
ditions for existence and uniqueness of coefficients under various circum-
stances.

Furthermore, we provide some results on relations between different mea-
sures of association. Most notably, we show existence of a continuous bi-
jection between the phi-coefficient and the tetrachoric correlation coefficient
under given marginal probabilities. As a consequence, whether to use the phi-
coefficient or the tetrachoric correlation coefficient is a matter of preference
only. Moreover, this previously unknown result amounts to a new take on the
so-called Pearson-Yule debate, see Yule (1912) and Pearson & Heron (1913).

One theoretically important result in this thesis is that the tetrachoric and
polychoric correlation coefficients can be expressed as a functional of the joint
distribution function. More precisely, if H is the joint distribution function
of the ordinal variables, as given by the fundamental assumption, then the
tetrachoric and the polychoric correlation coefficients, 7)., are given by the
identity

o = 2sin(ps(H) /6). @.1)

where pg is the Spearman grade correlation (see Section 2).

Using this identity, we generalize the tetrachoric and polychoric correla-
tion coefficients so that a large class of parametric families of bivariate dis-
tributions can be assumed as underlying distributions. As a consequence of
the generalization, however, it becomes evident that the tetrachoric and poly-
choric correlation coefficients are not robust to changes of the distributional
assumption. Furthermore, examples illustrate that the polychoric correlation
coefficient, which in general has to be fitted, is not robust to changes of the
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choice of loss function either. This severe lack of robustness amounts to a
major methodological problem for these two measures of association.

However, this thesis also contains a suggestion that addresses the deficien-
cies discussed in the preceding paragraph. We suggest a new measure of as-
sociation for ordinal variables that is based on Pearson’s original idea, but
relaxes the assumptions and greatly enhances robustness. The new measure of
association for ordinal variables, named the empirical polychoric correlation
coefficient, has better theoretical properties than the polychoric correlation co-
efficient and it also performs better in terms of robustness and standard devia-
tion in a simulation study conducted. In a reference to a comment in Section 1,
the empirical polychoric correlation coefficient does not require the implicit
assumption of a metric, only the assumption of the existence of a metric.

Throughout the thesis, the theory is illustrated with several examples, both
constructed examples and examples based on real-world data.
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5. Summary of articles

In the first article of this thesis, entitled “On the relation between the phi-
coefficient and the tetrachoric correlation coefficient”, we rigorously define
the two measures of association, show that they are well defined for all 2 x 2
contingency tables, and that under given marginal probabilities there exists a
continuous bijection between the two. Furthermore, we show that the bijec-
tion has a fixed point at zero for all marginal probabilities. Consequently, the
choice of which of these measures of association to use is for all practical
purposes a matter of preference only. This result also gives new input to the
so-called Pearson-Yule debate. Moreover, the result can be used to construct
a numerical table of tetrachoric correlation coefficients, converted from the
marginal probabilities and the phi-coefficient, which is easily calculated by
hand.

In the second article, entitled “A generalized definition of the tetrachoric
correlation coefficient”, we generalize the tetrachoric correlation coefficient
so that a large class of parametric families of bivariate distributions can be as-
sumed as underlying distributions. We also provide a necessary and sufficient
condition for the generalized tetrachoric correlation coefficient to be well de-
fined for a given parametric family of bivariate distributions. Furthermore, we
provide some sufficient criteria which can be useful for practical purposes. We
also show that the generalized and conventional definitions agree on the para-
metric family of bivariate normal distributions. With examples, we illustrate
the implications of different distributional assumptions, and discover that the
tetrachoric correlation coefficient is not robust to changes of the distributional
assumption. In fact, quite the opposite seems to hold true. There are even ex-
amples where the conclusion of the association analysis under one assumption
is that the ordinal variables are perfectly dependent, while the conclusion un-
der a different assumption is that the ordinal variables are independent. Conse-
quently, the conclusion of the association analysis can vary from the variables
being perfectly dependent, to the variables being independent, or anything in
between, only as a consequence of a change of the distributional assumption.
Furthermore, with S&P 100 stock data, as of year 2006, we exemplify the fact
that a correct distributional assumption is vitally important for the conclusions
of the tetrachoric correlation association analysis.

Recall that the polychoric correlation coefficient is an extension of the tetra-
choric correlation coefficient for dichotomous variables to general ordinal
variables, i.e. from 2 X 2 contingency tables to general r X s contingency ta-
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bles. In the third article, entitled “A generalized definition of the polychoric
correlation coefficient”, we give a rigorous definition of the polychoric cor-
relation coefficient, and show that a solution of the equation, via which the
measure of association is defined, does in general not exist if one of the num-
bers of categories, r and s, is greater than 2 and the other number is greater
than or equal to 2. We present some loss functions with which a polychoric
correlation coefficient can be fitted, and give a necessary and sufficient con-
dition for existence of a fitted coefficient. We generalize the polychoric cor-
relation coefficient to a large class of parametric families of bivariate distri-
butions, and show that the generalized and the conventional polychoric cor-
relation coefficients agree on the family of bivariate normal distributions. Be-
cause a coefficient in general needs to be fitted, it is possible to test different
distributional assumptions based on goodness of fit. We provide general sug-
gestions for goodness-of-fit tests. With examples, we illustrate the effects on
the polychoric correlation coefficient of different distributional assumptions.
In combination with the goodness-of-fit p-values, the association analysis can
be enriched with a consideration of possible tail dependence. In general, how-
ever, the polychoric correlation coefficient is not robust to changes of the dis-
tributional assumption, nor to changes of the loss function.

In the fourth and final article, we propose a new measure of association for
ordinal variables, named the empirical polychoric correlation coefficient. The
simple idea is to plug in the empirical distribution into the functional (4.1),
above. The approach demands a bit of care, however, since the empirical cop-
ula is only defined on certain points, and since we want the new measure of
association to have as good properties as possible. The empirical polychoric
correlation coefficient relaxes the fundamental assumption of the polychoric
correlation coefficient so that an underlying joint distribution is only assumed
to exist, not to be of a particular parametric family. Put differently, the empir-
ical polychoric correlation coefficient does not need an implicit assumption
of a metric, only an assumption of the existence of a metric. The latter as-
sumption is substantially weaker than the first, and represents a new approach
to statistical analysis of ordinal variables. We show that the empirical poly-
choric correlation coefficient is well defined for all contingency tables, that it
has range [—1, 1] and that it is zero if the ordinal variables are independent.
We also provide an asymptotical result, by which the empirical polychoric
correlation coefficient converges almost surely to the true polychoric correla-
tion under very general conditions. Thus, the proposed empirical polychoric
correlation coefficient has better theoretical properties than the polychoric cor-
relation coefficient.

In a simulation study, the empirical polychoric correlation coefficient per-
forms considerably better in terms of robustness and generally better in terms
of standard deviation, than the polychoric correlation coefficient. The empir-
ical polychoric correlation coefficient is, however, biased so that its absolute
value is too small. For 3 x 3 contingency tables, the empirical polychoric cor-
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relation coefficient was consistently 20% too small, for 5 x 5 contingency ta-
bles 8% too small and for 7 x 7 contingency tables 4% too small. The fact that
the bias goes to zero follows by the asymptotic result previously mentioned.
Moreover, the empirical polychoric correlation coefficient, by design, fits ev-
ery contingency table perfectly, and demands neither fitting nor optimization.
In stark contrast to the polychoric correlation coefficient, the empirical poly-
choric correlation coefficient is easily calculated by hand.

For the practitioner, the empirical polychoric correlation coefficient has the
advantages that neither a parametric family of distributions nor a loss function
needs to be chosen and argued for. If the underlying distribution is a mixture,
then that does not pose a problem either. Furthermore, goodness-of-fit tests
are unnecessary because the empirical coefficient fits every contingency table
perfectly every time. All in all, the empirical polychoric correlation coeffi-
cient brings considerable advantages, both theoretical and practical, for the
practitioner.

29






6. Acknowledgements

I am grateful to all people that have been supportive during my time as a
PhD-student. In particular my supervisor Rolf Larsson, who has been always
encouraging, available and readily helpful. During the last few months, you
stood by me and supported me steadfastly. I am deeply appreciative of our
pleasant working relationship and happy to have been your student. Adam
Taube, who always lifts my spirits with enthusiasm and contagious cheerful-
ness. Thank you for introducing me to the field of applied biostatistics. Anders
Agren, who quietly but noticeably shows consideration and approval. I appre-
ciate your constructive feedback on my manuscripts and our discussions on
statistical history. A special acknowledgement to my assistant supervisor Lars
Forsberg for help with the S&P financial data set. Thanks also to all other peo-
ple at the department, including the administrative staff, that have been helpful
with a range of matters, from proofreading to working the bureaucracy.

I have greatly enjoyed and appreciated the camaraderie of my PhD-student
colleagues. Nicklas Korsell and Daniel Preve, you gave me an early,
no-nonsense explanation of the life as a PhD-student, that I have valued
enormously. Daniel, thank you for a wonderful stay in Singapore and great
feedback on my manuscripts. Jim Blevins, Hao Luo and Petra Ornstein,
thank you for friendship and support. Myrsini Katsikatsou, Ronnie Pingel
and Martin Solberger, I wish you all the best, and good luck with everything.
Jenny Eriksson Lundstrom, thank you for your caring advice.

Katrin Kraus, my dear friend and colleague, working with you has been
a privilege. Our discussions have been most rewarding, and your manuscript
feedback has always been the most insightful and valuable. In fact, I owe much
of this thesis to you. I feel blessed having been able to share this experience
with you.

I am also grateful to two great teachers, Tobias Ekholm and Svante Jansson,
who have inspired with joy and love of science, and have set a standard of
excellence that I will continue try reaching for throughout my career.

I am truly blessed to have a great many dear friends that I appreciate enor-
mously. In terms of recreation, comfort and joy, nothing beats simply hanging
out with you. Because of this thesis, I have lately not been able to spend as
much time with you as I would like, but knowing I have friends that care and
are ready to help out is always greatly reassuring. I value each and every one
of you tremendously.

31



I owe this achievement to my family, including my extended family. You
have given me values, work ethic and resilience, and always encouraged and
supported my decisions, morally as well as financially. With such a network
of unconditional care, love and support, how can you not make it?

Uppsala, April 2009
Joakim Ekstrom

32



Bibliography

Juras, J., & Pasaric, Z. (2006). Application of tetrachoric and polychoric cor-
relation coefficients to forecast verification. Geofizika, 23, 59-81.

Martinson, E. O., & Hamdan, M. A. (1971). Maximum likelihood and some
other asymptotically efficient estimators of correlation in two way contin-
gency tables. Journal of Statistical Computation and Simulation, 1, 45-54.

Nelsen, R. B. (2006). An Introduction to Copulas, 2nd ed. New York:
Springer.

Olsson, U. (1979). Maximum likelihood estimation of the polychoric correla-
tion coefficient. Psychometrika, 44, 443-460.

Pearson, K. (1900). Mathematical contributions to the theory of evolution.
VII. On the correlation of characters not quantitatively measurable. Philo-
sophical Transactions of the Royal Society of London. Series A, 195, 1-47.

Pearson, K., & Heron, D. (1913). On theories of association. Biometrika, 9,
159-315.

Ritchie-Scott, A. (1918). The correlation coefficient of a polychoric table.
Biometrika, 12, 93—-133.

Rényi, A. (1959). On non-parametric measures of dependence for random
variables. Acta Mathematica Academiae Scientiarum Hungaricae, 10, 441-
451.

Rudin, W. (1976). Principles of Mathematical Analysis. 2nd ed. New York:
McGraw-Hill.

Schweizer, B., & Wolff, E. F. (1981). On measures of dependence. The Annals
of Statistics, 9, 879-885.

Tallis, G. M. (1962). The maximum likelihood estimation of correlation from
contingency tables. Biometrics, 18, 342-353.

Yule, G. U. (1912). On the methods of measuring the association between two
attributes. Journal of the Royal Statistical Society, 75, 579-652.

33



Acta Universitatis Upsaliensis

Digital Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Social Sciences 50

Editor: The Dean of the Faculty of Social Sciences

A doctoral dissertation from the Faculty of Social Sciences,
Uppsala University, is usually a summary of a number of
papers. A few copies of the complete dissertation are kept

at major Swedish research libraries, while the summary

alone is distributed internationally through the series Digital
Comprehensive Summaries of Uppsala Dissertations from the
Faculty of Social Sciences. (Prior to January, 2005, the series
was published under the title “Comprehensive Summaries of
Uppsala Dissertations from the Faculty of Social Sciences”.)

Distribution: publications.uu.se
urn:nbn:se:uu:diva-100735

U

ACTA
UNIVERSITATIS
UPSALIENSIS
UPPSALA
2009



	Abstract
	List of Articles
	1. Ordinal variables
	2. Measures of association
	3. The tetrachoric and polychoric correlation coefficients
	4. Contributions in this thesis
	5. Summary of articles
	6. Acknowledgements
	Bibliography

