A Parallel Monte Carlo Implementation on the Cell Broadband Engine

Marcus Lundberg
Abstract

A Parallel Monte Carlo Implementation on the Cell Broadband Engine

Marcus Lundberg

The Cell Broadband Engine is a heterogeneous multi-core processor architecture that trades ease-of-programming for high performance. While primarily featured in the Sony PlayStation 3 (PS3) for high-end games, it is a promising technology for scientists working with computationally heavy numerical methods. This paper presents three implementations of a Monte Carlo simulation of a system of charged particles on the PS3. The first method, while easy to implement and use, did not yield any performance advantage over conventional x86 processors. The second method ran more than twice as fast on the PS3 as a comparable code on a 1.86 GHz Intel Xeon machine but could run only a limited problem size. The third program ran over six times faster than the x86 reference system and could handle any problem up to the saturation of the PS3 main memory. The final program is also suitable for a cluster of PlayStations and is easily adaptable to work on a distributed computing framework.
Contents

1 Populärvetenskaplig Sammanfattning 3

2 Introduction and Overview 6
 2.1 Polyelectrolytes 6
 2.2 Monte Carlo and Wang Landau Algorithm 7
 2.3 Cell Broadband Engine and PlayStation 3 10

3 Simulation Method 13
 3.1 Single-PS3 parallelism 14
 3.1.1 Inverse square root only 14
 3.1.2 Entire MC evaluate step 17
 3.2 Multi-computing 19

4 Results 21
 4.1 Single-PS3 parallelism 22
 4.1.1 Inverse square root only 22
 4.1.2 Entire evaluate step 23
 4.2 Multi-computing 23

5 Conclusions 25

A Program Codes 27

References 32
1 Populärvetenskaplig Sammanfattning

En viktig del av forskningen inom fysikalisk kemi sker inte i ett laboratorium med kemikalier och mikroskop, utan med datorer. Fysiker och kemister använder molekylära simuleringar att testa teorier och försöka förstå hur olika processer fungerar. En del molekylära system kräver mer av datorerna än andra system och det är därför en bra idé att titta på ny datorhårdvara och se hur brukbar den är för att simulera de svårare systemen. Det är det som det här projektet har gått ut på.

Ett sorts molekylärt system som är väldigt viktigt i många sammanhang involverar stora mängder partiklar som interagerar genom den så kallade Coulomb kraften, dvs elektriskt. Den här kraften utövas över lång distans, så antalet interaktioner växer med andra kraften av antalet partiklar. Därför kräver detta system mycket från datorn.

"manager" för sex SPE:s. Tillsammans kan de lätt göra mycket fler beräkningar varje sekund än en ordinarie processor, men programmeraren måste se till att dela upp beräkningarna så att alla SPE samarbetar effektivt. Detta projekt gick ut på att använda en eller fler PlayStation 3 för PE simulationer.

I det första försöket ändrade jag en liten del av koden som tog ungefär 70% av processorns tid. Den här delen tar ett genom kvadratroten på en lista av tal och ligger i centrum av beräkningen av elektriska potentialen mellan partiklarna. Oumarbetningen av koden gjorde så att listan delades upp i bitar och varje SPE fick räkna på varsin del av listan. Av tekniska skäl så skrevs SPE delen av programmet i C medan resten av programmet var oförändrad Fortran kod.

Resultatet var inte helt bra. Den ändrade delen är väldigt användarvänlig, då den används av många program inom molekyldimensioner. Eftersom 30% av programmets körtid inte påverkades av förändringen så kunde jag teoretiskt inte förvärva mer än cirka tre gånger snabbare kod. Även det är en för stor förhoppning eftersom jobbet att dela upp listan och samla ihop resultaten tog en ansenlig mängd tid. Till slut så fungerade det här försöket bara lite bättre än det ursprungliga programmet.

I det tredje försöket skrev jag om hela programmet i C och gjorde så att den kunde hantera hur stora system som helst. Tyvärr så krävde det mycket tid att skriva och jag lyckades inte helt: en bug i koden är kvar som gör att resultaten inte blir helt rätt. Däremot var prestandan mycket bra, klar mycket bättre än ett liknande program på en ordinarie dator i samma prisklass som en PS3.

Ett vidare steg var att implementera ett system så att flera PS3 kunde samarbeta

2 Introduction and Overview

In the field of physical chemistry, certain problems have characteristics that make them resistant to computer simulation. Whether the problem lies with the size of the system, the convergence rate of the available algorithms, or the sensitivity to errors, it is of continual interest to implement the latest numerical techniques on the latest hardware. One such problem is the simulation of long polyelectrolytes, which (like molecular simulation in general) suffers from the curse of dimensionality and is therefore tractable only by Monte Carlo (MC) method.

In the last few years, much has been said of the rise of multi-core processors as the solution to the increasing power and cooling problems that are limiting the utility of single-core processors. The Cell Broadband Engine (Cell/BE or Cell) was jointly developed by Sony, Toshiba and IBM, and is a uniquely heterogeneous multi-core processor that presents unique opportunities and challenges for numerical computing.

This thesis project concerns several novel implementations of Monte Carlo simulations of a polyelectrolyte on the Sony PlayStation 3 (PS3), which contains a Cell processor. These implementations are compared and contrasted in terms of utility to researchers, elegance, and efficient use of the processor. Based on the relative performance and implementation experience, I try to judge the suitability of the PlayStation 3 as a platform for these simulations. Since the performance of the final code was much greater than the earlier and simpler codes, I conclude that the PS3 is a good platform if a serious effort is made to write a solid implementation rather than trying to patch existing programs.

In this introductory overview, I go through some key elements in polyelectrolyte chemistry, Monte Carlo simulations, and the Cell hardware. Then I go into some detail regarding the implementation and program design choices in each of the programs. A performance comparison of each program is then presented, and lastly I give some final thoughts and conclusions.

2.1 Polyelectrolytes

A polymer is a large molecule made up of repeating subunits (monomers). A polyelectrolyte (PE) is a polymer where the monomers have an electrolyte group that will dissociate in aqueous solution, leaving a charged chain and free counterions. A weak polyelectrolyte will dissociate only partially, while a strong polyelectrolyte dissociates completely in solutions with reasonable pH. If a PE has both anion and cation character, it is called a polyampholyte.
Polyelectrolytes are scientifically interesting because many important biological molecules are polyelectrolytes. Both natural and artificial PEs have found much use in industrial and medical applications. Bio-molecules like DNA, RNA, and polypeptides (proteins) are all polyelectrolytes, and the model that forms the foundation of this study has its roots in DNA research. They’re considered difficult to simulate because they can be very large and self-interact through Coulomb repulsion. Currently, active research is aimed at discovering how the conformation of a PE in a solution depends on the electro-chemical composition, and it is questions such as these that the thrust of this project is intended to help answer.

A neutral polymer in a pure aqueous solution tends towards a configuration that corresponds to a self-avoiding random walk with a step size equal to the bond length. The root mean end-to-end distance is therefore proportional to the square root of the polymer length. In a polyelectrolyte in a salt solution, the monomers interact with each other by Coulomb repulsion, and the resulting chain exhibits increased stiffness and the end-to-end distance is larger. Meanwhile, the dissociated counterions and salt ions will shield the monomer-monomer interactions and at high valencies they will impart a net attraction, which will tend to return the PE to the neutral conformation. This effect is an important consideration in models of DNA condensation.

Computationally, PEs present a tough challenge. The long-distance nature of Coulomb interactions combined with the need for very large numbers of particles (these molecules can be very long, e.g. DNA strands) yields a huge N-body problem that is highly suited for parallelization and good numerical computing practice.

While the code that was the basis for this work was a simulation of polyelectrolytes, the key feature of the system that makes it computationally intensive isn’t the connected nature of the chain. There are other molecular systems that have strong Coulomb interactions, and the conclusions of this project is applicable to them as well. [5]

2.2 Monte Carlo and Wang Landau Algorithm

The Monte Carlo method has been a mainstay of numerical methods from the very start. It was first used by Enrico Fermi to calculate the properties of the electron in 1930, and since then MC methods have been applied to nearly every area in the natural sciences and even economics and finance. The widespread application of Monte Carlo in statistical physics didn’t start until the advent of the Metropolis MC in 1953[7].

In molecular modeling, the Monte Carlo method contrasts with molecular dynam-
ics in that the MC method generates states according to Boltzmann probabilities rather than explicitly modeling the dynamics. An MC step is not a time-step, but rather an unphysical step in a configuration space. This restricts the MC method to systems which are characterized by their equilibrium conditions and without an explicit time-dependence.

The general MC method works as follows. A state of the system is defined and some MC move of the system that changes the state. A proposed move is accepted with some probability based on a function of the state of the system. There are some conditions that must be met for the algorithm to work: the balance condition and the ergodic condition. [2]

The balance condition requires that in equilibrium, the average number of accepted trial moves that result in the system leaving a state must be exactly equal to the number of accepted trial moves from all other states to that state.

\[\pi_i p_{i \rightarrow \star} = \pi_{\star} p_{\star \rightarrow i} \]

where \(\pi_i \) is the probability of being in state \(i \), \(\pi_{\star} \) is the probability of being in any state other than state \(i \), \(p_{i \rightarrow \star} \) is the probability of transitioning from state \(i \) to any other state, and \(p_{\star \rightarrow i} \) is the total probability of transitioning to state \(i \). This is necessary and sufficient to guarantee that the system will not leave equilibrium entirely once equilibrium is reached. However, for practical reasons, standard practice is to use the more stringent condition of detailed balance instead of ordinary balance:

there exists \(\pi_i, \pi_j \) such that \(\pi_i p_{ij} = \pi_j p_{ji} \).

(2)

\(p_{ij} \) is the transition probability from state \(i \) to state \(j \). Summing over \(i \),

\[\sum_i \pi_i p_{ij} = \pi_j. \]

Therefore \(\pi_j \) can be considered the equilibrium probability of state \(j \), and the balance condition is really saying that the equilibrium probability of a state is equal to the sum of all the transition probabilities weighted by the equilibrium probabilities. This ensures that the system tends to remain at equilibrium in the long term.

The ergodic condition is that every accessible configuration can be reached in a finite number of MC steps from any other configuration. In the language of classical statistical mechanics and thermodynamics, a microstate is the detailed
molecular configuration of a system. The ergodic condition is equivalent to saying that all accessible microstates with a given energy are in the long term equiprobable and the statistical properties of the system stabilize as the simulation progresses. This guarantees that an MC code yields the same equilibrium conditions as the equivalent molecular dynamics code, even though an MC simulation doesn’t have a time-step and scans configuration space directly instead of the long time-series of a molecular dynamics code.

In molecular mechanics, a system is commonly characterized by its free energy as a function of its conformation. An MC trial move can increase or decrease the free energy, and since a system will tend towards decreased free energy, a natural criterion for accepting or rejecting an MC trial move is a function of the change in free energy. A move that yields a negative change in energy ΔE is automatically accepted, while a positive ΔE is randomly accepted with a Boltzmann probability p_{accept} equal to

$$p_{\text{accept}} = \exp(-\beta \Delta E)$$

where β is the Boltzmann factor $(1/k_B T)$, k_B is Boltzmann’s constant, and T is the temperature. If a move is rejected, the conformation of the system doesn’t change but the MC method is still said to have taken a step.

While much of the project was based on a relatively straight-forward Monte Carlo method, we needed to dig deeper when looking to parallelize over multiple machines in a distributed computing environment. In 2001, Wang and Landau introduced a so-called flat histogram method which we call the Wang-Landau Monte Carlo method (WLMC) [8]. The Wang-Landau algorithm was first applied to calculate the density of states of Ising models, but it has since seen use in many other systems, especially those with rough energy landscapes that challenge straight-forward Metropolis MC. The essence of the WLMC scheme is that a penalty term is added to ΔE in Equation 3 that reflects the history of the simulation. For every MC trial move, the end-to-end distance R_{ee} of the polymer is calculated. The free energy of the system $w(R_{ee})$ (more specifically the potential of mean force), is related to the probability $p(R_{ee})$ of finding the system the system at a certain end-to-end distance by

$$w(R_{ee}) = -k_B T \ln p(R_{ee})$$

We make a histogram of R_{ee} (equivalent to making a histogram of free energies) after every MC move. Then in the MC evaluation step, we add a penalty to the energy of a state proportional to the number of ticks in the histogram. In this
way, the low-energy configurations that tend to trap an MC simulation gradually become less attractive and the MC can explore all of configuration-space with a roughly equal probability. Because of the relationship of this histogram to the Hamiltonian U, the penalty histogram is denoted by U^*, and the penalty at some end-to-end distance R_{ee} is equal to $dU^*(R_{ee})$. As the simulation progresses, the distribution function $p^* \sim \exp[-\beta(U + U^*)]$ approaches a constant and the simulation traverses the entire configuration space with equal probability. The convergence condition for the simulation can be taken to be when p^* is sufficiently “flat”, i.e. when all values of p^* are within some δp from the mean $< p^*>$. [3]

The advantage is that a histogram takes up very little data yet contains important information about the system. If several independent programs are running and periodically share their histograms, they collectively explore configuration-space with near-perfect parallelism [4]. This is almost trivial to do and works extremely well, especially when compared to other parallel MC schemes (where dependencies in Markov Chains often make things unparallelizable).

2.3 Cell Broadband Engine and PlayStation 3

![Cell Broadband Engine and PlayStation 3](image)

Figure 1: The Cell/BE chip is made up of one PPE and up to eight SPEs

The Cell chip in the Sony PlayStation 3 (PS3) is a single-chip distributed memory parallel computer consisting of seven processing elements connected by a very high-bandwidth element interconnection bus (EIB): one Power Processing Element (PPE) and six available Synergistic Processing Elements (SPEs). The standard Cell chip makes eight SPEs available, but in the PS3 one is dedicated to the operating system’s hypervisor and another is switched off for redundancy to increase
chip yield. A Cell chip that is manufactured with one defective SPE is still a good chip in a PS3.

The PPE is a simplified Power processor that is primarily intended to control the activity of the SPEs. It is a 64-bit, two-way SMT (simultaneous multithreading) PowerPC processor with 32 KB of L1 cache and 512 KB of L2 cache. While it uses a standard PowerPC instruction set, for the sake of simplicity and power usage the designers did not include out-of-order execution. One advanced feature it does support is a 128-bit vector (SIMD) processing engine called VMX, which works like AltiVec on other PowerPC’s. The clock speed of the PPU (i.e. the processor in the PPE) is 3.2 GHz, same as the SPE’s.

Each SPE contains a 128-bit SIMD processor (SPU) capable of doing a floating-point instruction on four single-precision or two double-precision values at once and 256KB of local memory. In essence, this turns the Cell into a tiny distributed-memory system. With pipelining, one vector operation can be completed per clock cycle (including \texttt{fmaf4}, Fused Multiply-and-Add Float, which is two floating point operations), yielding $2 \times 4 \times 3.2 \text{ GHz} = 25.6 \text{ Gflop/s}$ per SPE and $6 \times 25.6 \text{ Gflop/s} = 153.6 \text{ Gflop/s}$ for the entire Cell processor in a PS3. [1]

Communication between the SPE local store and the main memory is done by Direct Memory Access (DMA) and “mailbox” messages. The SPE’s Memory Flow Controller (MFC) has one outbound mailbox and four inbound mailboxes, each capable of one 32-bit message. These are useful for controlling the SPE’s and communicating very small amounts of data. A DMA access, intended for more substantial transfers of data, sends entire cache-lines across the EIB and requires the data-buffers to be quadword aligned. What this means for the programmer is discussed in more detail in Section 3.

The Playstation 3 features some limitations that hamper its usefulness for scientific computing in a cluster system. The respectably high-bandwidth Gigabit Ethernet network connection is passed through the hypervisor, drastically increasing latency. Since the hypervisor also blocks direct access to the graphics card, only 256 MB of memory is accessible, limiting the problem size that can be treated.[6]

There are a few different options for how to program on the Cell processor. A program written just for the PPU is like any ordinary code, but will not use the majority of the Cell’s computational resources. For a program written for both the PPU and SPUs, the end result is always two separate programs that interact across the EIB. A simple code can be written in one file using parallel processing directives that allows the compiler to automatically generate the PPU and SPU programs. This is new and perhaps not completely trustworthy technology, so the more common approach is to write two separate programs. The SPU program can
be compiled into a library that is embedded directly into the PPU program, or alternatively the PPU program can invoke the SPU program externally. For this project, I always wrote two separate codes and embedded the SPU library into the PPU executable. This approach works for every case, is easy to run, and allows full control over each build process.
3 Simulation Method

The physical model under consideration is a simple bead-and-stick model with N_{mon} monomers. Each monomer is taken to be a hard, uniformly charged ball of radius r_{mon} that is connected to its neighbors by a bond of constant length $r_{\text{bond}} > r_{\text{mon}}$. Monomers in this paper are given a charge of +1, $r_{\text{bond}} = 3.4\text{Å}$, and $r_{\text{mon}} = 1.0$. The PE conformation is changed by rotating or twisting the bonds about a random axis.

As mentioned, the monomers in this model are hard spheres. If a move results in the minimum monomer-monomer distance less than $2r_{\text{mon}}$, then the move is always rejected. While this doesn’t affect an extended chain very much, a tightly packed chain is strongly influenced by this hard-sphere interaction.

The presence of counter-ions and explicit salt ions (rather than a concentration-dependent screening factor) will change the behavior of the program, but were left out for the sake of simplicity. Computing the interactions of these ions will tend to dominate execution time for large problems because the number of salt ions grows with the volume of the computation cell, i.e. $O(N_{\text{mon}}^3)$. In comparison, the number of monomer-monomer interactions grows as $O(N_{\text{mon}}^2)$. However, since the program structure would be essentially the same in both cases, setting the number of explicit ions to zero doesn’t affect the generality of the results from a computational perspective1. The reason for doing this is that our program can be smaller, simpler, and easier to analyze.

In the beginning of this project, the focus lay on accelerating an existing Fortran program. This code is one of the few valid MC codes that doesn’t satisfy detailed balance, because instead of picking a random monomer to pivot it iterates through the entire chain sequentially. While this slightly improves the performance (largely thanks to better use of the cache), it does not introduce any important algorithmic difference and is ignored in the following discussion.

Before getting to the actual algorithm, first a note on the size of floats. The version of the Cell/BE in the PS3 does poorly in double-precision, so I used single-precision floats throughout. Comparisons were made between runs of two identical Fortran codes (identical except for precision). They showed that the single-precision program was stable for the problem sets used in all the tests, and even though the final results were less accurate for an equal number of steps, the difference was small and could be made up for with only a slightly longer run.

1However, it is physically incorrect to have a system that is not electroneutral, so the program will not yield scientifically meaningful results.
Consider the polymers new and current partitioned as follows:

Figure 2: Diagram of current and trial polymers undergoing a pivot move.

In the basic MC algorithm pseudo-code given in Appendix A, program 1, loop L1 iterates over part A (the fixed part) and L2 over part B (the moved part). Note that both new and current polymers with the same partitions, part A (including pivot) is identical for both polymers, and only part B is different for each polymer.

The nested loops L1 and L2 yield a computation matrix like so:

\[
M = \begin{bmatrix}
delta E(0, \text{pivot } + 1) & \cdots & \delta E(\text{pivot}, \text{pivot } + 1) \\
\vdots & \ddots & \vdots \\
delta E(0, Nm - 1) & \cdots & \delta E(\text{pivot}, Nm - 1)
\end{bmatrix}
\] (5)

The final result is a sum over all the elements in this matrix. Any parallelization scheme will involve partitioning this matrix and distributing the parts among the SPEs. The dimensions of \(M \) vary according to the pivot location.

3.1 Single-PS3 parallelism

3.1.1 Inverse square root only

One of the goals of this project was to see if a simple library could be made that would allow existing Fortran codes to use the SPEs. Profiling showed that up to 70% of runtime was spent doing the inverse square root operations. From Amdahl’s Law, parallelizing and SIMDizing just this operation could give a speed-up of
\[
\text{Speedup}_{\text{max}} = 1 / \left(\frac{P_{\text{parallel}}}{\text{num}_{\text{SPE}} \times \text{num}_{\text{SIMD}}} + P_{\text{serial}} \right) = 3.039
\]

\(P_{\text{parallel}} = 0.7 \) is the parallelizable fraction of the program, \(\text{num}_{\text{SPE}} = 6 \) is the number of available SPE processors, and \(\text{num}_{\text{SIMD}} = 4 \) is the length of the vector registers. \(\text{Speedup}_{\text{max}} \) is therefore the speedup relative to the most naive implementation possible.

The code was relatively unchanged from Program 1 and the focus was on usability. The target audience was chemists using available Fortran codes whose primary interest is not multi-core programming. At the time, the support for Cell/BE in Fortran was very poor, so we designed a library written in C that Fortran users could use to access the SPE functionality when calculating inverse square roots.

As shown in Figure 3, after an experienced coder makes the library, all a user would need to do is to recompile their old Fortran codes with it and the SPEs will handle the inverse square root calls. This type of functionality could be extended to other common operations in other applications, although we’ll see that this may not be a very fruitful endeavor.
The program executes as shown in figure 4. At the start of the program, a library function is called that initializes the SPEs, telling them the location of the data. The SPEs allocate memory and halt until a mailbox message from the PPE gives them an offset and an array length. In the meantime, the PPE runs the MC code as usual. In the MC evaluation step, a large array is assembled that contains the squared distances of the monomers in part A from those in part B in the diagram. In other words, the coordinates required to calculate the elements of M are assembled by the PPU and stored in a linear array.

The SPEs each take a part of this array and perform a loop in which a chunk is transferred by DMA and the inverse square-root operation is done on each of the chunk elements, returning the results to an array in main memory via a second DMA call. In order to minimize the effect of the transfer times of the DMA’s, a double-buffered scheme was used where calculations on a chunk could be overlapped with the communication of the next. When the final return DMA is finished, the SPE posts a message to its outgoing mailbox, informing the PPE.

The performance of this scheme will be discussed in Section 4.
3.1.2 Entire MC evaluate step

Profiling showed that even for small problems \((N_{\text{mon}} < 200)\), up to \(P_{\text{parallel}} = 90\%\) of runtime was spent in the MC evaluate step. For perfect efficiency, we could expect a speedup of about

\[
\text{Speedup}_{\text{max}} = 1/(\frac{P_{\text{parallel}}}{\text{num}_{\text{SPE}} \times \text{num}_{\text{SIMD}}} + P_{\text{serial}}) = 7.27
\]

Since the evaluate step is the only part of the program that grows in size faster than \(O(N_{\text{mon}})\), \(P_{\text{parallel}}\) (and hence speedup) increases dramatically for larger problems. Parallelizing the evaluation step can therefore yield excellent results.

The MC evaluate step was parallelized in two ways. First, I split the problem into strips, which worked well at polymer sizes less than about 900, above which the SPU local store would be oversaturated. This was implemented similarly as above, as a C library function that can be called from an existing Fortran program.

Second, I wrote a completely new program in C, using a more complicated blocking scheme that allowed any problem size as well as more control over the way data was passed. Partly this was to control how the arrays were allocated, and partly to prepare for the final version which implements the Wang-Landau algorithm and would allow for a multiple-PS3 system. In this section, I’ll explain the reasoning behind the design of both of these schemes.

When working with a parallel program, the data structure is very important. While it is intuitive to allocate a 3-d polymer chain as an array of monomers in a so-called Array-of-Structs fashion, this is not the most efficient strategy. While operations such as moving a monomer can be done in a single SIMD operation, efficiency is lost because this takes up only three elements in the 4-way vector register and tasks like calculating the distance between two monomers cannot be parallelized. Instead, I employed Struct-of-Arrays form, in which each dimension \(x, y, \) and \(z\) are allocated to separate arrays. In this way, calculations can be done on four monomers at a time.

Consider again the polymers \textbf{new} and \textbf{current} in Figure 2. When splitting the problem into strips, the PPU partitions part A and each SPU gets all of part B at once, cutting matrix \(M\) into vertical ribbons. This is technically much easier than splitting part B because part A can be allocated with alignment and this simplifies the code required to DMA the data. Part B begins at a random monomer, and splitting it up involves a lot of error-prone bookkeeping code that I wanted to avoid. This simpler and easier code could then serve as a proof of principle for problems up to a certain size. The size of the system that can be run in this
program is limited by the fact that all of part B must fit in the SPU local store at once, and in practice this ended up being a length of about 2000 monomers and zero counter-ions. Although this could be improved with smarter memory management, something better is needed to work with large systems.

When splitting the problem into blocks, the PPU partitions part A in the same way, but each SPU gets only a section of part B at a time. As the name suggests, M is partitioned into blocks. Each SPU treats one block at a time, moving down their assigned strip. Since the problem can be split into an arbitrary number of blocks, the SPU local store no longer limits the system size.

![Diagram 5: Execution flow diagram for the “entire MC evaluation” scheme](image)

At first glance, the execution diagram 5 looks very similar to diagram 4 above. The key difference is that the results are returned with only one mailbox message instead of one DMA call per chunk. The two segments of pseudo-code that follow give a more detailed description of the PPU and SPU programs.

The PPE program for the striping and blocking schemes (see Program 2 in Appendix A) looks like a very straightforward MC code. It contains the coordinates of the polymer chains and performs the MC move. When a move is evaluated, the problem is partitioned and scattered to the SPEs. This one PPE program design works for both the striping and the blocking schemes because the SPEs are to do identical parts of the problem regardless. A key difference between this program and the first PPE program is that the SPEs return their results with a mailbox.
message instead of an entire DMA transfer.

The pseudocode for the SPE program for the blocking scheme is presented in Program 3. I only present the pseudocode for the blocking scheme because the striping scheme is only a small algorithmic variation. The more important difference is that the striping scheme was implemented as a C library for an existing Fortran program, while the blocking scheme was a new program written entirely in C.

The lines marked with ! represent quite a lot of code. Extensive bookkeeping is required to ensure correct data alignment, and this turned out to be the greatest challenge in this project. A call to `mfc_get()`, to initialize a DMA transfer, takes an quadword-aligned destination address, a quadword-aligned source address, a quadword-aligned transfer size, and an MFC tag. The blocking scheme requires 12 aligned data buffers: 3 (x,y,z dimensions) * 2 (polymer part A and part B) * 2 (double-buffering). Half of the buffers are for data that comes in unaligned, which requires a little padding on the sides, and I have to make sure that I don’t include the padding in the calculations. I spent considerable time ensuring that the DMA transfers and the loop indexing were consistent, but at the time of this writing there is still a lingering bug in the system. This bug manifests itself as an inaccurate δE for certain pivot locations, and is bad enough to prevent the convergence of the algorithm.

A rigorous method for producing correct DMA calls and associated loop indexing is desirable. I made an attempt using extensive diagrams and tracing the execution by hand, but since the bug remains this attempt was clearly insufficient.

3.2 Multi-computing

The parallel Wang-Landau algorithm works on a server-client model. The server is passive and only responds to requests from clients. A client is a processor that runs the Wang-Landau algorithm on a problem, probably after getting the problem specification from the server. Periodically, each client contacts the server, which updates the penalty histogram U^* using that of the client before returning the updated U^* back to the client. [4]

A technical problem of the WLMC method is that if the penalty is too large then p^* never becomes flat, but if the penalty is very small then the simulation progresses only slowly. This problem can be avoided by starting with a large dU^* and periodically cutting it (and thus the penalty) in half as the simulation progresses. In a parallel WLMC method, the server checks for the convergence
of p^* and cuts dU^* when a threshold flatness is reached. The updated dU^* is communicated to each client as they check in and update their U^* histograms.

The parallel WLMC method is difficult to understand on an intuitive level, but is relatively straight-forward to program. Since data is shared only occasionally, homogeneity among the clients is totally optional, and a parallel processing framework like MPI is not necessary. Luke Czapla provided an example code that uses TCP/IP sockets for communication. Given a common protocol and an accessible server, a PS3 cluster could work together with, for example, a Beowulf cluster and a home desktop computer without difficulty. Pseudocode for the PPE program for the client and the server are given in Appendix A Programs 4 and 5.
4 Results

When characterizing the performance of parallel programs, there is often a tendency to rely on theoretical measures like speed-up and parallel efficiency. These measures are hard for non-computer scientists to relate to and often don’t carry over to other studies. In order to keep the results general and intelligible to the physical chemists who might use programs like these, a natural performance measure is the number of monomer-monomer interactions per second. As discussed in Section 3, the size of the problem grows with the number of such interaction. The faster these interactions are computed, the faster a program can converge.

While the maximum chain length in Figure 6 is 2000 monomers, some programs were run all the way to 9600. These data are not included in the graph because performance flattens out and remains roughly constant above 2000 monomers for the blocking codes. All the other programs saturate the SPE local store and cannot even run on problems with over 2000 monomers or (in the case of the x86 and PPU programs) are too slow for such problems to be practical.
In order to get a fair measure of the performance of the programs, we compared with an x86 machine running a highly optimized sequential (but SIMDized) code with the original (non-Wang-Landau) algorithm on an identical input set. The machine has an 1.86 GHz Intel Xeon 5120 Dual Core with the SSE3 vector engine, 4 MB cache, and 1 GB of RAM. We also ran a code with a more naive inverse-square root implementation which did not use SSE3, the performance of which is labeled “unoptimized” in the figure. Aggressive optimization combined with vector computations yielded over 10x improvement over the naive program.

<table>
<thead>
<tr>
<th>Program</th>
<th>Interactions/sec</th>
<th>Relative Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>x86 (optimized)</td>
<td>52543867</td>
<td>1</td>
</tr>
<tr>
<td>x86 (unoptimized)</td>
<td>7725637</td>
<td>0.147</td>
</tr>
<tr>
<td>Inverse-sqrt only</td>
<td>5152607</td>
<td>0.098</td>
</tr>
<tr>
<td>Striped (fully optimized)</td>
<td>96728482</td>
<td>1.841</td>
</tr>
<tr>
<td>Blocking (512)</td>
<td>338907190</td>
<td>6.450</td>
</tr>
</tbody>
</table>

Table 1 gives some of the key performance results at $N_{mon} = 400$. At this relatively small problem size, the poor performance of the unoptimized x86 code and the inverse square-root only code are highlighted, and the success of the blocking scheme is already clear.

4.1 Single-PS3 parallelism

4.1.1 Inverse square root only

While the usability of a tidy little inverse-square-root library would be excellent, this approach was quickly dropped because it was clear that performance was abominable and would never improve to the point of actually being useful. The SPE-enabled version barely broke even with the original PPE-only program.

Performance analysis showed that gains from parallelism at small N_{mon} were offset by the extra computational overhead incurred when splitting the problem. At higher N_{mon}, while the inverse square root itself was done efficiently but the rest of the evaluate step quickly dominated compute time, a clear consequence of Amdahl’s Law. On the other hand, double-buffering with sufficiently small chunks proved very successful at limiting the time spent waiting on MFC operations, and the SPEs spent an insignificant time waiting on communication.
4.1.2 Entire evaluate step

The initial results from the hybrid Fortran/C program with a striped parallelization scheme were promising. While the optimized x86 program outperforms the Cell for the smallest problem sizes, for any reasonable problem it is clearly inferior. Compiler optimization flags proved essential to achieve good results on the x86, so an attempt was made to determine how much the compilers could improve on the Cell code. The “fully optimized” program corresponds to the best combination of compiler flags on the SPU, PPU, and Fortran programs, while the “partly optimized” uses the defaults (i.e. -O3). The performance difference was 12% at $N_{mon} = 400$, a significant improvement but not comparable to using a better algorithm.

One surprising result is that the blocking scheme substantially outperforms the striping scheme if it uses sufficiently large blocks. There is more bookkeeping code in the blocking scheme, and profiling showed that the communication time in both codes is negligible thanks to double-buffering. In both cases, the same compilers were used with the same optimization flags. It is possible that the difference in performance is caused by better access patterns in the SPU’s memory (e.g. fewer accesses or more contiguous regions), but this hypothesis has yet to be tested.

Not shown in the figure is the performance of the blocking scheme with a block size of 256 bytes, which is virtually identical to the performance with 512 byte blocks. Profiling showed that the time spent in the bookkeeping code is the main reason that the smallest block size was so slow, but it is unclear why there was no additional improvement going to the largest block size. Sizes above 512 bytes did not run successfully, probably because of the memory constraints due to the small local store.

4.2 Multi-computing

The results of the multiple-PS3 program are purely theoretical because the code has bugs in it (see Section 3.2). However, work by Khan et al. [4] and unpublished work by Luke Czapla and John Grime (manuscript in preparation) gives assurance that the scheme is solid. Parallel efficiency is almost perfect for the systems they have worked with, and given the light communication burden required, none of the PlayStation 3’s weaknesses are expected to come into play.

The PS3 suffers from two main weaknesses with regard to cluster computing – high communication latency due to the hypervisor and only 256 MB of main memory. This latter constraint is going to be the bigger problem for scaling up and using
a PS3 cluster. The communication frequency is so low that a long delay waiting for the server to respond will barely register in the performance. However, once a problem reaches a size such that it cannot be contained in RAM, the PS3 is no longer a viable platform. Fortunately, this problem size is in the hundreds of thousands of particles, which is well beyond the scope of this project.

One potential threat to good convergence rates is that the U^* histogram is only updated periodically. Between updates, the histogram becomes progressively outdated and the client is unaware of the progress of its peers and will therefore work less efficiently. This problem can be minimized by increasing the rate at which clients contact the server, but only up to the point where the server or interconnect becomes saturated. In practice, it seems like a communication period of up to five seconds doesn’t harm performance, which means the server and the interconnect can easily support a large number of clients.

Experiments with a parallel WLMC code on the Isis computer at UPPMAX yielded the results in Figure 7. We look at wall time required to reach an accurate solution here because of course 10 processors will do 10 times the number of interactions, but the problem mentioned above could be expected to harm the convergence rate. The figure shows that this is not the case and performance is close to ideal.

![Figure 7: Real runtime of parallel WLMC with varying number of processor cores compared to ideal speedup](image)

Figure 7: Real runtime of parallel WLMC with varying number of processor cores compared to ideal speedup
5 Conclusions

In this section, I will add some final thoughts and discuss the potential for future work. While some technical challenges remain to be solved and only one application was considered, the results are general enough to form the basis of some broader conclusions regarding molecular simulations with electrostatics on the PlayStation 3.

There is always a tradeoff to be made between usability and technical constraints. The first attempt to create a library to accelerate the inverse-square root operation in existing Fortran programs was by far the most attractive from the users’ standpoint. With no need for additional programming, the most onerous computational task would be speeded up by a factor of 6 compared to a SIMDized sequential program. It sounds good, but Amdahl’s Law combined with the computational overhead from parallelization and the slow PPU yielded a solution that was much slower than even an unSIMDized x86 program. The goals of this implementation were to check whether the computational overhead could be made small enough to earn a small benefit and to learn how to code for the Cell, and these goals were surely met despite the negative result.

The second attempt was more encouraging. The evaluation step for an MC code is application-specific so a scientist would have to write SPE-enabled C code to use a PS3, but related applications will have very similar evaluation steps. It is conceivable that a family of PS3-specific MC evaluation routines could serve a research group’s needs for quite some time, or that a scientist with a little C and Cell experience could modify existing codes to address new simulations. However, writing and debugging Cell code can challenge even a seasoned C programmer, so until and unless the programming environment improves this solution is not ideal.

While the speed and scale of the third program was by far the best, this result is diminished by a bug that remains unsolved. The mire of bit-shifting and sleights-of-hand required to DMA, align, and iterate over a dozen buffers proved to be a substantial obstacle that really held up progress. If a way could be found to alleviate this burden on the programmer, it would be well worth further investigation.

The final level of parallelization involving a cluster of PlayStation 3 machines was in the end only subject to a theoretical investigation in this project. Other work has shown that this is a promising idea and plays to the PS3’s strengths. The PS3 systems are a relatively cheap computational resource and the single-PS3 programs show that it is possible to use that resource quite efficiently.

Given more time, it would be interesting first to write a working version of the multi-PS3 code with a blocking scheme, and then to extend the program to treat
scientifically interesting problems. This is not a trivial task, as two additional MC moves would have to be introduced to deal with the counter-ions – translation and clothed pivot. The current model also ignores bond energy, a problem which grows only linearly with PE length and is therefore a relatively light computation but is physically important.

The Sony PlayStation 3 is an exciting platform to work with, with a very different character from other machines. It is well-suited for Monte Carlo simulations of molecular systems involving electrostatics, although the path to a good implementation is difficult. The parallel Wang-Landau method has especially good chances of utilizing the strengths of the PS3 as a tool for scientific computing without suffering from its weaknesses.
A Program Codes

Program 1 Basic polyelectrolyte MC program (pseudocode)

function main():
 currentPoly = initialize()

 while (! done)
 pivot = randint(0,Nm-1)
 newPoly = move(currentPoly, pivot)
 if (evaluate(currentPoly, newPoly, pivot))
 currentPoly = newPoly
 end

function evaluate(current, new, pivot):
 deltaE=0

 for i=1:pivot (L1)
 for j=pivot+1:end (L2)
 temp[ind] = (current.x[i]-current.x[j])^2 +
 (current.y[i]-current.y[j])^2 +
 (current.z[i]-current.z[j])^2
 end
 end
 oldE = inv_sqrt(temp)

 for i=1:pivot (L1)
 for j=pivot+1:end (L2)
 temp[ind] = (current.x[i]-new.x[j])^2 +
 (current.y[i]-new.y[j])^2 +
 (current.z[i]-new.z[j])^2
 end
 end
 newE = inv_sqrt(temp)

 for i=1:ind
 deltaE += newE - oldE
 end

 if delta<0 || rand < exp(-delta*BETA)
 return TRUE
 else
 return FALSE
 end
Program 2 PPE program for striping and blocking schemes (pseudocode)

```plaintext
function main():
    currentPoly = initialize()

    while ( ! done )
        pivot = randint(0,Nm-1)
        newPoly = move(currentPoly, pivot)
        if ( evaluate(currentPoly, newPoly, pivot) )
            currentPoly = newPoly
    end

function evaluate(current, new, pivot):
    // split work into parts, send to SPEs
    start = 0
    spes_left = num_spes
    for ( i=0; i<num_spes; i++)
        end = start + (pivot-start)/spes_left
        mailbox_send( spe[i], start, end )
        start = end + 1
        spes_left -= 1
    end

    delta=0

    // wait for SPEs
    for( i=0; i<num_spes; i++)
        delta += mailbox_wait( spe[i] )
    end

    if delta<0 || rand < exp(-delta*BETA)
        return TRUE
    else
        return FALSE
```

28
Program 3 SPE program for blocking scheme (pseudocode)

function main():
 while(! done)
 delta = 0
 work = wait_for_work()

 ! DMA first fixed block
 ! DMA first moved block of current poly

 for i=0:numfixedblocks
 ! begin DMAing next fixed block
 for j=0:nummovedblocks / 4
 ! begin DMAing next moved block of new poly

 // calculate vector oldE
 temp = (fixed.x[i]-moved.x[j])^2 +
 (fixed.y[i]-moved.y[j])^2 +
 (fixed.z[i]-moved.z[j])^2
 oldE = inv_sqrt(temp)

 ! wait for DMA to complete
 ! begin DMAing next moved block of current poly

 // calculate vector newE
 temp = (fixed.x[i]-moved.x[j])^2 +
 (fixed.y[i]-moved.y[j])^2 +
 (fixed.z[i]-moved.z[j])^2
 newE = inv_sqrt(temp)

 for k=1:4
 delta += newE[k] - oldE[k]
 end
 end
 end
 end
 mail_to_PPU(delta)
end
Program 4 PPE program for WLMC client (pseudocode)

function main():
 currentPoly = initialize()

 getInitialParametersFromServer()
 while (! done)
 for(i=0; i<comm_interval; i++)
 pivot = randint(0,Nm-1)
 newPoly = rotate(currentPoly, pivot)
 if (evaluate(currentPoly, newPoly, Ustar))
 currentPoly = newPoly
 end
 end

function evaluate(current, new, Ustar):
 delta=0

 // split work into parts, send to SPEs
 start = 0
 spes_left = num_spes
 for (i=0; i<num_spes; i++)
 end = start + (pivot-start)/spes_left
 mailbox_send(spe[i], start, end)
 start = end + 1
 spes_left -= 1
 end

 delta = 0

 // wait for SPEs
 for(i=0; i<num_spes; i++)
 delta += mailbox_wait(spe[i])
 end

 delta += getPenalty(current, new, Ustar)

 if delta<0 || rand < exp(-delta*BETA)
 Ree = getEndToEndDistance(new)
 updateUstar(Ustar, Ree)
 return TRUE
 else
 Ree = getEndToEndDistance(0,current)
 updateUstar(Ustar, Ree)
 return FALSE
 end

function getPenalty(polymer, Ustar, dUstar)
 Ree = getEndToEndDistance(polymer)
 penalty = dUstar*Ustar[getBin(Ree)]
 return penalty
Program 5 PPE program for WLMC server (pseudocode)

function main():
 do
 request = wait_for_client_connection()
 if request == "updateUstar" then
 newUstar = socket_read()
 for i=1:numbins
 myUstar[i] += newUstar[i]
 end
 if getPstarError < threshold then
 dUstar = dUstar/2
 socket_send(myUstar, dUstar)
 elseif request == "requestParameters" then
 randomSeed = newSeed()
 socket_send(initParams, myUstar, randomSeed)
 while(! done)
References

