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Abstract

This thesis discusses the numerical approximation of flow problems, in particular the large eddy
simulation of turbulent flow and the simulation of laminar immiscible two-phase flow. The com-
putations for both applications are performed with a coupled solution approach of the Navier–
Stokes equations discretized with the finite element method.
Firstly, a new implementation strategy for large eddy simulation of turbulent flow is discussed. The
approach is based on the variational multiscale method, where scale ranges are separated by vari-
ational projection. The method uses a standard Navier–Stokes model for representing the coarser
of the resolved scales, and adds a subgrid viscosity model to the smaller of the resolved scales.
The scale separation within the space of resolved scales is implemented in a purely algebraic way
based on a plain aggregation algebraic multigrid restriction operator. A Fourier analysis underlines
the importance of projective scale separations and that the proposed model does not affect consis-
tency of the numerical scheme. Numerical examples show that the method provides better results
than other state-of-the-art methods for computations at low resolutions.
Secondly, a method for modeling laminar two-phase flow problems in the vicinity of contact lines
is proposed. This formulation combines the advantages of a level set model and of a phase field
model: Motion of contact lines and imposition of contact angles are handled like for a phase field
method, but the computational costs are similar to the ones of a level set implementation. The
model is realized by formulating the Cahn–Hilliard equation as an extension of a level set model.
The phase-field specific terms are only active in the vicinity of contact lines. Moreover, various as-
pects of a conservative level set method discretized with finite elements regarding the accuracy of
force balance and prediction in jump of pressure between the inside and outside of a circular bub-
ble are tested systematically. It is observed that the errors in velocity are mostly due to inaccura-
cies in curvature evaluation, whereas the errors in pressure prediction mainly come from the finite
width of the interface. The error in both velocity and pressure decreases with increasing number
of mesh points.
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1. Introduction

The numerical simulation of fluid dynamics is one of the main fields in compu-
tational mathematics. Simulation is today both an alternative and a complement
to experiments in many engineering disciplines as it helps in predicting the be-
havior of fluids. Moreover, simulation permits to systematically improve the de-
sign and material properties of products by means of optimization algorithms.
Such a procedure would be tremendously expensive if it had to be done by pro-
totyping and other experimental means. Simulation is thus a tools that renders
technical processes more effective.

One interesting area of research in fluid dynamics is the behavior of turbulent
incompressible flow. Turbulent flows often occur in engineering applications,
for example, in the air flow around a vehicle, the water flow in turbines of hy-
droelectric power plants as well as in water networks and oil pipelines with high
throughput. For instance, relevant issues are the determination and the control
of aerodynamic drag as well as efficiency of engines.

Another area of active research is multiphase flow, a setting that involves two
or more different fluids. There is a wide range of applications that involve multi-
ple fluids and where numerical simulation is extensively used. An exceptionally
challenging problem is computational combustion, where different fluids and
flame fronts need to be represented. Often, the flows occurring in combustion
are turbulent. But there are also a lot of multi-phase settings where the flow field
is laminar and thus more regular. One such application is intravenous therapy in
medicine. The objective of numerical simulations is to understand how bubbles
consisting of oleaginous substances are transported and resolved in the circu-
lation of blood. These processes are often strongly driven by surface tension, a
force that strives after keeping different fluids separated. A similar application is
the modeling of the absorption of air in the blood circulation in human lungs.

Multiphase flow is a phenomenon that is particularly relevant also in subsur-
face flow. In this area, it is often assumed that the individual fluids are well-
separated, that is, the fluids do not mix and there are no additional particles
resolved in the fluids. This thesis contributes to the simulation of such lami-
nar well-separated two-phase flows. For subsurface flows, an additional diffi-
culty arises, namely the interaction of systems consisting of different fluids with
solids, called capillarity. This interaction takes place on so-called contact lines,
locations where the interface (separating two fluids) meets a solid. The prop-
erties of the solid and the composition of the fluid give rise to a phenomenon
called wetting, indicating which fluid preferably is in contact with the solid. Ap-
plications of this kind are the modeling of groundwater basins and oil extraction
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from subsurface reservoirs driven by water injection. The pores of rock where
the fluid moves are often of the order of a few millimeters or less, whereas the
actual simulation region can extend over thousands of square kilometers. In or-
der to tackle problems with such an enormously wide range of scales, simplifica-
tions need to be applied. One example is to perform small-scale flow simulations
with detailed rock structures in order to determine the permeability of various
stone configurations. Such effective parameters are then used as input to a large
scale simulation, usually based on Darcy’s law [17]. Other applications of multi-
ple fluids in contact with solids are found in industrial processes like sintering,
where mixtures of different fluids and their solidification are tracked; lab-on-a-
chip processes, which form the basic component for microsystem design in the
biomedical industry; and inkjet printing.

This thesis consists of five chapters. First, we discuss the equations that de-
scribe the flow of individual fluids, the Navier–Stokes equations. Next, an intro-
duction to turbulence is given, which is followed by a presentation of numerical
models for the simulation of laminar two-phase flow. Chapter 5 gives a short
summary of the papers included in this thesis, and Chapter 6 identifies possible
directions of future research.
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2. Numerical Methods for the
Navier–Stokes Equations

The motion of fluids at low and medium velocities in a connected computa-
tional domainΩ⊂Rd (spatial dimension d = 2,3) is given by the incompressible
Navier–Stokes equations [35], [62], [73],

ρ (ut +u ·∇u)−∇· (2µε(u)
)+∇p = ρf, (2.1)

∇·u = 0. (2.2)

The vector u denotes the d components of fluid velocity and p denotes the fluid’s
(dynamic) pressure. The rank-2 tensor ε(u) = 1

2

(∇u+ (∇u)T
)

represents the vis-
cous stress tensor for a Newtonian fluid. The fluid density is denoted by ρ, and
the fluid’s (dynamic) viscosity by µ. In single-phase fluids, density is constant
due to the incompressibility assumption. The term f specifies external forces act-
ing on the fluid.

The system of Navier–Stokes equations (2.1)–(2.2) is completed by a diver-
gence-free initial velocity field,

u(·,0) = u0, with ∇·u0 = 0, (2.3)

and application-specific boundary conditions (cf. Gresho and Sani [32] for a dis-
cussion of various possibilities). In this thesis, we consider flow subject to no-slip
boundary conditions

u = 0 on Γg ⊂ ∂Ω, (2.4)

and natural (inflow/outflow) boundary conditions

n ·ε(u)+pn = h on Γh ⊂ ∂Ω, (2.5)

where n denotes the unit outer normal on the domain boundary Γh and h is
some external traction boundary force. The boundary subdomains Γg and Γh

are assumed to be non-overlapping and to span the whole boundary ∂Ω.
For the numerical approximation of the equations of fluid flows, there are var-

ious methods available. The most popular ones are the finite volume method,
the finite difference method, and the finite element method. A comparative in-
troduction of these methods can be found in Quartapelle [74].

The algorithms developed in this thesis are based on the finite element
method (FEM). There is a vast literature discussing various aspects of the
finite element discretization of system (2.1)–(2.2). Mathematical aspects are

3



discussed, e.g., in Glowinski [28] and Gunzburger [35]. The book by Gresho
and Sani [32] focuses on practical issues for implementation such as boundary
conditions, discretization schemes, and stabilization. The work by Elman,
Silvester & Wathen [23] and Turek [88] put special emphasis on algorithmic
matters like efficient numerical linear algebra for the flow equations.

2.1 Weak form and spatial discretization
The Navier–Stokes equations (2.1)–(2.2) depend on both space and time. Most
discretization approaches split the approximation into separate approximations
for spatial and temporal part.

For setting up the spatial FE approximation, the first step is to rewrite the sys-
tem of equations (2.1)–(2.2) in variational form. To this end, we define the space
of admissible velocity solutions at a certain time instant by Vu = {

u ∈ H 1(Ω);u =
0 on Γw

}
, and the space of admissible pressure solutions by Vp = L2(Ω). The vari-

ational problem corresponding to (2.1)–(2.2) is to find, at each instant in time, a
pair

(
u(·, t ), p(·, t )

) ∈ Vu ×Vp such that(
v,ρ (ut +u ·∇u)

)
Ω+ (

ε(v),µε(u)
)
Ω− (∇·v, p

)
Ω− (

q,∇·u
)
Ω = (

v, f
)
Ω+ (

v,h
)
Γh
(2.6)

holds for all test functions
(
v, q

) ∈ Vu ×Vp . The form
(·, ·)Ω denotes the standard

L2 inner product.
The spatial discretization of system (2.6) replaces the (infinite-dimensional)

solution function spaces Vu and Vp by finite-dimensional subspaces V h
u and V h

p .
Then, only the projection of the Navier–Stokes equations onto finite dimensional
test function spaces V h

u × V h
p is considered, resulting in numerical approxima-

tions uh and ph . The discretizations considered in this thesis use a decompo-
sition of the computational domain into small subsets of characteristic size h,
called elements. We mainly focus on quadrilateral elements in 2D and hexahe-
dral (brick) elements in 3D. The basis functions that span Vu and Vp are chosen to
be piecewise polynomials within the elements, and continuous over the whole
domain Ω. For the representation of the velocity u, equally shaped basis func-
tions are used for each spatial component. For instance, we will denote a finite
element approximation with quadratic basis functions for velocity and linear ba-
sis functions for pressure on the elements by Qd

2 Q1. On each element, the basis
functions for u are defined as a tensor product of Lagrangian interpolation poly-
nomials of degree two in each coordinate direction [43], and the pressure basis
functions as tensor product of linear Lagrangian interpolants. Globally, the ba-
sis functions are nonzero in exactly one node, and zero on all the others. The
support of the basis functions is confined to a patch of elements around the re-
spective nodes.
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2.2 Stability of spatial discretization
For the spatial discretization to be stable, a compatibility condition between the
approximation of velocity and pressure must be satisfied, namely

inf
q∈V h

p

sup
v∈V h

u

(
q,∇·v

)
Ω∥∥q

∥∥
L2

∥∥v
∥∥

H 1

≥β> 0, (2.7)

where the constantβdoes not depend on the mesh size parameter h. This condi-
tion was independently derived by Ladyzhenskaya [58], Babuška [4], and Brezzi
[12] and is called LBB condition or inf–sup condition. The condition ensures that
the divergence matrix discretizing the term

(
q,∇·u

)
Ω is of full rank, and hence

the discretized system has a unique solution for velocity and pressure.
The element combination Qd

2 Q1, the so-called Taylor–Hood element pair, sat-
isfies the LBB condition [82], whereas the element combination Qd

1 Q1 does not.
We refer to Donea & Huerta [18] and Gresho & Sani [32] for an extensive dis-
cussion of LBB-stable elements. However, an element pair that does not sat-
isfy the LBB condition (2.7) can yet be modified so that stability of discretiza-
tion is obtained. Papers I and II investigate flow problems with the element pair
Qd

1 Q1. For stabilization, an artificial diffusion on the pressure space is intro-
duced in a systematic way, so that consistency is preserved. This approach [38],
[45], [84] modifies the test functions in the discrete variational form (2.6), re-
sulting in a Petrov–Galerkin type scheme. Similar stabilization approaches have
been developed to avoid unphysical oscillations in velocity that otherwise ap-
pear in convection-dominated regimes for the standard central difference ap-
proximations introduced by the Galerkin FEM [18], [31], [32]. We refer to Braack
et al. [10] for a review of various commonly used stabilization techniques.

2.3 Time discretization
For discretization in time, it is usual to use some standard procedure developed
for ordinary differential equations and differential–algebraic equations, see
Donea & Huerta [18] and Hairer et al. [36], [37] for derivation and analysis of
numerical schemes. For schemes that treat both convection and diffusion
explicitly, linear stability theory sets a restrictive limit on the time step ∆t in
terms of the spatial mesh size ∆x, namely

∆tmax ∝ ∆x

‖u‖∞
+ ρ∆x2

µ
,

see, e.g., the discussion in [52]. For applications where the viscosity is not too
small compared to the velocity, (semi-)implicit time stepping schemes are often
preferred in order to avoid the diffusive stability constraint. Popular schemes
are variants of the one-step theta method [51] and the BDF-2 method. For a
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coupled solution approach, stability requires implicit time discretization of the
(differential–algebraic) terms

(∇·v, p
)
Ω and

(
q,∇·u

)
Ω. These terms enforce the

divergence-free condition on the velocity in Lagrangian multiplier form, see,
e.g., Gunzburger [35] and Lions [62].

Harlow and Welch [39] proposed to implement time propagation of
theNavier–Stokes equations by fractional time stepping strategy, and which was
then recast as a projection scheme by Chorin [15] and Temam [83]. This concept
has been mathematically justified for the finite element method by Guermond
and Quartapelle [33], [34]. Projection schemes first advance velocities subject
to the momentum equation with pressure extrapolated from the old time step.
The resulting velocity is in general not divergence-free, so a pressure Poisson
equation is solved with forcing given by the divergence of the medium-step
velocity in a second step, in order to correct the velocity. Projection schemes
are to date the most popular variant for the numerical approximation of the
Navier–Stokes equations [74]. The subsystems resulting from fractional time
stepping are of easier structure than the original saddle-point system. However,
each of the subproblems needs to be equipped with suitable boundary
conditions for well-posedness, which are usually not the physical ones. This can
yield a non-consistent approximation close to the boundary. We refer to Gresho
& Sani [32] and Quartapelle [74] for discussion, and to the articles [13] and [52]
for recent developments.

The work presented in this thesis applies an alternative approach where the
system remains coupled. Coupled schemes solve for pressure and velocity as
one algebraic system, with boundary conditions set according to physical rea-
soning. However, the algebraic system is in general more challenging because of
its saddle point nature, and puts high demands on numerical linear algebra.

2.4 Numerical linear algebra for coupled discretizations
The introduction of spatial and temporal discretization schemes for the
Navier–Stokes system (2.6) results in a nonlinear system to be solved. For
resolving the non-linearity, fixed point methods or Newton-type iterations are
usually applied, finally yielding a system of linear equations. The Lagrangian
basis functions are localized, so the final coefficient matrix is sparse. For the
solution of the saddle-point Navier–Stokes system, different techniques have
been proposed. Efficient schemes employ multigrid methods with suitably
defined smoothing schemes (see Trottenberg, Oosterlee & Schüller [85] and
John [48]), or use preconditioners based on the Schur complement of the block
2 × 2 matrix system defined by velocity and pressure matrices (cf. [55], [53],
[22], see also the books by Turek [88] and Elman, Silvester & Wathen [23]).
Papers I and II use an algebraic multigrid scheme for the coupled system, and
the numerical method used in Papers III and IV is based on a preconditioner
constructed from a Schur complement.

6



3. Computational methods for
turbulence

This chapter discusses basics of the simulation of turbulent flow for a single-
phase fluid, which is the context of Papers I and II. The modeling equations
are the Navier–Stokes equations (2.1)–(2.2), where the viscous stresses are small
compared to the inertial stresses. The ratio between inertial and viscous stresses
is measured by the so-called Reynolds number,

Re = ρlu

µ
, (3.1)

where l is a reference length and u a reference velocity. A situation where inertial
stresses dominate is characterized by high Reynolds numbers.

3.1 Basics on turbulence and large eddy simulation
A physical characterization of flow is to distinguish vortex structures by their
size relative to the flow domain. A flow field consists of vortices of different size.
These vortices are instationary and fluctuating — a phenomenon called turbu-
lence. Fig. 3.1 depicts a typical pressure field in a turbulent flow. Vortex structures
of different sizes as well as the irregular pattern of the flow can clearly be seen.

For flow at high Reynolds numbers, instabilities lead to a breakup of larger
structures into smaller ones. This induces an energy transport from larger scales
to smaller scales. The breakup process continues to create smaller and smaller
structures until the scale is sufficiently small for viscous dissipation to become
dominant, see Dubois et al. [19], Pope [73], and Sagaut [77]. In the Navier–Stokes
equations, the interaction between different scales is driven by the nonlinear
convective term u ·∇u.

The transfer of energy that takes place in the model of fluid motion is schemat-
ically depicted as a Kolmogorov scale spectrum in Figure 3.2. The diagram shows
the region of active scales in a flow, ranging from the energy-containing scales l0

(scale range of external forcing f and h) to the regime where viscosity becomes
dominant at a scale level η, the so-called Kolmogorov scale [73]. The Kolmogorov
scale η depends on the Reynolds number based on the production length scale
l0 as

η

l0
∝ Re−3/4

l0
. (3.2)
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Figure 3.1: Pressure iso-surfaces for turbulent flow around a square obstacle (cf. Paper
II).

Kolmogorov [56] noticed a self-similarity between the eddies in the inertial
regime, as opposed to large-scale eddies, which depend mainly on geometry.
Kolmogorov formulated the hypothesis that the energy content at scales in the
inertial subrange, i.e., the range between energy production and viscous flow, is
proportional to κ−5/3, where κ is the scale length.

All the scales in incompressible flows are coupled with one another. Hence, a
numerical method approximating the Navier–Stokes equations (2.1)–(2.2) needs
to resolve all the scales in the flow in order to represent any scale correctly. A nu-
merical approach that aims at resolving all necessary scales is called a direct nu-
merical simulation (DNS) [63]. For three-dimensional instationary flow, a DNS
requires to resolve a scale range according to (3.2) in each spatial direction as
well as in the temporal dimension, which amounts in a number of degrees of
freedom that is proportional to Re3, often even with a rather large proportional-
ity constant. Many technically relevant flows are described by Reynolds numbers
within the range 104 −106, so the requirements in computational effort exceed
the capabilities of state-of-the-art schemes for a DNS by far, necessitating other
techniques.

Since a full resolution of all flow features is not feasible, at least a fraction of
these features needs to be modeled. The so-called large eddy simulation (LES) is
one such modeling strategy. It aims at resolving the larger scales (large eddies),
and to model the effect of unresolved scales on the large scales, see Pope [73] and
Sagaut [77]. This idea is depicted in Fig. 3.2. The large scales in the range between
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Figure 3.2: Kolmogorov energy spectrum in a double logarithmic plot. The wave length
κ0 denotes the resolution limit of the discretization. All the scales beyond that level will
not be captured by the numerics and their effect needs to be modeled in order to cor-
rectly describe the physics of turbulence.

l0 and κ0 are resolved by the numerical discretization, whereas all scales beyond
κ0 are not resolved and need to be included by some modeling.

A simple, yet very powerful approach is the Smagorinsky model [80]. It is based
on the observation that the insufficient resolution within a LES leads to under-
resolved viscous effects. Hence, Smagorinsky introduced an artificial subgrid or
eddy viscosity µT with the aims of representing the effect of viscosity on the level
of the computational mesh size. The eddy viscosity is defined through a non-
linear coefficient, based on the magnitude of the viscous stress tensor ε(u), the
square of the mesh size, and a proportionality constant [77].

3.2 A multiscale approach to large eddy simulation
The definition of a LES needs to distinguish between resolved and unresolved
scales in order to formulate the subgrid viscosity term. Traditional methods use
low-pass filters to extract the large-scale information from the Navier–Stokes
equations and introduce the subgrid viscosity [77]. However, this spatial filter-
ing is problematic close to domain boundaries. These problems can be traced
back to so-called commutation errors [7], [20]. Moreover, finding appropriate
boundary conditions for the averaged large scales is to date an open problem.
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An alternative approach to LES is based on the variational multiscale
method [44], introduced by Hughes, Mazzei, and Jansen [46]. The ideas are
closely related to the concept of dynamic multilevel methods, described in
Dubois, Jauberteau & Temam [19], and the multiscale turbulence analysis in
Collis [16]. In this framework, filters are replaced by variational projections
onto appropriate subspaces. The space for admissible velocity solutions is
decomposed into

Vu = V 3h
u ⊗V δh

u ⊗ V̂u, (3.3)

where V 3h
u is a space associated with mesh size 3h, representing large resolved

scales, V δh
u is the space spanned by V h

u except V 3h
u , representing small resolved

scales, and finally, the space of unresolved scales V̂u. We choose a resolution of
3h, however, different definitions of large resolved scales are common as well,
see the review article by Gravemeier [30]. Applying an equivalent decomposition
for pressure, we get (following Harten’s notation [40])

u = u3h +δuh︸ ︷︷ ︸
uh

+û, p = ph + p̂. (3.4)

Let us denote by

BNS
(
v, q ;u, p

)= (
v,ρ (ut +u ·∇u)

)
Ω+ (

ε(v),µε(u)
)
Ω− (∇·v, p

)
Ω− (

q,∇·u
)
Ω

the form that contains all the left-hand-side terms of the weak form of the
Navier–Stokes equations (2.6). The aim of any numerical method is to find
numerical approximations uh , ph in the resolved subspace V h

u ⊗Vp according to
the direct sum decomposition (3.3). A systematic way of doing so is to insert the
decomposition (3.4) into the weak form (2.6), and to restrict the test functions
to the space of resolved variables. Then, the nonlinear convective term is
linearized and resorted in terms of resolved and unresolved quantities [46].
Hence, we search for

(
uh , ph

)
, such that

BNS

(
vh , qh ;uh , ph

)
=

(
vh , f

)
Ω
+

(
vh ,h

)
Γh

−B1
NS

(
vh , qh ;uh ; û, p̂

)
−B2

NS

(
vh , û

)
(3.5)

holds for all test functions
(
vh , qh

) ∈ V h
u ×V h

p . The term B1
NS

(
vh , qh ;uh ; û, p̂

)
con-

tains linear terms in (û, p̂) and the linearized convection around uh , and the term
B2

NS

(
vh , û

)
contains the quadratic convection term. For the numerical approxi-

mation to be computable, these two terms need to be substituted by some mod-
eling that eliminates the unresolved variables.

The variational multiscale large eddy simulation with a subgrid viscosity
model constructs the approximation as

B1
NS

(
v3h , q3h ;uh ; û, p̂

)
+B 2

NS

(
v3h , û

)
≈ 0,

B1
NS

(
δvh ,δqh ;uh ; û, p̂

)
+B 2

NS

(
δvh , û

)
≈

(
ε
(
δvh)

,2νT ε
(
δuh))

Ω
.

(3.6)
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Note that the subgrid viscosity is only applied to the smaller of the resolved
scales, as discussed, e.g., in the review articles by Gravemeier [30] and John [49].
A physical explanation for application of eddy viscosity only on small resolved
scales is that energy transport occurs mainly on neighboring scale groups, so
that the effect of a not adequately resolved viscosity is best modeled on the fine
resolved scales [66].

The implementation of a method according to the framework (3.5) with ap-
proximation (3.6) needs to distinguish between coarse and fine resolved scales.
Standard methods for doing this are based on different polynomial orders for
the FE basis functions, or two different grid levels as used, e.g., in geometric
multigrid. Such methods have been presented by John & Kaya [50] and Grave-
meier [29]. Papers I and II discuss an implementation where this separation is
performed on the algebraic equation system by using routines from algebraic
multigrid.

11





4. Simulation of Two-Phase Flow

We consider the dynamics of two immiscible incompressible fluids separated by
an interface Γ as displayed in Fig. 4.1. By Ω1 we denote the region occupied by
the first fluid, and byΩ2 the region occupied by the second. We assume that the
flow is laminar, i.e., the Reynolds number is low for the considerations in this
chapter.

Ω1
Ω2

Γ

∂Ω

Figure 4.1: Schematic view of a two-phase flow problem. Fluid 1 occupies regionΩ1, and
fluid 2 occupiesΩ2. The interface Γ separates the two fluids.

The motion of each fluid is described by the Navier–Stokes equations (2.1)–
(2.2) using the variables ui and pi , i = 1,2. Extra conditions are necessary to de-
scribe the behavior on the interface Γ. A widespread formulation is to pose the
two-phase flow problem on the whole domain Ω=Ω1 ∪Γ∪Ω2 with variables u
and p that take the respective velocity and pressure values in the individual do-
mains. Generally, the fluid densities ρi and viscosities µi are different for the two
fluids. Hence, the material parameters ρ and µ in the global momentum equa-
tion have a discontinuity on the interface. In addition, interfacial tension enters
the formulation as a forcing of the form

fst =σκnδΓ. (4.1)

Here, σ is a constant specifying the relative strength of the surface tension, κ
denotes the interface curvature, n the direction normal to the interface (pointing
into Ω2), and δΓ is a delta function that localizes the force to the interface. The
interface Γ is transported by the local fluid motion u|Γ.
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The variables in a single-domain formulation comprise kinks and discontinu-
ities due to changes in material parameters and forces: The discontinuous vis-
cosity introduces a discontinuity in the symmetric gradient ε(u). Similarly, due
to the distributional character of the delta function δΓ there is a jump in pressure
proportional toσκ. Any change in curvature tangential to the interface gives rise
to a discontinuity in the pressure derivative normal to the interface as well as the
viscous stress tensor. The conditions describing the irregularities in velocity and
pressure over the interface Γ are called jump conditions, see Edwards, Brenner &
Wasan [21] and Lee & LeVeque [59].

Because of different fluid densities, gravitational forces are often essential for
the dynamics of two-phase flow. The gravity force is modeled as

fg = ρg eg, (4.2)

where g is the gravitational acceleration and eg denotes the direction of gravity.
The total forcing in the momentum equation (2.1) for two-phase flow is hence
given by f = fst + fg.

4.1 Overview of numerical models
The two main challenges in the numerical simulation of two-phase flow are the
representation of the interface as it evolves in time, and the evaluation of the
distributional force term (4.1). Several discrete approaches have been proposed
during the last decades. There are two main strategies to couple the interface
evolution problem to the Navier–Stokes equations discretized on a fixed grid as
discussed in Chapter 2.

The first strategy is to explicitly track the interface position by introducing an
additional discrete set of marker points or marker elements that describe the
interface. These methods are called front tracking and were introduced in dif-
ferent variants by Peskin [71] and Glimm et al. [27], and reviewed in the articles
[78], [86], and [89]. A special class of front tracking schemes are the immersed
boundary method by Peskin (see Peskin’s [72] review paper) and a more accurate
variant, the immersed interface method, by LeVeque and co-workers [59], [60],
[61]. The evolution of the interface in front tracking schemes is accomplished by
Lagrangian advection of the marker points, and the surface tension force is gen-
erally evaluated based on a discrete approximation of the delta function around
the interface. Normal vectors and curvatures can be calculated using the in-
terface points by straight-forward geometric identities. Explicit descriptions are
very powerful because they allow to include general models of the interface, like
elastic forces in immersed boundary and interface implementation [72]. How-
ever, the methods are quite difficult to implement because the marker points
need to interact with the fluid grid in order to describe advection and interface
forces. Straight-forward implementations are also prone to unphysical changes
of the area/volume of the respective fluid. To retain an accurate interface repre-
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sentation, the marker points need to be redistributed when the interface is de-
formed.

The second strategy is front-capturing, where the interface is implicitly de-
fined. Historically, the first scheme of this kind was the marker-and-cell method
proposed by Harlow and Welch [39], and can be considered to be a volume-
tracking method. Here, one fluid is colored by marker particles whose location
is advected with the flow field. The position of the interface can then be recon-
structed from this particle field. An extension of this approach is to replace the
marker particles by a marker function. This approach has been pursued by Noh
& Woodward [65] and Hirt & Nichols [42], who introduced the volume-of-fluid
(VOF) method. VOF includes an additional variable that stores the fraction of the
first fluid on the total fluid for each cell. From the volume fractions, the position
of the interface can be reconstructed, e.g., by defining line segments. For details
of the reconstruction, including higher order schemes, we refer to Scardovelli
& Zaleski [78] and Sethian [79], and references therein. The advection of the
interface is usually implemented by increasing or decreasing the volume frac-
tion depending on the composition of neighboring cells and the velocity field.
To put surface tension force in VOF into practice, several different approaches
are common. One is to use discrete delta functions in combination with the re-
constructed interface, and another employs the continuous surface tension ap-
proach by Brackbill, Kothe, and Zemach [11], see also the review by Tryggvason
et al. [86]. The advantage of VOF methods is the volume conservation and a nat-
ural mechanism for breakup and fusion of bubbles. However, the reconstruction
of the interface and the interface motion are considerably more complicated to
implement here than for front tracking methods.

While VOF methods operate on the discrete level, a continuous front cap-
turing framework is provided by the level set method, introduced by Osher &
Sethian [70] and first applied to two-phase incompressible flow by Sussman,
Smereka & Osher [81]. Yet another method is provided by the phase field method,
formulated by Jacqmin [47] for the simulation of two-phase flow. The methods
discussed in Paper III and IV are based on the latter two approaches, which are
discussed in detail in the following two sections.

4.2 Level set models
The basic idea of level set methods is to define the interface implicitly as the
zero contour line of a functionφ that is defined inΩ. Level set methods allow for
a straight-forward evaluation of normal vectors by setting n(φ) = ∇φ/|∇φ|, and
curvature, κ(φ) =∇·n(φ). Both these quantities can be computed locally from φ

on the same computational mesh as the equations of fluid flow. The mechanism
for moving the interface in level set methods is advection of the function φ with
local fluid velocity, i.e.,

φt +u ·∇φ= 0. (4.3)
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This is an additional partial differential equation coupled to the Navier–Stokes
equations. The advection equation (4.3) can be solved with standard tools for
hyperbolic transport equations, like upwind finite difference/volume schemes
or stabilized finite element methods. The advection can be implemented so that
the volume is conserved, since the velocity is divergence-free, i.e., ∇·u = 0.
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(a) Signed distance function
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��)
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(b) Smoothed color function

Figure 4.2: Representing an interface by level set functions φ.

The most popular choice for a level set function is the signed distance function
φ, depicted in Fig. 4.2(a). We refer to the books by Sethian [79] as well as Osher
and Fedkiw [69] for an extensive discussion of these methods. A signed distance
function encodes the distance of a particular point to the interface, and different
signs identify the two fluids. A signed distance function has the property |∇φ| =
1 almost everywhere. A benefit of this choice is that the integral in the surface
tension force can be simplified to a one-dimensional discrete delta function as∫

Γ
δ

(
x−y(s)

)
d s ≈ δh

(
φ(x)

)
,

where x denotes an arbitrary point in the computational domain and y(s) is the
image of a parametrization of the interface, see, e.g., [79]. However, it has been
shown by Engquist, Tornberg, and Tsai [24] that such an approximation can lead
to O (1) errors in the force unless the width h of the delta function is varied. Re-
cent implementations therefore reconstruct the interface position from φ and
apply a d-dimensional discrete delta function that does not show these consis-
tency problems. Since the information from φ is only needed in a region around
the interface, so-called narrow-band level set implementations are widely used.
These methods calculate φ only on a few grid cells around the interface, often in
combination with high-resolution grids. We refer to Adalsteinsson and Sethian
[1] for details. To start a level set calculation, an initial profile φ(·,0) needs to
generated given a certain interface position. Moreover, the flow field as well as
inaccuracies in the numerical scheme deform the signed distance function in
the course of the simulation. Therefore, algorithms have been proposed to (re-
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)initialize the signed distance function. These algorithms enforce the property
|∇φ| = 1, for example, by solving the partial differential equation

φτ+S
(
φ0

)(|∇φ|−1
)= 0, (4.4)

to steady state, where S(φ0) is a sign function with value 1 in the first fluid and
value −1 in the other (see, e.g. [69]). However, discretizations of the reinitializa-
tion scheme do not preserve mass, so that the overall level set implementation
based on signed distance functions may suffer from unphysical volume changes
in the fluid phases.

Another choice is to use a smoothed color/indicator function as depicted in
Fig. 4.2(b). Such a function is (almost) constantly 1 or −1 away from the inter-
faces, with positive value in one region and negative value in the other. Around
the interface, there is a transition region where the function smoothly switches
from one value to the other. This function φ can be calculated from the reinitial-
ization equation (cf. Olsson and co-workers [67], [68])

φτ+∇· (n
(
1−φ2))−∇· (nε∇φ ·n

)= 0. (4.5)

In this equation, diffusion in direction normal to the interface is balanced by
a compressive flux. The parameter ε is typically chosen to be of similar size as
the computational mesh. In one spatial dimension with an interface located at
x =α, the steady-state value of (4.5) is given by

φ(x) = tanh
( x −α

ε

)
. (4.6)

Since the reinitialization equation (4.5) is posed as a conservation law, a conser-
vative implementation of the method is possible [68]. A smoothed color func-
tion also avoids the introduction of an additional discrete delta function and the
problems associated with that procedure, since it approximately holds

∇φ≈ 2nδΓ. (4.7)

The factor two comes from the fact that the function switches from−1 to+1. This
scheme for evaluating the interface force corresponds to the continuous surface
tension model proposed by Brackbill, Kothe, and Zemach [11]. A disadvantage
of the formulation with a smoothed color function is that the evaluation of cur-
vature is potentially less accurate because it is calculated from a steep profile.
This generally increases resolution requirements compared to the signed dis-
tance function approach. Another drawback of the smoothed indicator function
is that the function needs to be defined on the whole domain in order to con-
serve volume. This can be alleviated by the use of adaptive meshes that have low
resolution away from the interface, though. Moreover, the discrete delta func-
tion underlying (4.6) has support on the whole domain Ω, which necessitates
evaluating the discrete version of the force (4.1) everywhere.
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4.3 Phase field models
All the methods discussed above are based on the mathematical model (4.1) for
interfacial tension, assuming a continuous PDE model for fluid dynamics that
does not take processes on the level of atoms and molecules into account. The
numerical approximations aim at discretely reproducing the effect of a delta
function, and evaluating the curvature to determine the strength of the surface
tension. A different approach takes chemical considerations of the interface into
account. The so-called van der Waals hypothesis [90] states that immiscible flu-
ids actually mix on molecular level, forming a diffuse interface. The profile of the
interface is given by a balance of random molecular motion and molecular at-
traction, as devised by Cahn and Hilliard [14]. The considerations are based on
the free energy of a molecule, given by

f (C ) =βΨ(C )+ α

2
|∇C |2, (4.8)

where C denotes the concentration and Ψ(C ) = (C + 1)2(C − 1)2. Similar to the
smoothed color function (4.6), the function seeks to attain the two equilibrium
values C = ±1, which is driven by the double-well potential Ψ(C ). The gradient
term ∇C on the other hand enforces a smooth transition. The system seeks to
minimize the energy (4.8). This process is described by the Cahn–Hilliard equa-
tion

Ct =∇· (M∇ψ)=∇· (M∇(
βΨ′(C )−α∇2C

))= 0, (4.9)

with the chemical potential ψ and the mobility factor M .
The phase field method, formulated by Anderson et al. [2] and Jacqmin [47],

includes transport of the interface by convection, i.e., a term u ·∇C , and formu-
lates an interface force

κnδΓ ≈−C∇ψ+∇P, (4.10)

where P =Cψ. Equation (4.10) can be rewritten as

κnδΓ ≈ψ∇C ,

which is the same form as for the continuous surface tension model, that is,
equation (4.7) multiplied by curvature κ. Boyer [9] extended the phase field
model to describe motion of fluids with different densities and viscosities.

The phase field model can be augmented in order to include contact forces of
the interface with solid walls [47], which results in flux-boundary conditions on
the chemical potential ψ. This approach allows for setting static contact angles
that correspond to physical wetting properties. The direct inclusion of contact
line dynamics is different from the other approaches in computational multi-
phase dynamics, where additional mechanisms as slip-velocities and near-wall
interface diffusion need to be added, cf. [76], [92].
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A considerable challenge in the simulation of phase field models are the high
resolution requirements. Even though the interface width α/β can be chosen
considerably larger than molecular dynamics would suggest (see Villanueva and
Amberg [91]), accurate results require sophisticated numerical approximations
and fine computational meshes. Furthermore, the equations are nonlinear and
contain fourth order derivatives. Several attempts have been made to make this
approach more competitive, see for example the work by Kay and Welford [54].
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5. Summary of Papers

5.1 Paper I
Paper I proposes a particular implementation for the scale separation in the vari-
ational multiscale large eddy simulation. Our method uses a plain aggregation
scheme that is part of an aggregation-based algebraic multigrid implementation
[26], [87]. Unlike for geometric multigrid approaches that have been used ear-
lier, no grid hierarchy is needed in our implementation. This makes the method
also applicable for discretizations based on fully unstructured grids. The subgrid
viscosity term is implemented within a parallel fluid flow solver based on linear
interpolation finite elements and uses Trilinos solver algorithms [41]. The focus
of the method is the improvement of LES at low resolutions.

The method is tested for some standard sample problems for turbulent flow.
A grid refinement study is performed for a turbulent channel flow with DNS
data as reference [64]. This study shows that our implementation of the varia-
tional multiscale LES model provides better results than other state-of-the-art
LES schemes.

5.2 Paper II
Paper II extends and analyzes the method presented in Paper I. In this paper it
is proposed to use a second-order accurate generalized-alpha time integration
scheme (instead of the Crank–Nicholson scheme in Paper I). The generalized-
alpha scheme is a variant of the one-step theta schemes that includes approxi-
mations of the first temporal derivative as variables and enables control of the
dissipation for high frequencies, which is favorable in low-resolution computa-
tions.

The analysis considers details of the subgrid viscosity implementation based
on plain aggregation scale separation, showing that the additional model
does not affect consistency of the overall Navier–Stokes scheme. Moreover,
a clear difference between projective and non-projective scale separations
is identified, as was previously observed in numerical computations [29].
Projective implementations retain low frequencies, whereas non-projective
implementations also damp low frequencies. We apply our method to turbulent
flow around a square cylinder, where the results are better than those of other
LES schemes at low resolutions, even though a high sensitivity of the results on
stabilization parameters is observed.
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5.3 Paper III
The paper is based on the observation that level set methods enable efficient
implementations of two-phase flow physics at relatively coarse meshes because
they are based on simple advection schemes together with a reinitialization.
However, a standard level set method fails in predicting phenomena relevant in
wetting where the fluid-fluid interface aligns at some oblique angle with solid
walls. Such a simulation is, however, possible with a phase field model.

As the discussion in Section 4.3 suggests, the conservative level set method
[68] and the Cahn–Hilliard model have a similar equation structure. Therefore,
the paper formulates the Cahn–Hilliard-specific terms as an extension of the
level set model, but restricts that additional phase description to a region close
to contact points. A continuous switch function is used in order to retain a con-
sistent model. The model is discretized with the finite element method and im-
plemented based on the deal.II library [5]. A test on a channel flow driven by
inflow illustrates the beneficial effects of the equation coupling.

5.4 Paper IV
This paper analyzes inaccuracies of the numerical implementation of the con-
servative level set model [68]. A circular bubble at rest is considered as a model
problem. In this case the force due to surface tension should ideally be balanced
by a jump in pressure. The study is performed by applying a complete Navier–
Stokes/two-phase flow solver to the problem and recording spurious velocities,
see, e.g. [3], [25].

We observe that the velocity errors can be traced back to inaccuracies in the
numerically calculated curvature that enter the continuous surface tension
model. If the exact curvature is prescribed, there are no imbalances in the
scheme, in case equal order elements are chosen for approximating pressure
and the level set function. Choosing the element order of the level set function
higher than the one for pressure introduces an additional imbalance. However,
the use of higher order elements for the level set function has beneficial impact
on the accuracy of curvature, so that the numerical model is still more accurate.
Moreover, we study the effect of the continuous representation of surface
tension on the prediction of the jump in pressure between the inside and the
outside of the bubble. This showed that the variation of the curvature along the
finite width of the interface has the largest impact on pressure accuracy.

We perform the tests using two different flow solvers, in order to further eval-
uate the accuracy of the force balance for finite element discretizations. The re-
sults for a fully coupled implicit method and a decoupled (projection) solver
are similar, which shows that choice of the solver does not affect the balance
of forces.
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6. Future Work

The method proposed in Paper III aims at providing phase-field-like features
without having to use all its terms everywhere. This is done so that the phase
field method is reduced to a level set formulation in regions far away from con-
tact lines. It will be necessary to perform an in-depth convergence study of level
set models and phase field models on several test cases in two-phase flow dy-
namics. In particular, the resolution requirements of the two methods should be
quantified in order to identify the precise benefits of the hybrid method. In our
hybrid model, the equations have been coupled by a smoothly varying switch
function. The influence of the switch function needs to be considered in an en-
ergy estimate in order to ensure stability of the coupling of the equations, which
has up to date only been verified numerically. Since the numerical implementa-
tion of the equations is based on a system of two equations to avoid the direct
appearance of fourth derivatives, the analysis needs to be performed in a way to
correctly reflect the discretized state of the equations.

We also aim at using our models for larger problems, especially three-dimen-
sional simulations. For this purpose, parallel implementations of the flow solver
and the coupled level-set/Navier–Stokes system are necessary. Within the deal.II
software that was used in Papers III and IV, it is possible to use parallel assembly
and linear algebra routines. For a Stokes problem coupled to an advection equa-
tion, a parallel version for up to about 50 processors has already been imple-
mented by the author of this thesis.1 The objective is to apply this implementa-
tion framework to the coupled Navier–Stokes/level-set system and to eventually
extend it to a massively parallel implementation for even larger systems.

The hybrid level-set/phase-field method is a potential tool for improving the
simulation of multi-phase flow in porous media [17]. A first step in that direction
is to apply the new model to more complicated geometries, like, e.g., channels
with oscillating walls or flow around small obstacles. Small scale results are a
helpful tool in the simulation of subsurface flow like the prediction of the flow
in oil and gas reservoirs. The imposition of a pressure gradient on a small-scale
material configuration induces a flow field, which can be used to determine val-
ues for the permeability of that configuration. The permeability tensor is one of
the main input parameter in coarse-scale simulations based on Darcy’s law.

In Paper IV, a study regarding error sources in the discrete approximation with
the conservative level set implementation is presented. These results point out
directions where the method needs to be improved. One such direction concerns

1See the deal.II tutorial program http://www.dealii.org/developer/doxygen/deal.II/step_32.html
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the accuracy in the curvature calculations. A particularly easy approach is to use
higher order finite elements for representing the level set function. When keep-
ing the interface width constant, increasing the order of approximation consid-
erably increases resolution of the interface, and thus, accuracy of normals and
curvature that rely on the interface representation. This improvement should
be advantageous for the overall accuracy, even though a small imbalance in the
force representation is introduced. Such a strategy increases the costs for the
level set portion of the algorithm if the same mesh is used as for the Navier–
Stokes equations, though. An alternative would be to coarsen the level set mesh
in regions away from the interface. This is reasonable since in these remote re-
gions, only the momentum and continuity balances need to be represented ac-
curately, while the level set equation does not contain any additional informa-
tion. Similarly, the interface region can be resolved by more mesh points than
there are used for the Navier–Stokes equations. However, this requires a special
implementation for the evaluation of the surface tension force in the finite ele-
ment algorithms because the variables are related to different meshes.

An alternative hybrid approach that might be taken into account is to not mix
the level set formulation with the phase field formulation as has been done in Pa-
per III, but to use the phase field model as a micro-scale input to a macro-scale
formulation based on a level set description of two-phase flow. A heterogeneous
multiscale approach has been proposed by Ren and E [75] for modeling the in-
teraction of macro-scale fluid flow by micro-scale information from molecular
dynamics. The response on molecular level provides information about the ex-
pected motion of contact lines during one time step. This coupled model be-
haves differently than large-scale level set model, which would assume zero ve-
locity. It is conceivable that a similar interaction could be applied for a micro-
scale simulation done with the phase field model. The difficulty of such a micro-
macro coupling is to find appropriate transfer operations from the micro scales
to the macro scales. Suitable boundary conditions for the Cahn–Hilliard sub-
problem given the solution of a macro-scale level set model are needed, as well
as a shear velocity for the macro-scale Navier–Stokes equations, based on the
results from a micro model.
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