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Introduction 

Genetic variation 
Human genetic variation is defined as the extent of genetic differences be-
tween human genomes, and this variation can be observed within a single 
subject, between individuals and between different human populations. The 
characterization of human genetic variation has advanced over the last few 
years thanks to improvements in DNA analysis technology. Techniques such 
as microarrays and massively parallel DNA sequencing has allowed for 
analysis of the entire human genome at very high resolution. Many studies 
have revealed the extent of genetic variation, and also mapped the exact 
position of the observed genetic differences. Genetic variations range from 
single nucleotide changes to large, microscopically visible chromosome 
anomalies (1-4).  

One of the best explored types of variation is at the level of single nucleo-
tides, so called single nucleotide polymorphisms (SNPs). This variation oc-
curs when one base (A, T, C or G) in the DNA sequence differs between 
individuals, or between homologous chromosomes in an individual. In order 
to be categorized as a SNP, the sequence variant must present with a fre-
quency of greater than 1% in the human population, otherwise the variant is 
described as a single nucleotide variant. Sequencing efforts have at present 
estimated that the human genome contains at least 10-11 million SNPs, en-
compassing ~0.3 % of the genome (4). It is assumed that the majority of 
SNPs do not have any phenotypic consequences. However, the impact of 
SNPs on the phenotype is dependent on the location of the polymorphism in 
the DNA sequence; whether it falls within the coding or non-coding regions, 
and numerous common known trait-associated SNPs have been identified (4-
7). For example, a SNP variant in the SLC24A4 (solute carrier family 24, 
member 4 on 14q32.12) gene is associated with eye and hair color (8) and 
recent studies have identified SNPs in FGFR2 (fibroblast growth factor re-
ceptor 2 on 10q26), TNRC9 (trinucleotide repeat containing 9 on 16q12.1) 
and MAP3K1 (mitogen-activated protein kinase kinase kinase 1 on 5q11.2) 
genes associated with increased breast cancer risk in the general population 
(9).  
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Variants that distinguish two genomes in one species and include more than 
one single nucleotide are broadly defined as structural variations. They in-
clude insertions, deletions, translocations, duplications and inversions. Sev-
eral studies suggest that these structural variants account for at least 70% of 
all variant bases in the human genome, and for any given individual, struc-
tural variations constitute between ~0.5 to 1% of the genome. All these vari-
ations very likely contribute to both human diversity and disease susceptibil-
ity due to altered gene dosage levels or by disruption of proximal or distant 
regulatory regions (3, 4, 7, 10, 11). 

Copy number variations (CNVs) are usually defined as being larger than 1 
kb in size and present in variable copy number on comparison with a refer-
ence genome. They include deletions, duplications and insertions. CNV can 
be inherited through the germline or occur sporadically as de novo aberra-
tions (2, 3, 11-13). Improvement of microarray technologies as well as de-
velopment of massively parallel DNA sequencing over the past five years 
has allowed the analysis of the human genome with unprecedented resolu-
tion, which has improved our knowledge about DNA variation and its con-
nection to disease. In the 1980s, the frequency of CNVs was assumed to be 
low and directly related to specific genomic disorders (5, 14, 15). Today, it 
has been shown that CNVs encompass higher number of nucleotides and 
occur more frequently than SNPs (13). It is estimated that up to 12-13% of 
the human genome is subject to CNVs (2, 13). Larger copy number aberra-
tions affecting numerous genes have been associated with many phenotypic 
traits and disease susceptibility, such as deletion of 22q11.2 which is asso-
ciated with Di George syndrome and Prader-Willi syndrome caused by a 
15q11-q13 deletion, to name but a few examples (2, 7, 15). There are also 
numerous examples of copy number aberrations encompassing only single 
genes, with a clear link to specific phenotypes or diseases. Deletion of the 
NF1 (neurofibromin 1 on 17q11.2) gene causes neurofibromatosis type 1 
(16, 17), deletion of the IRGM (immunity-related GTPase family, M on 
5q33.1) gene is associated with Crohn´s disease (18) and copy number dif-
ferences of the CCL3L1 (chemokine (C-C motif) ligand 3-like 1 on 17q11.2) 
gene are associated with markedly enhanced HIV/acquired immunodeficien-
cy syndrome (AIDS) susceptibility (19).  

The mechanisms of CNV formation are not completely understood. It has 
been observed that CNVs often occur in regions carrying, or flanked by, 
large segmental duplications (1, 5, 11, 20). Segmental duplications (also 
called low-copy repeats) are blocks of repeated genomic DNA, often with 
more than 95% identity, that occur twice or more times in the haploid ge-
nome. They typically range in size between 1-400 kb and constitute ~5% of 
the sequence of the human genome (3, 21, 22). Several studies have noted 
that the presence of these segmental duplications predisposes these regions 
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to chromosomal instability and rearrangements (22-25). CNVs associated 
with segmental duplications are likely to arise by the mechanism of non-
allelic homologous recombination (NAHR) (11, 13, 22, 26-28). In NAHR 
the recombination takes place between lengths of homologies at different 
genomic positions on a pair of chromosomes. NAHRs between homologies 
in direct orientation located on the same chromosome (intrachromosomal-
NAHR) result in duplications or deletions, whereas NAHRs between in-
verted oriented homologies on the same chromosome lead to inversions. 
Recombination between homologies located on different chromosomes (in-
terchromosomal-NAHR) result in reciprocal translocations (11, 29). The 
majority of rearrangements resulting from NAHR are recurrent and they can 
occur during meiosis as well as mitosis (11, 13, 22, 26-28). 

CNVs can also be formed by non-homologous end joining (NHEJ), a me-
chanism also normally involved in the repair of double-strand breaks in 
DNA. In NHEJ, double strand brakes are bridged, modified and ligated. The 
product of repair often contains additional nucleotides at the DNA end junc-
tions. In contrast to NAHR, this process is not dependent on segmental dup-
lications to mediate the recombination. Instead, NHEJ has been observed in 
the vicinity of for instance identical Alu repeats, which are a family of short 
interspersed sequences common in the human genome, and between LINE 
elements (long interspersed nuclear element), which are a class of moderate-
ly repetitive transposable sequences lacking long terminal repeats. Non-
recurrent rearrangements are thought to arise by NHEJ (5, 11, 13, 29, 30).  

In addition to NAHR and NHEJ, a replication-error mechanism has recently 
been implicated in the formation of complex and non-recurrent chromosomal 
rearrangements. This mechanism is called fork stalling and template switch-
ing (FoSTeS). Rearrangements are formed when the DNA replication fork 
stalls - which leads to lagging strand disengagement from the original tem-
plate and annealing, by micro homology at the 3´end, of another adjacent 
replication fork, and re-initiation of DNA synthesis. FoSTeS can result in 
deletions and/or duplications interrupted by either normal copy number or 
triplicates. The mechanism can create not only large genomic duplications of 
several Mb but also minor duplications/triplications and even rearrange-
ments within single exons. FoSTeS has been implicated in gene duplication 
and exon shuffling which drives gene and genome evolution (13, 31-33). 
Characteristic features for each of the three rearrangement mechanisms are 
shown in Table 1.  
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Table 1. Comparison of the three major mechanisms that underlie human genetic 
rearrangements and CNV formation: non-allelic homologous recombination 
(NAHR), non-homologous end joining (NHEJ) and fork stalling and template 
switching (FoSTeS).  

  NAHR NHEJ FoSTeS 

Structural variation 
type 

Duplications, 
Deletions,  
Inversions 

Duplications, Deletions 

Duplications, 
Deletions,  
Inversions,  
Complex 

Homology flanking 
breakpoint (before 
rearrangement)? 

Segmental  
duplications Alu repeats, LINE elements No 

Breakpoint Inside homology 
Addition or deletion of 

basepairs, or 
 microhomology 

Microhomology  

 

All of these mechanisms occur both in germ cells, where the rearrangements 
can be associated with genomic disorders, and in somatic cells, where the 
rearrangements can cause somatic diseases like cancer. Future development 
of assays with increased sensitivity will most certainly provide a more exten-
sive overview of the structural variants in the human genome and increase 
our knowledge about their role in phenotypic variation and disease predispo-
sition. 

Cancer 
Cancer is a large and heterogeneous group of genetic disorders that affect 
somatic cells. As a disease, it is responsible for one in eight deaths world-
wide; it can develop at all ages; however, the risk increases with age. The 
definition cancer in fact includes over 100 distinct diseases with diverse risk 
and epidemiology and different tumor subtypes can even be found within 
specific tissues and organs. A tumor can be either benign, defined as a loca-
lized lesion that does not grow into adjacent tissues, or malignant, that in-
vades nearby tissues and spreads colonies throughout the body, known as 
metastasis (34-36).  

Cancer cells display an uncontrolled proliferation due to defects in the regu-
latory circuits that govern normal cell growth and differentiation. Cancer can 
originate from most of the cell types and organs of the body and thus the 
heterogeneity of cancer is at the level of cellularity, genomic complexity and 
diverse clinical behavior (34, 37). Ten years ago, Hanahan and Weinberg 
proposed six hallmarks of cancer (Figure 1, top). These capabilities are i) 
self-sufficiency in growth signals, ii) insensitivity to growth-inhibitory sig-
nals, iii) evasion of programmed cell death, iv) limitless replicative potential, 
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v) sustained angiogenesis and vi) tissue invasion and metastasis. These hall-
marks were described as being abilities shared in common by most cancers; 
however the order in which these abilities are acquired by the cancer cells 
seems to differ between various tumors and their subtypes (34). Very recent-
ly, additional hallmarks have been proposed (38). These include vii) evasion 
of immune surveillance, viii) metabolic stress, ix) proteotoxic stress, x) mi-
totic stress, xi) oxidative stress and, xii) DNA damage stress (Figure 1, bot-
tom). However, these hallmarks differ from the original hallmarks proposed 
by Hanahan and Weinberg in that they do not describe functional capabili-
ties, but rather the state of cancer cells. In addition Negrini et al. recom-
mended oxidative stress and proteotoxic stress to be secondary hallmarks of 
cancer, meaning that the proteotoxic stress may be secondary to aneuploidy 
which is manifested by genomic instability, and oxidative stress may be sec-
ondary to oncogenic signaling and metabolic stress (39).  

 

Figure 1. Capabilities and states acquired by cancer cells. In addition to the six 
hallmarks originally proposed by Hanahan and Weinberg (top half, (34)), the ge-
nomes of cancer cells obtain a set of additional hallmarks (lower half, (38)). Re-
printed from Cell, 136, Luo, J. et al., Principles of Cancer Therapy: Oncogene and 
Non-oncogene Addiction, 823-837, 2009, with permission from Elsevier.  

These capabilities are acquired by changes occurring in the DNA sequence 
of cancer cells. Theodor Boveri suggested more than 100 years ago that ab-
normalities of the chromosomes have a central role in tumor formation (40, 
41). The cancer genome is often said to be aneuploid, which means that it 
contains an abnormal number of chromosomes (41-43). Other alterations 
that can be found in cancer are: point mutations, inter- or intrachromosomal 
rearrangements, copy number changes, including gains and deletions but 
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also so-called epigenetic alterations (40, 44). Epigenetics is the study of he-
ritable changes in gene expression that are not due to any alteration in the 
DNA sequence (45). DNA methylation, when a methyl group is added to a 
cytosine that precedes a guanine, constitutes one of the best known epigenet-
ic modifications in the human genome (46). Hypermethylation of CpG isl-
ands in the promoters of genes is associated with transcriptional silencing of 
tumor suppressor genes in many cancers. Loss of methylation (hypomethyla-
tion), in contrast, can lead to gene activation and chromosomal instability 
(47). Other epigenetic changes that can contribute to carcinogenesis include 
the modifications of histones, involving the addition of different chemical 
groups e.g. methyl, acetyl and phosphate. These modifications can have a 
variety of effects on the cell, such as alteration of gene transcription and 
DNA repair (46). In addition to these alterations, the cancer cell can acquire 
completely new DNA sequences from exogenous sources, notably from vi-
ruses. Viruses can modify the gene expression in the host cell and thereby 
promote cell proliferation and contribute to several types of cancer (40, 48). 

Today it is believed that cancer is caused by an accumulation of somatic 
mutations in a series of genes over time rather than a single mutation in one 
gene (40, 49). The exact number of such critical mutations is not known and 
is likely cancer type-specific. Some of these mutations may be acquired by 
the ancestor of the cancer cell yet remain biologically normal, and lacking 
any specific phenotype. Subsequent mutations may be induced by mutagens 
of both internal and external origin. These mutations are usually repaired by 
different DNA repair processes, namely the earlier described process of 
NHEJ. However sometimes these processes can fail and mutations go unre-
paired in the DNA. Some examples of external mutagenic agents are; tobac-
co smoke carcinogens which contribute to both lung and urinary bladder 
cancer, naturally occurring compounds, such as aflatoxins produced by fun-
gi, which are associated with liver cancer and finally, ultraviolet light which 
is strongly associated with skin cancer (40, 50, 51). 

Nevertheless, cancers do not always arise sporadically; cancer predisposition 
can also be inherited through the germline, by inheritance of a mutated can-
cer associated gene from either parent. It is estimated that 5-10% of all cases 
of cancer are hereditary (36). The most common alterations occurring in 
germline are point mutations or small deletions or insertions. These muta-
tions do not cause cancer per se, but they confer an increased relative risk of 
cancer among carriers. Individuals with germline mutations often develop 
multiple tumors early in life compared to persons whose mutations have 
occurred somatically (43, 52). One example of cancer with hereditary lin-
kage is breast cancer, in which a defective copy of BRCA1 (breast cancer 1 
on 17q21.31) or BRCA2 (breast cancer 2 on 13q13.1) genes confer a >90% 
risk of breast cancer development among carriers (53). Other examples in-
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clude syndromes like Li-Fraumeni and Gorlin, linked to germline mutations 
in the TP53 tumor suppressor gene and PTCH (the human homolog of the 
Drosophila "patched" gene PTC), respectively, where affected individuals 
have a greatly increased susceptibility to several kinds of cancer (54, 55).  

Mutations in cancer may be broadly classified into two categories; driver or 
passenger mutations. Driver mutations are said to confer selective growth 
advantage for the cancer cell. These mutations are by definition found in 
cancer genes of which approximately 400 have been identified to date 
(http://www.sanger.ac.uk/genetics/CGP/Census/). Driver mutations are those 
mutations which are positively selected during the evolution of the cancer. 
Passenger mutations on the other hand, do not really contribute to cancer 
development because they have not been subject of selection. Neither do 
they confer a growth advantage. Nonetheless, passenger mutations are fre-
quently found within cancer genomes and are ‘carried along’ in the clonal 
expansion process (40, 44, 50). The genes frequently found to be involved in 
cancer are generally divided into two major categories; oncogenes and tumor 
suppressor genes. Oncogenes and tumor suppressor genes operate in the 
same physiologic manner: they drive tumorigenesis by increasing the tumor 
cell number through stimulation or inactivation of different pathways regu-
lating cell division, cell death or cell cycle arrest (34, 40, 43, 49, 52, 56).  

Oncogenes 
Oncogenes are forms of proto-oncogenes whose normal activity control 
growth signaling and anti-apoptotic pathways, yet due to mutation are no 
longer capable of responding to normal regulatory signals. They form a very 
heterogeneous group of genes that can be divided into five classes: secreted 
growth factors (e.g. PDGF), cell surface receptors (e.g. EGFR), tyrosine 
kinases (e.g. SRC), membrane associated G-proteins (e.g. RAS genes) and 
nuclear transcription factors (e.g. MYC genes). Mutations leading to onco-
gene activation are dominant, meaning that one single hit in one allele is 
generally enough to confer a selective growth advantage to the cell. Onco-
gene activation can result from chromosomal translocations, gene amplifica-
tions, mutations or by hypomethylation of CpG islands in the promoter re-
gion (43, 57). Either of these mechanisms can result in an alteration of proto-
oncogene structure or an increase of proto-oncogene expression, or alterna-
tively, both mechanisms might collaborate to create an oncogene (43). 

Chromosomal translocations can lead to transcriptional activation of proto-
oncogenes or to the creation of aberrant fusion proteins. The fusion of abl 
(Abelson murine leukemia viral oncogene homolog 1, v-abl on 9q34.12) and 
bcr (breakpoint cluster region on 22q11.23) proto-oncogenes creates the 
Philadelphia chromosome, which is implicated in chronic myeloid leukemia 
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(58). Gene amplification is defined as the increase in copy number of a gene 
within the genome of a cell and leads to increased gene expression. Gene 
amplification produces karyotypic abnormalities such as double-minute 
chromosomes and homogeneous staining regions. Double-minute chromo-
somes are characteristic minichromosome structures without centromeres. 
Homogeneous staining regions are segments of chromosomes uniformly 
stained after G banding. Both double-minute chromosomes and homogene-
ous staining regions contain up to several hundred copies of a gene. An ex-
ample of oncogene activation by amplification is the case of EGFR (epider-
mal growth factor receptor on 7p11.2), an aberration that is frequently ob-
served in glioblastoma (59).  

Mutations may activate proto-oncogenes through structural alterations in 
their encoded proteins. These modifications usually involve important pro-
tein regulatory regions and often lead to the uncontrolled, constitutive activi-
ty of the defective protein. Several types of mutations, such as point muta-
tions (changing a single amino acid within the protein), deletions, and inser-
tions, are capable of activating proto-oncogenes. Point mutations are for 
example frequently detected in the ras family of proto-oncogenes (K-ras, H-
ras, and N-ras) (60). It has been estimated that as many as 15% to 20 % of 
human tumors may contain a ras mutation. Ras mutations have been linked 
to carcinogen exposure, and point mutations within the 12th codon of H-Ras 
(Harvey rat sarcoma viral oncogene homolog, v-Ha-ras on 11p15.5), are a 
common event in urinary bladder carcinoma (61). In contrast, oncogene ac-
tivation by DNA hypomethylation has been identified in gastric cancer, 
where the R-Ras (related RAS vira,l r-ras, oncogene homolog on 19q13.3-
q13.4) gene is found to be  hypomethylated (62).  

Tumor suppressor genes (TSGs) 
The TSGs also control cell-growth and proliferation but they have the oppo-
site role of oncogenes in that they inhibit or tightly control cell growth in 
their normal state. Mutations in TSGs reduce the activity of the gene product 
or result in a complete loss of the protein. Inactivation can occur by point 
mutations striking many sites of the coding sequence of the gene, by random 
deletions, insertions or by epigenetic changes such as hypermethylation of 
CpG islands in the gene promoters that silence transcription of the gene (43, 
46, 49). Once these growth-suppressing genes are inactivated, the prolifera-
tion of the cancer cells may be accelerated, no longer being held back by the 
actions of their transcripts (43). TSGs generally follow the Knudson two-hit 
hypothesis that requires mutations on each of the two alleles of the gene to 
promote tumor development. For individuals with a germline mutation on 
one of the alleles, often only one hit on the other allele is sufficient for tumo-
rigenesis (Figure 2) (63). However haploinsufficiency, when the total level 
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of a gene product produced by the cell is about half of the normal level (due 
to one copy being inactivated by mutation), may in some cases not be suffi-
cient to permit the cell to function normally and thereby contribute to tumor 
development (43, 64). Haploinsufficiency PTEN (phosphatase and tensin 
homolog on 10q23.31) is known to accelerate the transformation of astrocy-
tomas from low-grade to high grade (65).  

 

 

Figure 2. Knudsons two-hit hypothesis for tumorigenesis involving a tumor sup-
pressor gene.  

TSGs are broadly divided into two types: gatekeeper and caretaker genes. 
The genes acting as gatekeepers directly control cellular proliferation by 
inducing cell death or cell cycle arrest. The RB1 (retinoblastoma 1 on 
13q14.2), CDKN2A (cyclin-dependent kinase inhibitor 2A on 9p21.3) and 
TP53 (tumor protein p53 on 17p13.1) are three examples of gatekeeper 
genes, whose malfunction is frequently involved in many types of cancer. 
Caretaker genes in contrast, do not directly regulate proliferation; they act to 
maintain the integrity of the genome and thereby prevent tumor develop-
ment. Owing to the intrinsic chemical instability of DNA, all cells are under 
constant threat of acquiring mutations caused by factors such as exposure to 
genotoxic metabolic or environmental agents. Caretaker genes keep genetic 
alterations to a minimum, but when present in a defective form the mutation 
rate is increased, affecting all genes including gatekeeper genes, which can 
directly regulate tumor growth. Caretaker genes include mismatch repair 
(MMR), nucleotide-excision repair (NER) and base-excision (BER) genes 
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which are responsible for the repair of DNA replication errors and the genes 
controlling processes such as mitotic recombination and chromosomal se-
gregation. BRCA1 and BRCA2, which are strongly associated with breast 
cancer, and MLH1 (mutL homolog 1, colon cancer, nonpolyposis type 2 on 
3p22.2) involved in colon and uterus cancer are both examples of deregu-
lated caretaker genes playing a significant role in tumor development (39, 
43, 66, 67).  

CNS tumors 
Tumors of the central nervous system (CNS) are a heterogeneous group of 
both benign and malignant neoplasms. Brain tumors occur in children as 
well as adults (68, 69). Their classification, according to the World Health 
Organization (WHO 2007) system, is based on cell morphology and the pri-
mary site of the affected organ. CNS tumors are named after the cell type 
that tumor cells resemble. Based on this, the tumors can be divided in three 
distinct groups: a) gliomas (astrocytoma, oligodendroglial tumors and epen-
dymoma); b) meningiomas; and c) embryonal tumors (medulloblastoma, 
primitive neuro-ectodermal tumors (PNET) and Atypical Teratoid/Rhabdoid 
Tumor (AT/RT)). Furthermore, brain tumors are also graded according to 
malignancy. Grade I tumors are applied to neoplasms with low proliferation 
potential and are often correlated with good prognosis whereas grade IV 
tumors are highly-proliferative and mitotically active and these tumors are 
often fatal (55). 

a) Gliomas present with a morphology and gene-expression characteristics 
similar to glia, astrocyte and oligodendrocyte cells, which together constitute 
the supporting tissue in the brain. This large group of brain tumors is further 
divided into three groups: astrocytomas, oligodendroglial tumors and epen-
dymomas. Patients with gliomas often develop symptoms that include head-
aches and seizures. Speech and visual loss can also occur. The majority of 
gliomas arise sporadically and a predisposition does not usually run within 
families, however, there are examples of families with more than one af-
fected member (55, 70). 

Astrocytomas are the most common type of all gliomas and account for ap-
proximately 60% of all primary tumors of the CNS. They are comprised of 
cells which resemble the supporting astrocyte cells of the brain. The cellular 
origin of astrocytomas is still unknown, although it is believed that they arise 
from astrocyte precursors or stem cells (70, 71). Astrocytomas show differ-
ent degrees of malignancy and can be classified as; pilocytic astrocytoma 
(grade I), mainly occurring in children and young adults and low grade dif-
fuse astrocytoma (grade II), typically affecting young adults. In contrast, 
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anaplastic astrocytoma (grade III) and glioblastoma (grade IV) primarily 
occur in adults (55). Grade I tumors are almost always curable by surgery. 
Grade II and III patients have a mean survival of 10-15 and 2-3 years respec-
tively while glioblastomas, being the most malignant grade of tumour, grow 
rapidly and patients generally have a mean survival of about 1 year (55, 70). 
Glioblastomas can be divided into two groups: primary and secondary gliob-
lastoma, depending on the clinical history of the patient (72). Glioblastoma 
will be discussed in greater detail in a subsequent section, since it is the fo-
cus tumor type studied in paper II. Several different genetic aberrations are 
frequently observed in astrocytomas. Gains of chromosome 5 and 7 are often 
found in pilocytic astrocytoma, TP53 mutations, overexpression of PDGFRA 
(platelet-derived growth factor receptor alpha on 4q12), gain of 7q and 8q, 
loss of heterozygosity (LOH) on 22q and deletion of chromosome 6 are of-
ten seen in low grade diffuse astrocytoma. TP53 and PTEN mutations, LOH 
of 6q, 10q, 17p, 19q and 22q are detected in anaplastic astrocytoma while 
gain of chromosome 7, loss of chromosome 10 and deletion of 9p are fre-
quent events in glioblastoma.  

Oligodendroglial tumors include oligodendrogliomas and oligoastrocyto-
mas. Oligodendrogliomas are divided into two categories; grade II and anap-
lastic grade III (55). Oligodendrogliomas are more common in adults and 
account for only 2% of all brain tumors in children. The tumors are com-
posed of cells that resemble oligodendroglial cells. These tumors are fre-
quently observed with combined loss of 1p and 19q, which is strongly asso-
ciated with favorable outcome for the patient (73). Up to 90% of all oligo-
dendrogliomas carry this alteration (55, 74). Oligoastrocytomas are similarly 
divided into the two categories of grade II and anaplastic grade III. They are 
composed of a mixture of oligodendroglioma and diffuse astrocytoma cells 
and usually develop in middle-aged individuals (55). The genetic picture of 
these tumors is similar to that of oligodendrogliomas, the combination of 1p 
and 19q loss being found in approximately 50% of tumors (55, 74).  

Ependymal tumors, as their name suggests, resemble the ependymal cells of 
the brain and can occur both in the spinal canal and in the ventricular system. 
While such tumors may develop at all ages, tumors located in the spinal can-
al develop more frequently in adults, whereas intracranial tumors predomi-
nate in children. Ependymal tumors are further subdivided into subependy-
moma (grade I), myxopapillary ependymoma (grade I), ependymoma (grade 
II) and anaplastic ependymoma (grade III) (55). The most frequent genetic 
alteration in sporadic ependymoma is monosomy 22 and the NF2 (neurofi-
bromin 2) gene on chromosome 22 is clearly involved in ependymoma tu-
morgenesis (55, 75-77). Gain of chromosomes 1, 7 and 9p as well as losses 
of chromosomes 17, 6q and 9q are also common (78, 79).  
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b) Meningiomas develop from the meninges which is the membrane that 
surrounds the brain and spinal cord. This tumor is considered to be derived 
from neoplastic meningothelial or arachnoidal cells. The tumors are usually 
benign (grade I) and generally slowly growing. However, meningiomas with 
a greater likelihood of recurrence and/or aggressive behavior are graded as 
grade II or III. Meningiomas typically occur sporadically in adults, although 
they can also develop in association with the Neurofribromatosis type 2 
(NF2) syndrome. The most common genetic aberration associated with both 
sporadic and NF2-associated meningiomas is deletion of chromosome 22. 
Biallelic inactivation of the NF2 gene is found in meningiomas of all grades 
and is thought to be an early event in tumorgenesis. Other genetic aberra-
tions associated with meningioma are deletion of 1p and loss of chromo-
somes 6, 10, 14, 18 and 19 (55).  

c) Embryonal tumors of the CNS are the most common malignant brain 
tumors affecting children. Embryonal tumors derive from the embryonic 
(fetal) tissue and are most common in children or young adults. This group 
of brain tumors includes medulloblastoma (grade IV), primitive neuroecto-
dermal tumors (PNET) (grade IV) and atypical teratoid/rhabdoid tumor 
(AT/RT) (grade IV) (55).  

Medulloblastoma is a highly malignant, invasive tumor of the cerebellum 
affecting mainly children and adolescents. This is the most common malig-
nant brain tumor in children (80, 81). The most frequent cytogenetic abnor-
mality in medulloblastoma is isochromosome 17q (55). Medulloblastoma 
will also be discussed more detail further below as it is the tumor type stu-
died in paper III of this thesis.  

PNETs are located in the cerebrum, but they can also be encountered in the 
spinal cord or suprasellar region. These tumors also occur predominantly in 
children or adolescents and they are composed of undifferentiated or poorly 
differentiated neuroepithelial cells. Loss of 4q, 9p, 14q and 19q has been 
identified in PNETs (55, 82).  

AT/RT tumors are highly malignant and predominantly (50%) located in the 
posterior fossa. The remaining AT/RT tumors can arise in the supratentoral, 
pineal, multifocal or spinal locations. This tumor is most common in young-
er children (<3 years) and composed of neoplastic rhabdoid cells. Mutation 
or loss of INI1 (integrase interactor 1 on 22q11.23) is the genetic hallmark 
of AT/RT tumors (55).  
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Glioblastoma 
Glioblastoma is the most frequent primary brain tumor affecting adults and 
the disease is invariably fatal (55, 70). The peak incidence occurs in the age 
range of 45-75 years and the incidence in Europe and North America is 3-4 
new cases per 100 000 population per year. The tumor is most often located 
in the subcortical white matter of the cerebral hemispheres and rarely metas-
tasizes via the cerebrospinal fluid. However, the tumor has a very high proli-
ferative rate and widespread microvascular proliferation. Necrotic areas are 
also often observed. The clinical symptoms for glioblastoma include often 
headache, nausea/vomiting due to raised intracranial pressure and one third 
of the patients experience epileptic seizures (55, 83). Besides surgical resec-
tion, the current standard care for glioblastoma patients is treatment by adju-
vant radiation and chemotherapy with the use of alkylating agents such as 
Temozolomide. However, the prognosis for glioblastoma is very poor and 
little improvement in the median survival has been observed over the past 25 
years (84, 85). Patients without surgical resection have a median survival of 
only 2.5 months from the time of diagnosis. Those who undergo surgical 
resection demonstrate a median survival of 7.9 months and the addition of 
Temozolomide to adjuvant radiotherapy after surgery extends median sur-
vival to 14.6 months (72). Thus, the inclusion of Temozolomide in treatment 
regimes was shown to improve the two year survival rate from 10.4 to 
26.5%, representing the most important therapy advancement to date (86). 
The poor outcome observed in glioblastoma patients is largely due to tumor 
recurrence. Two alternative models (accounting for all cancers) have been 
proposed to explain the chemo- and radiotherapy resistance developed by 
these tumors (87): i) the clonal evolution hypothesis (88) and ii) the cancer 
stem cell hypothesis (89-91). The clonal evolution hypothesis suggests that 
subpopulations of tumor cells with different mutations continuously arise 
during tumor evolution. These subpopulations are selected by the tumor 
microenvironment during the progression and treatment of the tumor. Each 
subpopulation can therefore become predominant after radiotherapy and/or 
chemotherapy due to the selection pressure. The subpopulations which are 
most resistant to treatment will be selected for and can potentially re-initiate 
the tumor. Alternatively, the cancer stem cell (CSC) hypothesis suggests that 
the CSCs which exhibit stem cell-like characteristics such as self-renewal 
and multipotency, can propagate and or re-initiate the tumor. Several proper-
ties allow CSCs to survive conventional chemo- and radiotherapies and re-
establish tumor growth after treatment. However, the CSC hypothesis re-
mains controversial (87).  

The majority of glioblastomas are sporadic although there are cases of occur-
rence in more than one family member. This is most often seen within inhe-
rited tumor syndromes including Turcot and Li-Fraumeni syndromes, neuro-
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fibromatosis type 1 and multiple enchondromatosis (55, 92). Most glioblas-
tomas (>90%) develop de novo without evidence of pre-malignant precursor 
lesions and tend to have a short clinical history. These tumors are classified 
as primary glioblastoma and they are typically observed in older patients, 
with a mean age of diagnosis of 62 years. Secondary glioblastomas develop 
more slowly, often by progression from diffuse astrocytoma grade II or 
anaplastic astrocytoma grade III and are typically identified in younger pa-
tients, mean age of diagnosis, 45 years (72, 93, 94). The genetic pathways 
leading to glioblastoma differ between these two groups (Figure 3).  

 
 

 

Figure 3. Genetic pathways operative in the evolution of secondary and primary (de 
novo) glioblastomas.  

Primary glioblastoma is characterized by amplification and over-expression 
of the EGFR and MDM2 (mouse double minute 2 on 12q15) genes, deletion 
of the CDKN2A gene, LOH on 10p and 10q and PTEN mutation. In second-
ary glioblastoma, the major alterations observed are over-expression of the 
PDGFRA gene, TP53 and PTEN mutations, DCC (deleted in colorectal car-
cinoma on 18q21.1), promoter methylation of the RB1 gene and finally loss 
of expression and/or LOH of 19q and 10q (55, 68, 72, 95, 96). Recently, 
mutations in the IDH1 (isocitrate dehydrogenase 1 on 2q33.3) gene have 
also been shown to be implicated in the development of secondary glioblas-
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toma (97). Almost all glioblastomas that develop in children are primary 
glioblastoma. Pediatric glioblastoma however, presents with different genet-
ic profiles than that observed in adults; they often display a high frequency 
of TP53 mutations (40%), low frequency of EGFR amplifications (6%) or 
CDKN2A deletions (19%) and absence of MDM2 amplifications (55).  

Genetic pathways in glioblastoma 
Different pathways, such as the RAS, TP53, PI3K (phosphoinositide-3-
kinase) and the cell cycle control pathways are known to be disrupted in this 
tumor type (98, 99). The RAS pathway is frequently activated by amplifica-
tion of growth factor receptor genes such as EGFR (7p11) or PDGFRA 
(4q12). Between 30-50% of glioblastoma tumors show EGFR amplification 
(59, 99). PDGFRA amplification is less common and is identified in approx-
imately 15 % of glioblastomas. The TP53 pathway is often disrupted by 
TP53 (17p13.1) mutations which is the main genetic hallmark of secondary 
glioblastoma (identified in >65% of cases). TP53 mutations are also ob-
served, although less frequently (25% of cases), in primary glioblastoma. 
The TP53 pathway can also be disrupted by MDM2 (12q15) amplification 
which is observed in approximately 10% of glioblastomas, or by loss of 
CDKN2A (9p21) which is frequently (76%) observed in this tumor. Both 
MDM2 amplification and CDKN2A loss are observed in primary as well as 
secondary glioblastomas. The PI3K/Akt pathway is also involved in gliob-
lastoma development through aberrant growth factor signaling and loss of 
PTEN (10q23) which is mutated in 15-40% of primary glioblastoma. The 
cell cycle control pathways can also be disrupted in glioblastoma by loss of 
CDKN2A (9p21), amplification of CDK4 (cyclin-dependent kinase 4 
on12q14) or RB1 alterations (13q14). Amplification of CDK4 is observed in 
15% of tumors and LOH at 13q including the RB1 locus is detected in 12% 
of primary glioblastomas and 38% of secondary glioblastomas (55, 70, 97, 
99). Among the many aberrations found in glioblastoma, hypermethylation 
of the MGMT (O-6-methylguanine-DNA methyltransferase on 10q26.3) 
promoter is also a common alteration in both primary and secondary gliob-
lastomas. The MGMT gene codes for a DNA repair protein involved in cellu-
lar defense against mutagens (100). Promoter methylation of MGMT is then 
associated with longer survival of glioblastoma patients since the tumor cells 
have a suppressed ability to protect themselves against alkylating agents 
such as Temozolomide, frequently used in glioblastoma treatments (95, 101, 
102).  



 24 

Medulloblastoma 
Medulloblastoma is an invasive embryonal tumor that predominantly mani-
fests in children and adolescents. Seventy percent of medulloblastomas oc-
cur in children younger than 16 years with a peak incidence at the age of 7. 
The incidence has been estimated to be about ~1 new case per 100 000 popu-
lation per year. Approximately 65% of patients affected by medulloblastoma 
are males. The tumor arises in the cerebellum from cerebellar stem and pre-
cursor cells, including immature granule cells, and has a tendency to metas-
tasize via cerebrospinal fluid pathways (55, 103-105). The majority of me-
dulloblastomas arise in the cerebellar vermis, but a few are located in the 
cerebellar hemispheres. The clinical symptoms of medulloblastoma include 
truncal ataxia, disturbed gait, intracranial hypertension, headache and vomit-
ing (55). Almost all medulloblastomas are sporadic, although a few cases of 
familiar medulloblastomas have been reported, again associated within fa-
milial cancer predisposition syndromes like Li-Fraumeni, Gorlin, Turcot and 
Rubinstein-Taybi syndromes (54, 55). Medulloblastoma are divided into 
three histological subtypes; classic-, desmoplastic/nodular- and anaplas-
tic/large cell medulloblastoma(55, 106, 107). The classic medulloblastomas 
are more frequent than the other subtypes and account for approximately 
65% of all cases. This subtype consists of sheets of small round cells and 
displays neuronal differentiation (55, 108). The desmoplastic/nodular sup-
type is characterized by nodular, reticulin-free zones surrounded by densely 
packed highly proliferative cells. This subtype account for 25% of all medul-
loblastoma tumors and is more commonly seen in patients with Gorlin syn-
drome. Patients with desmoplastic/nodular medulloblastoma display better 
prognosis than classical and anaplastic/large cell subtypes, and in particular, 
younger children with this subtype have a better outcome (106, 109, 110). 
Anaplastic/large cell medulloblastoma is the most undifferentiated subtype 
and the cells display significant nuclear pleomorphism, prominent nucleoli 
and abundant mitoses. This subtype has been reported to occur in 5-10% of 
tumors. Individuals with the anaplastic subtype usually have a worse out-
come than the other two subtypes (55, 108). 

A 5-year survival rate of 60 to 80% can be achieved with current manage-
ment strategies, which involve maximal surgical tumor resection, adjuvant 
chemotherapy and craniospinal irradiation (111-113). Unfortunately, a sig-
nificant proportion of survivors suffer severe long-term neurocognitive se-
quelae due to the intensive chemotherapeutic and radiotherapy regimes em-
ployed in treatment (114). Patients are today classified in standard- or high-
risk groups, with the high-risk including patients younger than 3 years with 
incomplete tumor resection and/or with evidence of metastasis (55). Howev-
er, different reports indicate that these clinical variables are insufficient in 
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defining disease risk and additional biomarkers for improvement of outcome 
prediction are desirable (112, 115). 

Genetic pathways in medulloblastoma 
Several cellular signaling pathways are reported to be frequently disrupted in 
medulloblastoma (Table 2). The Hedgehog signaling pathway, which plays 
an important role in cerebellar development, is often involved in medullob-
lastoma tumorigenesis. The most common alterations hitting this pathway 
are mutations of Ptch1 (patched homolog 1 on 9q22.1-q31) gene, which 
have been described in up to 20% of medulloblastomas. Other genetic altera-
tions affecting the Hedgehog pathway include activating mutations of the 
Smoh (smoothened homolog on 7q31) and Sufu (suppressor of fused homo-
log on 10q24.32) genes and deletion of the tumor suppressor gene REN (re-
nin on 17p13.2), which maps to a region commonly affected by deletions in 
medulloblastoma. Activation of Wnt and APC signaling pathways have also 
been observed, mainly due to mutations of the �-catenin (on 3p21), APC 
(adenomatous polyposis coli on 5q21-q22) and AXIN2 (on 17q23-q24) 
genes, and also by deletions of the AXIN1 (on 16p13.3) gene. The Notch 
pathway may also play a role in medulloblastoma development. Over-
expression of Notch1 (on 9q34.3) and Notch2 (on 1p13-p11), which are 
receptors involved in normal development, cell-fate determination, prolifera-
tion and survival, have been observed. Several other signaling ‘pathways’ 
have also been reported to be involved in medulloblastoma development and 
progression: c-myc signaling and receptor tyrosine kinase signaling by ErbB, 
c-met, IGF-R and TrkC (55, 116-118). 

The most frequent chromosomal aberration detected in medulloblastoma is 
isochromosome 17q, which is present in 30-50% of tumors (55, 119). Loss 
of 17p and gain of 17q occurring independently are also common as well as 
trisomy 7, gain of 1q and amplification of MYCN (v-myc myelocytomatosis 
viral related oncogene on 2p24.1), ERBB2 (v-erb-b2 erythroblastic leukemia 
viral oncogene homolog 2 on 17q11.2-q12) or hTERT (telomerase reverse 
transcriptase on 5p15.33) (68, 80, 116, 120). Additionally, loss of chromo-
somes 6, 7q, 8, 9q, 10q, 11 and 16q have also been reported in medulloblas-
toma (120-122).   
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Table 2. Summary of the important signaling pathways in medulloblastoma devel-
opment.  

Pathway Deregulation 
Association with 
medulloblastoma 

subtype 
Functional effects 

Hedgehog 

Activating mutation 
of Ptch1 (20%), 
Sufu (9%), Smoh 
(<5%), and deletion 
of REN 

Desmoplastic/nodular Cell cycle progression and induction 
of growth factors 

Notch Over-expression of 
Notch1 and Notch2 Not known Progenitor cell survival 

Wnt 

Activating mutation 
of �-catenin (9%), 
APC (4%), AXIN1 
(12%) 

Classic Not known 

c-met Over-expression Anaplastic/large cell  
Tumor cell proliferation, cell cycle 
progression, cell survival, migration, 
invasion, cell size 

erbB2 Over-expression Not known Cell migration, invasion and  
metastasis 

TrkC Over-expression Not known Apoptosis and maybe invasion 

IGF-R 
Over-expression 
and phosphoryla-
tion 

Not known Progenitor cell proliferation 

c-Myc 
Over-expression 
(64%) and  
amplification (15%) 

Anaplastic/large cell  Cell proliferation, cell cycle  
progression and cell size regulation 

Urinary bladder carcinoma 
Bladder cancer is the fourth most common malignant disease in Europe, with 
91 000 new cases diagnosed each year and causing approximately 37 000 
deaths (123). The risk of developing bladder cancer increases with age, with 
a peak incidence between 50 and 70 years. The disease is also three times 
more common among men than women (124, 125). Occupational exposures, 
tobacco use and pharmaceutical drug use are all risk factors for developing 
cancer of the urinary bladder (126). Bladder cancer is a heterogeneous dis-
ease and is classified into several stages, Ta, T1-T4 and Carcinoma in situ 
(CIS), based upon the extent of invasion into the surrounding tissues (127). 
Approximately 70% of these patients present with papillary non-invasive, 
stage Ta tumors, with low risk for progression and death. However, as many 
as 50-70% of patients diagnosed with stage Ta will suffer from tumor recur-
rences after initial resection of the lesion. This high percentage of patients 
affected by tumor recurrences makes this tumor type one of the most preva-
lent neoplasms. The prevalence is estimated to be three to eight times higher 
than the incidence which poses this disease as a major burden on the health 
care system. More importantly, the high risk of recurrence also affects the 
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patient´s quality of life. Therefore, it is necessary to identify patients with a 
high likelihood of tumor recurrence and progression in order to promote 
more aggressive therapy regimes for these patients (124, 128). T1 tumors 
invade into the subepithelial connective tissue and represent approximately 
20% of all newly diagnosed cases. CIS is a flat type of tumor, often found 
together with T1 tumors. This tumor spreads along the surface of the bladder 
and is associated with an increased risk for progression into invasive bladder 
cancer (127, 128). T2-T4 tumors are solid muscle infiltrating tumors and 
constitute a minority of cases. Patients with these tumors have a high risk for 
metastasis and death (127-129). It is difficult to predict at diagnosis which 
patients will progress from non-muscle-invasive tumors, primarily T1 tu-
mors, to solid muscle infiltrating tumors (T2-T4). However, when compar-
ing the progression-free survival of non-muscle-invasive tumors, it was ob-
served that invasion of the subepithelial connective tissue is a prognostic 
indicator for risk of disease progression and reduced survival (124). Bladder 
cancer tumors are also divided into histological grades (low-grade and high-
grade). Low-grade tumors are mostly common among Ta tumors, whereas 
the majority of T1-tumors are high-grade. Advanced tumors (T2-4) are only 
high-grade.   

The treatment regimes with chemo- or immunotherapy depend on the tumor 
grade and recurrence status (124). Patients with superficial Ta and T1 tumors 
undergo initial transurethral resection in addition to treatment with chemo- 
or immunotherapy by intravesical instillations, in an attempt to prevent re-
currences. Mitomycin-C (MMC), Bacillus Calmette Guerin (BCG) and inter-
feron alfa are frequently used agents for this purpose (124, 128, 130). Radi-
cal cystectomy is the standard care for patients with muscle invasive bladder 
cancer (T2-T4), but the 5-year survival rate is only in between 40-60% and 
has not improved significantly over recent years (124, 128, 131). 

Genetic pathways in urinary bladder carcinoma  
The most common reported genetic alteration among the noninvasive blad-
der tumors are deletion of chromosome 9 and point mutations of FGFR3 
(fibroblast growth factor receptor 3 on 4p16) (125, 131-134). Activating 
mutation of FGFR3 leads to MAPK (mitogen activated protein kinase) 
pathway stimulation which regulates various cellular activities such as gene 
expression, mitosis, differentiation, cell survival and apoptosis (133, 134). 
FGFR3 mutations are far more frequent in low-grade Ta tumors (up to 80%), 
with only 10-20% of muscle invasive carcinoma showing this mutation 
(133-136). In addition to these alterations, loss of chromosome Y is observed 
to be a frequent event in the noninvasive bladder tumors (137). Occasionally, 
small amplicons or homozygous deletions have also been identified (138). 
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Apart from these alterations, the low grade noninvasive bladder tumors dis-
play few molecular alterations (139). Whole chromosome 9 deletions are 
common in all grades and stages of bladder cancer with more than half of 
tumors presenting this aberration. However, several studies have shown that 
9q loss is more common in low-grade and low-stage tumors compared to 
muscle invasive tumors, which in turn more frequently display 9p deletions 
(140-143). Four different tumor-suppressor regions have been mapped to 
chromosome 9. High-grade and high-stage tumors are often characterized by 
homozygous deletion of the tumor suppressor genes CDKN2A and CDKN2B 
located on 9p21 which is one of four different minimal tumors suppressor 
candidate regions (144). The other three regions are located on 9q22, 9q32-
33 and 9q34 (125, 131, 145, 146). These candidate regions encompass the 
tumor suppressor genes Ptch1 (147, 148), DBC1 (deleted in bladder cancer-
1 on 9q32-q33) (149, 150) and TSC1 (tumor suppressor candidate-1 on 
9q34.13) (151). CIS and muscle invasive tumors show frequent alterations of 
the TP53 and RB genes and pathways and particularly muscle invasive tu-
mors display a wide range of genomic alterations, including losses of 2q, 5q, 
8p, 10q, 11q, 13q, 17p, 18q and gains of 1q, 5p, 6p, 8q, 10p, 17q and 20q 
(139, 152). A model for bladder cancer initiation and progression with genes 
frequently activated or inactivated are shown in Figure 4.  

 
 

 

Figure 4. Schematic model for bladder cancer initiation and progression. Genes 
frequently altered by activating or inactivating mutations are shown in red and green 
respectively.  
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Present investigation 

Aims 

• To explore the extent of copy number variations in a large set of 
phenotypically normal individuals by applying a full-coverage 32K 
BAC-based array. 
 

• To identify DNA copy number aberrations and comprehensively 
search for novel candidate gene loci involved in glioblastoma and 
medulloblastoma development, using a full-coverage 32K BAC-
based array.  
 

• To correlate DNA copy number and gene expression status with 
clinical behavior on a clinically well-characterized cohort of Ta-
stage bladder carcinomas selected by the presence or absence of re-
currences.  
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Methods 

Microarray-based genomic hybridization (array-CGH) 
This method is an advanced technique first described in 1997 by Solinas-
Toldo and colleagues and it was first referred to as matrix-CGH (153) or 
array-CGH (154). This technique has emerged from conventional meta-
phase-CGH, first developed by Kallioniemi and colleagues in 1992 (155), in 
which test (tumor sample) and reference DNA (control sample) are differen-
tially labeled with fluorochromes and competitively hybridized to normal 
metaphase chromosome spreads on a glass slide. Regions of gain or loss of 
DNA are then detected as changes in the ratio of the intensities of the two 
fluorochromes along the chromosome. In array-CGH the chromosomes are 
substituted with an ordered set of targeted sequences with known chromo-
somal position spotted on a glass slide. Arrays can be made of genomic 
clones, cDNA, PCR fragments or oligonucleotides (156-158).  

One of the main approaches for identifying unbalanced structural variations 
such as CNVs is array-CGH. This is a powerful and robust method for carry-
ing out genome-wide scans and to find novel CNVs. Furthermore, one way 
to find candidate genes involved in tumorgenesis is to identify recurrent 
DNA copy number alterations in the tumor genome. Gain or loss of genomic 
material may change the level of expression of those genes encompassed in 
the aberration, which then modifies normal growth control and cellular 
pathways. Genetic alterations such as amplifications and deletions may acti-
vate proto-oncogenes or inactivate tumor suppressor genes. Characterization 
of these DNA copy number alterations is then important for the understand-
ing of cancer. The advantages of array-CGH compared to metaphase-CGH, 
LOH studies (using microsatellite or restriction fragment length polymor-
phism (RFLP) markers) and FISH (fluorescent in situ hybridization) are the 
higher resolution of analysis and the power of the method allowing the in-
vestigation of the whole genome in a single experiment. Schematic illustra-
tion of array-CGH is given in Figure 5. 

In the papers included in this thesis we applied an array (32K-array) estab-
lished in our lab. This platform is a clone-based array composed of 32,396 
bacterial artificial chromosomes (BACs) covering 99% of the current assem-
bly of the human genome with an average resolution of up to 60 kb, which is 



 31

~100x better resolution compared to metaphase-CGH. The clone library was 
(159) purchased from BACPAC Resources Center at Children’s Hospital 
Oakland Research Institute (Oakland, CA, USA; 
(http://bacpac.chori.org/pHumanMinSet.htm). The set of clones were ampli-
fied using three different degenerate�oligonucleotide–primed PCR primers 
(160) and then reamplified with a universal primer labeled with an amino 
group, which allows the attachment of the DNA to a glass slide. The DNA was 
printed onto a Codelink HD microarray slide with a high�throughput microar-
ray printer constructed by the Lawrence Berkeley National Laboratory.  

 
 

 

Figure 5. Array-based comparative genomic hybridization. The ratio of signal inten-
sities detected for each spot is indicative of the relative DNA copy number in test 
versus reference DNA and quantitative evaluation of fluorescence intensity ratios 
allows the identification of loss or gain of chromosomal material in the test DNA. 

Several steps including DNA labeling, testing of hybridization temperature, 
and washing conditions were carefully optimized to obtain the most optimal 
signal to noise ratio. We used 1μg of test and reference DNA which were 
labeled with different fluorochromes; Cy3 and Cy5 respectively. Labeled 
samples were then mixed with unlabeled human Cot-1 DNA to block repeti-
tive sequences. Cot-1 DNA is enriched in repetitive sequences and binds 
complementary repetitive sequences in the test DNA. Subsequently, the mix-
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ture was vaccum evaporated and resuspended in hybridization solution. The 
mixture was then hybridized to the microarray for 20 hours. Following 
washing steps, the microarray was scanned and the fluorescence intensity 
was analyzed using image analysis software. The raw data files were then 
uploaded to a laboratory information management system database for sto-
rage, hosted by the Linnaeus Centre for Bioinformatics (LCB; 
http://base.lcb.uu.se). LCB also provides tools for filtering and statistical 
analysis of microarray data within the LCB Data WareHouse (LCB-DWH) 
(161); we applied several filters to the hybridization raw data files. These 
filters remove oversaturated spots, spots with low signal-to-noise ratio in 
channels and spots either manually or automatically flagged as bad, absent 
or not found in the image analysis software. To remove possible dye bias or 
spatial effects, we also normalized all data using print-tip locally weighted 
scatter�plot smoothing (162). Clones were classified as balanced, gained or 
deleted using the open source software SMAP (163), available from Biocon-
ductor (http://www.bioconductor.org) and within LCB-DWH (161) which 
was developed in parallel to our experiments. For visualization of the results 
a graphical viewing tool that plots all clones according to their chromosomal 
positions was employed. 

Expression microarray 
Microarrays can also be used to simultaneously measure the expression level 
of many thousands of genes in the genome. Expression microarrays are a 
very effective tool in evaluating differences in gene expression levels and 
identifying specific genes whose expression is altered. This method can re-
flect changes in the genome which are not detectable by sequencing methods 
or copy number analysis. Identification of these altered genes can provide 
clues that aid in the identification of aberrant molecular pathways underlying 
the disease of interest. One of the most studied human diseases by expres-
sion arrays is cancer (164-167). In 1995 a microarray-based method for 
high-throughput monitoring of plant gene expression was described and one 
year later the same group described a microarray containing over 1000 hu-
man cDNAs (168, 169). Today, multiple commercial expression microarrays 
are available and the market leader is the Affymetrix GeneChip which is the 
most frequently used microarray for gene expression. Over 3,000 scientific 
publications describe results from this platform (170-172). Expression arrays 
were applied in both paper III and paper IV and the Affymetrix Human Ge-
nome U133Plus2.0 array used provides coverage of over 47 000 transcripts. 
This array consists of thousands of oligonucleotide probes that are synthe-
sized in situ and covalently attached to a solid matrix. Each transcript is 
represented by 11 pairs of 25mer oligonucleotides that serve as unique, se-
quence-specific detectors. Six major steps are required in this method; i) 
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preparation of RNA from the test sample, ii) synthesis of cDNA from the 
RNA sample using reverse transcriptase and an oligo-dT primer, iii) amplifi-
cation of biotin-labeled antisense mRNA (also referred to as cRNA) using an 
in vitro transcription reaction with the cDNA as a template, iv) addition of 
cRNA to the hybridization mix and injection into the GeneChip array fol-
lowed by hybridization for 16 hours, v) several washing and staining steps 
including a fluorphore conjugated to avidin that binds to biotin followed by a  
signal amplification step using specific antibodies, and finally vi) scanning 
of the GeneChip array with a confocal laser scanner and recording of fluo-
rescent signals on the array. Prior to analysis, the data is preprocessed by 
non-specific signal correction, normalization and filtering. The intensities for 
each sequence are converted to a quantitative read-out of relative gene-
expression levels when compared to cRNA controls of known concentration 
(earlier added to the hybridization mixture). A number of software packages 
that implement algorithms can be used for calculating the signal intensity 
from the array. We used packages from the Bioconductor project and the raw 
data was normalized using the robust multi-array average (RMA) method 
(173). An empirical Bayes moderated t-test was applied to search for diffe-
rentially expressed genes between groups (174). By comparing two or more 
hybridization patterns produced on separate arrays of the same array type, 
one can determine differences in mRNA levels between samples (171, 175-
177). This type of array has a one-color system design, which means that a 
single sample is hybridized to the array. Using gene expression data from the 
same tumors already analyzed for copy number changes can aid in the iden-
tification of candidate genes within the altered regions in a cancer genome.  

Quantitative real-time polymerase chain reaction (q-PCR)  
Real-time PCR (RT-PCR), also known as quantitative PCR (qPCR) is a quan-
titative PCR method for the determination of products generated during each 
cycle in a PCR reaction which is directly proportional to the amount of tem-
plate prior to the start of amplification (178). The first documentation of RT-
PCR was in 1993 by Higuchi et al. (179). This technique can be applied for 
measuring mRNA expression levels, DNA copy number, transgene copy 
number and expression analysis, allelic discrimination, and viral titers. RT-
PCR is the method of choice for validation of detected copy number altera-
tions in targeted regions because of the low cost and fast turnaround time 
(180). The two most common methods of performing of RT-PCR are the 
probe-based method and the intercalate-based method. The probe-based RT-
PCR, known as TaqMan RT-PCR requires a pair of PCR primers and an ad-
ditional fluorogenic probe which emits fluorescence when bound to the newly 
synthesized DNA. The intercalate-based method, known as SYBR-Green 
method, has intercalating dyes which bind to newly synthesized DNA and 
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emit fluorescence. In both cases the fluorescent signal in each PCR-reaction 
is captured at frequent intervals with a highly-sensitive camera (178). 

The RT-PCR method was applied in paper II to validate selected regions 
which displayed altered gene copy number in the tumor tissue as detected by 
array-CGH. The relative copy numbers were determined using the SYBR 
Green method and the gene copy number in the tumor DNA was normalized 
to a reference gene and calibrated to normal DNA.   

Fluorescent in situ hybridization (FISH) 
FISH is a molecular cytogenetic technique used to visualize specific labeled 
DNA probes hybridized to chromosomal structures. The first application of 
this technique came in 1980 by Bauman et al. (181). FISH is widely used 
today as a diagnostic tool to identify numerical and structural abnormalities in 
the DNA. By this method one can detect genetic aberrations such as dele-
tions, inversions, translocations, and gene amplifications. However, certain 
genetic alterations, for instance, insertions or smaller alterations may be diffi-
cult to detect by FISH (182, 183). FISH can be performed on interphase nuc-
lei or metaphase chromosomes. The fact that FISH can be used on nondivid-
ing nuclei allows for retrospective analysis of formalin-fixed, paraffin em-
bedded tissue which is the most common form of archived material. This 
technique also allows for the use of small biopsies, sometimes with as few as 
40-100 cells. The specimen is first firmly attached to a microscope slide. The-
reafter a number of deparaffinization (for formalin-fixed, paraffin embedded 
tissues) and enzyme treatment steps are implemented and the DNA within the 
specimen is denaturized and hybridized to a specific fluorescent probe which 
only binds to the region of interest. Different kinds of probes can be used but 
all probes must be designed to be complementary to the chromosomal region 
one wishes to detect. Centromeric probes, derived from repetitive centromeric 
sequences, are used to detect losses or gains (mostly monosomies or triso-
mies) of specific chromosomes. Locus specific probes are specific for indi-
vidual genes and are usually used to detect translocations, inversions, ampli-
fications or deletions of genes. After hybridization and washing, fluorescence 
microscopy is used to detect the fluorescent signals (182, 183). This method 
is currently being optimized to be used in paper III for validation of selected 
copy number alterations detected by array-CGH.  
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Results and Discussion 

Paper I: Profiling of copy number variations (CNVs) in 
healthy individuals from three ethnic groups using a 
human genome 32K BAC-clone-based array  
Copy number variations are recognized as a common source of genetic dif-
ferences between individuals. Many studies continue to show that CNVs are 
found in all humans as well as in other mammals. Investigations on the oc-
currence of CNVs are important in providing deeper insight into the impact 
of CNVs on human phenotypic variability, complex behavioral traits, disease 
susceptibility and evolution. In this study, we first established and carefully 
validated a high-resolution microarray containing over 32,000 BACs and 
then applied this array in the profiling of CNVs in the ‘healthy’ human ge-
nome. The set of clones (159) covers 99% of the current assembly of the 
human genome with an average resolution of up to 60 kb. The clones were 
degenerate-oligonucleotide-primed-PCR (DOP-PCR) amplified prior to in-
house printing onto microarray slides. Validation of the array included sev-
eral self-self hybridizations of a healthy female reference, which we used in 
all subsequent hybridizations, as well as hybridizations of this female refer-
ence against different pools of healthy individuals. As part of the validation 
process we also performed hybridizations of different cell lines and tumor 
samples with previously well-characterized genotypes. We could correctly 
identify the expected aberrations known to be present in the cell lines and 
tumors samples, and we also detected a number of small aberrations which 
had not previously been detected. Furthermore, the results showed a very 
high degree of reproducibility.  

In this study a series of 71 healthy individuals (44 men and 27 women) from 
three different ethnic groups were analyzed using the 32K-BAC array with 
the aim of establishing a baseline for CNVs and in addition, identifying nov-
el CNVs. The use of the term ‘baseline’ in this context refers to the normal 
frequency and genomic distribution of CNVs in normal individuals. Thirty-
three Europeans, 24 Africans and 14 Asian subjects were included and all 
individuals were hybridized against the same female reference. DNA was 
isolated from peripheral blood and profiled; the advantage of this strategy 
being that a risk of false positive results due to cell culturing artifacts is 
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completely avoided. After analyzing all hybridizations, 1,078 autosomal 
CNVs were detected which involved at least two neighboring BAC clones. 
The average number of CNVs per individual was 15.1 (minimum = 3, max-
imum = 36) with an average size of 357.925 bp. The average size of the 
CNVs was similar between gains and losses, however, a larger number of 
gains than deletions was observed (835 vs. 243) which suggests a lower to-
lerance of deletions in the human genome, as compared to gains. We also 
grouped all individual overlapping CNVs into CNV regions (CNVRs). We 
found 315 distinct regions (52 deleted, 237 gained, and 26 either gained or 
deleted regions). These encompassed 118.1 Mb which means that at least 
~3.5% of the human genome is involved in CNVs. A proportion of the iden-
tified CNVRs overlapped with previously reported regions annotated in the 
Database of Genomic Variants (62.5%), but a considerable number of them 
(37.5%) represented new variants. Interestingly, a total of 87% of the de-
tected CNVRs overlap with known genes verifying that they might have 
phenotypic consequences. Furthermore, when looking at the reported regions 
in detail, it could be concluded that segmental duplications (SDs) were over-
represented in deleted regions (60% vs. 46% for deletions and gains, respec-
tively) and in the larger deleted regions we could detect as much as 70% of 
SD content which indicates that SDs are hotspots for chromosomal rear-
rangements and the formation of CNVs. We also investigated if it was possi-
ble to identify any population-specific CNV for any of the ethnic groups 
studied. For this we performed complete unsupervised hierarchical cluster-
ing, based on the Euclidean distances between samples (using the log2-ratios 
of 1,145 clones identified within CNVs). We could not observe however, 
any ethnic-specific clustering, in that we found no cluster containing indi-
viduals of only one population. It is possible that the resolution of the plat-
form or number of cases studied was not high enough to detect any existing 
differences. An alternative explanation is that CNVs do not vary between the 
ethnic groups studied. 

In summary, we established a 32K BAC array which is a powerful and relia-
ble tool for detection of copy number alterations in the genome, we validated 
and applied it in the determination of CNVs in healthy individuals. This 
study contributes to the establishment of the common baseline for CNVs, 
which is an important resource in studies addressing predisposition to differ-
ent human diseases.  
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Paper II: Characterization of novel and complex genomic 
aberrations in glioblastoma using a 32K BAC array 
Glioblastoma is a devastating disease and despite treatment less than half of 
patients are alive 1 year from diagnosis. The genetic factors underlying 
glioblastoma development are still poorly understood. In this study we aimed 
to identify chromosomal alterations at the level of DNA copy number that 
may be related to glioblastoma initiation and progression. A cohort of 78 
tumor samples, in addition to 46 matched peripheral blood samples, was 
analyzed using a high resolution 32K BAC array. This array is a very power-
ful tool for detection of copy number imbalances genome-wide. The regions 
of loss or gain identified in either constitutional or tumor-derived DNA can 
potentially indicate the position of putative gene(s) involved in the develop-
ment of glioblastoma tumors. By profiling both tumor and blood DNA we 
were able to distinguish between genetic events that are tumor-specific and 
those present in constitutional DNA. The importance of discovering these 
aberrant genes is that they could serve as diagnostic and/or prognostic mark-
ers for improved early diagnosis and/or even identify targets for new thera-
peutic strategies.  

We observed a variety of both known and novel tumor-specific copy number 
alterations, including not only single losses or gains but also high-copy 
number amplifications and homozygous deletions. The most frequent genetic 
aberration involving a whole chromosome was monosomy 10 followed by 
trisomy 7 and 83% of tumors were identified with a combination of these 
aberrations. Other common alterations affecting whole chromosomes were 
monosomy 22, trisomy 19 and 20. The most common copy number altera-
tions involving whole p and/or q arms, and interstitial and/or terminal gains 
or deletions was the entire or interstitial deletion of 9p, followed by intersti-
tial loss of 1p.  

We also identified a complex pattern of aberrations including high and nar-
row copy number amplicons. A total of 63 cases (81% of patients) presented 
with amplicons, varying in number from 1 to 19 per sample (three on aver-
age). The most frequent amplicon encompassed the EGFR locus and was 
identified in 39 samples (50%). For 19 of these samples the normalized ratio 
for clone CTD-2026N22, which lies within the EGFR amplicon, was higher 
than 10, which is consistent with the presence of at least 20 DNA copies of 
this locus. The second most common amplicon was an amplification of the 
CDK4 locus, this event being observed in 16 cases (20.5%). Amplifications 
of PDGFRA and MDM2 were observed in 15.4% and 11.5% of tumors, re-
spectively. In addition to these amplicons, which are known events in gliob-
lastoma, several novel amplicons were identified that encompassed interest-
ing candidate genes such as; GRB10 (growth factor receptor-bound protein 
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10 on 7p12.2), MKLN1 (muskelin 1, intracellular mediator containing kelch 
motifs on 7q32.3), PPARGC1A (peroxisome proliferative activated receptor 
gamma, coactivator 1 alpha on 4p15.2), HGF (hepatocyte growth factor on 
7q21.11), NAV3 (neuron navigator 3 on 12q14.3- q21.1), CNTN1 (contactin 
1 on 12q12), SYT1 (synaptotagmin I on 12q21.2) and ADAMTSL3 
(ADAMTS-like 3 on 15q25.1). Moreover, extremely complex amplifier geno-
types with numerous high and low copy number amplicons were specifically 
found on chromosomes 7, 12, and 22. One sample with multiple amplicons 
on chromosome 7 had a maximum ratio of 16.05 for the EGFR locus which 
indicates 32 DNA copies of the EGFR region. Furthermore, another sample 
presented with high and multiple amplicons on chromosome 12. One of 
them, encompassing the MDM2 locus, displayed a maximum ratio of 27, 
which is consistent with 54 gene copies.  

This analysis also allowed us to identify numerous narrow homozygous de-
letions. These regions included several previously reported tumor suppressor 
genes known to be involved in glioblastoma development, as well as novel 
candidate genes. Homozygous deletion of 9p21.3, encompassing CDKN2A, 
was identified in 31 samples (40%). Interestingly, several different loci af-
fected by biallelic deletion on chromosome 9 were also identified, which 
strengthens the notion that genes other than CDKN2A located on this chro-
mosome may be involved in tumor development. Notably, homozygous de-
letion of ELAVL2 (embryonic lethal abnormal vision, Drosophila,-like 2 on 
9p21) was observed in 16 patients, an aberration that has also been observed 
in pediatric gliomas (184). Several other homozygously deleted loci encom-
passing interesting candidate tumor suppressor genes such as BNC2 (baso-
nuclin 2 on 9p22.2), PTPLAD2 (protein-tyrosine phosphatase-like A do-
main-containing protein 2 on 9p21.3) and PTPRE (protein tyrosine phos-
phatase, receptor type, E on 10q26) were also identified.  

Furthermore, we also defined minimal overlapping regions (MORs) of gains 
and deletions. These regions are of special interest as they are likely to har-
bor candidate oncogenes or tumor suppressor genes. We identified 185 dif-
ferent regions of deletion and gain involving at least 3 tumor samples. To 
identify possible candidate genes within these regions, we used publically 
available expression data and determined the top significantly up-or down-
regulated genes in comparison to normal brain. Several novel genes not pre-
viously associated with glioblastoma, in addition to known genes with a 
previous correlation to glioblastoma, were detected.  

Finally, we compared the copy number variations detected in blood to pub-
licly available data (Database of Genomic Variants) and a large series of 
healthy individuals using the same platform (185) and concluded that all 
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observed alterations in blood were previously categorized as normal disease-
unrelated variations.   

By this large comprehensive analysis of glioblastomas we concluded that not 
a single pair of tumors presented with identical genomic profiles. This large 
individual variation of genetic alterations demonstrates the underlying com-
plexity of the disease. Whole genome profiling by array-CGH is an effective 
tool to highlight candidate tumorigenic genes. These genes may be used in 
future as targets for new diagnostic and therapeutic strategies. 

Paper III: Novel amplicons in pediatric medulloblastoma 
identified by high-resolution genomic analysis 
Patients with medulloblastoma are currently divided into high- or standard 
risk groups. The high risk group includes patients younger than 3 years, with 
incomplete surgical resection, and/or evidence of metastasis. However, the 
clinical parameters defining risk stratification have been shown to be insuffi-
cient (112, 186-188) and a significant proportion of patients die from the 
disease. In addition, the majority of survivors suffer from long-term neu-
roendocrine and cognitive dysfunctions due to the intensive treatment re-
gimes required to treat their disease (114). Currently, the treatment protocol 
is based only on risk-stratification with over- or under-treatment as common 
outcomes. It is essential to increase the understanding of the biology under-
lying the development of medulloblastoma and also find biomarkers that 
could help to differentiate between high and standard risk patients.  

We therefore analyzed a collection of 25 Swedish medulloblastoma samples 
collected over a period of more than 25 years, using 32K BAC array. We 
were able to generate a detailed map of aberrations across the genome. The 
most frequent DNA copy number aberration observed in medulloblastoma 
was the combination of 17p loss and 17q gain, indicative of an isochromo-
some 17q (i(17q)). This alteration was identified in 40 % of tumors. The 
second most common aberration was the entire or partial loss of 1p, identi-
fied in 32% of cases. Furthermore, monosomy 8, trisomy 7 and 19, as well 
as interstitial deletions of 10q and partial gains of 8p and 17q were also rela-
tively common.  

Since we had access to clinical data for all cases, we studied the correlation 
between chromosomal aberrations and patient outcome. We observed that all 
but one of the patients affected with tumors presenting with i(17q), were alive 
at the point of manuscript completion, and we also could determine a signifi-
cant correlation (Kaplan-Meier) for the presence of this aberration with long-
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er survival time, p-value 0.047. These results are in disagreement with pre-
vious studies showing a correlation between this abnormality and poor out-
come (189, 190). It is possible that the difference between studies may be due 
to random sample selection. We think that further investigations in larger 
series of samples are needed before the presence of this aberration can be 
used in the clinic as a marker of disease progression and survival. We also 
identified three cases with very interesting profiles displaying high copy 
number amplicons, samples that were selected for validation using SNP-
based comparative genomic hybridization (Illumina 610Q beadchips). These 
arrays cover the genome with over 590 000 SNPs and 21 000 markers for 
analyzing common CNV regions. Two of these samples were also analyzed 
with U133Plus2.0 expression arrays to identify candidate genes within the 
amplified regions. One tumor presented with two independent amplicons on 
chromosome 1. The narrower and most distal one encompassed 42 genes, 28 
of which were up-regulated. Among them we detected MYCL1 (v-myc myelo-
cytomatosis viral oncogene homolog 1, lung carcinoma derived, avian on 
1p34.2) which is known to be amplified in medulloblastoma tumors (119). 
The other amplified region encompassed 38 genes, 24 of which were up-
regulated, and possible candidate oncogenes in this region are: SSX2IP (syn-
ovial sarcoma, X breakpoint 2 interacting protein on 1p22.3), LMO4 (LIM 
domain only 4 on 1p22.3), PKN2 (protein kinase N2 on 1p22.1) and CYR61 
(cysteine-rich, angiogenic inducer, 61 on 1p22.3). In the other tumor we also 
identified two independent amplicons, but on chromosome 3. The more distal 
one included only one gene, EOMES (eomesodermin homolog on 3p21.3-
p21.2), and the other encompassed 56 genes, 37 of which were up-regulated. 
DCLK3 (doublecortin-like kinase 3 on 3p22.2), RPSA (ribosomal protein SA 
on 3p21.3) and CTNNB1 (�-catenin on 3p22.1) are potential candidate genes 
within this region. In the third tumor we observed an amplicon on chromo-
some 8 encompassing 69 genes. This tumor could not be analyzed for gene 
expression levels. MYC (v-myc myelocytomatosis viral oncogene homolog on 
8q24.21) and DDEF1 (development and differentiation enhancing factor 1 on 
8q24.21) are two proto-oncogenes that mapped to this region. MYC is known 
to be involved in medulloblastoma development (115, 191). Two of these 
three patients with high copy number amplicons are deceased but the third 
patient is still alive after 19.4 years. Interestingly, the patient who remains 
alive was shown to have amplification of the CTNNB1 locus, and it has been 
shown that mutations in this gene are associated with better survival (192).  

We also defined the MORs of aberrations in the series and identified 34 re-
gions of loss or gain. These regions were distributed throughout the genome 
and to identify possible candidate genes within these regions, we used publi-
cally available expression data to determine the most significantly up-or 
down-regulated genes. Several genes already associated with medulloblas-
toma were mapped to these regions, but also novel candidate genes. 
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In conclusion, by profiling a series of medulloblastomas we could identify a 
number of novel genomic aberrations and various candidate genes within 
these regions.  

Paper IV: Focal amplifications correlate with high-grade 
and recurrences in stage Ta bladder carcinoma 
Patients with the lowest malignancy state and the most common type of 
bladder carcinoma (Ta) have a low risk of progression and death. However, 
the risk for recurrences is relatively high and between 50-70% of patients 
will suffer from tumor recurrence. This is clearly a problem for both the 
individual patient as well as for the health care system (124, 128). The pre-
diction of tumor recurrence is a challenge and reliable biomarkers are needed 
in clinical practice. Today, a number of common genomic aberrations have 
been identified in Ta bladder cancer. These aberrations include 9q/ 9p dele-
tions, mutation of the fibroblast growth factor receptor 3 (FGFR3), loss of 
chromosome Y and mutation or amplification of cyclin D1 on 11q13 (137, 
193, 194). However, no single predictive biomarker is currently used for 
molecular diagnostic tests. By analyzing the DNA copy number alterations, 
as well as the gene expression levels, it is possible to characterize the genetic 
pathways behind tumor development.  

The aim of this study was to evaluate DNA copy number as well as the gene 
expression levels of a clinically well-characterized subset of 21 Ta bladder 
carcinomas. These primary Ta samples included 2 LMP (papillary urothelial 
neoplasm of low malignant potential), 10 low-grade and 9 high-grade tumors 
from 14 males and 7 females with an average age of onset of 72.3 and 64.6 
years respectively. All samples were selected according to their status of 
recurrence. Ten of the patients had several recurrent tumors, 2-15 within 10 
months to 14 years, whereas 11 had no recurrences in a follow-up time of 
minimum 4 years. All cases were profiled with 32K BAC array to identify 
copy number alterations that could be important in tumor development and 
to differentiate recurrent from non-recurrent cases.  

The array-CGH analysis revealed losses and gains of whole chromosomes in 
addition to interstitial and/or terminal copy number aberrations. The most 
frequent alteration (detected in 45% of cases) involving a whole chromo-
some was heterozygous deletion of chromosome 9. This aberration was ob-
served in both the recurrence group and in the recurrence-free group. Other 
chromosomal imbalances such as gain at 1q, 5p, 17q and 20q were also rela-
tively common, but more frequently observed in the recurrence group. Inte-
restingly, high and narrow copy number amplicons were significantly over-
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represented in the recurrent group, but also among the higher grade tumors. 
We identified in total 18 amplicons, thus, 33% of tumors presented with 
amplicons. The amplicons varied in size (0.25-11.5Mb) and in number (1-7 
per tumor) and included known oncogenes (e.g. FGFR3, CCND1 (cyclin D1 
on 11q13.2), MYC and MDM2 as well as novel candidate oncogenes such as 
MYBL2 (v-myb myeloblastosis viral oncogene homolog (avian)-like 2 on 
20q13.1), YWHAB (tyrosine 3-monooxygenase/tryptophan on 20q13.1) and 
SDC4 (syndecan 4 on 20q13.12). We also identified a few small homozyg-
ous deletions (0.65 to 3.10 Mb in size). These biallelic deletions encom-
passed several tumor suppressor genes, such as CDKN2A/B, PTEN, RB1 
which are known to be involved in bladder cancer, in addition to a novel 
gene RNASEH2B (ribonuclease H2, subunit B on 13q14 .13). Furthermore, 
23 MORs involving gains or losses, of varying size (0.45-53.81Mb), were 
identified, and oncogenes and tumor suppressor genes known to be involved 
in bladder cancer as well as other types of cancer were mapped to these re-
gions. The MORs that encompassed most samples were 9p24.3-21.1, 
9q22.32-34.11 and 2q.37.1 for deletions and 17q.25.1-25.3 and 20q11.21-
13.33 for gains.  

Gene expression levels were evaluated in 12 samples (5 cases without recur-
rences and 7 cases with recurrences) with the U133Plus2.0 expression array 
from Affymetrix and compared in recurrence versus non-recurrence groups. 
We did not observe any significant difference in gene expression between 
recurrence versus non-recurrence groups. The gene expression data was also 
used to identify candidate genes within the novel and narrow amplicons as 
well as the homozygous deleted loci when compared to gene expression data 
of normal bladder tissue. We identified several potential candidate genes, 
namely MYBL2, a proto-oncogene involved in cell cycle progression, YW-
HAB, which encodes an antiapoptotic protein, SDC4, an important compo-
nent of focal adhesions, and TOMM34, involved in the import of precursor 
proteins into mitochondria. These were genes for which DNA amplification 
was linked to transcript up-regulation. Two of the genes encoding TOMM34 
and SDC4 proteins were selected for immunohistochemistry staining. The 
results confirmed that protein expression also is up-regulated in the tumor 
with amplification.  

To summarize, the whole genome profiling of Ta bladder carcinomas re-
vealed a large individual variation in terms of copy number alterations. In 
addition, the significant correlation between high copy number amplicons 
and high-grade and recurrence cases was an interesting finding which may 
be useful in the identification of patients who would benefit from a more 
aggressive therapy.   
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Concluding remarks and future perspectives 

Array-based comparative genomic hybridization and gene expression arrays 
are powerful and relevant methods for the determination of copy number 
variations or gene expression changes in the human genome. The establish-
ment of the 32K BAC array covering the whole genome and the identifica-
tion of a baseline for common CNVs in healthy individuals in paper I was 
fundamental for subsequent studies of tumor-specific CNVs. In paper II, III 
and IV we applied this platform in the profiling of glioblastoma, medullob-
lastoma and bladder cancer with the primary objective of identifying copy 
number imbalances that could indicate faulty genes and the pathways altered 
by CNVs. Numerous known and novel MORs of gains and losses were iden-
tified in all tumor types. Moreover, in paper III and IV, we explored the gene 
expression levels in a number of samples, to aid in the identification of poss-
ible candidate tumor suppressor genes and/or oncogenes within the regions 
of interest. The results derived from these studies have increased our under-
standing of the genetic alterations leading to the development of these differ-
ent tumor types and demonstrate the potential prognostic value of array-
CGH. Both the discovery of new, and confirmation of recurrent genomic 
alterations within cancer genomes is important as it represent the first step 
guiding the development of new anti-cancer agents, directed to specific pro-
teins encoded by these genes. Targeted cancer therapy targets specific mole-
cular elements that are essential for survival of the tumor. One example of a 
revolutionizing drug which targets a specific genetic aberration is Gleevec 
(imatinib), which is now extensively used in the treatment of chronic myelo-
id leukemia. By inhibiting the major driving factor of the tumor, the bcr-abl 
aberrant fusion protein, Gleevec proved to be an extremely effective treat-
ment option. The obvious success of Gleevec underscores the importance of 
investigating recurrent changes in the cancer genome in order to improve 
future cancer therapies. 

To comprehensively characterize a cancer genome at a deeper level, high-
resolution and genome-wide investigations must be undertaken. The optimal 
cancer genome analysis would involve a combination of complementary 
methods such as microarrays and sequencing, as well as the use of integra-
tive approaches, which study changes in the transcriptome, and epigenome. 
Such unbiased and multi-dimensional data sets would provide a more com-
plete picture of the complex alterations that occur prior to and during tumor 
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development. Massively parallel DNA sequencing provides a rapid and ef-
fective way to sequence the whole or selected regions of the genome. This 
method has dramatically improved on earlier techniques in terms of its abili-
ty to read massive amounts of sequences in parallel, in a fast and cost-
effective way. There are four different technologies currently available: 454 
(Roche), SOLiD (Applied Biosystems), Solexa (Illumina) and Helicos (195-
198). The workflow and principles involved in these technologies are rela-
tively similar. They use a combination of chemical and enzymatic reactions 
to sequence fragments in a highly parallel fashion. The read-out is then cap-
tured by image analysis and thereafter mapped to a reference genome. The 
sequenced genomic regions can then provide information about genetic alte-
rations other than copy number aberrations, such as point mutations, inver-
sions and translocations. The knowledge obtained from sequencing data can 
be added to that on copy number alterations and gene expression to improve 
the probability of identifying candidate cancer genes that are most likely to 
be drivers. Driver genes in turn are those that are worthy of deeper investiga-
tion, using functional studies such as cell-lines or animal models for in-
stance. The discrimination between driver and passenger mutations is a criti-
cal dilemma in cancer genomic studies, because not all alterations in the 
cancer genome actually contribute to carcinogenesis. Furthermore, the fre-
quency of mutations in a gene is not the only relevant factor in evaluating 
the importance of a mutation, the type of mutation can provide useful infor-
mation regarding its potential role in disease. Massively parallel DNA se-
quencing can also be used for whole-genome transcriptome profiling. This 
permits the quantification of transcript abundance and identification of novel 
genes and splice-variants (199).  

Abnormal epigenomic states, such as DNA hyper- or hypomethylation in a 
cancer cell are also relevant to study as they can impact on gene expression 
considerably. Many cancer types have been associated with changes in the 
epigenome that dysregulate normal transcription. The investigation of DNA 
methylation could for example reveal inactivated tumor suppressor genes 
which cause disruption of multiple pathways important for tumor develop-
ment. Additionally, the understanding of how DNA methylation influences 
biological processes is still quite limited, and deeper knowledge of the me-
thylation status within different tumor types could allow for enhanced diag-
nosis or tailor-made treatments in the future. Recent technology develop-
ment has enabled analysis of DNA methylation in a genome-wide manner. 
DNA methylation studies can employ array-based or non-array-based me-
thods and the procedure can be divided into two steps. The first step is the 
identification and enrichment of methyl-cytosines in the DNA sample. 
Common methods are: restriction enzyme-based method, chromatin immu-
noprecipitation (ChIP) and bisulfate conversion. The second step involves 
capturing of the enriched or modified DNA. In the array-based category, the 
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arrays are designed to analyze bisulfate-converted DNA or instead employ a 
restriction-enzyme-based methylation analysis. Non-microarray-based expe-
rimental design includes for example, massively parallel DNA sequencing 
after bisulfate conversion (200, 201).  

The integration of copy number-, gene expression-, mutation-, and DNA 
methylation data will provide an overview of the pathways and networks 
altered during tumor development. Such information will be important for 
therapeutic decisions in clinics since a more personalized treatment can be 
achieved for each patient based on their genetic and epigenetic profile. Fur-
thermore, identified candidate genes may in future be harnessed as targets 
for new diagnostic and therapeutic strategies.  
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