An Almost Sure Renewal Theorem for Branching Random Walks on the Line

Matthias Meiners
An Almost Sure Renewal Theorem for Branching Random Walks on the Line

Matthias Meiners
Department of Mathematics
Uppsala University
75106 Uppsala, Sweden

June 10, 2010

Abstract
In the present paper an almost sure renewal theorem for branching random walks on the real line is formulated and established. The theorem constitutes a generalization of Nerman’s theorem on the a.s. convergence of Malthus normed supercritical Crump-Mode-Jagers branching processes counted with general characteristic and Gatouras’ almost-sure renewal theorem for BRWs on a lattice.

Keywords: Branching random walk; martingale; renewal theorem
2010 Mathematics Subject Classification: Primary: 60J80
Secondary: 60K05

1 Introduction
Almost sure (a.s.) limit theorems for general (CMJ) branching processes, which can be viewed as branching random walks (BRWs) with positive increments, have proven useful in the theory of branching processes. For instance, Nerman’s a.s. renewal theorem [13, Theorem 5.4] has been successfully applied in the study of the functional equation in the BRW, see e.g. [4, Theorem 8.6] and [2, Proposition 9.2]. Another example of a fruitful application of a.s. renewal theorems for BRWs is the area of random fractals, see [7]. In this paper, we address the problem of extending the a.s. renewal theorems for BRWs on the positive halfline to BRWs on the whole real line.

The rest of this article is organized as follows. In Section 2, we give an introduction to the BRW and the notation used throughout the article. Our main results are stated in Section 3. Some results from classical renewal theory are collected in Section 4. In Sections 5 and 6, known results on connections between BRWs and their associated random walks, and the corresponding ladder line and ladder height processes, respectively, are summarized. Section 7 contains the proof of our main result, the a.s. renewal theorem for BRWs.

*Research supported by DFG-grant Me 3625/1-1
We begin this section with an introduction of the BRW on the real line. Consider an individual, the ancestor, which we identify with the empty tuple \(\emptyset \), located at the origin of the real line at time \(n = 0 \). At time \(n = 1 \) the ancestor produces a random number \(N \) of offspring which is placed at real points according to a random point process \(Z = \sum_{i=1}^{N} \delta_{x_{i}} \) on \(\mathbb{R} \) (particularly, \(N = Z(\mathbb{R}) \)). Here \(\delta_{x} \) denotes Dirac measure with a point at \(x \). We enumerate the ancestor’s children by \(1, 2, \ldots, N \) (note that we do not exclude the case that \(N = \infty \) with positive probability). The offspring of the ancestor form the first generation. The population further evolves following the subsequently explained rules. An individual, the ancestor, which we identify with the empty tuple \(\emptyset \), resides. The ancestor of \(v \) in the \(k \)th generation, \((v, \ldots, v_{k})\), will be denoted by \(v|k \) for \(k \leq n \). In particular, \(v|0 = \emptyset \). We write \(u < v \) to indicate that \(u \) is a strict ancestor of \(v \) which means that there exists some \(k < n \) such that \(u = v|k \). We write \(u \preceq v \) if either \(u < v \) or \(u = v \), that is, if \(u \) is an ancestor of \(v \). For subsets \(V \subseteq \mathbb{V} \), we write \(u \preceq V \) if no \(v \in V \) is an ancestor of \(u \), i.e., if \(v \not\preceq u \) for all \(v \in V \).

The basic probability space is defined to be the product space

\[
(\Omega, \mathcal{A}, \mathbb{P}) = \prod_{v \in \mathbb{V}} (\Omega_{v}, \mathcal{A}_{v}, \mathbb{P}_{v}),
\]

where \((\Omega_{v}, \mathcal{A}_{v}, \mathbb{P}_{v})\) are identical spaces. We suppose that \((\Omega_{v}, \mathcal{A}_{v}, \mathbb{P}_{v})\) carries the point process \(Z(v) \) but may also carry further random variables. Since \((\Omega, \mathcal{A}, \mathbb{P})\) is a product space, an element \(\omega \in \Omega \) is of the form \(\omega = (\omega_{v})_{v \in \mathbb{V}} \). For each \(u \in \mathbb{V} \), let \(\sigma_{u} : \Omega \to \Omega \), \(\omega = (\omega_{v})_{v \in \mathbb{V}} \mapsto \sigma_{u}\omega := (\omega_{uv})_{v \in \mathbb{V}} \) be the shift operator. Whenever \(\Psi \) is a function from \((\Omega, \mathcal{A})\) into another measurable space, we denote by \([\Psi]_{u} \) the function \(\omega \mapsto \Psi(\sigma_{u}\omega) \).

We assume throughout the article that the average number of children born to each individual is greater than one, that is, \(\mathbb{E}N > 1 \). In other words, we assume the supercriticality of the underlying branching process \((N_{n})_{n \geq 0}\) where \(N_{n} \) is defined to be the number of realized individuals of the \(n \)th generation.
the formal definition of which is next. Put \(\mathcal{G}_0 := \{ \emptyset \} \) and, recursively,

\[
\mathcal{G}_{n+1} := \{ v \in \mathbb{N}_0^{n+1} : v \in \mathcal{G}_n, 1 \leq i \leq N(v) \}, \quad n \in \mathbb{N}_0,
\]

and, finally, \(\mathcal{G} := \bigcup_{n \geq 0} \mathcal{G}_n \). Then, \(N_n := |\mathcal{G}_n|, n \geq 0 \). \((N_n)_{n \geq 0}\) forms a Galton-Watson branching process if \(N \) is a.s. finite. Anyway, the assumption \(\mathbb{E} N > 1 \) guarantees \(\mathbb{P}(S) > 0 \) where \(S \) is defined to be the set of survival of the process,

\[
S := \{ N_n > 0 \text{ for all } n \geq 0 \}.
\]

By \(\xi \) we denote the intensity measure of the point process \(\mathcal{Z} \), i.e., \(\xi(A) := \mathbb{E} \mathcal{Z}(A) \) for any Borel set \(A \subseteq \mathbb{R} \). Further, we define \(m \) to be the Laplace transform of \(\xi \), that is, for \(\theta \in \mathbb{R} \),

\[
m(\theta) := \int e^{-\theta x} \xi(dx) = \mathbb{E} \int e^{-\theta x} \mathcal{Z}(dx) = \mathbb{E} \sum_{i=1}^{N} e^{-\theta X_i}.
\]

Note that, by non-negativity, \(m \) is well-defined on \(\mathbb{R} \) but may assume the value \(+\infty\). We write \(\mathcal{D}(m) \) for the canonical domain of \(m \) defined by \(\mathcal{D}(m) := \{ \theta \in \mathbb{R} : m(\theta) < \infty \} \). Since \(m \) is a Laplace transform, \(\mathcal{D}(m) \) is a convex subset of \(\mathbb{R} \) but may in general be empty or contain an infinite ray. In what follows, we make two substantial assumptions concerning \(m \):

There exists an \(\alpha > 0 \) such that \(m(\alpha) = 1 \). \hspace{1cm} (A1)

Under (A1), the convexity of \(m \) implies that the equation \(m(\theta) = 1 \) has either one or two solutions. Since we assume \(\mathbb{E} N = m(0) > 1 \), any solution to the equation is positive. Henceforth, we assume that \(\alpha \) is the minimal solution to the equation \(m(\theta) = 1 \). Our second assumption is

\[
-m'(\alpha) \in (0, \infty)
\]

where \(-m'(\theta) := \mathbb{E} \sum_{i=1}^{N} X_i e^{-\theta X_i} = \int x e^{-\theta x} \xi(dx) \). Particularly, validity of (A2) implies that \(\sum_{i=1}^{N} X_i e^{-\alpha X_i} \) is integrable. Notice that \(m \) is differentiable on \(\text{int}(\mathcal{D}(m)) \) and that \(m'(\theta) \) as defined above coincides with the derivative of \(m \) on \(\text{int}(\mathcal{D}(m)) \). It is well known that assumption (A1) makes the sequence of (random) Laplace transforms of the random point measures \((\mathcal{Z}_n)_{n \geq 0} \) evaluated at \(\theta = \alpha \) a non-negative martingale w.r.t. the filtration

\[
\mathcal{F}_n := \sigma(\mathcal{A}_v : |v| < n), \quad n \geq 0.
\]

(Notice the slight abuse of notation in (2.1) where \(\mathcal{F}_n \) is understood to be the \(\sigma \)-algebra generated by the projections \(p_v : \Omega \to \Omega_v, \omega = (\omega_u)_{u \in \mathcal{V}} \mapsto \omega_v, |v| < n \).) We denote this martingale by \((W_n^{(\alpha)})_{n \geq 0} \), i.e.,

\[
W_n^{(\alpha)} := \int e^{-\alpha x} \mathcal{Z}_n(dx) = \sum_{|v| = n} e^{-\alpha S(v)} \quad (n \geq 0)
\]

where here and in the following the summation over \(|v| = n \) means summation over \(v \in \mathcal{G}_n \). Since being non-negative, \((W_n^{(\alpha)})_{n \geq 0} \) converges a.s. to a non-negative limit which we denote by \(W^{(\alpha)} \). An equivalent criterion (under (A1) and (A2)) for \(W^{(\alpha)} \) not to be degenerate at 0 is next.
Theorem 2.1 (Biggins’ Theorem). In the given situation, the following assertions are equivalent.

(a) \((W_n^{(α)})_{n≥0}\) is uniformly integrable.
(b) \(W_n^{(α)} → W^{(α)}\) in \(L^1\) as \(n → ∞\).
(c) \(E W^{(α)} = 1\).
(d) \(P(W^{(α)} > 0) > 0\).
(e) \(\{W^{(α)} > 0\} = S\) a.s.
(f) \(E W_1^{(α)} \log^+ W_1^{(α)} < ∞\).

3 A.s. renewal theorems for BRWs on the line

In addition to the BRW as defined above, we suppose the existence of a product-measurable, separable stochastic process \(φ : \mathbb{R} × \Omega → \mathbb{R} ∪ \{∞\}\). In the context of Crump-Mode-Jagers processes, \(φ\) can be interpreted as a general characteristic of the process, see [13]. As usual, we suppress the dependence of \(φ\) on \(ω\) in most of the formulas, i.e., we write \(φ(t)\) and think of it as the random variable \(ω ↦ φ(t, ω)\). We then define (cf. [9, p. 167] and [13, Eq. (1.11)])

\[
Z_t^φ := \sum_{v \in G} [φ]_v (t - S(v)),
\]

where here and in what follows \(\sum_v\) means summation over \(G\), the set of realized individuals.

For technical reasons, we have to distinguish two cases, the lattice and the non-lattice cases. We call \(Z\) lattice if, for some \(r > 0\), \(P(Z(\mathbb{R} \setminus r \mathbb{Z}) = 0) = 1\), and non-lattice if no such \(r > 0\) exists. In the lattice case, we refer to \(λ > 0\) as the lattice span if \(λ = \sup\{r > 0 : P(Z(\mathbb{R} \setminus r \mathbb{Z}) = 0) = 1\}\).

Next, we introduce two assumptions, which we need to prove the renewal theorem for BRWs on the line. The first condition is a moment condition for the positive steps of the BRW while the second affects the stochastic process \(φ\) and the negative steps of the BRW.

Condition 3.1. There exists a non-increasing and integrable function \(g : [0, ∞) → (0, ∞)\) such that

\[
E \sum_{|v|=1} e^{-αS(v)} \frac{g(S(v))}{g(S(v))} 1_{\{S(v)≥0\}} < ∞.
\]

Condition 3.2. Let \(ε > 0\) and define the function \(h\) by \(h(0) = 1\) and

\[
h(t) := \min\{1, |t|^{-1}(\log^+ |t|)^{-1+ε}\} \quad (t ≠ 0).
\]

Then

\[
M := \sup_{t∈\mathbb{R}} \frac{e^{-αt}|φ(t)|}{h(t)} ∈ L^1
\]

and

\[
E \sum_{|v|=1} e^{-αS(v)} \frac{|S(v)|}{h(S(v))} 1_{\{S(v)<0\}} < ∞.
\]
Remark 3.3. (a) In the lattice case with lattice span \(\lambda > 0 \), it suffices to assume integrability of \(M_s = \sup_{n \in \mathbb{Z}} e^{-\alpha(s + n\lambda)}|\phi(s + n\lambda)|/h(s + n\lambda) \) for all \(s \in [0, \lambda) \) instead of the integrability of \(M \).

(b) The moment assumption on the negative steps is stronger than the assumption affecting the positive steps. We need this stronger assumption in the proof of our main result to uniformly control the negative excursions of the BRW.

(c) The explicit form of the function \(h \) in Condition 3.2 is not important. In fact, in our proofs we use that \(h \) is symmetric (which is for convenience only), non-increasing, regularly varying at infinity and integrable w.r.t. Lebesgue measure and that \(1/h \) is convex on \([0, \infty)\).

Now we are ready to present our main result. We split it into two theorems, the first concerning the non-lattice case, the second concerning the lattice case.

Theorem 3.4 (Non-lattice case). Suppose that \(Z \) is non-lattice, that Conditions 3.1 and 3.2 are satisfied, and that \(\phi \) a.s. has càdlàg paths. Then, as \(t \to \infty \),

\[
e^{-\alpha t} Z_t^\phi \to \frac{W^{(\alpha)}}{-m'(\alpha)} \int_{\mathbb{R}} e^{-\alpha s} \mathbb{E} \phi(s) \, ds \quad \text{a.s.} \quad (3.5)
\]

Remark 3.5. Theorem 3.4 is a generalization of Theorem 5.4 in [13], except of the fact that our Condition 3.1 and the choice of \(h \) in Condition 3.2 are slightly more restrictive than Condition 5.1 and the choice of \(h \) in Condition 5.2 in [13], respectively.

In turn, Theorem 5.4 in [13] implies that Theorem 3.4 holds if \(Z \) is a.s. concentrated on the positive halfline and if \(\phi \) is non-negative and vanishes on the negative halfline.

Theorem 3.6 (Lattice case). Suppose that \(Z \) is lattice with span \(\lambda > 0 \), and that Conditions 3.1 and 3.2 hold. Then, for any \(s \in [0, \lambda) \), as \(n \to \infty \),

\[
e^{-\alpha n\lambda} Z_{n\lambda + s}^\phi \to \frac{\Lambda W^{(\alpha)}}{-m'(\alpha)} \sum_{k \in \mathbb{Z}} e^{-\alpha k\lambda} \mathbb{E} \phi(k\lambda + s) \quad \text{a.s.} \quad (3.6)
\]

Remark 3.7. Similar to the situation in the non-lattice case, Theorem 3.6 is a generalization of Theorem 3.2 in [8] with the same exception mentioned in Remark 3.5: Condition 3.1 and the choice of \(h \) in Condition 3.2 are slightly more restrictive than Condition 3.2 and the choice of \(h \) in Condition 3.1 in [8], respectively.

Again, Theorem 3.2 in [8] implies that Theorem 3.6 holds if \(Z \) is a.s. concentrated on the positive halfline and if \(\phi \) is non-negative and vanishes on the negative halfline.

As a corollary from Theorems 3.4 and 3.6, we formulate a Blackwell-type result which provides information about the asymptotic number of individuals in the BRW residing in an interval of the form \([t, t + h]\) as \(t \to \infty \) or in a singleton \(\{n\lambda\} \) as \(n \to \infty \).
Corollary 3.8 (Blackwell-type renewal theorem for BRWs). Assume that (A1) and (A2) hold true and that, for some \(\varepsilon > 0 \),
\[
\mathbb{E} \sum_{|v|=1} e^{-\alpha S(v)} (1 \vee S(v)^{-}) |S(v)| \log^{1+}(|S(v)|) < \infty. \tag{3.7}
\]

(a) Suppose that \(Z \) is non-lattice. Then, for any \(h > 0 \), as \(t \to \infty \),
\[
\# \{ v \in G : S(v) \in [t, t + h] \} \sim \frac{e^{\alpha h} - 1}{\alpha} \frac{W(\alpha)}{-m'(\alpha)} e^{\alpha t} \quad \text{a.s.} \tag{3.8}
\]

(b) Suppose that \(Z \) is lattice with lattice span \(\lambda > 0 \). Then, as \(n \to \infty \),
\[
\# \{ v \in G : S(v) = n\lambda \} \sim \frac{\lambda W(\alpha)}{-m'(\alpha)} e^{\alpha n\lambda} \quad \text{a.s.} \tag{3.9}
\]

Proof. (3.8) and (3.9) immediately follow from (3.5) and (3.6) with \(\phi(t) := 1_{[-h,0]}(t) \) or \(\phi(t) = 1_{\{0\}}(t) \), respectively. \(\square \)

4 An auxiliary result from renewal theory

In this section we denote by \((S_n)_{n \geq 0}\) an arbitrary random walk \((S_n)_{n \geq 0}\) with positive drift \(\mu \) and first strictly ascending ladder index \(\sigma^> \). We denote by \(V^> \) the pre-\(\sigma^> \)-occupation measure of \((S_n)_{n \geq 0} \), i.e., the measure
\[
V^> = \mathbb{E} \sum_{k=0}^{\sigma^>-1} \delta_{S_k}. \tag{4.1}
\]

Since \((S_n)_{n \geq 0}\) is positive divergent, we have \(\mathbb{E} \sigma^> < \infty \). Particularly, \(V^> \) is a finite measure. It is known in renewal theory that in the situation described above the normalized pre-\(\sigma^> \) occupation measure \((\mathbb{E} \sigma^>)^{-1} V^> \) equals the distribution of \(\min_{n \geq 0} S_n \), the global minimum of the random walk, i.e.,
\[
(\mathbb{E} \sigma^>)^{-1} V^>(\cdot) = \mathbb{P}(\min_{n \geq 0} S_n \in \cdot). \tag{4.2}
\]

In the proof of Theorems 3.4 and 3.6, we need insight about the finiteness of integrals over certain regularly varying functions w.r.t. the pre-\(\sigma^> \) occupation measure of a special random walk, the so-called associated random walk of the BRW. The investigation of these integrals will be arranged in Proposition 4.1 via the connection (4.2).

Proposition 4.1. Let \(f : [0, \infty) \to [0, \infty) \) denote a non-decreasing convex function which is regularly varying at \(\infty \) of order \(p \geq 1 \). Further, denote by \(\sigma^< \) the first strictly descending ladder index of the random walk \((S_n)_{n \geq 0} \), i.e., \(\sigma^< = \inf\{ n \geq 1 : S_n < 0 \} \). Then the following assertions are equivalent:

(a) \(\mathbb{E} S_1^{-} f(S_1^{-}) < \infty \),

(b) \(\mathbb{E} f(|S_{\sigma^<}|) 1_{\{\sigma^< < \infty\}} < \infty \).

(c) \(\mathbb{E} f(\min_{n \geq 0} S_n) < \infty \),

(d) \(\int f(|s|) V^>(ds) < \infty \).
From classical renewal theory it follows that assertions (a)-(c) are equivalent for \(f(t) = t^p, \ p > 1 \), see for instance [11]. Due to the connection (4.2), \(\mathbb{E}(S_1^-)^{p+1} < \infty \) is also necessary and sufficient for the function \(t \mapsto |t|^p \) to be \(V^> \)-integrable. The transfer to functions \(f \) as above is a generalization of the proof of Theorem 1 in [11], see also the proof of [1, Satz 4.1.7].

Proof. The equivalence between (c) and (d) directly follows from (4.2). Therefore, it remains to prove that (a), (b) and (c) are equivalent.

To this end, notice that it constitutes no loss of generality to assume that \(f \) is continuous on \([0, \infty)\). Then, since being continuous and convex, \(f \) is absolutely continuous on \([0, \infty)\) and, thus, a.e. differentiable w.r.t. Lebesgue measure. We denote by \(f' \) the right derivative of \(f \), which is defined everywhere. Then, by the fundamental theorem of calculus for the Lebesgue integral, \(f(x) - f(0) = \int_0^x f'(t) \, dt \ (x \geq 0) \). To make this formula even simpler, we assume that \(f(0) = 0 \) which can easily be arranged by replacing \(f \) by \(x \mapsto f(x) - f(0) \) without affecting the finiteness of the expectations in (a), (b) and (c). Then,

\[
f(x) = \int_0^x f'(t) \, dt \quad (x \geq 0). \tag{4.3}
\]

Next, we define \(F(x) := \int_0^x f(t) \, dt \) and note that \(F(x) \sim xf(x)/(p + 1) \) as \(x \to \infty \) by the direct half of Karamata’s theorem, see [6, Proposition 1.5.8]. Further, by [11, Lemma 2], there exist positive constants \(c, C > 0 \) such that

\[
c \int_t^\infty \mathbb{P}(S_1^- > x) \, dx \leq c \sum_{j=0}^{\infty} \mathbb{P}(S_1^- > t + j) \leq \mathbb{P}(|S_{\sigma^<}| > t, \sigma^< < \infty) \leq C \sum_{j=0}^{\infty} \mathbb{P}(S_1^- > t + j) \leq C \int_{t-1}^\infty \mathbb{P}(S_1^- > x) \, dx \tag{4.4}
\]

for all \(t \geq 0 \).

Now assume (a) to be true. Then, by (4.5), Fubini’s theorem, and (4.3),

\[
\mathbb{E} f(|S_{\sigma^<}|) \mathbb{1}_{\{\sigma^< < \infty\}} = \int_0^\infty f'(t) \mathbb{P}(|S_{\sigma^<}| > t, \sigma^< < \infty) \, dt \\
\leq C \int_0^\infty f'(t) \int_{t-1}^\infty \mathbb{P}(S_1^- > x) \, dx \, dt \\
= C \int_{-1}^\infty f(x + 1) \mathbb{P}(S_1^- > x) \, dx \\
= C \mathbb{E} F(S_1^- + 1) < \infty
\]

due to the fact that \(F(x) \sim xf(x)/(p + 1) \) as \(x \to \infty \). We have thus shown that (a) implies (b). Conversely, if (b) holds, using the same calculations as above with (4.5) replaced by (4.4) and with \(\leq \) replaced by \(\geq \), we obtain that (b) implies (a), too.

Assume that (b) holds and let \(((\tau_k, W_k))_{k \geq 1} \) denote an i.i.d. sequence of random variables with \((\tau_1, W_1)\) distributed like \((\sigma^<, S_{\sigma^<})\) given \(\sigma^< < \infty \). Then,
due to [11, Lemma 1], with \(T_{\text{min}} := \inf\{ k \geq 0 : S_k = \min_{n \geq 0} S_n \} \), we have that

\[
(T_{\text{min}}, \min_{n \geq 0} S_n) \quad \overset{d}{=} \quad \left(\sum_{k=1}^{L} \tau_k, \sum_{k=1}^{L} W_k \right)
\]

(4.6)

where \(L \) is independent of \(((\tau_k, W_k))_{k \geq 1} \) with \(\mathbb{P}(L = l) = \gamma (1 - \gamma)^l, \ l \geq 0 \), \(\gamma = \mathbb{P}(\sigma^c = \infty) \). Here, \(\gamma > 0 \) since \(\mu > 0 \). Provided with the distributional identity (4.6), we infer by an application of Jensen’s inequality that

\[
\mathbb{E} f \left(\min_{n \geq 0} S_n \right) = \sum_{l=1}^{\infty} \gamma (1 - \gamma)^l \mathbb{E} f \left(\sum_{k=1}^{l} |W_k| \right) \\
\leq \sum_{l=1}^{\infty} \gamma (1 - \gamma)^l \mathbb{E} f(l|W_1|).
\]

(4.7)

By Potter’s theorem [6, Theorem 1.5.6(iii)], there exists some \(c > 0 \) such that \(f(y)/f(x) \leq 2(y/x)^{p+1} \) for any \(x, y \geq c \). Thus, for any \(l \geq 1 \),

\[
f(l|W_1|) = \frac{f(l|W_1|)}{f(|W_1|)} f(|W_1|) \leq 2^{p+1} f(|W_1|) + f(lc).
\]

Thus, the expectations in (4.7) grow at most polynomially fast in \(l \). Hence, due to assumption (b), which implies the finiteness of \(\mathbb{E} f(|W_1|) \), the series in (4.7) converges. On the other hand, that (c) implies (b) immediately follows from the inequality \(|S_{\sigma^c}| \leq \| \min_{n \geq 0} S_n \| \) on \(\{ \sigma^c < \infty \} \).

5 The link to renewal theory

In the theory of BRWs it is folklore that – provided the existence of a Malthusian parameter – there is a link to renewal theory via the associated random walk \((S_n)_{n \geq 0} \) to be defined as a zero-delayed random walk with increment distribution \(\mu_\alpha := \mathbb{E} \sum_{|v|=1} e^{-\alpha S(v)} \delta_{S(v)} \). Our main assumptions (A1) and (A2) ensure that \(\mu_\alpha \) is a probability measure and that

\[
\mu := \mathbb{E} S_1 = \int x \mu_\alpha(dx) = \mathbb{E} \sum_{i=1}^{N} S(i) e^{-\alpha S(i)} = -m'(\alpha) \in (0, \infty),
\]

i.e., that the associated random walk has finite positive drift. Here, for our convenience, we implicitly assume that the random walk \((S_n)_{n \geq 0} \) is defined on the probability space \((\Omega, \mathcal{A}, \mathbb{P}) \). The announced connection between the BRW and its associated random walk is established as follows. For \(v \in \mathcal{G} \) we define \(S(v) := (S(\emptyset), S(v|1), \ldots, S(v)) \). Then, for any Borel set \(B \subseteq \mathbb{R}^{n+1} \),

\[
\mathbb{P}((S_0, \ldots, S_n) \in B) = \mathbb{E} \sum_{|v|=n} e^{-\alpha S(v)} \delta_{S(v)}(B).
\]

(5.1)

A proof of this formula can be found in [4, Lemma 4.1].
Remark 5.1. Condition 3.1 and the second part of Condition 3.2 can be interpreted as moment assumptions on the associated random walk $(S_n)_{n \geq 0}$. Indeed, via (5.1), Condition 3.1 is equivalent to $\mathbb{E} 1/\gamma(S^+_n) < \infty$ whereas the second part of Condition 3.2 is equivalent to S^-_1 having a finite $x^2(\log x)^{1+\varepsilon}$-moment. In applications, a typical choice of γ would also be $1/\gamma(x) = 1 \vee |x|(\log^+ |x|)^{1+\varepsilon}$ ($x \in \mathbb{R}$) which would make the condition on S^+_1 equivalent to S^-_1 having an $x(\log x)^{1+\varepsilon}$-moment.

6 Ladder lines and ladder heights

The main idea in the proof of Theorems 3.4 and 3.6 is to reduce the convergence result for BRWs on the real line to BRWs with positive steps via ladder lines.

To this end, define the first strictly ascending ladder line G_n^\succ by

$$G_n^\succ := \{v \in G : S(v) > 0 \text{ and } S(u) \leq 0 \text{ for all } u < v\}. \quad (6.1)$$

Then, for any $v \in V$, by the definition of the bracket notation $[.]_v$ in Section 2, $[G^\succ_n]_v$ is the corresponding line for the BRW rooted in v. Now we define $G^\succ_0 := \{\emptyset\}$, and, recursively, for $n \geq 1$,

$$G^\succ_n := \{vw : v \in G^\succ_{n-1}, w \in [G^\succ_n]_v\}. \quad (6.2)$$

Clearly, the G^\succ_n are random subsets of V. They are special optional lines in the sense of Jagers [10], and Biggins and Kyprianou [5], where stopping along any line of descent follows the same rule. Indeed, we have $v \in G^\succ_n$ iff $S(v)$ is the nth strict record in the finite sequence $S(\emptyset), S(v|1), \ldots, S(v)$. Therefore, we refer to G^\succ_n as the nth strictly ascending ladder line. This ladder line corresponds to the nth strictly ascending ladder index in classical renewal theory. To be more precise about this connection, let $\sigma^\succ : \mathbb{R}^\mathbb{N}_0 \rightarrow \mathbb{N}_0 \cup \{\infty\}$ be defined by

$$\sigma^\succ((s_k)_{k \geq 0}) := \inf\{k \geq 0 : s_k > 0\}.$$

For $n \in \mathbb{N}_0$, let the formal stopping rule σ^\succ_n denote the nth consecutive application of σ^\succ, which means that $\sigma^\succ_n := 0$ and

$$\sigma^\succ_n((s_k)_{k \geq 0}) := \inf\{k > \sigma^\succ_{n-1} : s_k - s_{\sigma^\succ_{n-1}} > 0\}, \quad n \in \mathbb{N}.$$

In other words, $\sigma^\succ_n((s_k)_{k \geq 0})$ is the index of the nth strict record in the sequence $(s_k)_{k \geq 0}$. As usual, we stipulate $\inf \emptyset = \infty$. Since subpopulations of the BRW may become extinct, we have to extend the definition of σ^\succ_n to finite sequences of reals $s = (s_0, \ldots, s_k) \in \mathbb{R}^{k+1}$, $k \geq 0$. Here, we define $\sigma^\succ_n(s)$ to be j if s_j is the nth strict record in the tuple s. If no such record exists, we define $\sigma^\succ_n(s) := \infty$.

With this definition, we have

$$G^\succ_n = \{v \in G : \sigma^\succ_n((S(v)k)_{0 \leq k \leq |v|}) = |v|\}.$$

We use these lines to construct an embedded BRW $(Z_n^\succ)_{n \geq 0}$ with positive steps by defining

$$Z^\succ_n := \sum_{v \in G^\succ_n} \delta_{S(v)}, \quad n \geq 0. \quad (6.3)$$
Jagers [10] proved that the branching property, which is the property that, given \(F_n \), for different individuals \(v \) in generation \(n \) the BRWs based on the point processes \(Z(vw) \), \(w \in V \) are independent copies of the original BRW, carries over to optional lines. In particular, this is true for the strictly ascending ladder lines. To be more precise, define \(\mathcal{F}_n \) to be the \(\sigma \)-algebra generated by the sets of the form \(\{ p_v \in A \} \cap \{ v < G_n^> \} \), \(A \in \mathcal{A}_v \), where \(p_v : \Omega \to \Omega_v \), \(p_v(\omega_u)_{u \in V} = \omega_v \). Then the families \(\{ Z(vw) \}_{w \in V} \), \(v \in G_n^> \) are conditionally i.i.d. given \(\mathcal{F}_n^> \) and distributed like \(\{ Z(w) \}_{w \in V} \), see Jagers [10, Theorem 4.14]. Therefore, \((Z_n^>)_{n \geq 0} \) forms a BRW, which clearly has positive steps. As in assumption (A1) carries over from the original BRW (\(Z_n \)) to \(Z_n^> \). Next, we check that Condition 3.1 carries over from the original BRW to \(Z_n^> \). In this case.

Under assumption (A2), \(0 < -m'(\alpha) = \mathbb{E} S_1 \) so that \(\sigma_n^> < \infty \) a.s. for all \(n \) and Eq. (6.5) simplifies to

\[
\mu_{\alpha,n}(A) := \mathbb{E} \sum_{v \in G_n^>} e^{-\alpha S(v)} \delta_{v}(A) = \mathbb{P}(S_{\sigma_n^>} \in A, \sigma_n^> < \infty).
\] (6.5)

We have thus identified the distribution of the associated random walk of the embedded BRW with generations \(G_n^> \), \(n \geq 0 \). As a particular consequence of (6.6), we obtain that \(m^>(\alpha) = \mu_{\alpha,n}^>(\mathbb{R}) = \mathbb{P}(S_{\sigma_n^>} \in \mathbb{R}) = 1 \), where \(m^> \) denotes the Laplace transform of the intensity measure of \(Z_1^> \). In other words, assumption (A1) carries over from the original BRW \((Z_n)_{n \geq 0} \) to the embedded BRW \((Z_n^>)_{n \geq 0} \). Further, an application of Wald’s equations yields

\[
\mu^> := \mathbb{E} S_{\sigma^>} = \mu \mathbb{E} \sigma^> \in (0, \infty),
\] (6.7)

i.e., (A2) carries over, too. From [2, Lemma 8.1] (with \(T_i := e^{-S(i)} \) if \(i \leq N \) and \(T_i := 0 \), otherwise), we infer that \(\mathbb{E} N^> > 1 \) for \(N^> := Z^>(\mathbb{R}) \), and further that \((Z_n^>)_{n \geq 0} \) is non-lattice iff the same is true for \((Z_n)_{n \geq 0} \). Finally, in case that \((Z_n)_{n \geq 0} \) is lattice, then so is \((Z_n^>)_{n \geq 0} \) and even the lattice spans coincide in this case.

Next, we check that Condition 3.1 carries over from the original BRW to the corresponding ladder line process.

Lemma 6.1. If \((Z_n)_{n \geq 0} \) satisfies Condition 3.1, then so does \((Z_n^>)_{n \geq 0} \).
Proof. The following estimation makes use of the Eq. (6.6), the fact that $1/g$ is non-decreasing and positive, and the definition of S_1:

$$
E \sum_{v \in G_1} e^{-\alpha S(v)} g(S(v)) = E \frac{1}{g(S_\sigma)} \leq E \sum_{k=1}^{\sigma^> \geq 1} \frac{1}{g((S_k - S_{k-1})^+)}
$$

$$
= E \sigma^> \ E \frac{1}{g(S_1^+)} = E \sigma^> \ E \sum_{|v|=1} e^{-\alpha S(v)} g(S(v)^+) < \infty,
$$

where the penultimate equality follows from Wald’s equation and the finiteness of the last expectation is due to the validity of Condition 3.1 for Z.

The next result in this section is a simple consequence of Eq. (6.4), which we will need in the proof of our main results in Section 7. In order to formulate the next result, we introduce the pre-$G_1^>$ occupation measure $V^>$ of $(Z_n)_{n \geq 0}$:

$$
V^> := \sum_{v < G_1^>} e^{-\alpha S(v)} \delta_{S(v)}, \quad (6.8)
$$

where, of course, summation over $v < G_1^>$ means summation over $v \in G$ satisfying $v < G_1^>$. Needless to say that $V^>$ is connected with the pre-$\sigma^>$ occupation measure $V^>$ of the associated random walk $(S_n)_{n \geq 0}$.

Lemma 6.2. For any Borel set $B \subseteq \mathbb{R}$, we have

$$
EV^>(B) = V^>(B).
$$

Proof. Let $B \subseteq \mathbb{R}$ be a Borel subset of \mathbb{R}. For $n \geq 0$, we define $\Upsilon_n^> := \pi_0:\{\sigma^> > n\}$. Then, by Eq. (5.1),

$$
EV^>(B) = \mathbb{E} \sum_{v < G_1^>} e^{-\alpha S(v)} \delta_{S(v)}(B)
$$

$$
= \mathbb{E} \sum_{n \geq 0} \sum_{|v|=n: v < G_1^>} e^{-\alpha S(v)} \delta_{S(v)}((\mathbb{R}^n \times B) \cap \Upsilon_n^>)
$$

$$
= \mathbb{E} \sum_{n \geq 0} \mathbb{P}(\{(S_0, \ldots, S_n) \in (\mathbb{R}^n \times B) \cap \Upsilon_n^>)
$$

$$
= \mathbb{E} \sum_{n \geq 0} \mathbb{P}(S_n \in B, \sigma^> > n) = \mathbb{E} \sum_{n=0}^{\sigma^> - 1} 1_B(S_n) = V^>(B).
$$

Remark 6.3. It is worth mentioning that though $G_1^>$ may in general consist of infinitely many individuals with positive probability, the number of ancestors of $G_1^>$, $\#\{v < G_1^>\}$, is integrable and hence finite with probability 1. To see this, we estimate as follows:

$$
\mathbb{E} \#\{v < G_1^>\} \leq \mathbb{E} \sum_{v < G_1^>} e^{-\alpha S(v)} = \mathbb{E} V^>(\mathbb{R}) = V^>(\mathbb{R}) = \mathbb{E} \sigma^> < \infty.
$$
Proof of Theorems 3.4 and 3.6

Without loss of generality, we assume that \(\phi(t, \omega) \geq 0 \) for all \(t \in \mathbb{R}, \omega \in \Omega \). Else, we can derive Theorems 3.4 and 3.6 for \(\phi^+ \) and \(\phi^- \) instead of \(\phi \) and put the results together afterwards. The proof of Theorems 3.4 and 3.6 is divided into two steps. The starting point of our proof is the observation that Theorems 3.4 and 3.6 hold true under the additional assumptions that \(Z \) is concentrated on \([0, \infty)\) and that \(\phi \) vanishes on the negative halfline, see Remarks 3.5 and 3.7.

In our first step, we remove the assumption that \(\phi \) vanishes on the negative halfline. In the second step, the a.s. renewal theorems will be extended to general \(Z \). In both steps, we deal with the non-lattice case only. The lattice case is similar; the corresponding details are left to the reader.

Step 1.

In this step, we show that if (3.5) and (3.6), resp., hold for characteristics \(\phi \) vanishing on the negative halfline (but fulfilling Condition 3.2), then the convergence also holds for any characteristic \(\phi \) satisfying Condition 3.2. To this end, let \(\phi \) denote a process satisfying Condition 3.2 but not necessarily vanishing on the negative halfline. Then fix any \(n \in \mathbb{N}_0 \) and define

\[
\phi_{n,1}(t) := 1_{[-n, \infty)}(t) \phi(t) \quad (t \in \mathbb{R}) \tag{7.1}
\]

and

\[
\phi_{n,2}(t) := 1_{(-\infty, -n)}(t) \phi(t) \quad (t \in \mathbb{R}) \tag{7.2}
\]

so that

\[
Z_t^\phi = Z_t^{\phi_{n,1}} + Z_t^{\phi_{n,2}} \quad (t \in \mathbb{R}). \tag{7.3}
\]

From Theorem 5.4 in [13] we know that, as \(t \) tends to infinity, \(Z_t^{\phi_{n,1}} \) exhibits the behaviour described (3.5), that is,

\[
e^{-at}Z_t^{\phi_{n,1}} = e^{-at} \sum_v \phi_v(t-S(v)) 1_{[-n, \infty)}(t-S(v)) = e^{an}e^{-\alpha(t+n)} \sum_v \phi_v(t+n-S(v)-n) 1_{[0, \infty)}(t+n-S(v)) \rightarrow e^{an}W(\alpha) \int_0^\infty e^{-\alpha s} \mathbb{E} \phi(s-n) \, ds = \frac{W(\alpha)}{\mu} \int_{-n}^\infty e^{-\alpha s} \mathbb{E} \phi(s) \, ds \quad \text{a.s. as } t \rightarrow \infty. \tag{7.4}
\]

To estimate the second summand on the right-hand side of (7.3), we introduce one further characteristic \(\psi \).

\[
\psi(t) := M 1_{[0,1)}(t) \quad (t \in \mathbb{R}).
\]

(Recall that \(M \) is defined in Condition 3.2.) Then, again by Eq. (3.5), we obtain

\[
e^{-at}Z_t^\psi \rightarrow W(\alpha) \int_0^1 e^{-\alpha s} \mathbb{E} M \, ds \quad \text{a.s. as } t \rightarrow \infty.
\]
In particular, with probability one, we can choose \(n_0 \in \mathbb{N} \) such that \(e^{-\alpha t} Z_t^\psi \leq (\mathbb{E}M)W^{(\alpha)}/(-m'(\alpha)) + 1 \) for all \(t \geq n_0 \). Thus,

\[
e^{-\alpha t} Z_t^\phi_{n,2} = e^{-\alpha t} \sum_v \phi_v(t - S(v)) 1_{(-\infty,-n)}(t - S(v))
\]

\[
= \sum_v e^{-\alpha S(v)} e^{-\alpha(t-S(v))[\phi_v(t - S(v))]} h(t - S(v)) 1_{(-\infty,-n)}(t - S(v))
\]

\[
\leq \sum_{k>n} \sum_v e^{-\alpha S(v)} [M]_v h(-(k-1)) 1_{[-k,-(k-1)]}(t - S(v))
\]

\[
\leq e^\alpha \sum_{k>n} h(-(k-1)) e^{-\alpha (t+k)} \sum_v [M]_v 1_{[0,1]}(t + k - S(v))
\]

\[
= e^\alpha \sum_{k>n} h(-(k-1)) e^{-\alpha (t+k)} Z_{t+k}^\psi
\]

\[
\leq e^\alpha ((\mathbb{E}M)W^{(\alpha)}/(-m'(\alpha)) + 1) \sum_{k\geq n} h(-k)
\]

for all sufficiently large \(n \) and all \(t \geq 0 \). In conclusion,

\[
\limsup_{t \to \infty} e^{-\alpha t} Z_t^\phi_{n,2} \leq e^\alpha ((\mathbb{E}M)W^{(\alpha)}/(-m'(\alpha)) + 1) \sum_{k\geq n} h(-k) \quad \text{a.s.}
\]

The latter term tends to 0 as \(n \to \infty \) due to the integrability of \(h \). In view of Eqs (7.3) and (7.4), we arrive at

\[
\lim_{t \to \infty} e^{-\alpha t} Z_t^\phi = \frac{W^{(\alpha)}}{-m'(\alpha)} \int_{-\infty}^\infty e^{-\alpha s} \mathbb{E} \phi(s) \, ds \quad \text{a.s.}
\]

Step 2.

In the final step, we remove the assumption that \(Z \) is concentrated on the positive halfline. Let \(\phi \) denote a process satisfying Condition 3.2. In what follows, we make use of the ladder line concept we have introduced in Section 6. Recall that \((Z^>_n)_{n \geq 0} \) denotes the embedded BRW of strictly ascending ladder heights. For any characteristic \(\psi \), we define

\[
Z^{\psi >}_n(t) := \sum_{v \in G^>_n} \psi_v(t - S(v)) \quad (t \in \mathbb{R}),
\]

that is, \(Z^{\psi >}_n \) denotes the general branching process counted with characteristic \(\psi \) based on \((Z^>_n)_{n \geq 0} \). Now we define a new characteristic \(\phi^{>}_n \) by

\[
\phi^{>}_n(t) := \sum_{v \in G^>_1} \phi_v(t - S(v)), \quad t \in \mathbb{R}. \quad (7.5)
\]
Since \(\{vw : v \in \mathcal{G}^r, w \prec [\mathcal{G}_t^r]\} = \mathcal{G} \), \(Z_t^\phi \) satisfies
\[
Z_t^\phi = \sum_{v \in \mathcal{G}} [\phi]_v(t - S(v)) \\
= \sum_{v \in \mathcal{G}^r} \sum_{w \prec [\mathcal{G}_t^r]} [\phi]_{vw}(t - S(vw)) \\
= \sum_{v \in \mathcal{G}^r} [\phi^>][v](t - S(v)) = Z_t^{>\phi^>}, \quad t \in \mathbb{R}.
\]

Thus \(Z^\phi \) can be interpreted as a general branching process counted with characteristic \(\phi^> \) in the sense of Nerman [13]. We intend to apply the known results by Nerman and Gatzouras to derive the limiting behaviour of \(Z_t^\phi = Z_t^{>\phi^>} \).

To this end, recall that we restrict ourselves to the non-lattice case and note that in this case \(\phi \) is assumed to have càdlàg paths with probability 1. Then so has \(\phi_v \) for any \(v \in \mathcal{V} \). Further, by Remark 6.3, \(\{v \prec \mathcal{G}_t^r\} \) is finite with probability 1. Thus, \(\phi^>(\cdot) = \sum_{v \prec \mathcal{G}_t^r} [\phi]_v(\cdot - S(v)) \) also has càdlàg paths.

Moreover, for any \(t \geq 0 \), using \(S(v) \leq 0 \) on \(\{v \prec \mathcal{G}_t^r\} \) and the monotonicity of \(h \) on \([0, \infty) \), we obtain that
\[
e^{-at}\phi^>(t) h(t) = \sum_{v \prec \mathcal{G}_t^r} e^{-aS(v)} e^{-a(t-S(v))} [\phi]_v(t - S(v)) \frac{h(t - S(v))}{h(t)} \\
\leq \sum_{v \prec \mathcal{G}_t^r} e^{-aS(v)} [M]_v,
\]
where \(M \) is defined in Condition 3.2. Thus,
\[
\mathbb{E} \sup_{t \geq 0} \frac{e^{-at}\phi^>(t)}{h(t)} \leq \mathbb{E} \sum_{v \prec \mathcal{G}_t^r} e^{-aS(v)} [M]_v = \mathbb{E} \sigma^> \mathbb{E} M < \infty.
\]

For \(t \leq 0 \), the fraction \(h(t - S(v))/h(t) \) appearing in Eq. (7.6) is no longer bounded by 1 for all possible values of \(S(v) \leq 0 \). In fact, if \(S(v) \) is close to \(t \), then the fraction \(h(t - S(v))/h(t) \) is of the order \(h(0)/h(S(v)) \), which is the worst which can happen. But since \(h \) is regularly varying at \(-\infty \) with index \(-1\), we have that \(h(t/2)/h(t) \to 2 \) as \(t \to \infty \). Thus, \(C := \sup_{t \leq 0} h(t/2)/h(t) < \infty \). Since \(h \) is increasing on \((-\infty, 0]\), we have \(h(t - S(v))/h(t) \leq h(t/2)/h(t) \leq C \) on \(\{S(v) \geq t/2\} \). Consequently,
\[
e^{-at}\phi^>(t) h(t) \leq \sum_{v \prec \mathcal{G}_t^r} e^{-aS(v)} [M]_v \frac{h(t - S(v))}{h(t)} \\
\leq \sum_{v \prec \mathcal{G}_t^r} e^{-aS(v)} [M]_v \left(C + \frac{h(t - S(v))}{h(t)} 1_{\{S(v) \leq t/2\}} \right) \\
\leq \sum_{v \prec \mathcal{G}_t^r} e^{-aS(v)} [M]_v \left(C + \frac{h(0)}{h(2S(v))} \right).
\]
Due to the fact that h is regularly varying at $-\infty$, the series in Ineq. (7.7) is integrable w.r.t. \mathbb{P} if the same is true for
\[
\sum_{v \prec G^+} e^{-\alpha S(v)} |M_v| \frac{1}{h(S(v))}.
\]
For $v \in V$, $|v| = n$, we define $F_{\prec v}$ to be the σ-algebra generated by all projections $p_u, u \prec v$. Then $1_{\{v \in G, v \prec G^\bowtie\}} f(S(v))$ is $F_{\prec v}$-measurable for any measurable function $f \geq 0$, whereas $(Z(vw))_{w \in V}$ is independent of $F_{\prec v}$. Hence,
\[
\mathbb{E} \sum_{v \prec G^\bowtie} e^{-\alpha S(v)} |M_v| \frac{1}{h(S(v))} = \sum_{v \in V} \mathbb{E} \left(\left[1_{\{v \in G, v \prec G^\bowtie\}} e^{-\alpha S(v)} |M_v| \frac{1}{h(S(v))} \right]_{F_{\prec v}} \right)
\]
\[
= \sum_{v \in V} \mathbb{E} \left(\mathbb{E} \left[1_{\{v \in G, v \prec G^\bowtie\}} e^{-\alpha S(v)} |M_v| \frac{1}{h(S(v))} \right]_{F_{\prec v}} \right)
\]
\[
= \sum_{v \in V} \mathbb{E} \left(1_{\{v \in G, v \prec G^\bowtie\}} e^{-\alpha S(v)} \frac{1}{h(S(v))} \left(\mathbb{E} M \right) \right)
\]
\[
= (\mathbb{E} M) \sum_{v \prec G^\bowtie} e^{-\alpha S(v)} \frac{1}{h(S(v))} = (\mathbb{E} M) \int \frac{1}{h(s)} V^>(ds),
\]
where the last equality follows from Lemma 6.2. The latter integral is finite due to Condition 3.2 and Proposition 4.1. Gathering the facts above, we have shown that $Z^>$ and $\phi^>$ fulfill the assumptions of Nerman’s a.s. renewal theorem in the version we have established in Step 1. Hence, with $\overline{\phi}(t) := \mathbb{E} \phi(t)$, we get
\[
e^{-\alpha t} Z_t^\phi \rightarrow \frac{W^{(a)}}{\mu^>} \int_{-\infty}^{\infty} e^{-\alpha s} \mathbb{E} \phi^>(s) ds
\]
\[
= \frac{W^{(a)}}{\mu^>} \int_{-\infty}^{\infty} \mathbb{E} \sum_{v \prec G^\bowtie} e^{-\alpha S(v)} e^{-\alpha(s-S(v))}[\phi]_v (s - S(v)) ds
\]
\[
= \frac{W^{(a)}}{\mu^>} \int_{-\infty}^{\infty} \mathbb{E} \sum_{k=0}^{\sigma^>-1} e^{-\alpha s-S_k} \phi(s - S_k) ds
\]
\[
= \frac{W^{(a)}}{\mu^>} \sum_{k=0}^{\sigma^>-1} \int_{-\infty}^{\infty} e^{-\alpha s} \overline{\phi}(s) ds
\]
\[
= \frac{W^{(a)}}{\mu^>} \int_{-\infty}^{\infty} e^{-\alpha s} \overline{\phi}(s) ds \quad \text{a.s. as } t \rightarrow \infty,
\]
where in the last step we utilized Eq. (6.7). Taking into account that $\mu = -m'(\alpha)$, the proof is herewith complete.

Acknowledgment

I am grateful to Alexander Iksanov for suggesting to write this article. I also wish to thank an anonymous referee for a very careful reading of the manuscript.
References

