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Abstract
Lindqvist, C. 2010. T Regulatory Cells – Friends or Foes? Acta Universitatis Upsaliensis.
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine
576. 63 pp. Uppsala. ISBN 978-91-554-7843-8.

T regulatory cells (Tregs) have been extensively studied in patients with cancer or autoimmunity.
These cells hamper the immune system’s ability to clear tumor cells in cancer patients. In
autoimmune diseases, on the other hand, they are not able to restrain autoreactive immune
responses. If we manage to understand Tregs and their role in health and diseases we may be
able to develop better immunomodulatory therapies.

Early studies demonstrated that tolerance was maintained by a subset of CD25+ T-cells. CD25
was the earliest marker for Tregs and is still often used to define these cells. Several Treg-
associated markers have been suggested throughout the years. However, these markers can be
upregulated by activated T-cells as well. The most specific marker for Tregs is currently the
transcription factor forkhead box P3 (FoxP3).

In this thesis, we investigated the presence of CD25- Tregs in patients with B-cell
malignancies and in patients with autoimmunity. These cells were identified in both patient
groups. Further, patients with B-cell malignancies often have high levels of soluble CD25
(sCD25) in the periphery. In our patient cohorts, the level of peripheral Tregs correlated with
the level of sCD25 in patients with lymphoma. Tregs were shown to release sCD25 in vitro
and sCD25 had a suppressive effect on T-cell proliferation. These data show that Tregs may
release CD25 to hamper T-cell proliferation and that this may be an immune escape mechanism
in cancer patients.

Previous studies have demonstrated that an increased infiltration of FoxP3+ cells into
lymphoma-affected lymph nodes is associated with a better patient outcome. This is in contrast
to studies from non-hematological cancers where an increased presence of Tregs is associated
with a poor prognosis. Since previous studies have shown that Tregs are able to kill B-cells, we
wanted to investigate if Tregs are cytotoxic in patients with B-cell tumors. In the subsequent
studies, Tregs from patients with B-cell lymphoma and B-cell chronic lymphocytic leukemia
(CLL) were phenotyped to investigate the presence of cytotoxic markers on these cells. FoxP3-
expressing T-cells from both patients with CLL and B-cell lymphoma displayed signs of
cytotoxicity by upregulation of FasL and the degranulation marker CD107a. Tregs from CLL
patients could further kill their autologous B-cells in in vitro cultures.

Taken together the studies in this thesis have demonstrated two possible new functions of
Tregs in patients with B-cell malignancies and the presence of CD25- Tregs in both cancer and
autoimmunity.
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Introduction 

Our immune system consists of a complex network of cells and soluble 
factors all working together to eliminate dangerous intruders such as 
bacteria, viruses and parasites. The immune system is commonly divided 
into innate and adaptive immune responses. Innate immune cells respond 
immediately to intruders by engulfing them and by releasing 
immunostimulatory substances. Innate immune cells are also necessary to 
activate cells of the adaptive immune response. Adaptive immune cells are 
specialized to react to specific antigens whereupon they multiply themselves 
to create an army of highly specific immune cells. These cells have the 
capacity to clear infection and to become memory cells that provide us with 
a life long immunity to the intruder. Hence, the innate immune responses are 
fast and broad while adaptive immune responses are specific and long 
lasting. Besides protecting us from infectious agents, the immune system can 
also protect us from transformed endogenous cells such as cancer cells. The 
immune system needs to be in balance to protect the surrounding healthy 
tissues from immune attacks. This balance is mediated by negative feedback-
loops by the effector cells themselves, but also through specialized cells that 
can suppress other immune cells. Immunosuppressive cells are pivotal in 
restraining the immune system after the infection is cleared but also to stop 
autoimmune reactions where immune cells are harming healthy tissues. In 
anti-cancer immune attacks, the presence of suppressive cells is unbeneficial 
since they hinder the effector cells from killing the cancer cells. In 
autoimmunity on the other hand, dysfunctional suppressive cells fail to 
hinder autoreactive immune cells from destroying healthy tissue. This thesis 
will focus on the immunosuppressive T cells and their importance in B-cell 
cancers and autoimmunity. 
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T regulatory cells 

The history of T regulatory cells 
In the 1970s Gershon and Kondo first described the presence of suppressive 
T-cells. They found that T-cells could assist B-cells in the antibody 
production process. However, if the T-cells were pretreated with high doses 
of antigen they became tolerant and this tolerance seemed to rub of on 
surrounding T- and B-cells[1,2]. Later that decade, Fujimoto et al showed 
that this type of suppressive T-cells existed in tumor-bearing mice and that 
they could inhibit anti-tumor immune responses[3,4]. Subsequent studies 
aimed at classifying these suppressive cells further and both Ly-2+ (CD8) 
and Ly-2-Ly-1+ (CD8-CD5+) suppressor cells were identified. CD8+ 
suppressor cells were the most frequently studied, possible due to the fact 
that no available anti-mouse CD4 antibody was still available. During the 
following years, the research interest in suppressor T-cells declined. The fact 
that no specific markers were available for these cells made it hard to prove 
their existence (reviewed by Basten and Fazekas de St Groth[5]). In 1995, 
however, Sakaguchi et al suggested that suppressive T-cells expressed CD25 
(IL-2Rα). They showed that by depleting CD25 expressing cells, mice 
developed autoimmune diseases. The mice also reacted strongly to 
allogeneic skin graft transplants and this reaction could be hampered by the 
re-infusion of CD4+CD25+ cells[6]. During the following years, the interest 
in suppressive T-cells increased and they were subsequently “rebranded” as 
T regulatory cells (Tregs)[5]. Until now, suppressive Tregs had only been 
studied in mice and it was not until 2001 that CD4+CD25+ cells were 
identified as suppressive Tregs in humans[7-12]. 

T-cell development 
All T-cells originate from common lymphoid progenitor cells that arise in 
the bone marrow. The progenitor cells migrate to thymus were they mature 
before entering the periphery as a T-cell. When entering the thymus, the 
progenitor cell is negative for most adult T-cell markers. By interacting with 
the thymic stroma, the precursor cell will start to express their first T-cell 
surface molecules. Still negative for both CD4 and CD8, the cell will start to 
express CD44, Kit and at a later stage CD25. The becoming T-cell then 
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starts so rearrange the genes for the β-chain of the T-cell receptor, whereafter 
CD44 and Kit are downregulated. The β-chain will pair with a surrogate α-
chain called pTα. Cells that fail to generate the β-chain will die, while 
successful cells will downregulate CD25 and start to proliferate. After cell 
proliferation, cells express both CD4 and CD8 and will thereafter rearrange 
the genes for the α-chain. After the cell has assembled the full T-cell 
receptor complex, it will move from the thymic cortex into the cortico-
medullary junction where it will be presented to antigen by thymic cortical 
epithelial cells. Functional T-cells recognize their antigen in a MHC-
restricted manner, which means that the T-cell needs to recognize both the 
MHC molecule and the peptide that is displayed in that MHC molecule. 
Because of the thymic transcription factor AIRE (autoimmune regulator), 
thymic epithelial cells are able to express low levels of self-antigens from 
organs throughout the body[13].  
 The T-cell precursor will undergo two types of selection. During the first 
round of selection (positive selection) the T-cell needs to bind to the MHC 
molecule. During this step, it is also decided if the T-cell will become a 
CD4+ or a CD8+ cell depending on if it binds MHC II or MHC I, 
respectively. The failure of the T-cell to bind any type of MHC will result in 
death by neglect. Cells surviving the first selection will undergo a second, 
negative, selection. This is important to eliminate potential autoimmune 
cells. During this step, cells that bind MHC molecules containing self-
peptides will be eliminated.  
 Scrutinizing the positive and negative selections further, it seems that the 
same step that rescues the T-cell from death by neglect in the positive 
selection is also responsible for eliminating the cell during the negative 
selection. If this simplified model would be true, all T-cells would be 
eliminated in the thymus. The exact mechanisms involved in the selection 
processes are not fully elucidated. However, two theories exist. The first is 
the avidity hypothesis, where the strength of the T-cell receptor signaling 
upon MHC binding will determine if the cell will live or die. Cells that fail 
to bind the MHC molecule will die by neglect while cells that bind the 
MHC:self peptide too strong will die by negative selection. Only cells with 
the appropriate affinity for the MHC molecule (mediated by an appropriate 
number of TcRs on the T-cell) will survive[14].  

The second theory, known as the qualitative signaling hypothesis[15] 
describes how the cell will be negatively or positively selected depending on 
what type of antigen they encounter. The recognition of antagonistic 
peptides leads to positive selection of the T-cell[16] while recognition of 
agonistic peptides will result in negative selection[15]. 
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Figure 1. Thymic development of Tregs. Figure modified from Bettini et al [17]. 

Development of T regulatory cells 
Tregs can arise either in the thymus or in the periphery. These two cell 
populations have been indistinguishable from each other since they express 
similar Treg markers. Recently, however, it was discovered that Helios, a 
zinc finger transcription factor, was highly expressed in thymic-derived 
Tregs but not in peripherally-induced Tregs[18,19]. 

Thymic (tTregs), also known as natural Tregs (nTregs), are selected in the 
thymus in the same way as conventional T-cells. tTregs have a TcR with 
high affinity for self antigens. Instead of being deleted, they are kept to 
control other immune cells with reactivity to self antigens. Several co-
stimulatory signals have been suggested to be important for Treg 
development. These include CD28, CD25 (IL-2Rα), CD40 ligand (CD40L, 
CD154), glucocorticoid-induced tumor necrosis factor receptor (GITR), 
thymic stromal-derived lymphopoietin receptor (TSLPR) and signal 
transducer and activator of transcription factor 5 (STAT5) (reviewed by 
Bettini and Vignali[17]).  
 Tregs can also arise in the periphery and are then known as induced 
(iTregs) or adaptive (aTregs). Tregs are induced from naïve T-cells by 
antigenic stimulation in combination with factors that are not optimal for 
effector T-cell generation. These factors include high levels of IL-10, IL-2 
and TGF-β[20] as well as inappropriate presentation of antigens by 
APCs[21]. Retinoic acid (RA) has been shown to induce Tregs even in the 
presence of inflammatory cytokines[22-24]. Several subsets of iTregs have 
been described, including CD4+ iTregs, CD8+ iTregs, Tr1 and Th3, all of 
which will be described further in the section concerning Treg subsets.  
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Figure 2. Peripheral development of CD4+ T-cell subsets. Naïve CD4+ T-cells can 
upon antigen stimulation differentiate into a range of different subsets depending on 
their surrounding cytokine milieu. Several of the CD4+ T-cell subsets are plastic and 
can differentiate into a new subtype upon encountering new cytokines. Cytokines 
shown in blue displays suggested factors for differentiation. Cytokines in italic 
indicate secreted cytokines. The Figure is modified from [25,26]. 

T regulatory cell markers 
Several Treg-associated markers have been described throughout the years. 
In 1995 Sakaguchi et al suggested that CD25 (IL-2Rα) together with CD4 
could be used to define Tregs in mice[6]. About six years later, several 
groups showed that this combination could also be used to define Tregs in 
humans[7-12]. CD25 is included as a Treg marker in many studies but it is 
also expressed on activated T-cells[27] and, therefore, it is not specific for 
Tregs. Other markers that are constitutively or highly expressed on Tregs 
includes cytotoxic T lymphocyte-associated antigen 4 (CTLA-4)[28-31], 
GITR[32], lymphocyte-activation gene 3 (LAG-3)[33,34] and Neuropilin-
1[35]. However, these markers are also upregulated on conventional T-cells 
upon activation[36-38].  
 Today, the transcription factor forkhead box P3 (FoxP3) is considered the 
most specific marker for Tregs[39-42]. Studies have shown that in humans, 
FoxP3 can be transiently upregulated in non-regulatory effector T-cells[43-
46]. However, since several of these studies[43,45,46] were performed with 
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an antibody of questioned specificity (PCH101, eBiosciences) it is hard to 
interpret these results.  
 
 
 
 
 
 
 
 

 
 
Figure 3. Binding sites of FoxP3 antibodies reactive against human FoxP3. 
Antibodies located above the FoxP3 gene represent antibodies available at 
eBiosciences while antibodies below the gene can be purchased from BioLegend. 
The broken line represents exon 2 which is alternatively spliced in FoxP3b. The 
Figure is inspired by information from the websites of BioLegend and eBiosciences. 

 
In a publication in Blood in 2007, Tran et al suggested that PCH101 is an 
unreliable indicator of FoxP3 expression in human activated T cells and that 
it gives a false positive staining on all activated human CD4 T cells[44]. 
Shortly after, Pillai and Karandikar performed a multipanel staining with 
different FoxP3-antibodies and found that the antibody clones PCH101, 
236A/E7 and 206D stained similar levels of FoxP3 in activated T-cells 
compared to clone 259D which appeared to have a lower sensitivity[47]. 
Tran et al subsequently demonstrated that FoxP3 was upregulated in the 
presence of TGF-β, as indicated by both PCH101 and 206D antibody 
staining. However, in T-cells activated in the absence of TGF-β, only 
PCH101 stained positive for FoxP3. This study further suggested that 
PCH101 may bind unspecifically to activated T-cells[47]. Nevertheless, 
whether or not FoxP3 is upregulated in non-regulatory T-effector cells is still 
a matter of debate. Considering the above discussed publications and on 
recommendation from our antibody supplier, we chose to perform our 
studies with the FoxP3 antibody clone 259D from BioLegend.  
 A rather recent Treg marker is the IL-7Rα, also known as CD127. This 
receptor subunit has been used to ease purification of Tregs[48] as FoxP3 
negatively correlates with the expression of CD127, leaving Tregs with 
higher FoxP3 expression a lower expression of CD127[49]. Hence, by 
sorting CD25high CD127low T-cells, a purer population of FoxP3 positive 
cells is achieved.  
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The role of FoxP3 in T regulatory cells 
The importance of FoxP3 as a regulator of autoimmunity was first described 
in the scurfy mouse[50] and later in patients with immunodysregulation, 
polyendocrinopathy, enteropathy, X-linked (IPEX)[51,52] where mutations 
in the FoxP3 gene results in severe systemic autoimmune disorders. FoxP3 is 
an important regulator of Treg function and the expression of FoxP3 
correlates with the expression of other Treg-associated markers such as 
CD25 and CTLA-4[39-42].  
 Human FoxP3 is located on the X chromosome and consists of 11 coding 
exons. Two isoforms of FoxP3 have been described; FoxP3a and 
FoxP3b[39,53]. FoxP3b lacks exon 2, which is important for association 
with the transcription factors RORα[54] and RORγt[55]. For an overview of 
the two isoforms and their domains, see Figure 4.  

FoxP3 functions both as a repressor and an activator for genes associated 
with T-cell activation (e.g. IL-2, TNF and CD25, CTLA-4, respectively). 
Rather than functioning alone, FoxP3 forms one or multiple complexes with 
other transcription factors as well as histone and chromatin modulators. It is 
believed that the assembly of the different factors is dependent on TcR 
signaling, co-stimulatory signals and the cytokine milieu (as reviewed by 
Zhou et al [56,57]). Upon TcR and CD28 signaling, NFAT forms a complex 
with AP-1 to upregulate genes associated with T-cell activation[58]. 
However, FoxP3 can inhibit NFAT:AP-1:DNA complexes by forming a 
NFAT:FoxP3:DNA complex[59], thereby inhibiting expression of T-cell 
activation genes and promoting expression of Treg-associated proteins. It 
has further been suggested that epigenetic factors such as demethylation of 
FoxP3 is important for the function of Tregs[60-62]. 
 

 
Figure 4. The 2 isoforms of human FoxP3. Human FoxP3 exists in two different 
isoforms; FoxP3a and the exon 2-lacking FoxP3b. The different FoxP3 domains are 
indicated in the top of the Figure and suggested functions of these domains at the 
bottom. The Figure is modified from [63].   
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The role of CD25 in T regulatory cells 
The IL-2R consists of three subunits; the α-chain (CD25), β-chain (CD122) 
and common γ-chain (γc, CD132). While CD25 is restricted to the IL-2R, 
the β- and γ-chains are shared with other cytokine receptors such as those for 
IL-15 and; IL-4, IL-7, IL-9, IL-15 and IL-21, respectively. To form a 
receptor with high affinity for IL-2 all three subunits are needed. CD25 has 
the lowest affinity for IL-2 and is incapable of intracellular signaling. It can 
be found at the surface as a monomer or homodimer. CD25 does not have 
contact with either IL-2Rβ or γc, suggesting that CD25 is responsible for 
concentrating IL-2 at the cell surface for presentation to the other two 
receptor subunits. Further, CD25 changes the conformation of IL-2 and 
hence stabilizes the receptor complex (as reviewed by Dendrou et al[64]). 
However, IL-2Rβ and γc can form an intermediate affinity receptor that is 
sufficient for signaling[65]. Upon heterodimerization of the receptor, 
signaling is initiated through the JAK-STAT, the MAP kinase and the PI-3 
kinase pathways, leading to cellular proliferation and inhibition of 
apoptosis[66].  
 CD25 has been found to be expressed at high levels on Tregs. Further, 
Tregs are able to deprive their microenvironment of IL-2[67], possibly due 
to their high expression of CD25. High doses of IL-2 can induce Tregs and it 
is also important for their maintenance and survival[68]. Interestingly, the 
gene for IL-2 is repressed by FoxP3[69] making Tregs dependent on their 
microenvironment for this cytokine. However, in the absence of IL-2, other 
γc cytokines such as IL-4, IL-7 and IL-15 can replace the IL-2 functions[69]. 
Even though most Tregs express CD25 (around 70-80%[26]), the existence 
of CD25- Tregs have been reported by us and others[70-72]. 

T regulatory cell subsets 
As previously stated, FoxP3-expressing Tregs can arise both in the thymus 
and in the periphery. These two subsets have been phenotypically 
indistinguishable from each other until recently when Helios was found to be 
highly expressed in tTregs but not in iTregs[18]. These two subsets are 
otherwise phenotypically similar and it is therefore difficult to study 
functional differences between iTregs and tTregs.  
 Other than CD4+ Tregs, CD8+ Tregs from both the thymus and the 
periphery have been described. CD8+ tTregs from both human and rodents 
expressed CD8, CD25, FoxP3 and CTLA-4 and acted in a cell-to-cell 
contact-dependent manner[73-77]. CD8+ human iTregs have been described 
both in mycobacterial infections[78] and in patients with systemic lupus 
erythematosus (SLE)[79]. These cells suppressed their target by secretion of 
CC chemokine ligand 4 (CCL-4) and TGF-β, respectively.  
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 Several subsets of inducible CD4+ Tregs have also been described. Tr1 
cells have been suggested to be induced from both human and mouse CD4+ 
cells by chronic antigen stimulation and high levels of IL-10[80]. Tr1 cells 
could also be generated in vivo by immature DCs in the presence of IL-
10[81]. Once activated, Tr1 cells produce large amounts of IL-10 and TGF-
β[80] and suppress their target cells in a non-antigen dependent manner. 
They have been described to express no or low levels of FoxP3[82], and are 
rather defined for their high production of IL-10. Another inducible Treg 
subtype that is often defined by its capacity to produce large amounts of 
cytokines is the Th3 cells. They produce high levels of TGF-β and to a lesser 
extent IL-10 and IL-4[83]. These cells are induced upon antigen stimulation 
in the presence of high levels of TGF-β[84]. See Figure 2 for an overview of 
peripherally-induced Tregs of the CD4 lineage. 

T regulatory cell effector functions 
Tregs can suppress immune cells in numerous ways. The suppressive 
mechanisms described below have mainly been investigated in CD4+ tTregs, 
iTregs, Tr1 and Th3 cells. 

Suppression by soluble factors 
Tregs can suppress target cells by the secretion of inhibitory cytokines such 
as IL-10, TGF-β and IL-35.  
 IL-10 downregulates the expression of costimulatory molecules, adhesion 
molecules and MHC II on APCs[85-87]. It can also inhibit the release of 
proinflammatory cytokines which further modulates the stimulatory capacity 
of DCs and other APCs[88]. Furthermore, IL-10 inhibits the synthesis of 
cytokines by T-cells and monocytes, and induces long-lasting anergy in both 
CD4+ and CD8+ T-cells[89,90].  
 TGF-β exists both as membrane bound and in soluble form. Soluble TGF-
β is important in the induction of Tregs but neither soluble or membrane 
bound TGF-β seems critical for Treg functions (as reviewed by Toda and 
Piccirillo [91]). Transgenic mice deficient of TGF-β exhibited Tregs with 
similar phenotype and suppressive capacity as Tregs from wild type 
mice[92]. However, mice deficient in TGF-β exhibited lymphocyte 
infiltration in multiple organs and eventually succumbed to autoimmune 
disease[93,94], demonstrating that even if TGF-β doesn’t appear to be 
crucial for Treg function, it has important immunosuppressive properties. 
TGF-β can inhibit T-cell proliferation by disturbing IL-2 production and can 
block differentiation of naïve T-cells into Th1 and Th2 cells by interfering 
with the function of T-bet/STAT4 and GATA3/NFAT, respectively (as 
reviewed by Li et al[95]).  
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Figure 5. Suppression by soluble factors. Tregs can suppress immune cells by 
soluble factors, mainly IL-10, TGF-β and IL-35. 

 
IL-35 is highly expressed and secreted by Tregs, but not by conventional T-
cells in mice. IL-35 inhibits T-cell proliferation[96] while Tregs cultured in 
the presence of IL-35 proliferate and produce high levels of IL-10[97].  

Suppression of dentritic cells 
By interfering with the maturation of DCs, Tregs can indirectly inhibit 
effector T-cells. To become activated, T-cells need to receive three crucial 
signals from APCs. Signal one is mediated when the T-cell binds the 
presented antigen:MHC complex with its TcR. Signal two is received when 
costimulatory molecules on the APC (CD80 and CD86) interact with CD28 
on the T-cell and signal three is mediated by stimulatory cytokines such as 
IL-12 and IFN-γ.  
 Tregs can inhibit DC maturation and the immunostimulatory capacity of 
DCs through LAG-3, which is a CD4 homologue that interferes with ITAM-
mediated signalling in the DC[98]. CTLA-4 is important for potent 
regulatory activity of Tregs in vivo[29] and Tregs can induce IDO 
production by DCs in a CTLA-4 dependent manner[99]. IDO is an enzyme 
that catabolizes tryptophan into the kynurenine metabolites 3-HAA and 
QUIN which induce apoptosis in Th1[100] and Th2 cells[101]. IDO can 
furthermore lead to peripheral generation of Tregs[101,102].  
 Neuropilin-1 (NRP-1) is constitutively expressed by Tregs but not by 
other T-cells[35]. Neuropilin-1 has been found to prolong the interaction 
between Tregs and iDCs[103] which may give them an advantage over naïve 
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T-cells in modulating the function of DCs. The ligand for Neuropilin-1 in 
this context is not clear, but it has been suggested to act through homotypic 
interaction, where Neuropilin-1 on Tregs binds Neuropilin-1 on DCs[104].  
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6. Suppression of dendritic cells. Tregs can suppress the maturation and 
immunostimulatory capacity of DCs by CTLA-4 or LAG-3 interactions. Tregs can 
also promote DCs to produce IDO, which can induce apoptosis in T-cells. 

Suppression by metabolic disruption 
Tregs can disturb the metabolism of target cells in different ways. By 
expressing the ectozymes CD39 and CD73, Tregs can generate adenosine 
which can suppress effector T-cells by binding to the adenosine receptor 
2A[105-107]. Tregs can also suppress T-effector cells by transferring cAMP 
into the T effector cell through gap junctions[108]. cAMP inhibits 
proliferation and IL-2 production by T-cells[109]. Further, human Tregs 
have been found to release prostaglandin E2 (PGE2) which is generated by 
COX-2[110]. PGE2 mediates its suppressive function by upregulating the 
level of cAMP.[111] 
 Considering that Tregs do not produce IL-2 themselves, probably due to 
the transcription factor FoxP3 that silence the IL-2 promoter, it is believed 
that Tregs consume IL-2 from the microenvironment. By depriving its 
environment of cytokines, Tregs have been shown to induce apoptosis in 
CD4+ T-cells[67]. In the current thesis we have suggested an additional 
mechanism of IL-2 deprivation used by Tregs. We proposed that Tregs have 
the ability to release a soluble form of CD25 (sCD25) which can further 
inhibit T-effector cells[112].  
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Tregs have also been shown to deprive T-cells of thiols such as cysteine. 
T-cells cannot convert cystine into cysteine and, hence, need this amino acid 
from its environment. DCs create a cysteine rich environment for T-
cells[113]. However, Tregs have high contents of intracellular and 
extracellular thiols and are thought to be competitive consumers of these 
factors[114].  

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7. Suppression by metabolic disruption. Tregs can suppress T-cells by 
consuming factors important for their survival or through adenosine and cAMP.  

Suppression by cytolysis 
A rather recent finding is that Tregs can kill their target cell by either Fas-
FasL interaction[115,116] or through the release of perforin/granzymes[117-
122]. Grossman et al demonstrated that human tTregs preferentially express 
granzyme A upon activation in contrast to iTregs which expressed mainly 
granzyme B. Further granzyme A expressing tTregs were able to kill their 
target cells at much lower Treg:target ratio than the granzyme B expressing 
iTregs[118]. Tregs can also kill T-cells by a TRAIL-DR5 pathway[123]. 
Further, galectin-1 that can induce apoptosis in the target cell is upregulated 
on Tregs[124]. By killing their target, Tregs control CD4+[118] and 
CD8+[115,118,120] T-cells, monocytes[118], DC[118], B-
cells[116,119,121,125] and NK-cells[120]. 

Killing mechanisms 
T-cells can kill their target cell by two major pathways; through death 
receptor signaling or through a granule-dependent pathway. Both pathways 
lead to the induction of apoptosis in the target cell. 
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 T-cells expressing ligands of the tumor necrosis superfamily (TNF) on 
their cell surface can kill target cells that express the corresponding 
receptors. One of these members, Fas ligand (FasL, CD95L) can upon 
ligation cause apoptosis in Fas (CD95) expressing target cells. Upon 
trimerization of Fas, a death-inducing signaling complex (DISC) containing 
FADD and FLICE (also known as pro-caspase-8) is assembled.
 Next, FLICE is proteolytically cleaved where after active caspase-8 is 
released from the complex into the cytoplasm where it forms a 
heterotetramer (as reviewed by Krammer[126]). Caspase-8 then 
proteolytically activates other downstream caspases such as caspase-3 and 7, 
which later cleave vital cellular proteins and induces DNA defragmentation 
which leads to apoptosis of the cell (as reviewed by Strasser et al[127]). 
Apoptosis induced by Fas can also be mediated through proapoptotic BH-3-
only proteins, but since this pathway controls apoptosis of cells other than 
lymphocytes it is not described in detail here. 

T-cells can also kill their target cell via a granule-dependent mechanism. T-
cells secrete a family of proteases called granzymes together with perforin, 
which enables the granzymes to enter the target cell. Several different types 
of granzymes have been described both in humans and mice, where 
granzyme A and B are the most abundant.  
 Upon entry into the target cell, Granzyme A moves to the nucleus where it 
activates the DNase NM23-H1 by proteolysis and deactivates its inhibitor 
SET[128]. NM23-H1 then induces single stranded DNA nicks in the 
chromosomal DNA[128,129] eventually leading to apoptosis of the target cell. 
 Granzyme B can induce apoptosis in two ways. Either through a direct 
mechanism where granzyme B directly activates caspase-3[130,131] which 
subsequently aid the activation of other caspases[132,133] ultimately leading 
to apoptosis of the cell; or by promoting mitochondrial permeabilization. 
The latter pathway involves oligomerization of the Bcl-2 family proteins 
Bak and/or Bax located in the outer membrane of the mitochondria[134]. 
This results in the escape of intramitochondrial factors such as cytochrome 
c[134,135] .When it reaches the cytosol, cytochrome c participates in 
forming a complex called the apoptosome. The assembly of the apoptosome 
activates caspase-9[136] which activates the rest of the caspase cascade and 
finally results in apoptosis of the cell. The antiapoptotic protein Bcl-2 can 
heterodimerize with Bak and Bax and thereby inhibit any further actions by 
these two death-promoters[137]. Bcl-2 has further been shown to inhibit 
granzyme B[138-140], but not granzyme A[141]-mediated killing. 

CD107a (LAMP-1) is a degranulation marker[142] that correlates with 
cytotoxic activity of T-cells[121,142,143]. This protein is normally located 
inside the cell, covering vesicles that contain cytotoxic substances such as 
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granzymes. Upon degranulation, CD107a is relocated to the surface and can, 
hence, be used as a cell surface marker for granzyme release (see Figure 8). 
 
 
 
 
 
  
 
 
 

 
Figure 8. The degranulation marker CD107a. CD107a is normally located inside 
cytotoxic vesicles inside cells, protecting the cells from its own granzymes and 
perforins. Upon degranulation, CD107a is mobilized to the plasma membrane and 
can, hence, be used as a marker for granzyme release. 

T regulatory cells in cancer 
As early as in the 1950’s, Burnet alongside with Thomas suggested that our 
immune system is able to recognize aberrant self cells and eliminate them 
before they can form a detectable tumor[144]. However, since cancer is one 
of the most common causes of death in the Western society, these aberrant 
self cells must have a way of evading the immune attack. The 
immunoediting theory describes three phases; elimination, where immune 
cells initially eradicates the aberrant self cells; equilibrium, where tumor 
cells that have an enhanced capacity to resist the immune attack arises and; 
escape, where the resistant tumor cells expand in an uncontrolled 
manner[145]. 
 It has been shown that tumors have numerous ways by which they can 
escape immune attacks. By downregulating MHC molecules they avoid 
killing by cytotoxic T-lymphocytes (CTLs), and by upregulating non-
classical MHC molecules such as HLA-G and HLA-E they avoid being 
killed by NK-cells. Several tumors have the capacity to release 
immunosuppressive cytokines (e.g. IL-10 and TGF-β) and to activate 
suppressive pathways in immune cells via CTLA-4, PD-1 and Fas. 
Furthermore, the tumor microenvironment is beneficial for the maintenance 
and expansion of Tregs (as reviewed by Croci et al[146] and Poggi et 
al[147]).  
 Tregs are present in the tumor area in most cancer types[148-155]. These 
Tregs exhibit an immunosuppressive capacity against other immune 
cells[149-154] and high numbers are commonly associated with a worse 
outcome for the patients[149,155,156]. Tregs are primed in the same lymph 
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nodes as the effector cells and later moves to the tumor area by migrating 
towards a CCL22 gradient released by the tumor microenvironment (as 
reviewed by Wilczynski et al[157]). 
 Interestingly, patients with B-cell tumors that have an increased 
infiltration of Tregs into the tumor have a better outcome than those with 
low numbers[125,158-165]. The reason for this is not clear, however, it has 
been suggested that the Tregs may regulate the malignant B-cells. As 
previously discussed, Tregs can regulate normal B-cells through 
cytolysis[116,119,121,125]. It is therefore possible that they may control 
malignant B-cells as well. This makes the role of Tregs in B-cell 
malignancies multifaceted and complex. In this thesis (Paper III and IV) we 
have attempted to investigate this further.  

T regulatory cells in autoimmunity 
The most important function of Tregs is the protection it provides against 
autoimmunity. Cancer and autoimmunity can be considered to be each others 
opposites. Immunotherapists treating patients with autoimmunity want to 
activate Tregs to stop the ongoing immune attack against the body’s own 
tissues, while immunotherapists treating patients with cancer wants to block 
Tregs and promote immune attacks against the self-originating tumor. To 
develop potent cancer immunotherapy, which is the ultimate goal in our 
laboratory, it is important to understand the role of Tregs in both cancer and 
autoimmunity. 
 Autoimmunity arises when autoreactive immune cells become activated 
and subsequently injures healthy tissue. There are several types of 
autoimmune diseases including multiple sclerosis (MS), diabetes mellitus 
type 1, rheumatoid arthritis (RA), SLE and Sjögren’s syndrome. In some of 
these diseases, autoantibody producing B-cells are the main effectors, while 
autoreactive T-cells are the main players in others. Patients with MS have an 
inflammation in the central nervous system (CNS), resulting in 
demyelination and axonal damage in the brain. The most prevalent immune 
cell found in MS-affected brains is the CD8+ T-cell. However, CD4+ Th-
cells are thought to be the main players in MS since they can both damage 
the myelin directly by release of proinflammatory cytokines and indirectly 
by attracting other immune cells such as macrophages/microglial cells, B-
cells, mast cells and NK-cells. All these cells contribute to the CNS 
inflammation which will eventually result in neuronal damage. Even though 
Th1 cells may be a part of the important CD4+ Th population, it is possible 
that Th17 cells are even more important since these cells are able to disrupt 
the brain blood barrier and directly kill neurons in vitro (as reviewed by 
Venken et al[166]). Tregs are supposed to protect us against such responses. 
However, in MS patients these cells seem to fail. Studies have shown that 
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rather than having a decreased level of Tregs, these suppressive cells seem to 
be dysfunctional in MS patients (as reviewed by Costantino et al[167]). 
However, studies made by our group have not been able to detect 
dysfunctional Tregs in the periphery of these patients[168], suggesting that 
the brain microenvironment may disable Tregs locally.  
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B-cell leukemia and lymphoma 

Malignant B-cells responsible for leukemia or lymphoma formation are 
believed to arise from different stages of development and differentiation of 
normal B-cells. Even though leukemia and lymphoma are cancers, it may be 
easier to study them from an immunological point of view to better 
understand how and why Tregs could interact with and regulate these 
malignant cells.  

B-cell development 
B-cells originate from the same lymphoid precursor as T-cells. In contrast to 
T-cells which mature in the thymus, B-cell precursors mature in the bone 
marrow. During the pro-B-cell stage, the precursor rearranges the genes for 
the heavy chain of the immunoglobulin (Ig), which involves joining of V, D 
and J segments. During the precursor pre-B cell stage, a surrogate light chain 
is expressed together with the heavy chain[169]. This complex is called the 
pre-B-cell receptor (BCR), and its expression is required for continuous B-
cell development[170]. Later both the heavy and light chains are expressed 
on the cell surface, defining an immature B-cell. An estimated 90-95% of the 
B-cells fail to express the complete form of the receptor and will, hence, 
undergo apoptosis[171]. Lymphocytes that survive will undergo a selection 
process to ensure that cells with inappropriate antigen receptors are 
deleted[172]. If a B-cell recognizes a self-structure it either becomes anergic 
or succumbs via apoptosis. Approved naïve B-cells will leave the bone 
marrow for functional maturation which takes place in secondary lymphoid 
tissues such as lymph nodes and spleen[173].  

B-cell activation 
When the naïve B-cell encounter its antigen, one of three events may occur. 
1) it enters a lymph node where the B-cell proliferates and forms germinal 
centers (GCs), 2) it differentiates into short lived plasma cells outside the GC 
or 3) it enters an anergic state.  
 When the B-cell recognizes its antigen, it internalizes it and (if a protein) 
presents it on MHC II. T-helper cells, previously primed by DCs, 
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recognizing the presented antigen can activate the B-cell in the T-cell rich 
zone of the lymph node. The T-cell provides necessary stimuli for the B-cell, 
such as CD40L signaling, allowing the B-cell to undergo proliferation. 
Proliferating B-cells will form a dark zone in the lymph node, pushing naïve 
B-cells further out to form a mantle zone. Proliferating B-cells in the dark 
zone undergo somatic hypermutation (SHM), which induces mutations into 
the Ig with the intention of increasing its affinity for the antigen. However, 
most SHMs result in BCRs with decreased affinity which in turn results in 
the death of the B-cell. B-cells with increased affinity for its antigen will be 
positively selected by follicular T-helper (Tfh) and follicular DCs (FDCs). 
Some of the positively selected B-cells can undergo class-switch 
recombination (CSR), altering its soluble Ig isotype from IgM to IgG, IgD, 
IgA or IgE. Finally, the B-cell will differentiate into memory B-cells or 
plasma cells and leave the GC microenvironment (as reviewed by 
Küppers[174]). 

Leukemia and lymphoma formation 
Both the development and differentiation of B-cells contain steps were the 
double stranded DNA is broken. During these steps, genetically errors are 
more prone to occur. Chromosomal translocations are sometimes generated 
during V(D)J recombination, SHM or CSR which can give rise to a 
malignant B-cell clone. Different genetical errors acquired by the B-cell can 
enhance its proliferation, cellular growth and block its differentiation (as 
reviewed by Shaffer et al[175]). Several B-cell lymphomas have 
translocations of the immunoglobulin and an anti-apoptotic protein, resulting 
in constitutive expression leaving the B-cell less sensitive to apoptosis. 
Examples of such translocations include the t(14;18) resulting in Bcl-2-IgH 
that can be found in the majority of follicular lymphoma (FL) patients and in 
some patients with diffuse large B-cell lymphoma (DLBCL)[176-178]. 
Malignant B-cells can also acquire increased levels of anti-apoptotic 
molecules by interacting with cells in its microenvironment. Chronic 
lymphocytic leukemia (CLL) patients have a large proportion of CD40L-
expressing T-cells in their proliferating centers which may rescue the CLL 
from apoptosis. T-cells can also secrete cytokines such as IL-4, IFN-γ and 
IFN-α that upregulate the level of Bcl-2 in CLL cells and thereby rescue 
them from apoptosis (as reviewed by Caligaris-Cappio[179]). The 
microenvironment has also been shown to be important for FL and MALT, 
where the surrounding cells provide the malignant B-cells with proliferation 
and survival signals (as review by Burger et al[180]).  
 Different putative cell origins of lymphoma and leukemia have been 
suggested based on the presence or absence of SHM and from gene 
expression profiling. See Figure 9 for an overview. Some lymphomas, like 
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follicular lymphoma (FL), seem to have acquired their translocation at a pre-
GC stage (during V(D)J recombination)[181,182] but have differentiated 
into having GC B-cell characteristics. 
 
Several B-cell malignancies have been associated with autoimmune diseases. 
B-cells from CLL patients have been found to produce 
autoantibodies[183,184] as have B-cells from FL patients[185] and MALT 
lymphoma patients[186,187]. Further, several autoimmune diseases 
increases the risk of developing B-cell lymphoma. Sjögren’s syndrome has 
been associated with MALT lymphoma[188], DLBCL[189-191] and 
FL[191]; RA with DLBCL[190,192]; and SLE with DLBCL[190].  
 

 
Figure 9. Putative cell of origin for B-cell lymphoma and B-cell chronic 
lymphocytic leukemia. The Figure shows a germinal centre were the dark zone is 
located to the left, containing mostly proliferating B-cells; and the light zone to the 
right where the selection by T-cells and FDCs occur. Arrows with a filled line 
indicate the normal differentiation of B-cells while dashed arrows demonstrates the 
putative origin of indicated B-cell malignancies. The black cell represents apoptosis. 
The Figure is modified from reference [174]. 
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The importance of T-cells and T regulatory cells in the 
regulation of malignant B-cells 
B-cell activation in GCs is supervised by Tfh cells. SHM of the B-cell 
surface Ig may potentially result in BCRs with high affinity for self antigens. 
Selection processes ensuring that only B-cells carrying appropriate BCRs are 
maintained are therefore pivotal. T-cells are involved in this process by 
killing B-cells with a faulty BCR by Fas-FasL interaction[172,193]. Also 
Tregs seem to play an important role in B-cell regulation. For several 
autoimmune diseases with aberrant antibody production, the level or 
function of Tregs have been found to be decreased[194-198]. Depletion of 
Tregs in a mouse model of arthritis resulted in a more severe disease and an 
increase in autoantibody titers[199]. Similar findings could be observed in 
mice with autoimmune haemolytic anemia[200]. Studies have shown that 
Tregs may regulate B-cells by interfering with T-cell help in GCs[201] but 
also by suppressing the B-cell directly[116,119,121,125]. A recent study by 
Iikuni et al demonstrated that Tregs could kill autoantibody-producing B-
cells obtained from SLE patients[202], further highlighting the importance 
of malignant B-cell regulation by Tregs.  
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Aims of the study 

I. To investigate the presence, source and role of sCD25 in patients 
with B-cell malignancies. 

 
II. To evaluate the level and phenotype of CD25+ and CD25- Tregs in 

patients with MS.  
 

III. To evaluate the level of peripheral Tregs in patients with B-cell 
malignancies such as chronic lymphocytic leukemia and B-cell 
lymphoma. 

 
IV. To investigate the presence of cytolytic markers on FoxP3+ T-cells 

in patients with chronic lymphocytic leukemia or B-cell lymphoma. 
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Study design and Methods 

Detailed information about material and methods used in this thesis can be 
found in Papers I-IV. 

Blood samples from patients and healthy donors 
Peripheral blood from patients with B-CLL, B-cell lymphoma and MS was 
collected at Uppsala University Hospital. Peripheral blood mononuclear cells 
(PBMCs) from healthy donors were obtained from buffy coats (Papers I, III 
and IV) or peripheral blood (Paper I-II) obtained at the blood bank, Uppsala 
University Hospital (Papers I, III and IV) or from healthy volunteers at 
Uppsala University (Paper II). Written consent was obtained from all 
patients in accordance with the Helsinki declaration. All studies were 
approved by the regional ethics committee in Uppsala. 
 
All blood samples from patients were collected in sodium heparin-coated 
vacutainers. Plasma was collected the same day as the blood was drawn by 
shortly centrifuging the tubes. Plasma samples were then stored at -20C or -
80C. PBMCs were collected by centrifuging blood diluted in PBS over 
Ficoll-Paque. PBMCs were stored at -80C until analysis. 

FACS analysis (Paper I, III and IV) 
Cell samples were acquired using Becton Dickinson’s (BD) LSR II at the 
Rudbeck lab cell analysis core facility (Biovis). Anti-mouse IgG κ 
compensation beads (BD Biosciences, San Jose, CA) stained with antibodies 
used in the screenings was used to set up the acquisition protocol. 
Compensation was performed with help from personnel at the cell analysis 
core facility. In multi-color staining protocols, fluorochromes with low 
fluorescence intensity were used to detect strongly expressed antigen (e.g. 
Pacific Blue on CD3). Surface molecules that are not constantly expressed, 
such as CD25, FasL and CD107a, were detected using fluorochromes with 
strong fluorescence intensity (such as PE/Cy7, FITC and PE/Cy5). To 
eliminate possible sources of errors, such as day-to-day differences in mean 
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fluorescence intensity (MFI), an equal number of samples from patients and 
healthy donors were stained and acquired in each run. 
 Stained acquired cells were analyzed using FlowJo (TreeStar, Ashland, 
OR). To eliminate as much human error as possible in the analysis of the 
cells (setting of thresholds etc), all samples for each study was analyzed in 
the same session. 

Cytotoxicity assay (Paper III) 
To analyze if Tregs had cytotoxic capacity against B-cells, different cell 
types were purified using the Miltenyi magnetic-activated cell sorting 
(MACS) system. PBMCs were purified into B-cells and CD25+ and CD25- 
Tregs. The purity of each population was measured by CD19 and CD3 plus 
CD4 staining respectively. For the cytotoxicity assay, B-cells were mixed 
with each type of Treg at a 1:20 ratio and incubated for 7 hours at 37C. As 
controls, B-cells were either cultured alone or in the presence of a FasL-
blocking antibody and the granule-release inhibitor Concanamycin A. After 
incubation, cells were stained for CD3 (T-cells) and CD19 (B-cells) and 
analyzed by flow cytometry. Dead cells (small in FSC and SSC) were 
eliminated by gating. The ratio of live cells (CD19 to CD3) was 
subsequently analyzed. To further confirm that we measured killing by 
cytotoxic mechanisms, cell supernatants from the cultures were collected 
and analyzed for granzyme A and B by ELISA.  
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Results and discussion 

Paper I 
Previous studies have shown that patients with B-cell malignancies have 
high levels of sCD25 in plasma[203-206]. Suggested sources of this soluble 
receptor subunit have been malignant B-cells and activated T-cells[207,208]. 
However, when we performed phenotyping of Tregs in this patient group, 
we found that Tregs (defined as CD3+CD4+CD127lowFoxP3+ lymphocytes) 
from patients with B-cell lymphoma and CLL contained a lower percentage 
of CD25 expressing Tregs compared to healthy donors. Tregs are 
traditionally defined as CD4+ cells with a high expression of CD25[6-9]. 
However, there are studies that have identified CD25- Tregs[72]. When 
further evaluating the CD25 MFI on Tregs, we found that Tregs from B-cell 
lymphoma patients had a significantly lower CD25 expression compared to 
Tregs from healthy individuals. This finding made us investigate if Tregs 
from these patients could shed CD25 into its surrounding microenvironment. 
Linear regression analysis showed a correlation between the level of Tregs 
and sCD25 in patients with B-cell lymphoma but not in patients with CLL or 
healthy individuals. No correlation was found between sCD25 and CD4+ 
cells in patients with B-cell lymphoma or CLL indicating that the source of 
sCD25 could be Tregs and not other CD4+ cells. To investigate if malignant 
B-cells could be a source of sCD25, white blood cell count of CLL patients 
(that have a lot of malignant B-cells in the periphery) was correlated against 
sCD25. However, no correlation was found. To confirm that Tregs were a 
source of sCD25, we purified different cells subsets using the MACS 
system. Cells were purified into Tregs (CD4+CD25+CD127low), CD4+ and 
CD8+ T-cells, monocytes (CD14+) and B-cells (CD20+). Unfractionated 
PBMCs was used as a control. When cells were cultured without stimulation, 
Tregs were the largest producers of sCD25. Upon stimulation with OKT-3 
and IL-2, the CD4+ cells increased their secretion of sCD25, while Tregs had 
a similar secretion as when it was unstimulated. It is known that activated T-
cells upregulate CD25 upon stimulation and that they can shed this receptor 
subunit to avoid overstimulation. Whether or not the sCD25 produced by 
Tregs is due to shedding or if it is secreted as a variant of the membrane 
bound sCD25 remains to be determined. 
 Since Tregs seemed to be the greater producers of sCD25 in these 
patients, we wanted to investigate if this molecule had immunosuppressive 
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properties. When stimulated PBMCs were cultured with recombinant sCD25 
it suppressed T-cell proliferation in a dose-dependent manner. These results 
suggest that sCD25 indeed have a suppressive capacity. We then assessed 
the proliferative capacity of T-cells from patients with B-cell lymphoma. 
Compared to healthy controls, the patients had a somewhat hampered 
proliferation. However, when patients were divided into those with high 
plasma levels of sCD25 (>5000pg/ml) and those with low (<5000pg/ml), it 
was evident that the patients with high levels of sCD25 indeed had a 
suppressed T-cell proliferation.  
 In conclusion, a new suppressive function of Tregs includes the 
secretion/shedding of sCD25 which can inhibit T-cell proliferation.  

Paper II 
Tregs have had several different definitions through the years. Previous 
studies have defined them as CD4+CD25+, CD4+FoxP3+, 
CD4+CD25+FoxP3+ and lately CD4+CD25+CD127lowFoxP3+. One of the 
difficulties in studying Tregs is that no real consensus as to how they should 
be defined exists. Problems may emerge when results from studies defining 
Tregs in different ways are compared to each other. This problem was 
highlighted in this Paper were Tregs were studied by several definitions. 
PBMCs from patients with MS and age-matched healthy donors were 
stained for CD4, CD25; CD4, FoxP3 or CD4, CD25, FoxP3. No differences 
between healthy donors and MS patients were found regardless of Treg 
definition when MS patients were studied as one group. However, when MS 
patients were divided into those that were in remission or at relapse 
differences could be seen. When using the old Treg definition CD4+CD25+, 
MS patients in remission had a significant increase in Tregs compared to 
healthy donors. However, if Tregs were defined as CD4+FoxP3+ T-cells, it 
was the relapsing MS patients that had an increase in Treg level. When 
Tregs were defined as CD4+CD25+FoxP3+ T-cells the increased levels were 
lost in both MS subgroups.  

We then identified that it was the CD25- FoxP3+ cells that varied. The 
relapsing group had an increased CD25-Treg level compared to healthy 
individuals. 
 The intensity of FoxP3 expression has been shown to negatively correlate 
to CD127 expression[49], hence, CD127low cells have a significantly higher 
FoxP3 expression compared to CD127high cells (see Figure 1C in Paper III). 
Since some studies have suggested that FoxP3 may be transiently 
upregulated in non-Tregs upon stimulation and that true Tregs are those with 
high FoxP3 expression, CD127 was added as an additional Treg marker. 
When CD4+FoxP3+ cells were subgrouped according to CD127 and CD25 
expression, both relapsing and remitting patients had the highest level of 
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Tregs in the CD127lowCD25- subgroup. Whether these are true Tregs or 
recently activated T effector cells are not clear. Interestingly, when FoxP3 
MFI was investigated in CD4+CD25+ cells, patients at relapse had a 
significantly higher FoxP3 expression compared to healthy donors. FoxP3 
expression in CD4+CD25- T-cells was lower than in CD25+ cells and did not 
differ between patient subgroups or between patients and healthy 
individuals. To investigate if CD25- Tregs had suppressive properties, 
CD4+CD25-CD127low Tregs were purified. CD4+CD25+CD127low Tregs were 
used as a control. Both subgroups of Tregs were irradiated and mixed with 
stimulated allogeneic PBMCs. CD25- Tregs had a similar suppressive 
capacity as CD25+ Tregs and both Treg-groups expressed FoxP3. These 
results suggest that CD25- Tregs have similar functions as CD25+ Tregs.  

In conclusion, CD25- Tregs, which have similar properties as CD25+ 
Tregs, were increased in patients with relapsing MS. These results suggest 
that not only CD25+ Tregs, but also CD25- Tregs should be included in 
immunoscreenings of these patients.  

 
 
Erratum Paper II: 
Figure 4A “Treg suppression (% proliferation)” instead of “Treg suppression 
(%)”. 
 
Material and Methods, Tregs separation and suppression: “Both populations 
were radiated at 25Gy and mixed with stimulated 15µg/ml OKT3 
antibodies” Should be: 1.5µg/ml OKT3 antibodies.  
 
Statistical evaluation: “p-values <0.05(*), <0.001(**), and <0.0001(***) 
were considered significant.” Should be: <0.01(**) and <0.001(***). 

Papers III and IV 
Since Tregs are able to suppress anti-tumor immune attacks, they are often 
considered un-advantageous in cancer patients. Indeed, for a majority of 
patients with non-hematopoietic tumors, an increased level of tumor-
infiltrating Tregs is associated with a worse outcome[209]. However, for 
patients with B-cell lymphoma, an increased infiltration of FoxP3+ cells into 
the tumor has been associated with a better survival[125,158-163]. In several 
of these publications, the authors have hypothesized that Tregs could have a 
cytotoxic effect on the malignant B-cells. Tregs are mostly known to 
suppress T-cell responses. However, it has recently been shown that Tregs 
can suppress not only T-cells, but also B-cells, monocytes and dendritic 
cells[119,120,210]. Considering that studies have shown that Tregs can 
regulate B-cells through perforin/granzymes[121,202] or Fas-FasL 
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interaction[116], the above discussed hypothesis may be correct. We 
therefore phenotyped Tregs from patients with B-CLL (Paper III) and B-cell 
lymphoma (Paper IV) to evaluate the expression of cytotoxic markers on 
these cells.  
 When investigating Treg infiltration in tumors by immunohistochemistry, 
FoxP3 is used as a single marker for Tregs. This is considered to be 
sufficient since FoxP3 is the currently best known marker for this cell 
population[40]. When analyzing Tregs by flow cytometry, however, Tregs 
are often defined by several markers. Since recent studies, including two of 
our own (Papers I and II) have shown that Tregs do not need to be CD25+, 
we chose to define our Tregs as CD3+CD4+CD127lowFoxP3+ lymphocytes. 
CD127 have shown to be negatively correlated to the intensity of FoxP3 
expression[49] and can also ease the purification of Tregs[48]. Little is 
known about CD127highFoxP3+ cells since this population is hard to separate 
from CD127highFoxP3- cells. Considering that this population may belong to 
the Treg population, we chose to include these cells in our screenings. To 
ease the discussion, we chose to call these cells CD127highFoxP3+ T-cells.  
 Patients with CLL had increased levels of both Tregs and 
CD127highFoxP3+ T-cells. Both of these cell types had an increased 
expression of CD107a but not FasL. Patients with B-cell lymphoma had 
similar levels of Tregs and CD127highFoxP3+ T-cells as healthy individuals. 
Only the CD127highFoxP3+ T-cells displayed signs of cytotoxicity which 
seemed mediated trough both granzyme release and FasL.  
 
To assess if Tregs from patients with B-cell malignancies could kill 
autologous B-cells, Tregs and B-cells from CLL patients were purified and 
co-cultured. Since CLL patients have their cancer largely in the periphery, 
PBMCs are a good source of malignant cells in these patients. Both CD25+ 
and CD25- Tregs from these patients were able to kill the malignant B-cells. 
Further, Tregs released both granzyme A and B into the cell culture 
supernatant, which was analyzed by ELISA. The purity and functionality of 
Tregs were measured by flow cytometry and Alamar Blue assay, 
respectively. These results indicated that there was no difference in Treg 
suppression between CD25+ and CD25- Tregs or between Tregs from 
healthy individuals or CLL patients. Further, both subgroups of Tregs 
expressed FoxP3.  

 These results indicate that Tregs may have a dual function in patients with 
patients with B-cell malignancies. Since Tregs express cytolytic markers and 
are able to kill malignant B-cells they seem beneficial for this patient group. 
However, they are also able to suppress T-cell responses. It is possible that 
two different immune responses exist in these patients. Both leukemia and 
lymphoma are cancers; hence, an anti-tumor immune response should exist 
against the malignant cells. This immune attack is probably mediated largely 
by T-cells, which can be suppressed by Tregs. In this sense, the presence of 
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Tregs should be unbeneficial. However, it is also possible that the Tregs are 
trying to regulate the malignant B-cells. 

Future studies using larger cohort of patients are needed to investigate if 
Tregs express cytotoxic markers in the tumor microenvironment and if these 
cytotoxic Tregs are associated with patient survival. 
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Conclusions 

I. The plasma level of sCD25 was increased both in patients 
with CLL and in patients with B-cell lymphoma. One source 
of sCD25 in B-cell lymphoma patients seems to be Tregs. 
Purified Tregs released sCD25 and sCD25 had an 
immunosuppressive capacity when tested in vitro. These data 
suggest that Tregs mediate T-cell suppression by the release of 
sCD25. 

  
II. The level of Tregs was increased in relapsing MS patients. 

Interestingly, it was the CD25- Tregs that were elevated. 
CD25- Tregs expressed FoxP3 and had a similar suppressive 
capacity as CD25+ Tregs. These results conclude that not only 
CD25+ but also CD25- Tregs need to be considered when 
evaluating Tregs in health and disease.  

 
III. The level of peripheral Tregs was elevated in patients with 

CLL, but not in patients with B-cell lymphoma. 
  
IV. Tregs from patients with CLL had a CD107a+ cytotoxic 

phenotype. Occasional patients with B-cell lymphoma also 
had Tregs with a cytotoxic phenotype, but their Tregs seemed 
to use FasL as an effector molecule. When purified Tregs from 
CLL patients were cultured with autologous B-cells, they 
killed the B-cells. These data support the theory that Tregs 
may be able to regulate malignant B-cells. 
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Future perspectives  

Scrutinizing the literature on B-cell lymphomas and CLL it becomes clear 
that these cancers are not just any cancer. Cancer immunologists often have 
a preconceived view that increased levels of Tregs in cancer patients are 
unfavorable since they inhibit anti-tumor immune responses. We initially 
shared this view. However, after reading several papers claiming that an 
increased level of FoxP3+ cells in lymphoma-affected lymph nodes are 
associated with a better outcome we had to change our opinion on this 
matter.  
 As discussed in this thesis, Tregs are able to kill B-cells. Hence, we 
performed a study investigating the phenotype of peripheral Tregs in patients 
with B-cell lymphoma or CLL. These studies could be improved by 1) 
investigating larger cohorts of patients. Our cohort of B-cell lymphoma 
patients is small and diverse. Collection over a longer period of time or in 
cooperation with other hospitals would allow for the collection of more 
patients with the same type of lymphoma. This would make it possible to 
perform correlation assays to determine the impact of cytotoxic Tregs for 
these patients. 2) investigating tumor-affected lymph nodes in patients with 
B-cell lymphoma. Even though Tregs in peripheral blood may give a hint 
about what is happening in these patients, investigating Tregs in the tumor 
would be very interesting. Are Tregs (FoxP3+ cells) expressing cytolytic 
markers (FasL, Granzyme A/B) and are they in close contact with malignant 
B-cells? Or are they rather in contact with the Th-cells which provide 
support for the malignant B-cells? 
 Studying the impact of cytotoxic Tregs in CLL patients may be harder. 
Most CLL cells can be found in the peripheral blood. However, these cells 
are hard to culture in vitro since they undergo apoptosis. Further, CLL 
patients have proliferation centers where malignant CLL cells can be found 
in close contact with FDCs and T-cells. The importance of cytotoxic Tregs 
in these patients should therefore ideally be studied in an in vitro system 
where at least part of the microenvironment is present.  
  
The main focus of our laboratory is to develop immunotherapies against 
cancer. Our approach is to equip the patient’s own T-cells with a chimeric 
artificial receptor targeting CD19 and thereafter transfusing the genetically 
enhanced T-cells back to the patient. These T-cells will then ideally migrate 
to the malignant B-cells, recognize CD19 expressed by the malignant B-cells 
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and subsequently eradicate them. This type of therapy is often inhibited by 
the presence of Tregs. Before adoptive transfer of therapeutic T-cells, Tregs 
are often depleted. It would be interesting to investigate if these patients 
would benefit from Treg depletion or if it would rather worsen their disease. 
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Summary of the thesis in Swedish 

Populärvetenskaplig sammanfattning på svenska 
Att immunförsvaret skyddar oss mot bakterier och virus känner förmodligen 
de flesta till, men att det också kan skydda oss mot cancerceller kanske inte 
är lika känt. Immunförsvaret är uppbyggt av flera olika celltyper och lösliga 
ämnen som alla samarbetar och kompletterar varandra för att ge oss ett så 
bra skydd som möjligt. När immunförsvaret reagerar för starkt kan 
autoimmunitet uppstå. Autoimmunitet är när immunförsvaret av misstag 
angriper kroppens egen vävnad och därmed skadar den. För att skydda oss 
mot autoimmunitet har immunförsvaret inbyggda spärrar som hindrar 
immuncellerna från att reagera för starkt. Det finns till exempel 
specialiserade celler som har förmågan att stänga av de immunceller som 
reagerar felaktigt. Dessa specialiserade celler kallas ofta suppressiva och där 
ingår T regulatoriska celler (Tregs). Arbetena som ingår i denna avhandling 
har studerat Tregs hos patienter med cancer i immunförsvaret (leukemi och 
lymfom) samt hos patienter med autoimmunitet (multipel skleros, MS). 
 
Immunologer har länge studerat immunförsvarets betydelse i cancer. En viss 
cell i immunförsvaret, T-cellen, tros vara speciellt viktig i vårt försvar mot 
cancer då den kan döda cancerceller. Cancer börjar med att en normal cell i 
kroppen får fel i sitt DNA som den inte kan reparera. Cellen börjar då bete 
sig annorlunda än friska celler. Den svarar inte på stoppsignaler från kroppen 
och den kan börja tillverka nya proteiner som på olika sätt hjälper cancern att 
växa sig större. Eftersom cancercellen en gång varit en frisk cell så liknar 
den på många sätt sin friska motsvarighet. Detta gör att om T-celler börjar 
döda cancerceller så börjar andra delar av immunförsvaret att motarbeta 
attacken eftersom det är kroppsegen vävnad som angrips. Denna hämning av 
immunförsvaret brukar till stor del utföras av Tregs. De flesta 
cancerpatienter som har många Tregs i tumörområdet har dålig prognos. 
 
Hos många cancerpatienter beter sig immunförsvaret ganska lika mot 
tumören. Det har gjort att man lätt drar alla cancrar ”över samma kam” när 
det gäller immunförsvarets betydelse hos cancerpatienter. När cancern sitter 
i immunförsvaret blir det hela däremot mer komplicerat. Vad händer i 
kroppen vid en sådan cancer? Beter sig immunförsvaret på samma sätt som i 
andra cancrar? D.v.s. finns det T-celler som försöker döda cancercellerna? 
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Det är mycket möjligt, men med tanke på att cellerna i immunförsvaret 
normalt sett samarbetar med varandra och även reglerar sig själva och 
varandra så blir förhållandet vid leukemier och lymfom mer komplext.  
 
Jag har intresserat mig av en typ av cancer som uppstår i B-celler. B-celler är 
de celler i immunförsvaret som producerar antikroppar (när vi vaccinerar oss 
aktiveras dessa celler). När andra grupper har studerat patienter med lymfom 
som utgörs av B-celler har de sett att dessa cancerpatienter lever längre om 
de har mycket Tregs i sina tumörer. Detta är helt tvärtemot patienter som har 
cancer som inte kommer från immunförsvaret (t.ex. hudcancer). Vad detta 
beror på vet man idag inte. Man vet att Tregs kan reglera flera olika 
immunceller, däribland B-celler. Det har därför spekulerats att Tregs kanske 
dödar de sjuka B-cellerna. Hittills har det inte funnits några bevis för att 
detta händer i dessa patienter. I studierna som ingår i denna avhandling har 
vi undersökt Tregs från patienter med leukemi och lymfom. Dessa celler 
uppvisar tecken som tyder på att de har försökt döda andra celler. Om man 
tar ut patienternas sjuka B-celler och odlar dem tillsammans med Tregs från 
samma patient dör de sjuka B-cellerna. Våra resultat tyder på att Tregs i 
patienter med leukemi och lymfom dödar B-cellen, alternativt att de dödar 
en cell som är nödvändig för den sjuka B-cellens överlevnad.  
 
När man undersöker celler i immunförsvaret identifierar man dem oftast 
efter vad de har på sin yta (och ibland också vad de har inuti sig). Tregs är 
svåra att studera eftersom forskare inte är helt överens om hur de ska 
identifieras. Hittills har de flesta kommit överens om att ett protein som 
kallas FoxP3 är utmärkande för Tregs. De flesta som studerar Tregs 
inkluderar också CD25 som en markör för Tregs. I manus I och II har vi 
visat att Tregs inte behöver vara CD25 positiva. Vi har även visat att Tregs 
kan utsöndra CD25. Lösligt CD25 kunde hämma T-celler. Vi anser därför att 
detta är en ny mekanism som Tregs har för att kunna hämma 
immunförsvaret. 
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