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1. Introduction

The general topic of this Ph.D. thesis is partial differential equations (PDEs).
This thesis deals with various problems originating in quantum mechanics and
quantum chemistry. Also, problems within nonlinear analysis are studied. The
introduction that follows is brief and by no means complete. For a more com-
plete description the reader may consult the bibliography within each paper.

1.1 The time-independent Schrödinger equation
In this section we aim to give a very brief description of quantum mechanics.
We refer to [Thi02] for a more complete treatment. Consider a system of N
electrons interacting with K nuclei. Measurable quantities, such as energy, of
this physical system, described by quantum mechanics (which is the underly-
ing mathematical framework for many of branches of physics and chemistry),
corresponds to self-adjoint operators acting on certain Hilbert spaces, which
are subspaces of L2(Rm), for some m depending on the number of electrons. In
a typical situation, considering the nuclei as classical (the Born-Oppenheimer
approximation) fixed at points R := (R1, · · · ,RK) ∈ R3K , one has an energy
operator, HR, of the form

∑
n

Tn +V (xn)+
1
2 ∑

m6=n
W (xn− xm),

corresponding to an energy functional, E , say, where Tn corresponds to the ki-
netic energy of particle n. Here xn ∈R3 corresponds to the position of particle
n, V to some external potential and W is a potential describing the interaction
between the particles. The time-independent Schrödinger equation reads

HR
ψ = Eψ, (1.1.1)

where the scalar E denotes the energy and ψ is a normalized function in the
aforementioned Hilbert space. From this microscopic model one can derive
many macroscopic properties.

1.2 Magnetic Schrödinger operators
In Section 1.1 the operator −∆ is an example of how to described the kinetic
energy of a particle in a physical system. To have an analogous description
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of kinetic energy when the system is exposed to an external magnetic field
B : R3 → R3, we introduce the magnetic Laplace operator ∆A . The opera-
tor is formally defined by (∇ + iA )2, and associated with the quadratic form
(defined on H1

A (R3) which will be introduced below)

φ 7→
∫

R3
|∇+ iA φ |2dx.

Here the magnetic potential A satisfies ∇×A = B, in general one does not
make any regularity assumptions on the magnetic potential.
When working with the usual Laplace operator one knows that the Sobolev
space H1(R3), defined as the space of all functions which belong to L2(R3),
have their first distribution derivatives in L2(R3) and is equipped with the
inner product

〈φ ,ψ〉H1(R3) :=
∫

R3
φψ +∇φ ·∇ψdx,

many times play an important part. Here ψ denotes the complex-conjugate
of ψ . One therefore has to define an analogous space, which we will call a
magnetic Sobolev space. We define

H1
A (R3) :=

{
φ ∈ L2(R3) : ∇A φ ∈ L2(R3)

}
where ∇A := ∇+ iA , with norm

‖ f‖H1
A (R3) :=

(
‖ f‖2

L2(R3) +‖∇A f‖2
L2(R3)

) 1
2
.

The diamagnetic inequality (see e.g. [LL01, EL89] and the references therein)
states that, for a given A ∈ L2

loc(R3), that for all φ ∈H1
A (R3) we have that

|∇A φ | ≥ |∇|φ ||. (1.2.1)

This inequality is very important and give us in combination with the Sobolev
embedding theorem (see e.g. [Maz85, Ada75]) many useful properties. For
more details one can, as an example, consult [BE10].

1.3 Quasirelativistic Schrödinger operators
In Section 1.2 we considered a way to describe the kinetic energy of a particle
under the influence of an external magnetic field. If we want to take some
additional effects into account one can consider the quasirelativistic energy
that we will introduce in this section. We know that, appropriately defined, the
Fourier-Plancherel transform, F : L2(R3)→ L2(R3), is a unitary isomorphism
(cf. [Hör03, SW71]) and we may therefore define

H
1
2 (R3) :=

{
f ∈ L2(R3) : (1+ |ξ |2)

1
4 F f (ξ ) ∈ L2(R3)

}
,
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with the inner-product

〈φ ,ψ〉
H

1
2 (R3)

:=
∫

R3
Fφ(ξ )(1+ |ξ |2)

1
2 Fψ(ξ )dξ ,

we refer to [Fol99] for details.
We define the following sesquilinear form on H

1
2 (R3)×H

1
2 (R3):∫

R3
Fφ(ξ )Fψ(ξ )

((
1

α2 + |ξ |2
) 1

2
− 1

α

)
dξ

and using one of Kato’s representation theorems, we can associate a quasirel-
ativistic operator for the kinetic energy (see e.g. [EE87, RS78, BE10] for de-
tails). Here α > 0 is Sommerfeld’s structure constant, which is roughly equal
to 1

137 .

1.4 The basic model
We will now be more precise than in the previous sections. We still consider
a system of N electrons interacting with K nuclei (static), with charge Zk > 0
and position Rk. Define Z := (Z1, . . . ,ZK) and put V (x) :=−∑

N
k=1

Zk
|x−Rk|

along

with W (x) := 1
|x| . We can of course consider more general potentials V and

W (which is done in certain papers in this thesis), but V and W as before are
among the most common in physics and the discussions along with definitions
in this section is mutatis mutandis (up to the fact that the problems has to be
well-defined). Since systems of particles are usually found in their most stable
state, the lowest E in (1.1.1), the ground state energy, is of fundamental inter-
est. Equivalently, by a variational principle, we can define (still on a formal
level) the following to be the ground state

E(N,Z) := inf
ψ∈H :‖ψ‖L2(R3N)=1

E (ψ), (1.4.1)

where H is defined as the N-fold antisymmetric tensor product of H(R3) ⊂
L2(R3) and

E (ψ) :=
N

∑
n=1

s[ψ(x1, . . . ,xn−1, ·,xn+1, . . . ,xN)]+
∫

R3
V (xn)|ψ|2dxn

+
1
2 ∑

m6=n

∫
R3×R3

W (xn− xm)|ψ|2dxndxm. (1.4.2)

Typically, the space H(R3) is defined depending on the the models we are
working with and s : H(R3)→ R is a quadratic form, corresponding to the
kinetic energy. See Section 1.2 and Section 1.3 for examples of H(R3) and s.
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1.5 Approximations
Let us now consider (1.1.1) in the hydrogen case (with appropriate units). It
is special because it is exactly solvable. It can be shown that, the discrete
spectrum, denoted specd, of H1 =−∆−|x|−1 acting on L2(R3) equals

specd(H1) =
{
− 1

(2n)2 : n = 1,2,3, . . .

}
.

When N increases the functional (1.4.2) will still be a quadratic form, which,
in the situation, has to be considered a good property. The problem is con-
nected to the space on which the minimization takes place. Therefore approxi-
mation is needed. We focus on the following approximation. In addition to the
references in the papers we recommend [CLBM06, LBL05, Lie90, Lio88].
See also the quantum chemistry book [SO96].

1.5.1 The Hartree-Fock approximation
A so-called wave function method aim to find a approximation of the “true”
ground state by reducing the complexity of the space upon which one aims
to find critical points (the variational space). An example of this method is
the Hartree-Fock approximation. The Hartree-Fock approximation consists of
restricting the possible minimizers from all elements in H to all elements
which can be written as

Ψ :=
1√
N!

detφn(xm),

where {φn}N
n=1 ∈HN (with canonical inner-product) satisfies 〈φn,φm〉L2(R3) =

δnm. This motivates the following definition.

Definition 1. The Hartree-Fock ground state energy is

E := inf
{

E (φ1, . . . ,φN) : (φ1, . . . ,φN) ∈HN ,〈φm,φn〉L2(R3) = δmn

}
,

where

E : HN → R : (φ1, · · · ,φN) 7→
N

∑
n=1

s[φn]+
∫

R3
V (x)ρ(x)dx

+
1
2

∫
R3

∫
R3

W1(x− x′)ρ(x)ρ(x′)−|τ(x,x′)|2W2(x− x′)dxdx′. (1.5.1)
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Here τ(x,x′) = ∑
N
n=1 φn(x)φn(x′) is the density matrix, and

ρ(x) = ∑
N
n=1 |φn(x)|2 the density associated to the state. The functions W1,

W2 and V are real valued and defined on R3. If a minimizer exists then it is
said that the molecule has a Hartree-Fock ground state. We will call other
critical points of E for excited states.

1.6 Some inequalities
Let us assume that we want to study the existence question of a Hartree-Fock
ground state for A = 0, W1 =W2 = 1

|x| and V =− Z
|x| with Z > 0, say. Then the

naive way, when one wants to study a minimizing sequence, is to prove that
the sequence will be uniformly bounded in H1(R3). Due to the non-negativity,
from the Cauchy-Schwartz inequality, of the last term in (1.5.1) inequalities
of the type∫

R3

|φ |2

|x|
dx≤ ε

∫
R3
|∇φ |2dx+C(ε)

∫
R3
|φ |2dx, φ ∈ C∞

0 (R3), (1.6.1)

which can be found in e.g. [RS75, RM05], will be useful and important. Here
ε > 0 and C is a function depending on ε . A way of looking at it is to consider
the ground state question for the hydrogen atom, with charge Z of the nuclei
which is placed at the origin, namely,

inf
φ∈H1

A (R3)

{∫
R3
|∇A φ |2 +V |φ |2dx : ‖φ‖L2(R3) = 1

}
,

with V as above and A ∈ L2
loc(R3). The diamagnetic inequality and Hölder’s

inequality in combination with the classical Hardy inequality∫
R3
|∇φ |2− |φ |

2

|x|2
dx≥ 1

4

∫
R3
|φ |2dx, φ ∈H1(R3), (1.6.2)

allow us to conclude that∫
R3
|∇A φ |2 +V |φ |2dx≥

∫
R3

(
1−4Z|x|

4|x|2

)
|φ |2dx≥−Z2. (1.6.3)

Thus we have the existence of an infimum. Whether this infimum is attained
or not is a different question.
In connection with this there are many natural questions. As an example, let
us take H

1
2 (R3) as the underlying space. This case will be very natural in

connection to, for example, many type of quasirelativistic Schrödinger equa-
tions, quasirelativistic Hartree equations, quasirelativistic Hartree-Fock equa-
tions and quasirelativistic Choquard type equations. In this case one can rely
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on methods from harmonic analysis to get∫
R3
|ξ ||φ̂(ξ )|2dξ −

∫
R3

2|φ |2

π|x|
dx≥ 0, φ ∈H

1
2 (R3).

We refer to [Kat95] for details. This informs us that we have to impose a bound
from below on the constant ε > 0 if we want to conclude something similar to
(1.6.1). Hence we have weaker properties, in terms of these inequalities, when
we consider problems involving quasirelativistic operators.
On the other hand, if we move our focus back to the magnetic case, when
we use the diamagnetic inequality (1.2.1) in, for exampel (1.6.3), we, roughly
speaking, use that we do not loose any strength in the inequality when we
change our study from the magnetic case to the nonmagnetic case. We do
not however, use the possibility that the magnetic field might, for specific
magnetic fields, actually improve the Hardy constant (1

4 in (1.6.2)), at least on
subsets of R3 or more generally, with a different Hardy constant, on subsets
of RN . In connection to this it is natural to ask if, given a A and a V , there
exist a positive function Λ : R→ R, say, with some regularity properties such
that ∫

RN
|∇A φ |2 +V |φ |2dx≥

∫
RN

Λ(|φ |)dx.

This would inform us that we have, in some sense, a gap. If we are able to
prove the existence of such a function we might ask if it is possible to ac-
tually find some lower bounds on Λ and using this, perhaps, improve some
inequalities, for example, the Hardy inequality.
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2. Summary of the papers

In this chapter we give a brief and by no means complete description of the
content of the papers in this thesis. For a more complete list of references we
refer to each paper.

2.1 Paper I
In Paper I [EM10a], joint with Michael Melgaard, we extend results by the
authors in [EM08a] (note that the arguments can be used to extend results
in [EM08b]). The main contribution of the paper is that it provides an ab-
stract criteria for determining, for example, if a Hartree-Fock type system has
infinitely many solutions. The criteria is general and will depend on, for ex-
ample, the sign of the functions W1 and W2. One of the main results is the
following theorem.

Theorem 2. Let the general assumptions and Assumption 3.1 hold true. Then:
1. Every minimizing sequence of the functional E (·)− γ‖ · ‖2

L2(R3)N , is rela-
tively compact in C . In particular, there exists a minimizer ϕ of E (·)− γ‖ ·
‖2

L2(R3)N , on
{
(φ1, . . . ,φN) ∈H1

A (R3)N ,〈φm,φn〉L2(R3) = δmn

}
and (up to uni-

tary transformations) the components of ϕ = (ϕ1, . . . ,ϕN) satisfy the Hartree-
Fock type equations {

Fϕn +(λn− γ)ϕn = 0,

〈ϕm,ϕn〉L2(R3) = δmn,
(2.1.1)

where F is the Fock type operator (associated with E (·)− γ‖ · ‖2
L2(R3)N ) and

the numbers −(λn− γ) are the N lowest eigenvalues of F.
2. There exists a sequence {ϕ(k)}∞

k=1, with entries ϕ(k) = (ϕ(k)
1 , . . . ,ϕ

(k)
N ), of

solutions (on different levels of energy) of the Hartree-Fock type equations
(2.1.1) which satisfy the constraints 〈ϕ(k)

m ,ϕ
(k)
n 〉L2(R3) = δmn for all 1≤m,n≤

N and, furthermore, the Lagrange multipliers λ
(k)
n − γ are positive.

Moreover, depending on the assumptions one can derive various properties
of the solutions, we refer to the paper for complete details.
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2.2 Paper II
In Paper II based on [EM09], joint with Michael Melgaard, we give the first
proof of existence of multiple solutions to the quasirelativistic Hartree-Fock
equations.

Theorem 3. Let us assume that the total nuclear charge Ztot = ∑
K
k=1 Zk sat-

isfies Ztot < Zc := 2/(απ) (where α is the Sommerfeld’s structure constant)
and let N ∈N satisfy N−1 < Ztot. We define V :=−∑

N
k=1

Zk
|x−Rk|

, with Rk ∈R3

and W := 1
|x| . Then:

1. Every minimizing sequence of the quasirelativistic Hartree-Fock functional
E (·) is relatively compact in the Stiefel type manifold

C :=
{
(φ1, . . . ,φN) ∈H

1
2 (R3)N : 〈φn,φm〉L2(R3) = δnm

}
.

In particular, there exists a minimizer ϕ of E (·) on the admissible set C and
(up to unitary transformations) the components of ϕ = (ϕ1, . . . ,ϕN) will sat-
isfy the quasirelativistic Hartree-Fock equations{

Fϕn +λnϕn = 0,

〈ϕm,ϕn〉L2(R3) = δmn,

where F is the quasirelativistic Fock operator (see the paper for the exact con-
struction) and the numbers −λn are the N lowest negative eigenvalues of the
operator F.
2. There exists a sequence {ϕ(k)}k≥1, with entries ϕ(k) = (ϕ(k)

1 , . . . ,ϕ
(k)
N ),

of distinct solutions of the quasirelativistic Hartree-Fock equations (in the
sense above) which satisfy the constraints 〈ϕ(k)

m ,ϕ
(k)
n 〉L2(R3) = δmn, for all

1 ≤ m,n ≤ N and, furthermore, the Lagrange multipliers λ
(k)
n are nonneg-

ative and positive, when Ztot = N and Ztot > N, respectively. Moreover, the
following properties are valid as k→ ∞:

λ
(k)
n −→ 0, E (ϕ(k))−→ 0,

ϕ
(k) −→ 0 weakly in H1/2(R3)N .

It is should be stressed that there exist regularity and decay results for these
equations, we refer to the paper for more details.

2.3 Paper III
In Paper III based on [EM08a], joint with Michael Melgaard, we study the
existence of a ground state for the magnetic Hartree-Fock equations for a class
of magnetic fields.
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Theorem 4. Assume that Ztot = ∑
K
k=1 Zk > N − 1, where Zk > 0. Let V =

−∑
N
k=1

Zk
|x−Rk|

, with Rk ∈R3 and assume that W = 1
|x| . If Assumption 1.1 holds

true then there exists a Hartree-Fock ground state, which is also a solution to
the Hartree-Fock equation.

2.4 Paper IV
In Paper IV [EM10b], joint with Michael Melgaard, we study quasirelativistic
and magnetic versions of the so-called Choquard equation. The positivity that
was mentioned in Section 1.6 does not hold. This will have a significant impact
on the analysis of the problem. We present a criteria, to conclude existence of
infinitely many solutions to the corresponding version of the Choquard equa-
tions, with general potentials. As a special case of the results in this paper we
have the following.

Theorem 5. Let the general assumption hold true. Furthermore, in the
quasirelativistic case assume that Assumption 3.1 holds true and in the
magnetic case assume that Assumption 3.4 holds true. Then the equation{

L#φ +V φ −|φ |2 ∗Wφ =−λφ ,

‖φ‖L2(R3) = 1,
(2.4.1)

has infinitely many solutions for Lcm =−∆A = (∇+iA )2, with A ∈L2
loc(R3),

or Lcq =
√
−α−2∆+α−4−α−2 (with α being Sommerfeld’s structure con-

stant).

In the paper various symmetry and decay properties of the solutions are
proven, see the paper for details.

2.5 Paper V
In Paper V [ET09], joint with Kyril Tintarev, we study the quadratic form

qA ,V : C∞
c (Ω)→ R : u 7→

∫
Ω

|∇A u(x)|2 +V (x)|u(x)|2dx.

Later on we need B := curl A . We prove the following statement on the
spectral gap.

Theorem 6. Suppose that Ω ⊂ RN is a domain and that V ∈ L∞
loc(Ω) is such

that q0,V ≥ 0. Let A ∈K (Ω), where

K (Ω) =

{
∪a>2La

loc(Ω,RN) N = 2,

LN
loc(Ω,RN) N ≥ 3.
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If curl A 6= 0, in the sense of distributions, on Ω, the quadratic form qA ,V
has a weighted spectral gap in Ω. That is, there exist a positive continuous
function W, such that

qA ,V (u)≥
∫

Ω

W (x)|u(x)|2dx, u ∈C∞
c (Ω),

hold true.

Using an estimate on the gap that is derived in the paper we may derive the
following.

Theorem 7. Let Ω ⊂ RN \Br(0), r > 0, N > 2, and let V = −
(N−2

2

)2 |x|−2.
We have that

qA ,V [u]≥ ε

ε +1

∫
(b− ε(N−2)2/4r−2)|u|2dx.

For N > 2, setting ε = 2br2/(N−2)2, we arrive at

qA ,V [u]≥ b
2

2br2/(N−2)2

1+2br2/(N−2)2

∫
|u|2dx.

This also implies that the best Hardy constant in the problem is greater or
equal to (

N−2
2

)2

+
b2

2b+ r−2(N−2)2 .

In addition we prove the following result within the theory of nonlinear mag-
netic Schrödinger equations.

Theorem 8. Assume that B is an exact and continuous 2-form on RN . Let B
and V ∈ V be ZN-periodic and assume that V belongs to{

V ∈ L∞
loc(RN) : q0,V ≥ 0

}
.

Then there exists a minimizer for

inf
{

qA ,V [u] :
∫

RN
|u(x)|pdx = 1

}
,

which is, up to a multiple, a solution to

−∆A u+Vu = |u|p−2u,

with p ∈ (2,2∗) and N > 2.
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3. Summary in Swedish (Svensk
sammanfattning)

Denna avhandling behandlar områdena partiella differentialekvationer och
analys.

Som ett specialfall av resultaten i delar av denna avhandling visar vi föl-
jande resultat inom kvasirelativistisk Hartree-Fockteori samt starkare resul-
tat för den magnetiska versionen av teorin. Låt N vara ett positivt heltal och
Z = (Z1, . . . ,ZK), Zk > 0. Introducera den kvasirelativistiska Hartree-Fock
funktionalen E : H1/2(R3)N → R:

(φ1, ...,φN) 7→ α
−1

N

∑
n=1

(∫
R3
|Fφn|2 dµ(ξ )−

∫
R3

α
−1|φn|2 dx

)
+
∫

R3
Ven(x)ρD(x)dx+

1
2

∫
R3

∫
R3

Vee(x−x′)
(
ρ(x)ρ(x′)−|D(x,x′)|2

)
dxdx′,

där

D(x,x′) =
N

∑
n=1

φn(x)φn(x′),

och

ρD(x) =
N

∑
n=1
|φn(x)|2.

Här har vi att Rn ∈ R3, n = 1, . . . ,N och

dµ(k) :=
√
|k|2 +α−2dx, (3.0.1)

med α > 0. De vanligaste exemplen av potentialer (från fysiken men, resul-
taten håller för större klasser) Vee samt Ven är givna av

Vee(x) :=
1
|x|

och Ven(y) =
K

∑
k=1

Vk(y),Vk(y) :=− Zkα

|y−Rk|
.

Under några tekniska antaganden svarar kritiska punkter, till den kvasirela-
tivistiska Hartree-Fock funktionalen, på

C :=
{
{φ}N

n=1 ∈H1/2(R3)N : 〈φm,φn〉L2 = δmn

}
,

11



mot lösningar till {
Fϕn +λnϕn = 0,

〈ϕm,ϕn〉L2(R3) = δmn,

där ϕ = (ϕ1, . . . ,ϕN), (λ1, . . . ,λN) ∈ RN och F är Fockoperatorn associerad
med

f[φ ,ψ] := α
−1t̃0[φ ,ψ]+

∫
R3

Ven(x)φ(x)ψ(x)dx

+
∫

R3

∫
R3

ρD(x)φ(y)ψ(y)
|x− y|

dxdy−
∫

R3

∫
R3

D(x,y)
φ(y)ψ(x)
|x− y|

dydx.

Där vi har definierat

t̃0[φ ,ψ] :=
∫

R3
φψ

√
|ξ |2 +α−2dξ −α

−1
∫

R3
φψdx.

Man kan vidare visa olika egenskaper för egenvärdena och egenfunktionerna.

I andra delar av avhandlingen finns bland annat följande resultat.
Introducera

qA ,V : C∞
c (Ω)→ R : u 7→

∫
Ω

|∇A u(x)|2 +V (x)|u(x)|2dx.

Här är Ω en öppen sammanhängande delmängd av RN och A är en 1-form
(associerade med en exakt 2-form B). För q0,V existerar, under tekniska an-
taganden, en välkänd representation i termer av en positiv densitet. Vi gener-
aliserar, under vissa tekniska restriktioner, denna identitet till

qA ,V [u] =
∫

Ω

∣∣∣∇A

(u
v

)∣∣∣2 v2dx, u ∈C∞
c (Ω).

Som en konsekvens av detta visar vi att när q0,V ≥ 0 och A uppfyller några
svaga lokala integrabilitetsvillkor samt rot A 6= 0 (i svag mening) gäller det
att

qA ,V (u)≥
∫

Ω

W (x)|u(x)|2dx, u ∈C∞
c (Ω),

för en positiv och kontinuerlig funktion W . Vidare visar vi som ett exempel på
våra resultat att, för speciella B, olikheten∫

Ω

|∇A u(x)|2dx−
(

N−2
2

)2 ∫
Ω

|u(x)|2

|x|2
dx≥C

∫
Ω

|u(x)|2dx,u ∈C∞
c (Ω),

av Hardy typ håller (för vissa C > 0) på vissa komplementmängder till öppna
bollar innehållande origo.
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