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1. Introduction

Quantitative modeling of biochemical reaction kinetics has proven itself use-
ful in studying the behavior of diverse cellular phenomena, and has emerged
as one of the most important tools in molecular systems biology. Based on
prior knowledge or assumptions about its molecular interactions, the dynamic
behavior of a biochemical network can be investigated in silico, providing a

powerful complement to more traditional, experimental approaches.
A prominent theme in computational systems biology is the study of

stochastic models of biochemical reaction networks. Many of the regulatory

pathways in the living cell will, due to very low copy numbers of some

of their constituents, need to operate reliably despite a significant level

of intrinsic noise in the network. For example, the robustness of gene

regulatory networks to noise has been a frequently studied topic and several

mechanisms that have the potential of attenuating noise have been identified

[107, 33, 106, 90].

When stochastic effects can be expected to play an important role for a sys-
tem’s dynamics, the classical, deterministic reaction-rate equations (RREs)
are inadequate to describe the time evolution of the system. The RREs are for-
mulated as a system of, generally non-linear, ordinary differential equations.
They describe the time evolution of the concentration, or mean value, of a
species and are as such posed on the macroscopic level. A better approach
is to use a model on the so-called mesoscopic scale, where the discreteness
of the species and the randomness of reactions are accounted for explicitly.
The most popular mathematical framework that takes the effects of intrinsic
noise into account is continuous time discrete space Markov processes. The
Markov models are simple to formulate based on the description of a system
in terms of elementary reactions, and several studies have highlighted the po-
tential modeling benefit from using them over the deterministic models in a
cell biology context [83, 6, 33, 109, 86, 6].

The vast majority of stochastic models has thus far been staged in a well-
stirred setting. Assuming that molecules have time to explore the whole re-
action volume before participating in any reactive encounter eliminates the
need to explicitly model the movement of molecules in the domain. Even so,
compared to the macroscopic RREs the model is harder to analyze. The proba-
bility density function (PDF) of the system is governed by the chemical master
equation (CME). The CME is linear and simple in its structure, but presents
a formidable challenge for direct solution methods due to the large number
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of degrees of freedom that grows exponentially with the number of chemical
species in the model. The Stochastic Simulation Algorithm (SSA) [44] can
be used to generate independent realizations of the stochastic process, and
quantities of interest can be estimated in a Monte Carlo fashion. Though sim-
ple in principle, stochastic simulation with SSA can also be computationally
challenging due to the multiscale properties frequently displayed by models
of reaction kinetics in molecular cell biology. This has motivated extensive
method development, including the work presented here in papers I– III.

The well-stirred assumption facilitates the computational analysis of a sys-
tem compared to a spatially resolved case. However, there are many biological
phenomena for which a well-stirred assumption is too restrictive. Localization
or compartmentalization of components in reaction networks are known to be
a strategy employed by the cell for regulation. For examples where both the
spatial distribution of molecules as well as stochastic fluctuations play a role
see [118, 38, 108]. Recent advances in experimental techniques can provide
data not only on the molecular copy number of a mRNA or a protein, but also
on their location in the cell with individual molecule resolution [88, 31]. As
these techniques develop further, methodology to accurately and efficiently
simulate stochastic models with spatiotemporal resolution will continue to
grow in importance.

The CME is readily generalized to a spatially heterogenous setting, the
reaction-diffusion master equation (RDME), by discretizing the domain and
using the well-stirred assumption locally within the voxels in the mesh.
Molecular transport is then simulated as jumps between adjacent grid cells
using methods derived from the Gillespie algorithm [8, 30, 61, 105]. Public
domain software for mesoscopic reaction-diffusion modeling and simulation
are described in [2, 22, 51, 115]. Unstructured meshes offer a greater
geometrical flexibility and have the potential to resolve curved surfaces in a
better way than uniform Cartesian meshes do. Simulation of the RDME on
unstructured, tetrahedral meshes is considered here in paper IV.

Almost all work in the area of spatial stochastic simulation has focused on

reaction-diffusion models. However, diffusion is not the only mechanism with

which intracellular cargo can be transported in the living, eukaryote cell. In

paper V, we propose a method to extend the mesoscopic simulation framework

to include intracellular cargo transport on microtubules. This type of transport

is active in the sense that is requires an energy input, and can be much faster

than diffusion.
If diffusion is fast and/or the mesh is fine, the majority of the simulated

events will be due to movement of molecules. This renders spatially resolved

simulation much more computationally demanding than their well-stirred

counterparts. By aggregating diffusive transfers simulations can be sped up

[27, 72, 94]. In paper VI we propose a space-time adaptive method that

dynamically switches between the mesoscopic and macroscopic modeling

level to reduce the cost of simulating diffusion.
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Another complication in the spatially resolved case is the fact that as the
mesh becomes very fine, the RDME modeling framework breaks down and
simulation results become inaccurate if the model contains bimolecular re-
actions [59, 36, 37]. This goes against any intuition derived from numeri-
cal solution of partial differential equations. If a fine mesh is needed to re-
solve features of the model, this is an indication that we are approaching a
regime where a more detailed model is necessary. A more fine scaled alter-
native to the RDME framework is obtained by explicitly accounting for each
molecule’s position continuously in space. Diffusion is described by Brownian
motion and the time until chemical reactions occur between nearby molecules
is obtained by solving well-defined partial differential equations (PDEs) in
methods based on Smoluchowski dynamics [120, 119, 4, 20, 108, 119, 56].
Such microscale methods can provide insight into a model’s behaviour where
the macroscopic or mesoscopic modeling framework fails [36, 37, 108, 119],
but to a higher simulation cost. For models where microscopic resolution is
needed in parts of the domain or for certain species, we propose a hybrid
method in paper VII that couples mesoscopic simulation using URDME [22]
with a microscopic method [56].

Multiscale aspects of the simulation of kinetic reaction-transport models

permeate the work presented in this thesis. We make contributions to stochas-

tic simulation of both well-stirred models (papers I–III) and of spatially het-

erogenous systems (papers IV–VII). A unifying theme for papers I, VI and

VII is the aim to improve simulation efficiency for systems with multiscale

properties. The approach is to combine the macroscale, mesoscale and mi-

croscale modeling frameworks in different ways. An alternative viewpoint is

that the proposed methods improve on a coarser level model by locally in-

creasing modeling resolution at a moderately increased cost. In paper V it is

rather the desire to model active transport on the mesoscale without explicitly

accounting for all the microtubule fibers that calls for multiscale modeling.

Starting out from a microscale view of the cargo’s movement, we formulate

a mesoscopic model which we then connect to equations on the macroscopic

scale. In this way we arrive at a convenient way of seamlessly incorporat-

ing active transport in software for simulation of stochastic reaction-diffusion

processes [22].
The rest of the thesis is organized as follows. In Chapter 2 we review the

mathematical model underlying the CME and the RDME along with computa-
tional methods to study them numerically. There, we also introduce the use of
unstructured meshes to sample realizations of the stochastic process. The ex-
tension of the RDME framework to incorporate active transport is presented
in Chapter 3. Finally, in Chapter 4 we discuss the multilevel approaches to
stochastic simulation proposed in papers I, VI and VII.
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2. Mesoscopic modeling and
simulation of reaction-diffusion
processes

In this chapter we will introduce the mesoscopic modeling framework that lies

at the heart of all of the papers that make up this thesis. Starting out from the

classical treatment of well-stirred mesoscopic models and some of the most

frequently used methods to simulate them, we will progress to spatially het-

erogenous models. The state of the art in methodology and software for simu-

lating such systems will be reviewed and we will discuss how realizations can

be generated using unstructured, triangular and tetrahedral meshes. We will

also comment briefly on recent work on the validity of the RDME framework.

2.1 Mesoscale description of well-stirred reaction
networks

On the mesoscopic scale, the dynamics of a biochemical reaction network
is modeled as a continuous time discrete space Markov processes. The state
of the system is described by the random vector X(t) whose components
{X1, . . . ,XN} describe the total copy number of each species j = 1 . . .N. The
stochastic process {Xt}t≥0 is a collection of such random variables indexed

by time and describes the time evolution of the system. The species can take

part in M different chemical reactions in the well-stirred container Ω. When

a reaction r occurs after a time τr it changes the current state according to
the stoichiometry vector nr. Introduce a realization of the process at time t,
x(t) ∈ Z

N
+ having components x j. Reaction r then changes the state according

to x′ = x(t +τr) = x(t)+nr. The propensity function, ωr(x), describes the rate
of the reaction and does not depend on time. It is interpreted as the probability
that the reaction occurs in an infinitesimal time interval [t, t +dt]

ωr(x) = lim
dt→0

P(x+nr, t +dt)−P(x, t)
dt

. (2.1)

Depending on the particular description of the chemical reaction, ωr will take
different forms.
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As an example, consider a small system with species A,B and C and a re-
action pair describing the reversible binding between A and B forming the

complex C.

(1) A+B
k1−→C, (2) C

k2−→ A+B. (2.2)

Assuming mass action kinetics the propensity function for reaction one is
ω1 = k1ab and that for reaction two is ω2 = k2c where lower case letters denote

molecular copy numbers of the respective chemical species. The stoichiome-

try vectors are in this case n1 = [−1,−1,1] and n2 =−n1.
The Markov process has the important memoryless property, i.e. given the

state of the system at time t, the state at any future time depends only on the
current state and not on anything that happened at a time s before t, s < t. As

a consequence, the time to the occurrence of reaction r is an exponentially
distributed random variable τr ∼ Exp(1/ωr(x)).

As a direct consequence of the Markov property the probability density
function (PDF) of the system is governed by the forward Kolmogorov equa-
tion, or the chemical master equation (CME). For brevity of notation, in the
following we will write p(x, t) = p(x, t|x0, t0) for the probability that the sys-
tem can be found in state x at time t conditioned on the initial condition x0 at

time t0. The CME then takes the form

d

dt
p(x, t) = M p(x, t)≡

M

∑
r=1

ωr(x−nr)p(x−nr, t)−ωr(x)p(x, t). (2.3)

The first term in the sum describes flux of probability into state x, and the
second term the outflow of probability. The sum is only taken over feasible
reactions, i.e. those reactions that result in a non-negative state, x + nr ≥ 0.
For a derivation of the master equation, consult e.g. [113, Chap. V] or [45].

An ordinary differential equation for the first moment of Xj is obtained by

summing over all states, E[Xj(t)] = ∑
x∈Z

N
+

x j p(x, t),

d

dt
E[Xj] =

M

∑
r=1

nr jE[ωr(X)], j = 1, . . . ,N. (2.4)

Let the volume of the reaction container be |Ω| and introduce the concentra-
tion of species Xj, 〈Xj〉= E[Xj/|Ω|]. If we assume that E[ωr(X)]≈ ωr(E[X ])
we recognize the much used macroscopic reaction rate equations, RREs, for

the concentrations of the species,

d

dt
〈Xj〉=

M

∑
r=1

nr jω̃r(〈X〉), j = 1, . . . ,N, (2.5)
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where ω̃r is an appropriate scaling of the mesoscopic rate function ωr. This
set of equations, however, is not an exact consequence of (2.3) or (2.4) unless
all propensity functions ωr(x) are linear in x. However, it provides a good

approximation when the copy numbers are large and the solution converges to

the exact expected value in the thermodynamic limit [71].

The CME can be solved analytically only for special, simple models e.g. the
classical birth-death process, or for systems with only monomolecular reac-
tions (a subset of reactions with linear propensity functions ωr) [64]. In other

cases, one has to rely on simplifying approximations or numerical methods to

study the model.

Frequently used approximations of the CME include the linear noise ap-
proximation (LNA), for examples in the systems biology context see e.g.
[49, 29]. The LNA is the second order approximation in the Ω–expansion
[113, Chap. X], the first order approximation is simply the reaction rate equa-
tions (2.5). By expanding (2.4) and closing the equations by truncating at
higher order moments more accurate deterministic equations can be formu-
lated [34, 46]. The use of the Fokker-Planck approximation is explored in
[100]. The RREs, LNA and the two moment approximation (2MA) [34] are
compared for several examples in [40].

2.2 Numerical simulation methods for well-stirred
systems

Numerical methods to study the behavior of reaction networks as described by
the Markov model above fall into two main classes: direct solution of the CME
(2.3) with matrix based methods and methods based on stochastic sampling
and Monte Carlo.

2.2.1 Direct solution metods

In order to solve the CME directly, the infinite state space has to be restricted
by imposing upper bounds on the number of the different species. In principle,
the resulting truncated master equation is simple to solve using an appropriate
time-stepping scheme. However, even if upper bounds on the variables can
be imposed, the size of the system will still be prohibitive, and techniques
have thus been developed to reduce the state space further. By approximating
the CME by the Fokker-Planck equation (FPE), Sjöberg et. al. make use of
a continuous state space model to reduce the number of degrees of freedom
[102, 32, 101]. Using space-time adaptivity, Ferm et al. further improve on the
method [41].

By using the observation that in a short time interval, most of the probabil-

ity mass will remain localized in a region in state space close to the starting

support, Munsky and Khammash proposed the finite state projection (FSP)
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method [85]. There, the local time steps in the time-stepping scheme are cho-
sen in such a way that the probability of leaving the (locally restricted) compu-
tational domain is kept below some critical tolerance. Burrage et al. use FSP
together with Krylov subspace methods for computation of the matrix expo-
nential [10, 99] and this is further improved on by MacNamara et. al. [78].
MacNamara et al. also extend this scheme to study Markov processes with
explicit time dependence [77].

By aggregating states, Ferm and Lötstedt reduced the state space in [39].

Hegland has proposed the use of sparse grids [52] and Krylov metods [99].

Jahnke et. al. use wavelet compression to reduce the state space [63, 65], and

Engblom and Deufelhardt et. al. independently developed discrete spectral

methods for the CME [35, 25]. Based on adaptive uniformization Mateescu

et. al. constructed an efficient solver in [81].

Despite this extensive work on solving the CME for increasingly large sys-
tems, the approach is still limited to models with relatively few species, or
with special properties that keep the state space small.

2.2.2 Stochastic simulation and Monte Carlo

Realizations of the stochastic process can be generated in a simple way. Given
the current state of the system, the times until each reaction fires, τr, r =
1, . . . ,M are sampled from the exponential distribution Exp(ωr(x)−1). Then,

the system is updated one step by executing the reaction corresponding to the

shortest sampled reaction time, min
r

τr by updating the state according to nr.

By using the observation that the minimum of independent identically dis-
tributed exponential random variables is itself an exponential random variable
a more efficient formulation of the algorithm is Gillespie’s direct method [44],
commonly known as the stochastic simulation algorithm (SSA). In other con-
texts than chemical kinetics, the algorithm is known as kinetic Monte Carlo
(kMC) and was introduced independently in [117, 1]. The direct method is
outlined in Algorithm 1.

Algorithm 1 SSA (Gillespie’s direct method)

1. Initialize: Compute all propensities ωr(x),r = 1, . . . ,M, t = 0.

while t < T do
2. Compute the sum of the propensities, λ = ∑M

r=1 ωr(x).
3. Draw two random numbers u1 and u2 from the uniform distribution.

4. Sample the next reaction time (by inversion), τ =− log(u1)
λ .

5. Sample the next reaction event (by inversion), i.e. find r such that

∑r−1
i=1 ωi(x) < λu2 ≤ ∑r

i=1 ωi(x).
6. Update the state vector, x = x+nr.

7. t = t + τ .
end while
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The SSA has been used extensively in computational systems biology, and
many improvements to its implementation have been suggested. In the direct
method the step to determine the next reaction to fire given the time until
the next event is of linear complexity. For systems with many reaction chan-
nels, implementations that reduce this complexity have been developed, for
overviews see [98, 97]. Best known in the systems biology context is the log-
arithmically scaling next reaction method (NRM) by Gibson and Bruck [43].
This algorithm has found much use recently as a basis for algorithms tailored
for the spatially dependent case [30]. An extensive overview of many varieties
of the implementation of the SSA can be found in [82].

Frequently, models of biochemical reaction networks possess a property
that has been coined stochastic stiffness. A few reactions in the system are oc-

curring on much faster timescales than the others. In an exact stochastic sim-

ulation every event is simulated and the majority of the computational time

will be spent sampling the fastest reactions. At the same time, the most inter-

esting stochastic dynamics are likely to occur on the slower time scales in the

system, for species with low copy numbers. Three main categories of methods

targeted at dealing with stiffness have emerged: tailored implementations of

the exact method that explicitly account for stiffness, approximate stochastic

methods and hybrid methods. In the first category, notable contributions are

the Optimized Direct Method (ODM) [17] by Cao et. al. and the sorting direct

method (SDM) by McCollum et al. [84].

The most popular approximate, stochastic method is the tau-leaping method
[48] which relies on the existence of a macroscopic time where the propen-
sities change slowly, cf. [47]. The basic idea is to let several (fast) reactions
fire in the same time interval. The number of events that occur for a certain
reaction in a time interval Δt is approximately a Poisson distributed random
variable, Nr ∼ Po(ωr(x)Δt), and can be conveniently sampled by standard
methods for generating Poisson variates. By aggregating events in a time inter-
val Δt many fast reactions can be "leaped over", improving simulation times.
Many versions and improvements of the original method have been proposed
[111, 19, 87, 12, 14, 15, 3]. Several versions of the tau–leaping algorithm, as
well as exact simulation methods that take stochastic stiffness into account are
implemented in the StochKit software [16] package.

Hybrid methods achieve their improved simulation speed by treating parts
of the system at a less accurate modeling level. Typically, hybrid methods
can improve on simulation times with a large factor, often greater than that
of tau-leaping, but they rely on a good partitioning of the system, something
that can be challenging in practice unless the modeller possesses some prior
knowledge about the system under study. The chemical Langevin equation
is combined with SSA in [50, 95]. In the nested SSA method [28] an inner
SSA is used for the fast scale reactions and an outer for the slow scale. The
method developed in paper I combines the stochastic and deterministic mod-
eling levels and will be discussed further in Chapter 4. Based on the quasi
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steady-state assumption the QSSA algorithm relies on Michaelis-Menten ki-
netics to achieve speed-up [89]. A similar approach is taken in the slow-scale
SSA [13, 11]. The validity of the Michaelis-Menten approximation is studied
in [96].

There has been an extensive development of methods of the type summa-

rized here, especially for tau-leaping methods. The review above is by no

means complete. More extensive summaries on methods to simulate well-

stirred kinetics on the mesoscopic level can be found in e.g. [54, 75].

2.2.3 Monte Carlo simulation of reaction networks using
CellMC

Whenever stochastic simulation as described in the previous section is to be
applied to a model it will be necessary to generate multiple realizations in
order to study the system in a Monte Carlo fashion. From ensembles of tra-
jectories the PDF solving (2.3) or other metrics of the system’s performance
can be estimated to within a certain confidence level. Generating a large set of
independent realizations is inherently a task-parallel problem. The SSA algo-
rithm, being very simple in its structure, is a natural target for implementation
on specialized multicore architectures. The use of Field Programmable Gate-
Arrays (FPGA) was explored in [116] and in [76, 69] general purpose graphics
processing units (GPUs) were used to generate large ensembles in parallel.

In paper II, we describe the development of a software package, CellMC,

that uses SIMD vector instructions and threading to generate ensembles effi-

ciently on multicore x86 architectures or the Cell Broadband engine, Cell/BE.

The software is freely available from http://www.cellmc.org. More details re-

garding the implementation can be found in the master’s thesis report by Em-

met Caulfield [18]. CellMC is implemented as a code-generating program that

will translate a model expressed in the Systems Biology Markup Language

(SBML) [58] into highly optimized code for the platform on which it is exe-

cuted. That source code is then internally compiled into executables using the

GNU compiler gcc. At the time of publication, CellMC was the only software

to utilize vector instructions on the PC to harness the full capability of modern

x86 processors and to be able to utilize Cell/BE for stochastic simulation with

SSA.
Table 2.1 shows simulation performance of CellMC in both absolute simu-

lations times and million reactions per second (Mrps). Ensembles were gen-
erated on different platforms (PC x86 and Cell/BE) for two model problems
(abbreviated dd and hsr) commonly used as benchmarks in methods develop-
ment, see e.g. [48, 76]. Runs on the PC were conducted using single precision
arithmetic to be comparable to results for the Cell/BE platforms.

At the time of writing, the Cell/BE is no longer pursued as an architecture
for general purpose high performance computing. Even so, the techniques and
implementation developed in CellMC are generally applicable and provide
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Machine Type CPU/SPUs Time Mrps

dd hsr dd hsr

espirit PC 2 22.03 49:49 35.89 20.77

os PC 4 8.58 23:58 91.9 44.61

skara PS3 6 6.97 15:46 113.24 66.01

grad PC 8 3.65 9:13 218.23 112.27

cell2 QS22 16 2.53 6:03 312.83 174.43

Cluster 4×PS3 24 1.80 4:10 439.60 261.14

Table 2.1: CellMC performance for a range of different machines (ordered in increas-
ing order of performance). Note how a single PS3 game console outperforms a quad-
core PC by almost a factor of two. The timings are for 103 hsr trajectories run to 500s
and 3×104 dd trajectories run to 10s. Timings are given in seconds (dd) and minutes
and seconds (min:sec, hsr).

good speed-up also on x86 architectures. When talking about the performance
of a new implementation on e.g. a GPU card over that of a single CPU or even
the host workstation, it is worth remembering that using vector instructions, 4
realizations can be generated simultaneously per core using single precision,
see paper II.

2.2.4 Variance reduction based on quasi-Monte Carlo

In many cases Monte Carlo techniques are the only feasible way of numeri-
cally studying the dynamics of reaction networks as described by the meso-
scopic model. Monte Carlo methods suffer from a slow convergence rate, but
have the advantage of being simple and relatively insensitive to the dimension-
ality of the system. In the previous section we illustrated how efficient, parallel
implementations could aid in the collection of large amounts of realizations
from which statistics about the system can be computed. The approximate and
hybrid methods discussed in Section 2.2.2 have the common aim to reduce the
time with which a single realization can be generated. If the goal is to produce
large ensembles to estimate some unknown quantity, another approach is to try
to reduce the variance in the estimates [92, 24]. In such a way one can achieve
speed-up by reducing the number of trajectories that needs to be sampled in
order to achieve some specified error tolerance.

Monte Carlo methods converge as L−1/2 where L is the ensemble size. The
width of a 95% confidence interval for a quantity estimated by repeated sam-
pling is

ε =
1.96s̄√

L
(2.6)
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where s̄ is the empirical standard deviation. Variance reduction techniques
then aim at reducing s̄ and thus the uncertainty ε . In paper III, we explore the

possibility to use quasi-Monte Carlo (QMC) techniques to reduce the cost of

estimating the PDF of the system using SSA. Quasi-random sequences, such

as the Sobol sequence, can be used in the same way as pseudo-random num-

bers but they have a low-discrepancy property; they fill space more evenly

than regular pseudo-random number generators. Figure 2.1 illustrates the in-

tuitive difference by generating random numbers in a unit square. By chance,

the pseudo-random numbers form clusters and regions where the point-density

is lower (right) while the Sobol sequence fills the square more evenly (left).

When used for numerical integration, intuitively this means that for a fixed

number of points S, the support for the integral is sampled more uniformly

and the probability of missing important regions of the integrand is lower than

when using classical random number generators. QMC methods have the po-

tential to improve on the convergence rate in Monte Carlo methods. For suffi-

ciently smooth integrands, a convergence rate of almost L−1 can be obtained.

Figure 2.1: A Sobol sequence (left) samples the unit square with lower discrepancy

than a pseudo-random sequence (right).

To use quasi-random sequences in the SSA we converted the continuous-
time Markov process to a discrete-time chain subordinate to a Poisson pro-
cesses via the method of uniformization [66]. In practice, this is done by
introducing a null-reaction in the model so that the distribution for the next
event-time is the same in every iteration of the algorithm, τ ∼ Po(λmax) where

λmax is an upper bound on the sum of the propensities over the whole time-
course of the simulation. We could then apply previously published QMC
methods for discrete chains [73] to estimate the PDF of the system.

In Figure 2.2 we visually compare the difference in variance between the

marginal PDF of species A and B from the model problem used in paper
III when estimated using the classical SSA (a) and the QMC extension (b) for
a fixed number of trajectories (105). As can be seen, the PDF produced with

the QMC methods is much smoother. For this example, the convergence rate
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is improved using quasi-random sequences (c). The execution time to achieve
a certain error tolerance can be more than an order of magnitude lower for the
QMC method (d). As an example, to achieve the same resolution with SSA
as that in Figure 2.2b obtained with 105 realizations, 107 trajectories would
have to be sampled, giving a speed-up of 33 compared to our reference im-
plementation of SSA (for timings for the reference implementation see paper
II).
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Figure 2.2: The marginal densities of A and B computed with 105 trajectories by SSA

(a) and QMC SSA (b). The convergence rate (c) and execution time (d) are improved

in the QMC method.

2.3 Introducing spatial dependence

The assumption of a well-stirred reaction container can be rather restrictive.

Many processes in a living cell involves spatial localization or separation of

proteins to function properly. Especially in euakaryotes, different parts of a

pathway will occur in different cellular compartments. The most obvious ex-

ample is gene expression, where transcription occurs in the nucleus and trans-

lation in the cytoplasm, often located at the membrane of the endoplasmic

reticulum.
The mesoscopic description can be extended to the spatially hetreogenous

case. To introduce molecular transport by diffusion we discretize space and
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divide the domain Ω into K non-overlapping voxels, or subvolumes, Vi. For a
system with N species the system can now be described by the K×N matrix

of random variables X(t). Again, denote a realization of the system with x ∈
Z

KN
+ . The entries of the row xi· in the matrix are the copy numbers of species

j = 1, . . . ,N in voxel i. Chemical reactions occur within the voxels by treating

them as in the spatially homogenous case. In other words, we assume that

inside any voxel in the mesh, the assumption of a well-stirred system holds so

that molecules are effectively uniformly distributed in the subvolume at any

time. For example, a bimolecular reaction r involving species Xj and X ′j in
voxel i can in this setting be written

Xi j +Xi j′
ωir(xi·)−−−−→ Xi j′′ . (2.7)

The propensity function depends only on the copy number of the species in

voxel i so that reactions are completely local. In general, the propensity can
take different forms in different voxels. This will be the case if the rate con-
stants vary in space, or more commonly, if a reaction is only active in parts
of the domain. If no molecular motion occurs, the master equation for the full
system will be

d

dt
p(x, t) = M p(x, t)≡

K

∑
i=1

M

∑
r=1

ωir(xi· −μir)p(x1·, . . . ,xi· −μir, . . . ,xK·, t)

−
K

∑
i=1

M

∑
r=1

ωir(xi·)p(x, t), (2.8)

where μir is the 1×N stoichiometry vector for reaction r in voxel i. For the

case of one subvolume, K = 1, (2.8) reduces to the CME (2.3).
The diffusive motion of a molecule from one voxel to an adjacent one is

modeled by the linear jump event

Xi j
di jk−−→ Xk j (2.9)

with propensity function a(xi·) = di jkxi j. It takes a species j in voxel i to one of
the immediate neighbors Vk. The transition can be written x′· j = x· j +ν i jk. The

K×1 stoichiometry vector ν i jk acts on the column x· j and has all components
zero except for ν i jk(i) =−1 and ν i jk(k) = 1.

For the case of molecular transport only, the master equation then takes the
form
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d

dt
p(x, t) = D p(x, t)≡

N

∑
j=1

K

∑
i=1

K

∑
k=1

a(x· j−ν i jk)p(x·1, . . . ,x· j−ν i jk, . . . ,x·N , t)

−
N

∑
j=1

K

∑
i=1

K

∑
k=1

a(x· j)p(x, t), (2.10)

For a system with both reactions and diffusion, the full RDME is then simply

d

dt
p(x, t) = M p(x, t)+D p(x, t). (2.11)

Next, we will discuss how realizations of the process can be sampled using

unstructured, tetrahedral meshes.

2.4 Simulating the RDME on unstructured meshes

In the formulation of the RDME (2.11) in the previous section, we have yet to

specify the values of the rate constants di jk in the expression of the diffusion

propensity function (2.9). Those values will depend on the nature of the spatial

discretization, i.e. the shapes and sizes of the voxels. In this section, we will

focus on the case where the nature of the molecular motion is diffusion; in

the next chapter we will discuss an extension to include active transport. To

simplify notation, we assume that the diffusion constant is the same for every

species everywhere in space and drop one index in dik.
In the Markov model, the value of the propensity function for an event

corresponds to the inverse of the expected time for that event to occur. In

other words, the value 1/(dikxi j) is the expected time for the first species of

type Xj to leave voxel Vi and become well-mixed in voxel Vk. A reasonable
requirement on the rate constants dik, irrespective of the mesh, is that they
are chosen in such a way so that the concentration process converges to the
diffusion equation in the thermodynamic limit. On the macroscale, normal
diffusion is described by the heat equation

∂u(ζ , t)
∂ t

= σΔu(ζ , t). (2.12)

This means that dik has to correspond to the elements in the matrix D that arise
from a convergent discretization of (2.12)

ût = D(h)û (2.13)
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where h is a discretization length parameter as in the previous section and

lim
h→0

û = u. (2.14)

In addition, all coefficients dik need to be non-negative for the stochastic pro-
cess to be well defined. Also, in the standard formulation of the RDME, in-
teractions should be local, occurring only between nearest neighbors in the
mesh. In other words, if boundaries are reflective, a matrix D that is suitable

for a stochastic simulations has the properties

Dik ≥ 0, Dii ≤ 0,
K

∑
k=1

Dik = 0. (2.15)

Figure 2.3 shows parts of a Cartesian mesh (a) and a triangular mesh (b)
in 2D. For the unstructured mesh, molecules are assumed to be well-mixed
in the dual elements indicated by the thin solid lines in the figure. The same
interpretation holds for a Cartesian mesh, where the dual is the staggered grid
with respect to the primal mesh (dashed lines).

(a) (b)

Figure 2.3: Parts of a Cartesian mesh (a) and an unstructured triangular mesh (b). The

dual of the triangular mesh is obtained by connecting the midpoints of the edges and

the centroids of the triangles (thin solid lines). In every such subvolume molecules are

assumed to be well-stirred, i.e. have a uniform distribution.

For a uniform Cartesian discretization the jump rates in the RDME are nat-

urally defined by the corresponding coefficients in a second order central fi-

nite difference discretization, dik = σ/h2, where h is the length of the vox-

els [42, 113]. For an unstructured mesh made up from tetrahedra, the most

natural choice is to obtain the rates from either a first order finite element

(FE) discretization with linear Lagrange elements or from a two-point flux

finite volume scheme for (2.12). For a Cartesian mesh, both those schemes
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are equivalent to the finite element scheme, i.e. would result in the same rate
constants and (2.15) is fulfilled.

In paper IV we choose to base the jump coefficients on a FE discretization.

There are two main reasons for this choice: the convergence of the finite vol-

ume scheme is sensitive to the quality of the mesh and moreover, there are

many software packages available for solutions of partial differential equa-

tions based on FEM. We have made use of this to to implement a flexible

software package for spatial stochastic simulation, URDME [22].

With a FE discretization of (2.12) with linear basis and test functions, one
obtains the following system of equations for the values of u at the vertices in

the primal mesh

Mut = σSu. (2.16)

M is commonly termed the mass matrix while S is known as the stiffness

matrix. Consult e.g. [9] for an introduction to the finite element method. M
and S have the same sparsity pattern, and in order to simplify time integration

a technique known as mass lumping is frequently employed. In our case, for

the stochastic simulation, this is essential for the molecules to jump only to

neighboring grid cells. Let M̂ be the diagonal, lumped mass matrix M with
M̂ii = ∑K

k=1 Mik. Then, for the dual elements described in Fig. 2.3, M̂ii = |Vi|,
i.e. the volume of voxel i [110]. Together, this defines the jump coefficients as

the entries in the matrix

D≡ σM̂−1S. (2.17)

Figure 2.4 is adopted from paper IV and shows an example of the use of
unstructured meshes to simulate a reaction network in a non-trivial geometry.
The computational domain is representative for a yeast cell. Two large inter-
nal structures are present, the nucleus and a large vacuole. The finite element
software Comsol Multiphysics 3.4 [21] was used to define the geometry and
mesh. The stochastic simulation was based on the next subvolume method
(NSM) [30] as implemented in an early version of the URDME software [23].
For details about the model see [30].

In a finite volume discretization, the jump coefficients dik will always take
positive values irrespective of the shapes of the voxels, but the scheme does
not converge for general meshes. The conditions on the mesh for which (2.15)
holds for a FE discretization are discussed in paper IV. For FEM, the conver-
gence properties are better. However, for a general mesh such as those readily
available from third-party, state of the art mesh generators there is no guaran-
tee that the off-diagonals in D will have the same sign. In a stochastic simu-
lation, this is unacceptable, and in that case we need to truncate the matrix D
to remove the elements with wrong sign. This will render also the FEM dis-
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(a) t=700s (b) t=700s

Figure 2.4: Snapshots of a model proposed by Elf. et. al. [30] simulated using an un-

structured mesh. The left panel shows a species A and the right panel species B, see

[30] and paper IV for details. Light and dark colors represent high and low concen-

trations, respectively. Due to the combination of slow diffusion and feedback in the

model, A and B form localized clusters in different parts of the domain.

cretization inconsistent with (2.12). Even so, the truncated matrix describes a
discrete diffusion, it is a local operator and has the properties:

1. The conditions (2.15) are satisfied.
2. The discrete maximum principle is satisfied [70].
3. The non-negativity of the species is preserved [70].
4. Mass is conserved.

The potential inconsistency does not necessarily mean that the error it

causes in a computed quantity will be large compared to other sources of

error. What it means is that at some mesh resolution, the discretization

error in the diffusion part of the reaction-diffusion equation does no longer

decrease as the mesh size is reduced. However, what is more important is

the level of the error when that happens, and how this is related to other

errors in the simulation. aFurther work is needed to fully establish what

errors this incurs in the stochastic simulations for realistic models, but early

work indicates that they are small compared to the errors caused by the

inconsistencies due to small subvolumes [68].

Another approach to incorporate diffusion in complex geometries is pro-
posed by Isaacson and Peskin [61, 60]. There, the domain is discretized by a
uniform Cartesian mesh and the curved boundary is treated by an embedded
boundary method. Also in their approach, the jump coefficients are derived
from a numerical discretization of the macroscale diffusion equation (2.12)
or as pointed out in [61], equivalently from discretizing the Fokker-Planck
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equation for Brownian motion. The PDF for the position of a single molecule
undergoing Brownian motion is governed by the Fokker–Planck equation

∂ p(ζ , t)
∂ t

= σΔp(ζ , t) (2.18)

In the limit of vanishing voxel size, the strategy described above to obtain
jump constants for use within the mesoscopic RDME framework is thus con-
sistent with both the concentrations of species in the macroscopic limit and the
probability of a single diffusing Brownian particle to be found inside a given
voxel in the mesh (in steady-state this probability is simply given by |Vi|/|Ω|
by (2.15)). Compared to our approach in paper IV, the method in [61] has the

advantage to rely on structured Cartesian meshes in interior regions having the

potential for higher interior accuracy and possible optimizations for an imple-

mentation of the stochastic simulation algorithm which are not possible in the

case of general meshes. A method using tetrahedral unstructured meshes on

the other hand, is simpler to apply in the general case and provides a natural

way of handling also species diffusing on the actual boundary.

2.5 Computational approaches to spatial stochastic
simulation

The introduction of molecular motion into the model has not changed the ba-

sic mathematical properties of the master equation. However, even for few

species and a very coarse discretization, the dimensionality of the model will

be so high that direct solution methods based on matrix methods are infeasi-

ble. The total number of events in the system is high for a fine discretization,

and simply applying Gillespie’s direct method to simulate the system would

be very inefficient. Elf and Ehrenberg proposed the next subvolume method

(NSM), an adaptation of NRM tailored for reaction-diffusion systems. The

complexity of NSM is then logarithmic in the number of voxels in the mesh.

Note however, that this does not mean that the total simulation time for a sys-

tem grows logarithmically as the mesh becomes finer. Table 2.2 shows the

execution time for an implementations of NSM [30] as implemented in the

URDME [22] software package, when applied to the simulation of Min oscil-

lations in the rod-shaped bacterium E. Coli [38].
As will be made clear in the next section, the number of diffusion events

scales as the inverse of the mesh resolution squared as seen in the final col-

umn of the table. For the finest mesh resolution, 99.98% of the events are

due to diffusion in this example. This stiffness is characteristic for space de-

pendent systems with diffusion. This can be compared to solution of partial

differential equations, where the stiffness of diffusion equations are known

to render explicit time stepping schemes unsuitable. For a first order explicit
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hmax # voxels t [s] # events/s ×106 # diffusion events ×108

2×10−7 1555 56 3.0 1.7

1×10−7 10759 333 1.8 6.0

5×10−8 80231 2602 0.8 22.8

Table 2.2: Simulation times for a spatial dependent system simulated with NSM as
implemented in URDME. The execution time (third column) grows rapidly with in-
creased mesh resolution. hmax is the maximum local mesh size allowed. The system
was simulated to a final time 200s.

time marching scheme, the time step must be chosen such that Δt ≤ Ch2

σ for
stability, where C is a constant and σ is the diffusion constant. In Table 2.2
the increased cost of simulation when the mesh size is halved comes from two
sources. When h is reduced by a factor of two, the number of diffusion events
increases by a factor of four. Also, since the number of voxels grows the cost
of generating a single event increases (column four in the table).

As illustrated by the example above, reaction-diffusion systems tend to be
diffusion dominated, at least for well-resolved geometries. Unlike the well-
stirred case where a few reaction channels are causing stochastic stiffness,
here it is rather the whole diffusion operator that causes the stiffness and there
will most likely be a continuum of average inter-event times, even if they will
form groups due to species having different diffusion constants. Rossinelli et
al. use tau-leaping and combines tau-leaping and deterministic diffusion to
speed up simulations [94]. Binomial tau-leaping for spatial stochastic simula-
tion was proposed in [80]. Additional implementations of spatial tau-leaping
are introduced in [62] and compared to the implementations in [80, 94]. When
explicit tau-leaping is applied in a spatial context, it is necessary to generate
one Poisson variate in every direction (edges) in the mesh for every voxel
in order for the scheme to be conservative. Lampoudi attempts to reduce the
number of variates for 2D systems in a multinomial simulation algorithm [72].
The performance of spatial tau-leaping, the Gillespie Multiparticle Method
(GMP) [93] and NSM are compared in [67] and the GMP has been imple-
mented for GPUs in [114]. Another approach to reduce the cost of simulating
diffusion is taken in the Diffusive Finite State Projection (DFSP) algorithm
[27], in which the FSP method [85] is used locally in space to aggregate dif-
fusive transfers in a small time interval. For systems with scale separation,
we propose a space-time adaptive hybrid algorithm in paper VI. There, deter-
ministic diffusion, explicit tau-leaping and exact SSA are combined and the
appropriate method is dynamically chosen in each voxel in space based on
easily computable criteria. By adaptive mesh refinement it is possible to lo-
cally increase the resolution and in that way save computational time over a
uniformly fine mesh [7].
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2.6 Validity of the RDME

The mesh-size parameter h is an important parameter in a simulation using the
RDME and in one important respect the mesoscopic model evades intuition
based on the numerical solution of PDEs. There, provided that the numerical
scheme is convergent, a smaller mesh size will lead to a more accurate solution
of the equation. For the RDME modeling framework on the other hand, in
the limit of vanishing voxel sizes the model breaks down in the sense that
it does not become a good approximation to the desired microscopic model
[59]. From physical intuition, the voxel sizes cannot be taken to be too small
nor too large. The average time it takes for a molecule to diffuse the length of
a voxel should be small compared to the time scale with which the molecule
reacts so that spatial correlations are short-lived compared to the time between
reactions. When in this regime, simulations based on the RDME were found
experimentally to agree well with molecular dynamics simulations in [5].

The mesh size must be taken small enough as to resolve the geometrical
features of the domain, otherwise the discretization error in the diffusion and
reaction operators will be large and simulations will be inaccurate. To the best
of our knowledge, no satisfactory a priori error estimates for the effects of a
large mesh size on the results obtained from simulation of the stochastic model
is available however. For error in expectation, in the thermodynamic limit, one
can of course apply standard theory from numerical solution of PDEs to obtain
such error-estimates and this would provide bounds in a weak sense.

In a Cartesian mesh the expected time it takes for a species A with diffusion

constant σA to transition to and become well-mixed in a neighboring grid-cell
is τD = h2/σA. If A participates in a bimolecular reaction, the expected time
for it to react with a species B in voxel containing one molecule of each kind

is τr = ka/h3 where ka is the reaction constant and has units of volume over
time. Comparing the two times, requiring that τD  τr, the mesh size should

fulfill h� ka/max(σA,σB). Expanding the RDME to second order in the re-
action radius Isaacson proved in [59] that for a chemically reacting system

with the reaction A + B ka−→ /0, when h → 0 the second order term in the ex-
pansion diverges as 1/h compared to the corresponding term in an expansion

of the equations of the Smoluchowski model. Intuitively, contributions of the

bimolecular reactions become successively smaller (and completely lost in the

limit). Isaacson suggests that in order to alleviate this problem it is necessary

to "appropriately renormalize the bimolecular reaction rate and/or extend the

reaction operator to couple in neighboring voxels”. However, he also notes

that for parameters frequently occurring in real biochemical systems it is pos-

sible to find a mesh resolution that gives less than 1% error in distribution

between the correspondingly truncated models. For highly diffusion limited

parameter combinations however, the error incurred by too fine a mesh can be

substantial [36, 37].
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In [36] Erban and Chapman derives a modified expression for the propen-
sity function of a bimolecular reaction in order to obtain the correct steady-
state distribution in the case of a box-geometry and uniform Cartesian mesh.
In their approach, each reaction event is local to the voxel and they find a
smallest mesh resolution h for which it is possible to correct the model in this

way. If h is sufficiently small compared to the side length of the cubic do-
main, this critical value is approximated by hcrit ≈ 0.25272ka/(σA +σB) [36].
Note that this value is close to the intuitive lower bound on h above. Fange

et. al. [37] both derive corrected propensities (in 2D and 3D) and allow for

reactions between molecules in neighboring grid-cells. In this way, they ob-

tain mesh-independent steady-state levels of molecules for spatial resolutions

all the way down to the reaction-radii of the molecules and good agreement

in numerical experiments to methods based on the Smoluchowski framework

for the model proposed in [108]. Both approaches [36, 37] are compared for

a few model problems in [68] and found to work reasonably well. Neither of

the methods have been applied to unstructured meshes but the method [37]

seems more straightforward to extend to the case of a general mesh. As an al-

ternative approach to handle this problem, in paper VII we demonstrate how

a mesoscopic-microscopic multiscale algorithm can be used to simulate the

same model problem [108] without the need for a very fine mesh.
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3. Beyond diffusive transport

Diffusion is the dominating mechanism of molecular transport in prokary-
otes such as E. Coli, and it was to models of such systems the reaction-

diffusion master equation and the next subvolume method were first applied

in a systems biology context [30, 38]. However, diffusion is not the only way

molecules are transported in the eukaryote cell. Molecular cargo can be trans-

ported actively on cytoskeleton structures made up of microtubule and actin

polymers. Molecular motor proteins bind to the cargo and to the cytoskeleton

and move the cargo in a certain direction depending on the molecular nature

of the motor. This transport is usually much faster than diffusion but requires

an energy input. Vesicles, organelles, mRNA and proteins involved in signal-

ing are examples of molecular cargo that is transported actively in the living

cell, for reviews see [57, 79, 112].

In paper V we propose a multiscale method for introducing active transport
of cellular cargo on microtubules. In order to make the method computation-
ally feasible, we connect the micro- and mesoscopic model of cargo transport
to a discretization of a model on the phenomenological, macroscopic level.
This is done in order to be able to apply the same machinery as described in
the previous section to simulate the resulting stochastic process on unstruc-
tured (and structured) meshes using previously available algorithms and soft-
ware. Transport of convective nature can be incorporated into the model in a
completely analogous way to that of diffusion by allowing for a more general
transport operator T in the master equation,

d

dt
p(x, t) = (M +T )p(x, t), T = D +A , (3.1)

where A will describe molecular transfers due to active transport modeled as
convection. To arrive at jump coefficients that will dictate the rates of jumps
between voxels, we start out with the macroscopic linear transport equation,
written here in conservative form

∂u(ζ , t)
∂ t

= ∇ · (v(ζ , t)u(ζ , t)) (3.2)

where ζ are coordinates in a Cartesian coordinate system. The velocity field
v(ζ , t) then models the rate and directivity with which the molecules are trans-

ported. Following the same logic as in Section 2.4, we require that the discrete
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approximation of (3.2) is local, limiting the connection of voxels to their im-
mediate neighbors. As for diffusion, we also require the jump constants to take
non-negative values. The natural choice for a discretization fulfilling those re-
quirements is a first order, upwind finite volume scheme. In the finite volume
method, the equation (3.2) is written on integral form using Gauss’ theorem.
Let the unknown quantities be the average concentrations in the voxels

ūi =
1

|Vi|
∫

Vi

u(ζ , t)dΩ. (3.3)

Let ∂Vi be the polygonal boundary of voxel Vi and n its unit surface normal.

Integrating (3.2) and using Gauss’ theorem we obtain∫
Vi

∂u
∂ t

dΩ+
∫

Vi

∇ · (vu)dΩ =
∂
∂ t

∫
Vi

udΩ+
∫

∂Vi

n ·vudS = 0. (3.4)

Using the average value (3.3) we have

|Vi|∂ ūi

∂ t
=−

∫
∂Vi

n ·vudS. (3.5)

By approximating the integral in the right hand side of (3.5) we have a finite
volume discretziation of (3.2). The simplest choice that leads to a scheme with
local connections and all positive off diagonal elements in the corresponding
jump-matrix is obtained by evaluating the velocity field vik at the center of the
face eik connecting voxels Vi and Vk and the surface normal nik directed from

Vi into Vk and letting

qik =
1

|Vi|
∫

eik

n ·vudS≈ |eik|
|Vi| f (vik ·nik,ui,uk), (3.6)

where

f (vik ·nik,ui,uk) =

{
vik ·nikui, vik ·nik ≥ 0

vik ·nikuk, vik ·nik < 0
(3.7)

The matrix A discretizing the right hand side in (3.2) has off-diagonal elements
qik and diagonal entries qii =−∑k �=i qik. An event of convective nature taking a
molecule of type j in Vi to Vk can then be simulated as in (2.9) with propensity

a(xi·) = qikxi j allowing for a seamless integration with software to generate
realization of the RDME.

This procedure to define the stochastic jump process, together with that for
diffusion which was outlined in Section 2.4 and in detail in paper IV can be
used to simulate a general transport process. Here, in the same manner as
for the diffusive case the correct jump coefficients on an unstructured mesh
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are conveniently obtained by discretizing a phenomenological equation, in
this case the linear transport equation. The key in any biological modeling
using this framework is then the modeling of the macroscopic velocity field
v(ζ , t). In paper V, we actually start out in the other end, by considering the
microscopic properties of cargo transport by molecular motor proteins on a
microtubule filament network. By aggregating the effect of many fibers in the
voxels, we derived a mesoscopic propensity without first invoking the macro-
scopic level. In principle, the mesoscopic propensity could be obtained di-
rectly if it was possible to, from an image of the fiber network, count the
number of fibers entering and exiting through every face in a dual mesh over-
laying the image, as well as measuring the total length of the fibers in each
voxel.

If we assume that on the scale of the mesh resolution, the fiber network is
"well-behaved", i.e. that fibers do not cross each other and change direction
appreciably, we can relate the mesoscopic formulation of our model to the
framework outlined above with the velocity field v = vt(ζ ) where t(ζ ) is a
smoothly varying vector field approximating the fiber network and v is the

average speed of the motor protein (typically kinesin or dynein). However, as

we point out in the paper, the procedure to formulate the mesoscopic model

outlined here is general. It can be followed if another macroscopic velocity

field could be derived by incorporating more microscale details. Also, the ve-

locity field can of course model transport of convective nature arising from

completely different sources than motor-driven cargo transport.
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Figure 3.1: Response curves showing how the response species R accumulates at the

cell membrane with varying filament numbers (M) (b) and for different diffusion con-

stants (c). The macroscopic velocity field and density modeling the fiber network is

shown in (a).

Figure 3.1a shows the geometry and the macroscopic velocity field used

to model the motor-driven transport in paper V. Microtubules are thought to

originate from an area at the nucleus (pictured in grey) and extend radially

outwards towards the plasma membrane giving rise to a radially directed ve-

locity field on the macroscale. We consider a simple example with two species

that can either diffuse or be transported on the microtubule network after bind-

ing to a fiber. An abstract signal species originates at the plasma membrane, is
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transported down to the nucleus where it is converted into an abstract response
species which is then in turn transported back to the plasma membrane.

In Figures 3.1b and 3.1c we show the differences in response of the sys-

tem for varying fiber densities (or equivalently, rate constant for binding to

fibers) and different diffusion constants. This illustrates the different behav-

ior between the two transport mechanisms and the potential for regulation of

the timing of delivery by modulating the amount of time the motor proteins

spends bound to the fiber network. This is a mechanism of regulation that

has been proposed as one means of regulating the intricate transport machin-

ery that helps maintaing the highly polarized state of healthy neurons. Little

is known about the details of such regulation though microtubule associated

proteins (MAPs) such a Tau seem likely to play an important role by being

able to differentially regulate the affinity of kinesin and dynein to the fibers

[26].
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4. Multilevel modeling and simulation
of reaction-diffusion models

Papers I, VI and VII share a common theme. They all deal with computational
methods that aim at reducing the cost of numerical study of the biochemical
network by formulating different parts of the system on different modeling
levels. Many realistic reaction networks in molecular biology will have mul-
tiscale properties. Some species might be abundant and modeled sufficiently
accurately on the macroscopic level, while in the same model, other parts may
need a mesoscopic or even microscopic modeling resolution. In those cases,
resolving the whole system on a modeling level dictated by the finest scales
in the model will lead to unnecessarily costly simulations.

4.1 An hybrid method for well-stirred systems

For a general, high-dimensional well-stirred model, solving for the PDF of
the full system via the CME is intractable. The high dimensionality of the
problem makes the state space too large to study using matrix based direct
methods. Stiffness in the model can render a stochastic simulation based on
SSA slow, making also Monte Carlo study of the model challenging. Figure
4.1 shows an example of the frequencies of firings of the different reactions
when simulating a model of the heat shock response in E. Coli [17]. This
model has been used frequently in the literature as a benchmark for new, more
efficient stochastic simulation methods as well as optimized implementations
of the SSA.
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Figure 4.1: The frequencies of the reaction events in a model of the heat shock re-

sponse in E. Coli. Six of the reactions account for almost all events occurring up to

the end-time of the simulation. Figure adopted from [54]
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As can be seen, only a few of the reactions account for almost all the events
that occurred until the end time of the simulation. The multiscale nature of the
model is clearly visible here, and if one is most interested in the statistics of a
species that is involved in reactions occurring on one of the slower timescales,
an attractive approach is to try to reduce the size and the stiffness of the model
by dimension reduction. In the method described in paper I, we propose to
reduce the dimensionality of the model by splitting the species in the model in
two parts: one mesoscopic and one macroscopic part. The idea is that species
with a small relative variance can be modeled on the macroscopic level, while
the other species need a mesoscopic description since the fluctuations in their
copy numbers are substantial compared to their mean values. This separation
in variance was illustrated in paper I for a model of a mitogen-activated pro-
tein kinase (MAPK) cascade [74] where the relative standard deviation of the
species varied in the range 0.02–1.08.
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Figure 4.2: In the model problem considered in [53], the separation in copy numbers

is large. The species in (a) all stay below 1000 molecules for most of the time, while

other species are present in the order of 106 molecules. Figure adopted from [53].

The relative variances will often correlate strongly with high or low copy

numbers. A big spread in copy numbers is frequently occurring in realistic

models. Consider for example a generic model of a signaling network, where

the input to the system is a signal emanating at the cell surface, propagating

through the cytosol via different proteins or even second messengers, even-

tually resulting in the translocation of a transcription factor to the nucleus.

There, the transcription factor regulates a gene whose transcription might re-

sult in the production of a protein that acts as a negative or positive regulator.

In such a case, copy numbers can range from one (the gene) to several thou-

sands (some of the proteins) to tens or hundreds of thousands (second mes-

sengers). Figure 4.2 shows how the copy number varies between species in

another model of a MAPK cascade used as model problem in [53]. The model

consists of 22 species and 30 reactions. As can be seen to the left in the fig-

ure, eight of them have copy numbers below 1000 (a) while some species are

present in the orders of 106 molecules (b). This particular model is very stiff,

and was chosen as a test problem in [53] to accentuate the need for hybrid
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simulations. Systems that are not amenable to good splitting and thus not to
simulation with the hybrid method are discussed in paper I and in [53].

While not the only possible reason, see [11], large discrepancies in copy

numbers amongst species is a frequent cause for stiffness in a model. When

using mass action rate expressions, the propensity of a reaction is at least di-

rectly proportional to the copy number of the involved species, so unless there

is a big difference in rate constants between two given reactions, a reaction

involving high copy number species will be much faster than a reaction with

all reactants present in low copy numbers.
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Figure 4.3: Isolines of the marginal probability distribution for MAPKpp and MAP-

KpMEKpp with SSA (a) and the hybrid method (b). The PDF obtained with the hybrid

method approximates the PDF of the full system well.

Figure 4.3 shows marginal probability density functions for two of the
species in Table 7 in paper I. For this model, by only treating a few high
variance species as mesoscopic variables, we reduce simulation times by up
to an order of magnitude compared to our reference implementation of SSA.
For the extremely stiff MAPK model used as a test problem in [53] and shown
in Figure 4.2, the speed-up was close to 300 when only eight of the species in
the left panel was simulated as mesoscopic variables.

In summary, the hybrid method described in paper I improves simulation
times by reducing the dimension of the system, thus leading to a smaller reac-
tion network to simulate on the mesoscopic modeling level. If in addition the
splitting also reduces the stiffness of the model, the speed-up over stochastic
simulation of the full system can be substantial.

4.2 A space-time adaptive method for spatial stochastic
simulation

In the spatially dependent case, as illustrated in Table 2.2, stiffness addition-

ally arises from the molecules’ diffusion. Diffusion events typically outnum-
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ber reactions events, and matters become worse with a fine mesh resolution
because of the O(1/h2) scaling of the propensity function. For models where

some species are diffusing fast or are abundant, or if the mesh is fine, it may

become challenging to propagate a system on the time scale of interest us-

ing exact simulation on the mesoscopic level; most of the CPU time will be

spent on propagating molecules in space in between reactive encounters. By

simulating high copy number species on the macroscopic level, species with

intermediate copy numbers by an approximate stochastic scheme and low

copy number species by exact, mesoscopic stochastic simulation, we reduce

the work involved in updating the diffusion part of the system in an adaptive

method in paper VI. Importantly, the method is capable of dynamically chang-

ing the modeling resolution locally in space based on a few easily computable

criteria. This space-time adaptivity is an essential feature of the algorithm,

since one cannot expect an initial partitioning to be valid for long times if the

system displays e.g. transient local bursts in protein or molecule levels.

To be able to update the degrees of freedom with different methods for
diffusion, the reaction-diffusion operator is split into three parts,

∂ p(x, t)
∂ t

= Dm p(x, t)+Dτ p(x, t)+(M +D)p(x, t). (4.1)

Dm describes macroscopic diffusion, Dτ diffusion by the approximate tau-

leaping method [48, 14, 91], M is all chemical reactions in the system and
D diffusion with the exact method. To simulate the hybrid system, (4.1) is

evolved using an operator splitting approach [104]. Expanding the formal so-

lution of (4.1) in a Taylor series at t +Δt gives

p(x, t +Δt) = eΔt(Dm+Dτ+(M+D))p(x, t)
= e

1
2 ΔtDme

1
2 ΔtDτ eΔt(M+D)e

1
2 ΔtDτ e

1
2 ΔtDm p(x, t)+O(Δt3).

(4.2)
Truncating the O(Δt3) terms gives a second order approximation of the PDF.

The macroscopic part is then integrated in time using the forward Euler

method, Dτ with the explicit tau-leaping method [48]. The reactions M and

the exact part of the diffusion operator D is updated using NSM.
To determine which species in which parts of the domain to simulate with

which method, we first determine a time step such that all degrees of freedom

can be simulated with the tau-leaping method. The error estimate is adapted

from [91]. The local splitting time-step in step n of the algorithm is chosen

such that

Δtn ≤
⎛
⎝ min

j=1...N

2ε1

max
i=1...K

|(D2xn
· j)i/xn

i j|

⎞
⎠

1/2

, (4.3)
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where ε1 is a desired bound on the relative error per time step in the dis-
cretization, thus making the global error proportional to this tolerance. D is

the matrix with jump coefficients in (2.17). If, in addition, the following holds

for a user specified tolerance ε2√
(|D|(xn

· j)i/x̄i j ≤ ε2 (4.4)

where |D| is the matrix with entries being the absolute values of the entries in

D, then that degree of freedom (species j in Vi) can be simulated on the macro-
scopic level. Note that the time step has been chosen such that all species can

be updated with tau-leaping in that time step. This is not what we want because

it will lead to small time steps. One of the major issues with many tau-leaping

schemes is the fact that copy numbers can become negative. To determine

which species should be simulated with SSA we estimate the probability that

a species in a voxel will end up negative after Δt. If we accept that species

Xi j end up negative with probability ε3 we can use the following relation to
determine whether it should be updated with SSA or tau-leaping

xn
i j + μi−κ(ε3)

√
vi <−1. (4.5)

This expression is a consequence of the fact that the change in the copy num-

ber after Δtn is Skellam-distributed (the difference between two Poisson ran-
dom variables). μi is the difference between the parameters λ i

+ and λ i− in the
Poisson distributions describing the outflow and inflow of molecules to voxel
Vi and vi is the variance of λ i

+ + λ i−. μ and v both depend on the time-step
Δtn. Using a normal approximation for this distribution we get (4.5). With

ε1 = 0.01, κ = 2.33, and with ε1 = 0.025, κ = 1.96. When a certain num-
ber of degrees of freedom have been assigned the exact simulation method,
we could most likely allow for a larger time step in (4.3). Thus in practice,
(4.3), (4.4) and (4.5) is evaluated in an iterative manner for a few steps until
the partitioning of the system changes little between evaluations.

The method is summarized in Algorithm 2, where the order of the steps is
that used in [55].

Figure 4.4b shows a snapshot of the partitioning chosen by the algorithm
at a given instance in time for the model problem considered in paper VI.
A high copy number species that was initially present outside the cell has
started spreading into the cytoplasm. Outside the cell, it is simulated on the
macroscopic level (indicated in red). As is shown in Fig. 4.4a the mesh is finer
near the plasma membrane, leading the algorithm to use tau-leaping in those
regions (colored green). Inside the cytosol, and especially in the nucleus, the
concentration in some of the voxels (colored blue) is not yet high enough
for neither the macroscopic nor tau-leap solver to be applicable and the exact
stochastic simulation algorithm is used.
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Algorithm 2 The adaptive hybrid algorithm

Initialize: Choose error tolerances ε1, ε2, ε3, a final time Tf and an initial state

x = x0.

while t < Tf do
1. Compute the time step Δt and partition the degrees of freedom (dofs) accord-

ing to the error estimates in paper VI. Place dofs that can be advanced in time

by macroscopic diffusion in the set Jm, dofs that can be tau-leaped (diffusion

only) in the set Jτ and the remaining dofs in Js. Set x1 = x(t).
2. Advance x1 Δt/2 in time by updating dofs in Jm by macroscopic diffusion to

get x2.

3. Advance x2 Δt/2 in time by diffusing dofs in Js and updating all reactions

by NSM to get x3.

4. Advance x3 Δt in time by updating dofs in Jτ by explicit tau-leaping for

diffusion to get x4.

5. Advance x4 Δt/2 in time by diffusing dofs in Js and updating all reactions

by NSM to get x5.

6. Advance x5 Δt/2 in time by updating dofs in Jm by macroscopic diffusion to

get x(t +Δt).
7. t = t +Δt.

end while

(a) (b)

Figure 4.4: In paper VI we consider a simple model of a reaction network inside

a yeast cell contaning a nucleus. The cell is immersed in an external medium (a).

The unstructured mesh is coarser outside the spherical domain and densest inside the

nucleus and near the nuclear membrane. The hybrid algorithm dynamically partitions

the species in every voxel into three different categories based on the method to use

for diffusion.
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Depending on the model’s properties, we report speedups in paper VI and
in [55] of up to two orders of magnitude compared to our base line imple-
mentation of NSM. We also give an example of a scenario where an exact
simulation of the full system performs better due to the overhead of partition-
ing the system.

4.3 Coupling the microscopic and mesoscopic
modeling levels

A better modeling accuracy as compared to the mesoscopic scale can be
achieved by microscale methods based on Brownian motion for diffusion and
Smoluchowski reaction dynamics [103]. This model underlies the spatial
stochastic software GFRD [119, 120] and Smoldyn [4]. There, the position
of individual particles are tracked explicitly and the spatial resolution is
better than in a typical mesoscopic simulation based on the RDME. However,
the increased accuracy comes with a price and microscale simulations are
much more expensive than their mesocopic counterparts. In many cases,
the RDME in its classical form can be expected to provide an accurate
description of the reaction-diffusion kinetics, but there are cases where it
fails to capture important features of a corresponding microscopic simulation
[36, 37, 108, 119].

The model in Table 4.1 was introduced in [108] where it was demonstrated
that when the reactivation rate in reactions (13,14) is high and diffusion of
the proteins slow, microscopic resolution is needed to accurately simulate the
system. A mesoscopic model could in principle also be used if the mesh reso-
lution is fine enough, but in those regimes the model are likely to break down
[59, 36]. In [37] the mesoscopic RDME model was then modified to correct
for errors induced by small subvolumes and to allow for reactions between
molecules in neighboring voxels. In that way the mesoscopic model could re-
produce the results obtained with GFRD, provided that the mesh resolution
was taken to be very fine (approaching the reaction radii of the molecules).

Another approach to overcome the limitations of a pure mesoscopic simu-

lation is taken in paper VII. There, instead of refining the mesh to approach a

microscopic modeling resolution in a mesoscopic simulation, we propose to

refine the modeling level locally in space and species. For those species and

in those regions of space where a microscopic modeling resolution is required

we switch to a flexible implementation of the GFRD algorithm based on op-

erator splitting and numerical computation of PDFs [56], further extended in

paper VII for flexible simulations on surfaces embedded in 3D. Given a par-

titioning of the degrees of freedom the hybrid method advances one time step

Δτ from τn to τn+1 in the following way:
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(1,2) KK +K
k1�
k2

KK−K (3) KK−K
k3−→ KK∗+Kp

(4,5) KK +Kp
k4�
k5

KK−Kp (6) KK−Kp
k6−→ KK∗+Kpp

(7,8) P+Kpp
k1�
k2

P−Kpp (9) P−Kpp
k3−→ P∗+Kp

(10,11) P+Kp
k4�
k5

P−Kp (12) P−Kp
k6−→ P∗+K

(13) KK∗ k7−→ KK (14) P∗ k7−→ P

Table 4.1: MAPK model from [108]. When diffusion is slow and the reactivation re-
actions (13,14) are fast, mesoscale simulations fail to accurately represent the system
unless the spatial resolution is very high.

1. Freeze all microscopic state variables and update the mesoscopic part of
the system with NSM during the time step Δτ . The chemical reactions that

are executed by the mesoscale solver only involve mesoscale reactants.
2. Freeze the mesoscopic state variables and update the microscopic part of

the system Δτ in time using the method described in [56]. Mixed reactions

involving both mesoscopic and microscopic variables are executed by the

microsolver.

3. Update the state at τn+1 by determining if any meso- or microvariables
have been created or destroyed in the time step and repeat from Step 1 until
the final simulation time has been met.

Figure 4.5 shows the model in Table 4.1 simulated with the hybrid algo-
rithm in paper VII. As can be seen, the method reproduces the results of a
pure microscale simulation (a), while reducing the number of particles simu-
lated by the more expensive microscale method nearly an order of magnitude.
Importantly, there is no need to use an extremely fine mesh resolution to sim-
ulate the mesoscopic part of the hybrid system.

In the example above, it is the dynamics of a fast association-dissociation

reaction pair that renders the mesoscale method insufficient. Another reason

why one would expect fine mesh resolutions to be necessary to capture the

model dynamics is if the geometry has fine scaled structures, or if there are

membranes embedded in the 3D bulk that has high curvature. Furthermore,

accurate mesoscopic propensities for phenomena such as reversible binding

to a membrane is not currently known for general meshes. In the case of in-

teraction between a molecule and a surface it is thus motivated to use the

microscale solver, for which such interactions are clearly defined. Figure 4.6a

shows a full microscale simulation of the model problem proposed in Section

6.3 in paper VII. Molecules of type C are created in the cytosol and will dif-

fuse and bind reversibly to the nuclear membrane as part of their search for
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Figure 4.5: The average response time τres, defined as the time to reach on average

50% of the steady state value of the doubly phosphorylated substrate Kpp, as a func-

tion of the diffusion constant D (a). The response is faster for the microscopic model

than in the corresponding macroscopic RRE description (ODE) . The average number

of molecules simulated on the microscale in the beginning of a time step compared to

the average number of molecules simulated on the mesoscale (b).

a nuclear pore (a species localized to the surface of the inner sphere). When
they find a pore, they are translocated into the nucleus by a simple reaction.

(a) (b)

Figure 4.6: A snapshot of a model of translocation through nuclear pores simulated

with the microscale method (a) and the partitioning of space used by the hybrid

method (b).

Using the hybrid algorithm, we resolve the binding to the membrane and
the membrane bound species and reactions on the microscopic level while
treating most parts of the 3D-bulk using the mesoscopic modeling level. The
partitioning in space used by the hybrid solver is shown to the right in Figure
4.6. To resolve the partial adsorption of C molecules to the nuclear membrane

(colored green) on the microscopic level, we let C be a microscopic degree
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of freedom in a layer of elements around the nucleus (red). In the rest of the
domain (blue), the system can be updated by the mesoscopic model.
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5. Conclusions

In general, methods based on a single scale seem to be insufficient to sim-
ulate larger, complex models of biochemical reaction networks. Stochastic,
microscale methods have a high spatial resolution, and arguably capture the
reaction-diffusion dynamics accurately enough compared to other modeling
assumptions. Unfortunately, microscopic simulations quickly become very
expensive if many molecules are present. In that case, mesoscopic or even
macroscopic methods may provide a sufficiently accurate description and are
much more computationally tractable. For many models however, some com-
ponents will be present in few copies or participate in reactions for which the
parameters call for a microscale description. In the same time other species
will be present in intermediate to high numbers. Resolving the whole model
on the microscale will render it hard to simulate, and basing the simulation
on a purely mesoscopic or macroscopic description will result in failure to
capture important aspects of the dynamics.

This multiscale nature of the networks calls for specialized computational
methods capable of dealing with modeling across scales. Three such methods
have been proposed in this thesis in papers I, VI and VII. Common for all of
the methods is the need to partition the system in different parts. Choosing a
good partitioning is essential for the outcome of the simulation, both in terms
of accuracy and efficiency. The hybrid method in VI goes the furthest in terms
of automation. There, it is enough to choose three relative error tolerances
and the hybrid algorithm will then adaptively partition the degrees of freedom
according to what method it will use for simulating diffusion. For the hybrid
methods in I and VII it is still necessary for the modeler to input some knowl-
edge or guesses for a partitioning, based on intuition or prior knowledge about
the system. Hybrid methods are a promising approach to handle systems with
multiscale properties, but for a hybrid method to become a generally accepted
tool used by practitioners it needs to behave like a black-box solver. Hence,
future work in this area should include development of automatic and adaptive
partitioning strategies. The hybrid methods proposed for the spatially depen-
dent case is both based on the URDME software framework and thus shares a
common platform. As a consequence, they could easily be integrated into one
method.

Another reason for the need of different modeling levels might be dictated
by the geometrical features of the domain. Narrow regions or interior bound-
aries with curvature might require a fine mesh locally. Unstructured meshes
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facilitates the resolution of such regions. We have developed methodology for
spatial stochastic simulation on tetrahedral and triangular meshes and imple-
mented a software framework, URDME, that uses such meshes for stochastic
simulation with NSM. A fine mesh resolution can potentially introduce errors
in mesoscopic simulation and more work is needed to understand the balance
of this effect and the discretization errors introduced by a too coarse mesh
resolution. As many important processes occur on or near membranes, this is
an important area of further study.

Transport of cellular cargo driven by motor proteins is known to be an
important mechanism of transport in eukaryote cells. Mesoscale simulations
have so far only focused on reaction-diffusion mechanisms, but with the ex-
tension of the model that we propose in paper V it is is possible to model,
albeit in a coarse way, cargo transport on microtubule networks. How inclu-
sion of this type of transport changes the behavior of e.g. models of signaling
in the cell with respect to noise should be studied further. Another interesting
area of further study would be to examine the validity of the proposed meso-
scopic model by comparing it to a microscale description of the process. That
would also lead to potential refinements of the mesoscopic method.

For the well-stirred case, we have developed two new methods as part of

this thesis. In paper III we use the method of uniformization in conjunction

with a quasi-Monte Carlo method in order to reduce the ensemble size needed

for a good estimation of the PDF of the system. The method will work best

for reasonably small, non-stiff models. Stiffness is frequently occurring in

many realistic models, and this was one of the main motivations for the hybrid

method in paper I. That method also aims at reducing the size of the system

to be simulated on the mesoscopic level, and needs the PDF or the mean of

the propensity functions to be estimated. As the subsystem obtained after a

successful splitting in the hybrid model will be small and non-stiff, integration

of the two methods would be beneficial.
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6. Summary in Swedish

Matematisk modellering är ett viktigt verktyg för att undersöka de
mekanismer och designprinciper som ligger till grund för olika reglersystem
i levande celler. Genom att anta en uppsättning reaktioner mellan olika
makromolekyler, till exempel olika proteiner, kan relativt enkla modeller
formuleras i form av ordinära differentialekvationer (ODE). Dessa
deterministiska makrosopiska modeller kan sedan simuleras med hjälp av
datorer, och på så sätt kan modellens egenskaper studeras för ett stort antal
olika parametrar och scenarier.

I celler kan antalet molekyler av nyckelproteiner vara mycket litet, och även

små variationer kan därför göra en stor skillnad för systemets beteende. En

viktig aspekt av ett cellulärt reglersystems funktion är därför hur fluktuationer

i antalet molekyler påverkar dess pålitlighet [107, 33, 106, 90]. Stokastiska

modeller som fångar upp den till synes slumpmässiga variationen i moleky-

lantal ger i dessa fall en bättre beskrivning än de deterministiska ekvationerna.

I stället för koncentrationen av ett protein är man nu intresserad av sanno-

likheten att finna ett visst antal molekyler vid en viss tid. Dessa mesoskopiska
modeller har visat sig användbara när de makroskopiska modellerna brister i
sin beskrivning av dynamiken [83, 6, 33, 109, 86, 6].

De stokastiska mesoskopiska modellerna är även de enkla att formulera

baserat på samma antaganden som de deterministiska modellerna. Tyvärr är

de betydligt svårare att studera numeriskt. En förklaring till detta är den höga

dimensionaliteten – komplexiteten för att räkna ut sannolikheterna växer ex-

pontentiellt med antalet molekylslag om matrisbaserade metoder används. Om

man istället studerar systemet genom att generera statistiskt korrekta realisa-

tioner av den stokastiska processen [44] och använder sig av Monte Carlo-

metoder blir dimensionaliteten inte ett lika stort problem. Svårigheter uppstår

då istället för system med tidsskaleseparation – väntetiderna för de olika reak-

tionerna varierar ofta över storleksordningar.

I artikel I tar vi oss an detta problem genom att simulera en del av modellen
på makroskalan och en annan, mindre del på mesoskalan. Molekylslagen de-
las upp baserat på deras relativa varians, ett mått som ofta sammanfaller med
antalet molekyler. På så sätt reduceras dimensionaliteten i den stokastiska de-
len av modellen. Ofta kommer molekylslag som placeras i den deterministiska
delen att vara delaktiga i de snabbaste reaktionerna. På så sätt kan även prob-
lemet med tidsskaleseparation minskas i och med att dessa reaktioner kommer
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att hanteras av den deterministiska ODE-lösaren. Resultatet blir alltså en re-
ducerad stokastisk modell som är enklare att simulera.

När stokastisk simulering används för att studera modellen behöver man

allt som oftast generera ett stort antal oberoende realisationer av processen.

Denna statistiska ensemble kan sedan användas för att uppskatta olika mått på

systemets prestanda och egenskaper. I artikel II presenterar vi en mjukvara,

CellMC, kapabel att använda sig av vektorinstruktioner för att effektivt gener-

era ensembler på både x86-arkitekturer (vanliga PC-datorer) och Cell Broad-

band Engine (Cell/BE). I artikel III utnyttjar vi istället kvasi-Monte Carlo-

metodik för att reducera storleken på ensemblen givet ett krav på felet.

I artiklarna I, II och III antas den volym i vilken proteinerna reagerar vara
väl omrörd. Molekyler transporteras i mediet genom diffusion vilket mod-
ellerar den sammanlagda effekten av många kollisioner med vattenmolekyler.
Genom att säga att systemet är väl omrört antar vi att det finns tillräckligt
med tid för varje molekyl att utforska hela området innan den deltar i en
kemisk reaktion. Mer realistiska modeller behöver ta hänsyn till skillnader
i rummet. Genom att diskretisera domänen med hjälp av ett beräkningsnät
kan den mesoskopiska modellen utökas till det rumsberoende fallet. Lokalt i
varje beräkningscell antar vi att systemet är väl omrört. Reaktioner sker på
samma sätt som tidigare, men nu blir varje beräkningscell en egen, mindre
reaktionsvolym. Diffusion modelleras sedan som hopp mellan beräknings-
celler i nätet. Mjukvara för att simulera rumsberoende modeller med hjälp
av strukturerade nät uppbyggda av kuber har utvecklats tidigare [51, 2]. I ar-
tikel IV demonstrerar vi hur processerna kan simuleras på ett ostrukturerat nät
som utgörs av tetraedrer i 3D och trianglar i 2D. Sådana nät har stora fördelar
för generella geometrier.

I eukaryota celler, som till exempel jäst, är inte diffusion den enda
mekanism med vilken makromolekyler transporteras. I cellen finns ett
intrikat nätverk av fibrer som utgör cytoskelettet. På dessa fibrer kan
molekylära motorer, proteinkomplex med förmåga att "vandra" längs
fibrerna, transportera organeller, vesiklar, mRNA och proteiner i olika
riktningar beroende på motorns molekylära natur. Denna typ av transport
har inte tidigare inkluderats i de mesoskopiska modellerna som vi beskrivit
här. I artikel V föreslår vi ett sätt att göra detta som kan kombineras med
existerande metodik för reaktions-diffusionssimuleringar.

Även för rumsberoende simuleringar uppstår problem med tidsskalorna.

Förutom reaktionerna bidrar diffusionen med styvhet, och i många fall

kommer antalet diffusionshändelser vida överstiga reaktionshändelserna.

Detta är också ett fenomen som blir värre med en finare nätupplösning – om

nätupplösningsparametern halveras så fyrdubblas antalet diffusionshändelser.

I samma anda som i artikel I föreslår vi en hybridmetod i artikel VI.

Reaktioner simuleras med den exakta stokastiska algoritmen medan

diffusionen hanteras med tre olika metoder beroende på antalet molekyler av

de olika molekylslagen. Den exakta stokastiska metoden [30] används när det
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är ett fåtal molekyler i en beräkningscell, en approximativ stokastisk metod
[48] för intermediärt antal och en makroskopisk, deterministisk metod när
det är ett stort antal. På så sätt kan kostnaden för att simulera diffusionen
reduceras. En viktig egenskap hos hybridalgoritmen är att den är adaptiv i
både rummet och tiden.

Artikel VII fortsätter på samma tema, men där är det i stället den
mesoskopiska modellen som står för den grövsta modelleringsnivån. En
stokastisk mikroskopisk metod [56] kopplas ihop med den mesoskopiska

metoden för att i vissa områden i domänen och för vissa molekylslag uppnå

en högre noggrannhet. I den mikroskopiska metoden följs molekylernas

positioner kontinuerligt i rummet, och den är därför mycket kostsammare

att simulera än den mesoskopiska. Det är alltså fördelaktigt att använda den

mesoskopiska beskrivningen för så stora delar av systemet som möjligt,

utan att för den skull missa att fånga upp viktiga fenomen i den modell man

studerar.

Multiskalaspekter genomsyrar denna avhandling. I tre olika hybridmetoder
kopplas makroskopiska, mesoskopiska och mikroskopiska modeller-
ingsnivåer för en så effektiv simulering som möjligt av en given modell. För
att undvika att explicit ta hänsyn till alla fibrer kopplas en mikroskopisk,
mesoskopisk och makroskopisk beskrivning av aktiv transport. På så sätt tar
metoderna hänsyn till de skalseparationer som uppstår naturligt i systemen,
något som är av största vikt för att kunna simulera mer och mer detaljerade
modeller av cellbiologiska reglersystem.
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