"20 finns ju någonstans där inne i 98"

En kvalitativ studie av vad elever baserar sina resonemang på vid lösning av matematiska problem
Sammanfattning

Tidigare studier indikerar att elever uppvisar bristande kunskaper inom matematik och att många elever har problem med platsvärde. Forskning belyser vikten av att elever får kunskaper om att talsorterna har olika värde beroende på dess position. Syftet med den här uppsatsen är att undersöka vad elever baserar sina resonemang på när de löser matematiska problem inom positionssystemet. Vilka resonemang för eleverna och vilka begreppsbilder uppvisar de? Genom en kvalitativ metod där sex elever enskilt har observerats med hjälp av videokamera har vi gjort två delstudier. Resultatet visar att eleverna använder sig av algoritmer och kreativa resonemang utifrån individuella belägg i sina argumentationer och att elevernas begreppsbilder i många fall brister då de inte har en full förståelse för definitioner. De sammanlagda resultaten från de båda studierna indikerar att i de fall eleverna inte skapar resonemang baserade i matematiska egenskaper, uppvisar de i sin argumentation en begränsad begreppsbild.

Nyckelord: kvalitativ studie, positionssystemet, matematiska resonemang, begreppsbild, grundskolans tidigare år.
Innehållsförteckning

1 Inledning .. 5
 1.1 Syfte och frågeställning .. 6
 1.2 Bakgrund ... 7
 1.2.1 Positionssystemet ... 7
 1.2.2 Teoretiskt ramverk för matematiska resonemang 8
 1.2.3 Resonemang .. 10
 1.2.4 Begreppsbilder ... 12

2 Metod och material .. 15
 2.1 Urval och avgränsningar ... 15
 2.2 Datainsamlingsmetod .. 15
 2.3 Metod för dataanalys ... 18
 2.4 Kritiskt betänkande kring metod .. 19
 2.5 Forskningsetiska reflektioner ... 19

3 Resultat resonemang (Susanna) ... 20
 3.1 Kreativt matematiskt grundat resonemang, KMR .. 20
 3.1.1 Exempel 1a ... 20
 3.1.2 Exempel 1b ... 21
 3.2 Kreativt algoritmiskt resonemang, KAR ... 22
 3.2.1 Exempel 1 .. 23
 3.2.2 Exempel 2 .. 24
 3.2.3 Exempel 3 .. 25
 3.3 Familjärt algoritmiskt resonemang, FAR ... 26
 3.3.1 Exempel 1 .. 26
 3.3.2 Exempel 2 .. 27
 3.3.3 Exempel 3 .. 27
 3.4 Sammanfattning av resultat .. 28

4 Resultat begreppsbild (Sofia) .. 30
 4.1 Ingen koppling ... 30
 4.1.1 Exempel 1 .. 30
 4.1.2 Exempel 2 .. 32
 4.1.3 Exempel 3 .. 32
 4.2 Ytlig koppling .. 33
 4.2.1 Exempel 1 .. 34
1 Inledning

Unenge m.fl. (1994) lyfter fram att det finns forskning som tyder på att det är just den bristande taluppfattningen som är en grundläggande orsak till många elevers matematiksårer. Grundläggande taluppfattning är den viktigaste förutsättningen för att få god kunskap i matematik (ibid.). Under våra praktiker på lärarutbildningen har vi uppmärksammat att många elever verkar ha problem med att lösa uppgifter kring positionssystemet, som är en del av den grundläggande taluppfattningen. Vi har sett indikationer på att svårigheter kan ligga i att förstå talsystemet, platsvärdet och konsten att arbeta aritmetiskt med det. Vi har även uppmärksammat att många elever verkar ha svårigheter i att argumentera för sina resonemang och val av metoder. Med bakgrund i forskning, annan litteratur och resultat på internationella studier har vi i denna studie valt att undersöka vad eleverna baserar sina resonemang på vid lösning av problematiska uppgifter med positionssystemet. Det gör vi genom att undersöka vilka resonemang eleverna för och vilken begreppsbild de uppfirer. Genom att titta på resonemangen eleverna använder sig utav vid val av strategi och huruvida resonemangen är logiska eller ej när de kommer fram till en slutsats, kan vi identifiera vilka resonemang som förs. Resonemang finns med som kunskapskrav till kursplanen i matematik, kunskapskrav för godtagbara kunskaper i slutet av årskurs 3:

Eleven kan föra och följa matematiska resonemang om val av metoder och räknesätt samt om resultats rimlighet… (Skolverket, 2010, del 3, s.2).

I kursplan i matematik i grundskolan står det även:

Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att använda och analysera matematiska begrepp och samband mellan begrepp. (Skolverket, 2010, del 3, s.31-32).

Begrepp är centrala faktorer i matematiken. Det är viktigt att vara konkret så att definitioner fastläggs för att eleverna ska få en så precis betydelse av ett begrepp som möjligt (Skott m.fl., 2009). TIMMS resultat visar att elever kan ha flera parallella uppfattningar av ett och samma
begrepp samt att misstagen som görs bygger på förståelsen av att ett begrepp inte har utvecklats tillräckligt (Skolverket, 2008). När vi undersöker elevernas argumentation kan vi, genom att identifiera problemsituationer, få en inblick över vilka begreppsbilder de uppvisar.

1.1 Syfte och frågeställning

Syftet med studien är att undersöka vad elevers matematiska resonemang baseras på när de löser problematiska uppgifter som innefattar positionssystemet. Syftet är att observera vilka resonemang som eleverna för och undersöka vilken begreppsbild de uppvisar. Genom att utgå ifrån två olika forskningsfrågor, resonemang och begreppsbild, är målet att lyfta fram vad elevernas resonemang baseras på och på vilket sätt de utnyttjar sina tidigare erfarenheter när de löser matematiska problem.

Våra frågeställningar är:

- Vad baserar elever sina resonemang på när de löser matematiska problem med positionssystemet?

- Vilka resonemang för eleverna? (Susanna)

- Vilken begreppsbild uppvisar eleverna? (Sofia)
1.2 Bakgrund

1.2.1 Positionssystemet

1.2.2 Teoretiskt ramverk för matematiska resonemang

Vi kommer att använda oss av Lithners (2008) teoretiska ramverk för att strukturera elevers resonemang utifrån empiriska data. Ramverket har utformats för att kunna kategorisera imitativa resonemang (IR) och kreativt matematiska grundade resonemang (KMR). Ramverkets syfte är även att förklara dess uppkomst och konsekvenser av olika resonemangstyper utifrån insamlad empiri. I avsnitt 1.2.3 beskrivs ramverket för IR och KMR. Det teoretiska ramverket är grundat på och har arbetats fram genom år av studier på elevers använda resonemang när de löser matematiska
uppgifter. Ramverket består utav väldefinierande begrepp och kan därför användas som verktyg för att strukturera våra empiriska data (Bergqvist, 2006).

Undervisningen ska bidra till att eleverna utvecklar förmågan att argumentera logiskt och föra matematiska resonemang (Skolverket, 2010, kap 3, s. 31)

1. En uppgift erhålls. Uppgiften identifieras som en problematisk situation (PS) om metoden inte är uppenbar.
2. Ett strategival (SV) görs. Strategier kan variera från lokala procedurer till generella metoder. Definitionen av val benämns i vid mening och kan innebära att välja, minnas, konstruera, upptäcka, gissa etc. Valet av strategi kan stödjas av en förutsägande argumentation om varför denna strategi kommer att lösa uppgiften.
4. En slutsats (S) erhålls.

1.2.3 Resonemang

![Diagram](image.png)

Fig 1: Lithners (2008) ramverk som presenterar de olika typerna av resonemang.

Om ett matematiskt resonemang inte definieras som imitativt kan det istället delas in som ett kreativt matematiskt grundat resonemang (KMR), om de uppfyller följande kriterier:

Med en utgångspunkt och konstant fokus på IR i undervisningen kan elevernas syn på vad matematik är begränsas. Konsekvensen av att använda sig av metoden att söka efter rätt algoritmovid uppgiftslösning istället för att kreativt resonera sig fram till en lösning, är att metoden blir matematik då man söker sig fram efter rätt algoritmovid istället för att vara en del utan matematiken då man kreativt resonera sig fram till en lösning (Lithner, 2008). Att vara en del av matematiken är en aspekt som kan göra ämnet meningsfullt för eleverna genom att de ges en begreppsförståelse, KMR och insikter om centrala roller av matematiken i samhället lyfts fram. Elevens val av resonemang, det vill säga hela resonemangsprocessen, styrs av elevens tankeprocess som är begränsade och påverkas av dennes kompetens som i sin tur formas av dess miljö (ibid.).

1.2.4 Begreppsbilder

Forskning visar att en av aspekterna som är avgörande för att elever ska klara matematiskt resonemang är att ha utvecklat ett relativt precis språkbruk som grund för matematisk aktivitet (Skott m.fl, 2009). I samband med resonemang är det viktigt att elever får utveckla en förståelse och få en definition av matematiska begrepp för att satserna ska ha någon mening. En definition är en relativt precis redogörelse för ett ords innebörd, i matematiken används definitioner till att namnge och precisera innebörd av det vi behöver använda i givna sammanhang (ibid.).

Tall och Vinner (1981) menar att alla skapar bilder om de fenomen man arbetar med. De presenterade de nya begreppen; begreppsbild (concept image) och begreppsdefinition (concept definition). Begreppsbilderna kan vara både medvetna och omedvetna och de kan variera. Syftet med deras forskning var att försöka förklara brister hos gymnasieelever i matematikinlärningen, genom att visa på betydelsen av att skilja på begreppsbild och begreppsdefinition. I sin forskning uppmärksammar de att många elever har ickehematematisk förståelse för begreppen de möter i
matematiken. Många elever applicerar matematiska begrepp, men kan inte den matematiska definitionen utan har lärt sig att känna igen begreppet genom specifika exempel eller en specifik situation. Det här kan leda till problem vid arbete med matematiska begrepp på grund av att man innan man mött definitionen redan har skapat sig en begrepps bild (ibid.).

Begrepps bild är hela det kognitiva nätverket som en individ har växt kring ett begrepp. Den består av minnesbilder, erfarenheter eller uppfattningar som är kopplade med begreppet. Begreppsbilden förändras när nya erfarenheter byggs upp och begreppsbilderna påverkar hur vi agerar i konkreta situationer. Tall & Vinner (1981) påpekar dock att bara delar av ens begreppsbild är aktiverade samtidigt på grund av att begreppsbilder omfattar ett så stort område och att en risk annars finns att begreppsbilderna motsäger varandra. Tall & Vinner (ibid.) definierar begrepps bild enligt följande:

"
"We shall use the term concept image to describe the total cognitive structure that is associated with the concept, which includes all the mental pictures and associated properties and processes."

(Tall & Vinner, 1981, s. 152)

I studien används Tall & Vinner (1981) sätt att se på en definition av ett begrepp:

"We shall regard the concept definition to be a form of words used to specify that concept. It may be learnt by an individual in a rote fashion or more meaningfully learnt and related to a greater or lesser degree to the concept as a whole. It may also be a personal reconstruction by the student of a definition. It is then the form of words that the student uses for his own explanation of his (evoked) concept image" (Tall & Vinner, 1981, s.152).

begreppsbilderna och begreppsdefinitionerna sammanfaller. Misstagen som eleverna gör bygger på att förståelsen av begreppen inte har utvecklats tillräckligt och att en individ kan ha flera parallella uppfattningar om samma begrepp (Skolverket, 2008). För att eleverna ska få en klarare bild av ett begrepp är det viktigt att inte mångtydigheter sker och att definitioner fastläggs så att eleverna får en så precis betydelse av ett begrepp som möjligt (Skott m.fl. 2009).
2 Metod och material

I det här avsnittet beskrivs och motiveras urval och avgränsning, hur insamling av data genomförts och hur den har analyserats. Det tas även upp kritiska moment kring vald metod samt forskningsetiska aspekter.

2.1 Urval och avgränsningar

Studien är avgränsad i form av att vi har valt att inriktas på problem rörande positionssystemet med hjälp av ordningstal, addition och subtraktion. Positionssystemet innefattar många delar inom matematiken, vi har därmed i den här studien valt problematiska uppgifter som är på elevernas kunskapsnivå. Problemappfattningarna framhåver tal i intervall, platsvärde, betydelsen av entalssiffrans storlek samt logiskt tänkande.

2.2 Datainsamlingsmetod

Syftet med studien är att redogöra vad barns resonemang baseras på när de löser matematiska problem. Med utgångspunkt i studiens syfte lämpar sig ett kvalitativt tillvägagångssätt, där med valdes direktobservationer med hjälp av videokamera. Det innebar för oss att få kunskaper om hur elever argumenterar i situationer när de löser matematiska problem. I kvalitativa fallstudier
ligger fokus på processen istället för resultatet, vilket var i centrum för oss (Merriam, 1988). I vår dokumentation har videoinspelning använts då video är ett bra redskap att använda för insamling av forskningsdata där kommunikation står i fokus, vilket gör det möjligt att utforma detaljanalyser. Dessa detaljanalyser kunde vi skapa då videoinspelning registrerar information som inte kan nås på annat sätt och gör det möjligt att registrera samspelet mellan verbal och icke-verbal (svarslösningarna) kommunikation (Bohlin m.fl., 1996).

1. Skriv siffrorna 6, 7, 8 och 9 i var sin plats så att det stämmer.

\[80 < _ _ < 100 \]
\[80 < _ _ < 100 \]

I uppgiften ser vi elevers förhållande till tal i ett intervall samt siffrornas platsvärde vilket synliggör elevens taluppfattning. Uppgiften ger möjlighet till olika svar vilket lämnar utrymme till individuella reflektioner. Här kontrollerades innan påbörjad uträkning att eleverna hade kunskaper om symbolen <. Vid osäkerhet förklarades innebörden av symbolen av observatören, då det är en förståelse som krävs för att få fram, för oss, det väsentliga i uppgiften.

2. Vilken siffra ska du skriva på linjen så att svaret blir så stort som möjligt?

\[3_ \ - \ 24 = \]
\[72 - 3_ = \]

I uppgiften ser vi elevernas logiska tänkande kring betydelsen av entalssiffrans storlek vid subtraktion.

3. Vilka siffror ska du skriva på linjerna så att svaret stämmer?

\[5_ + _3 + 21 = 98 \]
\[_9 + 1_ + 39 = 87 \]

Här tränas logiskt tänkande då eleverna behöver se sambanden med entalssiffrorna och tiotalssiffrorna och eventuella relationer däremellan i respektive addition.

Miljön var till en viss del naturlig då samtliga observationstillfällen ägde rum i varje elevs skollokal (Esaiasson, 2007). Men observationsmiljön var även till en viss grad artificiell då den utfördes i ett avskilt grupprum, med utvalda elever och bestämda uppgifter. Eleverna var utvalda på grund av deras kunskapsnivå i matematik och uppgifterna var utformade utifrån syftet med studien. Då vi har färdigkonstruerade uppgifter och inte väljer uppgifter som finns i elevnas läroböcker, blir undersökningsen i en liten grad manipulativ. Den artificiella miljön och de färdigkonstruerade uppgifterna är två medvetna val vi har gjort för att synliggöra så mycket som möjligt om elevers resonemang och begreppsbilder. Trots begränsningarna är studien intressant om resultatet kan hjälpa till att visa vad elever basar sina resonemang på i årskurs 2 när de arbetar med uppgifter om positionssystemet.

Validitetsproblemet är ett särskilt problem inom observationsstudier då det är svårt att avgöra vad man egentligen ser. Alla människor tolkar det vi ser olika, beroende på vilka vi är och vad vi har för tidigare erfarenheter. Att ha god validitet innebär att ha god överensstämmelse mellan

2.3 Metod för dataanalys

Vi har, utifrån våra individuella frågeställningar, valt ut några delar ur observationerna som känns väsentliga att lyfta fram och beskriva mer i detalj i uppsatsens resultatdel. Väsentligheten bestod i att det innehör en PS utifrån det som analyserades. Susanna valde därför ut delar som representerade de resonemang som fört av eleverna, medan Sofia lyfte ut de begreppsbilder som representerades i de olika uppgifterna.
2.4 Kritiskt betänkande kring metod

Det finns framförallt två kritiska överväganden i vår observationsmetod. Det första är att med videoinspelning finns risken att det kan påverka elevernas beteende då de vet om att de blir filmade, vilket kan resultera i nervositet. Det andra övervägandet är att den deltagande observatören har en lärares-elev relation till eleven, vilket vi tror kan ha påverkat situationen. Vi noterade under observationerna att eleverna hade behov av bekräftande respons när de löste uppgifterna. Om det här uppstår på grund av den tidigare relationen eller elevers allmänna behov av respons är för oss svårt att avgöra. Ett ytterligare kritiskt betänkande som deltagande observatör är att inte guida eller styra elevernas resonemang när de löser de problematiska uppgifterna.

2.5 Forskningsetiska reflektioner

Vi hade Vetenskapsrådets forskningsetiska principer genom Codex som utgångspunkt vid genomförandet av observationen. Det innebär att informationskravet, samtyckeskavet, konfidentialitetskravet samt nytjandekravet uppfylldes (www.codex.vr.se).

För att uppfylla informationskravet skickades innan undersökningen ett informationsbrev ut till de berörda vårdnadshavarna och eleverna. Brevet beskrev tydligt undersökningens syfte, information om att inga ansikten kommer visas, att elevernas namn kommer att fingeras och att eleverna inte på något annat sätt kommer kunna identifieras i arbetet.

Trots att arbetet inte är etiskt känsligt visade informationen i brevet att även konfidentialitetskravet tillgododes. Brevet innehöll även information som uppfyller nytjandekravet; materialet kommer efter avslutad uppsats arkiveras och det är endast vi författare samt vår handledare som kommer ta del av inspelningarna. Då eleverna är under 15 år genomfördes ingen observation förrän vårdnadshavarna hade sitt samtycke, samtycket bestod av en namnunderskrift (www.codex.vr.se).

Innan observationen genomfördes lämnades muntlig information till eleverna i form av undersökningens genomförande och syfte. Eleverna var medvetna om att deltagandet var frivilligt och att arbetet kunde avbrytas vid behov.
3 Resultat resonemang (Susanna)

För att visa vad eleverna använde sig av för resonemang i de sex observationerna, har jag valt att lyfta fram följande resonemang; KMR, KAR och FAR. De här resonemangen är för helheten representativa situationer utifrån transkriberingen. I citaten är tiden nedskriven i en kolumn till vänster, då tidsaspekten kan vara intressant när man ser på vilka resonemang som förs.

3.1 Kreativt matematiskt grundat resonemang, KMR

3.1.1 Exempel 1a

Lasse ska lösa uppgiften 5_+_3+21=98.

Uppgift 3

<table>
<thead>
<tr>
<th>Tid</th>
<th>O: Mmm… Hur kan man tänka?</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.05</td>
<td>Tystnad (19sek)</td>
</tr>
<tr>
<td>10.34</td>
<td>L: Man kan tänka neråt [pekar på svaret 98]</td>
</tr>
<tr>
<td>10.37</td>
<td>O: Mmm, hur då?</td>
</tr>
</tbody>
</table>

PS: Vilka siffror ska du skriva på linjerna så att svaret stämmer?
SV: Få färre termer i talet: 5_+_3=98-21
SI: Ingen implementering
S: Ny strategi

Resonemang
Lasse använder sig av ett matematiskt grundat resonemang för att komma åt en strategi till att lösa uppgiften. En argumentation kring sambandet mellan addition och subtraktion förs. Han resonerar hur han, med hjälp av subtraktion, kan få färre termer och lägre tal att arbeta med. Han ser siffrorna som antal då han beskriver det som ”tjugo finns ju någonstans där inne” och syftar till talet 98, vilket är ett matematiskt välgrundat argument. Hans SV ändras då han inte vet hur han ska gå vidare i uträkningen. Han fortsätter sitt resonemang över hur han ska kunna gå tillväga nedan.

3.1.2 Exempel 1b

Uppgift 3 (fortsättning)
10.55 O: Mmm… Vad blir det om man tar tjugoett mindre då?
10.59 Tystnad (9sek)
11.08 L: Det ska bli nytt…tal [pekar på 5_] och där ska jag skriva xxx (hör inte vad som sägs) [pekar på _3]
11.48 O: Vad sa du att, här ska du skriva?
11.52 L: Entalen här [pekar på 5_] och där ska jag skriva tiotalen, där [pekar på _3]
11.57 O: Mmm
11.58 Tystnad (10sek)
12.08 L: Det var jobbigt.
[…]
12.28 L: Det är bättre med tiotalen själv där [pekar på _3] och entalen själv där [pekar på 5_] och ett där [pekar på 21]
12.36 O: Mmm
12.43 O: Hur då?
12.45 L: Jag börjar med den och gör nedät [pekar på 21]
Lasse delar nu upp talen i ental och tiotal och kommer fram till att han kan addera dessa separat, för att nå en lösning. Det finns matematiskt välgrundade argument som motiverar hans strategi och bekräftar rimligheten. Han uttrycker den nya processen som ett lättare sätt och visar hur det går till genom att räkna ut och argumentera för hur många tiotal som fattas.

Genom PS1 och PS2 skapas en lösningssekvens där argumenten är förankrade i inre matematiska egenskaper då han skapar eller återskapar en lösningsstrategi. Därför definierades det inte som ett BAR. Lasse för en matematisk välgrundad argumentation som är relevant utifrån kontexten.

3.2 Kreativt algoritmiskt resonemang, KAR

3.2.1 Exempel 1

Sara ska skriva siffrorna 6, 7, 8 och 9 på var sin linje i intervallet, $80 < _ < 100$ (se bilaga). Hon har fått symbolen ($<$) förklarad för sig och har i efterhand själv beskrivit dess innebörd muntligt. För att visa på Saras resonemang i lösningsarbetet har de två PS som uppstod sammanfogats och redovisas hér som en.

Uppgift 1

01.10 S: 9 är mer och mindre än där [pekar på 100], jag skriver det här då. För det är närmast [skriver siffran 9 på strecket närmast 100]

[...]

01.30 S: Jo men asså, vi skulle ju va mellan de här talen [pekar på 80 och 100] som de är på talraden. Men vi har en 8:a också, det är 80 där. Så vi sätter en 8:a där. [skriver siffran 8 på första strecket, bildar talet 89]

[...]

01.48 S: Då har vi använt dom två [pekar på siffrorna 8 och 9]. Då blir det ju 6 och 7 [skriver så det bildar talet 67]

01.56 O: Stämmer det?

01.59 S: Mmm

02.02 O: Hur tänkte du då?

02.03 S: Jaa, det finns ju två tal som är högre än varandra [pekar på 8 och 9 som hon skrivit]. De är ju två olika sådanahära, två rader med sådanahära [pekar på _ _]. Och då borde det gå att sätta först den andra, eller först allra största och sen den som är ett steg mindre kan man sätta där [pekar först på talet 9 och sedan på talet 8 som S skrivit i sitt svar]. Och sen den som är allra störst men sen inte, aa, inte störst på andra raden. Sätter man också.

PS: Skriv siffrorna 6, 7, 8, och 9 på var sin plats så att påståendet, $80 < _ < 100$, stämmer

SV$: 9 ental och 8 tiotal

SI$: Skriver 89

SVb: De tal som finns kvar, 6 tiotal och 7 ental

SIb: Skriver 67

S: 98 och 67

Resonemang

Sara visar på en begränsad förståelse för att hitta tal i intervallet. Hon uttrycker sig ”vi skulle va mellan de här talen som de är på talraden”, men visar inga indikationer på att följa strategin. Hon för algoritmiskt kreativa resonemang som inte har någon relevans för sammanhanget. Med
hennes resonemang kommer hon fram till ett svar med en argumentation som inte är relevant för uppgiften. Hon argumenterar inte för siffrorna i intervallet utan hennes argument bygger på en, i sammanhanget oväsentlig, påhittad algoritm för att visa att hennes strategi stämmer till de tal som skrivits.

3.2.2 Exempel 2

Sara ska lösa; 5_+3+21=98 och _9+1_+39=87. Hon börjar med att försöka lösa den första deluppgiften och i slutet av citatet börjar hon räkna på den andra.

Uppgift 3

08.09 **O:** Så skulle du få till?

08.11 **S:** Ja, så 7. Nej vad säger jag? 4+3 är 7 [pekar på 3 i 53 och 4 i 43], och vi hade ju redan en 1:a där [pekar på siffrorna 3 i 53 och 4 i 43 på sitt tal 53+43+21=98], då blir ju det 8.

08.22 **O:** Aa, tack. Ska vi ta den också? [S börjar räkna på deluppgift två]

08.25 **S:** Aa, vi testar. 9+1 är 10 [pekar på siffrorna 9 och 1 i talet _9+1_+39=87]. Nåmen, nu blir det. Nej, det går inte. OJ! Så här kan man inte tänka längre tror jag. För där blir det 10 [pekar ingen på 9 och 1] och då måste det bli 100 och det ska det ju inte bli. Hmm, det var lite svårare.

PS:

- **Vilka siffror ska du skriva på linjerna så att svaret stämmer?**

SV:

- **Testar sig fram**

SI:

- **Skriver 3 ental och 4 tiotal**

S:

- 5 tiotal + 3 ental + 1 ental = 9 tiotal
- 3 ental + 4 tiotal + 1 ental = 8 ental

Resonemang

Sara använder sig av en påhittad algoritm och för utifrån den ett kreativt resonemang där giltigheten saknas. Hon adderar fritt talen som separata ental för att kunna para ihop dem till svaret 98, som hon ser som separata ental i sitt resonemang. Hon skapar en egen algoritm som inte håller hela vägen, vilket hon upptäcker när hon påbörjar nästa tal. Det sker dock ingen reflektion över att matematiska räkneoperationer är konsekventa och att det tidigare svaret möjligtvis då är inkorrekt, utan hon uttrycker att hon inte kan tänka på samma sätt längre. Hon
fortsätter att hitta på en ny strategi för att nå en lösning av talet. Den här typen av resonemang, att forma sin egen algoritm för uträkning av addition och subtraktion, uppstod upprepade gånger hos några av eleverna.

3.2.3 Exempel 3

I exempel 3 arbetar Sara med det senare talet i uppgift 3. Hon har med en begränsad matematisk förståelse, provat sig fram med addition för att komma fram till summan 87. När citatet börjar har Sara suddat ut siffran 2 på tiotalslinjen och skrivit 3. Hon har suddat ut siffran 6 på entalslinjen och skrivit dit 7, i uppgiften _9+1_+39=87.

Uppgift 3

PS: Vilket tiotal och ental fattas? _9+1_+39=87
SVa: 2 tiotal och 6 ental
SVb: 3 tiotal och 7 ental
SI: Skriver 3 tiotal och 7 ental
S: Ingen slutsats

Resonemang

3.3 Familjärt algoritmiskt resonemang, FAR

3.3.1 Exempel 1

Habib ska komma på vilken siffra han ska skriva på linjen i uppgiften 72-3_=, för att svaret ska bli så stort som möjligt. Han funderar, tvekar och suckar en stund och skriver tillslut siffran 0 på entalslinjen. Han säger sedan att 72-30 = 42 och skriver ner 42 efter likhetstecknet.

Uppgift 2

04.30 O: Hur tänkte du där?
04.33 H: Ehh, för 30, om jag sätter 32 så blir det mindre.
04.45 O: Mindre?
04.45 H: Vad heter det.. mindre, ett mindre tal [pekar på svaret]
04.49: O: Okej. Så därför satte du?
04.51 H: noll
04.53 O: För vad är 0 för något?
04.54 H: Ingenting!

PS: Vilken siffra ska du skriva på linjen så att svaret blir så stort som möjligt?
SV*: 0 ental, räknar 72-30
SV*: 2 ental, räknar 72-32
SI: Skriver 0 ental, skriver 42 efter likhetstecknet
S: Med talet 2 blir svaret lägre än med noll. Vill ha så stort svar som möjligt och väljer därför den lägsta siffran som finns, siffran 0

Resonemang

3.3.2 **Exempel 2**

Anna ska lösa uppgiften $80<_ _<100$ och skriver efter ca 15 sekunders betänketid talen 87 och 96. Nedan följer hennes argumentation för val av strategi.

Uppgift 1

01.14 O: Hur tänkte du då?
01.16 A: Asså, där är 7 mer [pekar på 87], det är fortfarande högre. Men det är ändå mindre [drar pennan över 100]
01.24 O: 7:an
01.25 A: Mm, och här tänkte jag.. [pekar på den andra uppgiften] det är större [pekar på 9:an i 96]
01.32 O: vilken då?
01.33 A: 90 är större än 80 [pekar ingen på 9:an i 96]. Och 96 blir ju större än, eller mindre än 100 och större än 80.

PS: Skriv siffrorna 6, 7, 8, och 9 på var sin plats så att påståendet, $80<_ _<100$, stämmer. Du får bara använda varje siffra en gång vardera.

SV: 8 tiotal och 7 ental
9 tiotal och 6 ental

SI: Skriver 87 och 96

S: Dessa två tal finns inom intervallet

Resonemang

Annas strategival baseras på välbekanthat då hon med en matematisk välgrundad argumentation beskriver val av algoritm. Hon har full förståelse av proceduren och visar inte på tveksamheter i sin argumentation. Till skillnad från exempel 1 visar hon inte något bevis för algoritmen, men det är heller inget som är väsentligt i FAR.

3.3.3 **Exempel 3**

Elin ska lösa uppgiften $5_+_3+21=98$ och $_9+1_+39=87$.

Uppgift 3

12.48 E: Jag tänkte fem plus [pekar på 54 och sedan på 21] tjug.., eh nej 50 plus 20 är lika med 70 och ettan och fyran är fem och åttan är [pekar på 98] fem plus tre är åtta [pekar på tre]
13.11 O: Hmm
13.15 [E fyller i 2 på den andra linjen i den första uppgiften så att det bildar talet 23]
O: Och hur kommer det sig att du skrev en två där då?
E: För att 75 plus 23 är lika med 98 [pekar på svaret 98]
O: Vad sa du att?
E: Att 75
O: Vad är 75 för något, var får du det ifrån?
E: De här två talen [pekar på 54 och 21]
O: Hmm. Mmm
E: plus 23 är 98
O: hmm
E: De här två talen [pekar på _9+1_+39=87]

PS: 5_+3+21=98
SV: 4 ental
SI: Skriver 4 ental
PS: Vilken tiotalssiffra saknas?
SV: 2 tiotal
SI: Skriver 2 tiotal
S: Räknar ental och tiotal för sig för att nå en lösning.

Räkning

3.4 Sammanfattning av resultat

Sammantaget bestod de 64 problemsituationerna av nästintill uteslutande IR. KMR fördes hos två elever i uppgift 3 och bestod av 10 PS. De KMR som fördes grundade sig på ett matematiskt välgrundat resonemang där olika algoritmer valdes, med belägg, för att stegvis komma fram till en strategi för att nå en slutsats. KMR förekom när eleverna skulle lösa en invers addition. Lasse började med att se talen som hela tal och med hjälp av subtraktion få färre termer för att lättare kunna lösa uppgiften. När han fastnade i uträkningen bytte han strategi och valde istället att se...
talen som separata ental och tiotal. Genom resonemanget skapades eller återskapades en lösningsstrategi, vilket definierade situationen som KMR.

4 Resultat begreppsbild (Sofia)

I det här avsnittet presenteras studiens resultat av indikationer på elevernas begreppsbilder. Observationen bestod av tre uppgifter som i analysen delades upp i fem olika delar; 1, 2a, 2b, 3a och 3b. Tillsammans med de sex eleverna bildar de fem uppgifterna 30 situationer. Situationerna analyserades med hjälp av den förenklade analysstrukturen från Zandieh & Rasmussen (2010) för att bestämma om elevernas begreppsbild visar indikation på ingen, ytlig eller relevant koppling till begreppsdefinitionen. Genom att observera de slutsatser och beslut som gjorts av eleverna i problem situationerna (PS) identifieras argumenten utifrån de olika kopplingarna till begreppsbilderna. Ur uppgifterna var det sex situationer där ingen koppling existerade, 16 som indikerade ytlig koppling och åtta stycken som visade relevant koppling. Här presenteras kopplingarna där för sig med situationer som valts för att illustrera resultatet. Eleven sätts i sitt sammanhang utifrån den valda kopplingen och problèmes situationerna beskrivs utifrån dessa.

4.1 Ingen koppling

Ur analysen indikerade sex situationer där ingen koppling gick att skåda. Det baseras på att det i elevernas resonemang inte finns någon koppling till begreppsdefinitionen. Kopplingen kommer att presenteras utifrån tre olika uppgifter där Habib löser en och Sara två.

4.1.1 Exempel 1

I uppgift 1 skulle eleverna skriva ut siffrorna 6,7,8 och 9 på streckens i intervallet så att uppgiften stämde med symbolerna större än (>) och mindre än (<) (se bilaga). Efter att Sara läst igenom uppgiften är hon osäker på hur hon ska gå tillväga. Det visade sig att Sara inte hade kunskap om symbolerna > och <. I Saras observationstillfälle uppstod två PS, som här kommer redovisas i två delar. Vid citat står S för Sara och O för observatör.

Del 1

Sara ska ta reda på var siffrorna ska skrivas för att det ska stämma överens i intervallt. Efter genomgång från observatören om symbolernas betydelse resonerar Sara sina slutsatser. Hon skriver 8 som tiondssiffra med argumentationen ”vi har ju en 8a också, så vi sätter den här”.

O: Hur kan du skriva siffrorna 6,7,8 och 9 så att det stämmer?
S: 9 är mer och mindre än där [pekar på 100], jag skriver det här då. För det är närmast [skriver siffran 9 på entalssiffran].
O: Närmast vaddå?
S: 100. Om man tar 8 på 80.
PS 1: Hur kan man skriva siffrorna 6, 7, 8 och 9 på sin plats så att det stämmer?
SV 1: 9 ental och 8 tiotal
SI 1: Skriver 89
S 1: Sara ser siffrorna separat och ser inte att de tillsammans bildar talet 89

Begreppsbild

Sara för inga argument som baseras på matematisk grund, trots att hon vid ett tillfälle antyder att talet 89 finns i intervallet, ”vi skulle ju va mellan de här talen som de är på talraden”. Argumentet om att entalssiffran 9 är närmast 100 gör att hennes begreppsbild brister då hon inte ser talet i sin helhet. Att Sara inte ser siffrorna som hela tal indikerar på att hennes begreppsbild saknar koppling till begreppsdefinitionen.

Del 2

Efter Sara dragit slutsatsen att det ska stå 89 på första raden använder hon sig av uteslutningsmetoden för att ta reda på svaret på rad två.

S: Då har vi använt dom två [pekar på 8 och 9]. Då blir det ju 6 och 7 [skriver så det bildar talet 67 på andra raden].
O: Hur tänker du då?
S: Ja, det finns ju två tal som är högre än varandra [pekar på 8 och 9 i uppgiften]. Det är ju två olika sådanhära, två rader med sådanhära [pekar på _ _]. Och då borde det gå att sätta först den andra, eller först den allra största och sen den som är ett steg mindre kan man sätta där [pekar först på talet 9 och sedan på talet 8 som Sara har skrivit i sitt svar]. Och sen den som är allra störst men sen inte, aa, inte störst på andra raden, sätter man också.

PS 2: Vad blir det för tal på rad nummer 2?
SV 2: Vilka tal har jag kvar? 6 tiotal och 7 ental
SI 2: Skriver 67
S 2: 67. Ingen reflektion över att talet inte finns i intervallet, trots fråga från Observatören.

Begreppsbild

Sara drar snabbt slutsatsen att siffrorna 6 och 7 ska skrivas på andra raden med resonemanget att det är siffrorna som finns kvar. Argumentationen är inte på matematisk grund då hennes slutsats är ”då borde det gå…”. Hennes begreppsbild indikerar att vara begränsad då hon inte kan se talets värde. Hon visar inte att hon ser talen i intervallet, då hennes slutsats är att talet 67 finns mellan 80 och 100. Efter fråga från observatören vad hon skrivit svarar Sara ”80, 6, 7, 100” vilket
indikerar att hon inte heller här ser siffrorna som hela tal. Trots förklaring från observatören om symbolernas innebörd visas ingen begreppsdefinition av dem vid senare arbete, hon benämner dem vid förklaring av slutsats som ”det där konstiga tecknet”.

4.1.2 Exempel 2

Syftet i deluppgift 2a var att se elevernas tänkande kring betydelsen av entalsiffrans storlek genom att skriva en entalsiffra så svaret blir så stort som möjligt till 3_24=. Habibs tillfälle bestod av två PS, varav en som redovisas här. Efter utdelad uppgift tänker Habib tyst i 10 sekunder innan han skriver 0 på entalslinjen med argumentet att han bara gissade. Observatören ber Habib att förtydliga vad svaret på 30-24 blir.

O: Hur tänkte du nu?
[tystnad]
H: Jag bara gissa
O: Du bara gissa? Vad blir svaret nu?
H: 4
O: 4
H: Eller, nej nej! Det blir det inte, det går inte!

PS 1: Vad blir 30-24?
SV 1: Gissar 4, tvekar. Gissar 14
SI 1: Skriver 14 på svarsplatsen
S 1: 30-24=14

Begrepps bild

Habib för inga argument som är matematiskt baserade då hans argumentation är att han bara gissar på ett svar. Habib skriver sin uträkning som att han ska subtrahera ental och tiotal för sig genom att ta tiotalen 3-2=1. Därmed indikeras en begränsad begrepps bild som endast fungerar då tiotalen respektive entalen i första termen är större än i den andra termen. Habibs svarsalternativ, 14, indikerar att han antagligen tänker denna strategi men saknar kunskap om att låna ental från tiotalet för att få rätt lösning då han inte ser relationen mellan ental och tiotal i subtraktion med tiotalövergång. Habib argumenterar inte heller om varför just entalet 0 har valts, vilket skulle vara relevant i sammanhanget.

4.1.3 Exempel 3

I 3a var uppgiften att fylla i siffror på de tomma linjerna: 5_+321=98. Situationen som presenteras består av en PS. Sara börjar, efter genomläsning av uppgiften, räkna ut summan av
5+3. Observatören guidar genom att berätta vad uppgiften går ut på, Sara ryter till men börjar sedan räkna om uppgiften och testar sig fram. Hon skriver 3 som ental och 4 som tiotal.

O: Kan du berätta hur du tänkte?
O: Så du skulle få till…?
S: Ja, så 7. Nej, vad säger jag? 4+3 är 7 [pekar på 3 i 53 och 4 i 43] och vi hade redan en 1a där [pekar på siffrorna 3 i 53 och 4 i 43 på sitt tal 53+43+21=98], då blir ju det 8a.

PS 1: Vilka siffror ska du skriva på linjerna så att svaret stämmer?
SV 1: Testar sig fram
SI 1: Skriver 3 ental och 4 tiotal
S: 5 tiotal + 3 ental + 1 ental = 9 tiotal
3 ental + 4 tiotal + 1 ental = 8 ental

Begreppsbild
Här kan man inte se några spår på att Saras begreppsbild har en koppling till begreppsdefinitionen. Sara verkar gissa fram en lösning då hon ändrar 8 till 9 vid uträkningen, troligtvist för att syftet för henne är att få rätt svar. Hon för inga matematiska argument om att addera ental och tiotal för sig, utan hennes uträkningar indikerar till at komma fram till siffrorna 9 och 8 på något sätt, eftersom hon blandar dem vid uträkning.

4.2 Ytlig koppling
4.2.1 Exempel 1

2b bestod av att se entalssiffrans storlek i uppgiften 72-3_=+. Elins arbete är uppdelat i två delar för att beskriva de PS som uppstod.

Del 1

Vid lösningsarbetets start skriver Elin, efter en minuts tyst grubblande, entalssiffran 8 utan några argument om varför den siffran har valts.

O: Hur kom du fram till att det skulle vara 8?
E: Hmm, jag tänkte [pekar på siffran 7 i talet 72] 7, ehh, 70 minus 30 är lika med 40. Sedan räknar jag 2 minus 8 och då går inte det och då tar jag tiotal från sjuan till tvåan och då blir det 12 minus 8…
[tänker tyst i 15 sekunder]
O: Hur kommer det sig att du valde siffran 8?
E: Hmm, jag tänkte att det blev ett stort tal här [pekar på svaret]

Begreppsbild

Elin argumenterar om att välja 8 som entalssiffra för att få ett stort tal. Hon resonerar hur hon kommer fram till lösningen och visar tecken på hur man räknar subtraktion i den aktuella situationen, vilket indikerar det till att begreppsbilden har ytlig koppling.

Del 2

Elin funderar vidare på om 8 är den största svarsalternativet hon kan få i uppgiften.

O: Vilket tal kan man skriva för att få det största svaret?
E: 9 [suddar ut siffran 8 och skriver 9]

Begreppsbild

Elin argumenterar om att välja 8 som entalssiffra för att få ett stort tal. Hon resonerar hur hon kommer fram till lösningen och visar tecken på hur man räknar subtraktion i den aktuella situationen, vilket indikerar det till att begreppsbilden har ytlig koppling.
Begreppsbild

4.2.2 Exempel 2

O: Nu får du berätta hur du tänkte.

PS 1: För högt svar
SV 1: 3 tiotal
SI 1: Sudda 4 tiotal, skriva 3 tiotal
S 1: Kontrollräknar, blir för stor summa och ändrar sitt svar

Begreppsbild

Olles resonemang visar på att han vet tiotalssiffrans värde i positionssystemet då han argumenterar för sin slutsats att minska värdet av tiotalssiffran. Olle argumentation indikerar därmed till ytlig koppling.

4.3 Relevant koppling

För att elevernas begreppsbild ska indikera relevant koppling krävs även att argumenten är på matematisk grund. Ur vår empirisk data var det åtta situationer som indikerade relevant koppling, hälften av dem kommer exemplifieras här.

4.3.1 Exempel 1

I observationens början är Elin tyst och uttrycker inga ord förrän observatören frågar och ber henne förklara vad hon tänker. I uppgift 1, där Elin skulle skriva siffror i intervallet, uppstod tre

O: Känner du igen de här symbolerna?
E: Nej
O: Du har inte sett dem tidigare?
E: Jag har sett dom, men det är på kinesiska
O: Jaha, vad betyder de på kinesiska?
E: Att det här talet som står här [pekar på _ _] är större än det här [pekar på 80]

O: Hur tänkte du där?
E: Jo, att åttan är, 80 är större än 86. 100 är större än 86. Nej! 80 är mindre än 86 och 100 är större än 86.

PS 2: Stämmer uppgiften?
SV 2: Ändrar till 8 tiotal och 6 ental på andra raden och 9 tiotal och 7 ental på första raden
SI 2: Skriver 80>97>100 och 80>86>100
S 2: Inser att 8 och 9 måste vara tiotalssiffror, eftersom hon utför operationen och får fram en lösning

Begreppsbild

4.3.2 Exempel 2

Observationstillfället med Lasse i uppgift 3a bestod tre PS, här illustreras två av dem för att visa att Lasse indikerar att hans begreppsbild har relevant koppling till sin begreppsdefinition.
Del 1

När Lasse läst igenom uppgiften sitter han tyst i 20 sekunder innan han vill få bekräftelse från observatören att han förstått uppgiften rätt. Efter godkännande tänkte Lasse tyst i 20 sekunder till.

L: Man kan tänka det neråt [pekar på svaret 98]
O: Mm…Hur då?

PS 1: Vilka siffror ska du skriva på linjerna så att svaret stämmer?
SV 1: Få färre termer i talet: 5_+3=98-21
SI 1: Ingen implementering
S 1: Prova ny strategi

Begreppsbild

Trots att begreppsdelen inte är formell visar Lasse indikation till relevant koppling då han i sitt resonemang lyfter fram att 21 är en delterm av 98. Lasses tankelinje att se sambandet mellan addition och subtraktion visar relevant koppling. Genom att subtrahera argumenterar Lasse om att få ett mindre tal att arbeta med.

Del 2

Efter Lasses strategi att subtrahera 21 fastnar han och vet inte hur han ska fortsätta uträkningen. Han väljer en annan strategi; dela upp ental och tiotal för sig. Lasse skriver sedan 2 som tiotal.

O: Hur kommer det sig att det ska vara 23?
L: För att det blir 40 där [pekar på 21 och 23] och 50+40 är 90 [pekar på 5_ och 98] Och då behöver jag bara några ental till [pekar på 5_].
[Lasse är tyst och skriver 5 som entalssiffra]
O: Hur kommer det sig att du skrev en femma där?
L: Därför att det plus det [pekar på 23 +21]… det entalet plus det entalet blir 4. Och 5+4, ja just det [suddar ut 5 och skriver 4 som ental]. Det ska vara 4 där också…

PS 2: Vilka ental behövs?
SV 2: 5 ental
SI 2: Implementerar strategivalet. Suddar ut, skriver 4 ental

37
S 2: Vid kontrollräkning inser Lasse att svaret blir för stort med 5 ental och minskar då till 4 ental

Begreppsbild
Lasses strategi är att addera först tiotal och sedan ental. Han argumenterar och använder begrepp som är relevanta för sitt resonemang. Med Lasses val av strategi och argumentation för sin slutsats indikerar hans resonemang att begreppsbilden har relevant koppling till begreppsdelen och att de är på matematisk grund.

4.3.3 Exempel 3

Habib lösningsarbete med uppgift 3b bestod av två PS, varav en som illustreras. Habib funderar i nästan en minut innan observatören frågar varför uppgiften känns klurig.

H: Liksom, såhär, här är ett ental [pekar på 9 i _9] och här är ett tiotal [pekar på 1 i 1_] och så blir det på nåt sätt 87.

Habib fortsätter sin strategi att addera ental och tiotal för sig tills han kommer fram till en korrekt lösning.

O: Hur tänkte du nu? Hur kom du fram dit?
H: Jag tänkte 2+3 [visar tiotalen i 29 och 39] det är 50, eh 5. Och så vad heter det, så tänkte jag 20+30 också, då är det 50. Så tänkte jag, vad heter det, 9+9 är 18, och så satte jag till från 50+18 så blir det 68, plus 10 då blir det 78 och sen satte jag till 9 [pekar på 9 i 19].

PS 1: Svaret blir en för mycket
SV 1: 2 tiotal, 9 ental
SI 1: Implementerar strategin
S 1: 29+19+39=87

Begreppsbild
Habib argumenterar tydligt för sitt strategival att addera ental och tiotal för sig och visar även att han är förtrogen med platsvärdet i positionssystemet då han visar på strukturen med addition vid tiotalsövergång.

4.4 Sammanfattning av resultat

De 30 situationerna från uppgifterna har analyserats utifrån ingen, ytlig eller relevant koppling. Tre situationer har beskrivits i resultatdelen för att visa indikationer på hur elevernas begreppsbild
inte har någon koppling till begreppsdefinitionen kan se ut. Att inte ha någon koppling innebär att det i elevnas resonemang inte återfinns något samband mellan begreppsdefinitionen och begreppsdefinitionen. Det finns heller inget som visar på att resonemanget baseras på matematisk grund. Sara var den enda elev som i slutet av uppgift 1 inte kunde, i relation till begreppsdefinitionen, definiera symbolerna > och < utan beskrev dem endast som ”det där konstiga tecknet”. Hennes argumentation styrker inga matematiska grunder då hon använder sig av uteslutningsmetod vid lösningsarbetet. Hennes slutsats att ”6 och 7” finns i intervallet visar en brist i förmågan att se att siffror bildar tal utan hon ser dem som separata ental, vilket stärker valet av att ingen koppling existerar. Förutom i uppgift 1 visar Sara även det i sin lösning av uppgift 3a (avsnitt 4.1.3) där hennes argumentation indikerar till att det viktigaste är att få fram ett svar utan reflektion över proceduren.

Att begreppsansiktet indikerar ytlig koppling till begreppsdefinitionen visade sig vara mest förekommande, hälften av de analyserade situationerna indikerade till ytlig koppling. Det innebär att kopplingen existerar men i de här fallen är begränsad. I uppgift 1 var det fyra av de sex eleverna som tenderade till ytlig koppling men på god väg till relevant då de, efter en begreppsförklaring från den deltagande observatören, klarade arbeta obehindrat med symbolen. De skapade sig ett eget förhållande till symbolen var vid en argumentation för sina slutsatser gjordes. De elever som indikerade ytlig koppling i sina lösningar av de övriga uppgifterna, kunde i många av fallen definiera begreppen. Vid lösningsarbetet blandades dock ental och tioantal vid uträkningen vilket kan vara ett resultat av oförmåga att skapa relevant koppling. För att nå upp till relevant koppling krävs även att eleven för argument som är på matematisk grund. Av de 30 situationerna som uppstod, var det åtta som indikerade relevant koppling. Lasses arbete med uppgift 3a indikerade relevant koppling då han beskriver och förklarar sitt tillvägagångssätt och vid problem ändrar sin strategi för att få fram den korrekt lösningen. Det här samtidigt som han argumenterar och använder sig av begreppsdefinitioner som är kopplade till hans begreppsbild. Att tydligt kunna argumentera för sina val av strategi och slutsatser visar eleverna i den relevanta kopplingen. I uppgift 1, där eleverna skulle fylla i rätt siffror i intervallet, visade det sig att endast en av sex elever hade en begreppsdefinition till symbolerna > och <, på grund av att Elin hade ”sett dem på kinesiska”. Den PS som beskriver i resultatedelen från uppgift 1 visar att Elins begreppsbild har relevant koppling till begreppsdefinition då hon argumenterar för sin slutsats och kan uttrycka symbolernas innebörd och arbeta obehindrat med dem.
5 Diskussion resonemang (Susanna)

I det här avsnittet diskuteras resultaten utifrån frågeställningen, över vilka resonemang eleverna för, i kombination med den teoretiska bakgrunden. Nästintill alla PS klassificerades som IR. Vid ett fåtal tillfällen förekom ett KMR, vid 10 av 64 PS. Av de IR som fördes klassificerades drygt hälften som FAR och knappt hälften som KAR. I resultatet exemplifierades KMR, KAR och FAR då dessa resonemang är representativa för observationerna som helhet.

Majoriteten av KAR-problemsituationerna visade på en motivation och kreativitet i lösningsprocessen. Det kan ses som ett laborerande mellan ytlig och matematisk välgrundad

Sammanfattningsvis är det svårt att dra några generella slutsatser med den här studien. Resultatet visar på att eleverna i studien använde sig av algoritmer och kreativa resonemang utifrån individuella belägg i sina argumentationer när förkunskaperna inte räcker till. Studier visar på sämre resultat i dagens skolor och att det största problemet ligger inom elevers förståelse av talbegreppet och inom aritmetiken (Skolverket 2008). I den här studien över elevers resonemang har vi sett indikationer om att det finns luckor inom det här området redan i de tidigare skolåren.
6 Diskussion begrepps bild (Sofia)

Studiens resultat av begrepps bild diskuteras med utgångspunkt i frågeställningen som berörde begrepps bild samt syftet att undersöka vilka begrepps bilder eleverna uppvisar.

Resultatet visar att endast en av de sex observerade eleverna hade kunskap om symbolerna < och >, en färdighet elever i årskurs 2 ska ha förståelse för och kunna arbeta med. De fyra elever som, innan påbörjad uppgift inte hade någon definition av symbolen, skapade sig färdigheter för att kunna arbeta med den. Det kan grunda sig på att de hade en förkunskap av symbolens betydelse men som vid observationstillfället början var dold på grund av att symbolen > var obekant. Flera av eleverna benämnde ”större än” som ”högre än” vid argumentation för sin slutsats, vilket troligtvis beror på att de inte lärt sig den formella definitionen och fått möjlighet att arbeta med begreppet. Forskning poängterar vikten av att definitioner fastläggs för att elever ska få en så precis betydelse av ett begrepp som möjligt (Skott m.fl, 2009). Trots brist på förståelse av symbolen visar resultatet att eleverna vid lösningsarbetets slut har kunskap om dess innebörd. Endast en elev kunde inte definiera symbolen, trots förklaring från observatör. För att elever ska klara matematiskt resonemang påpekar forskning att eleverna måste få utveckla en förståelse och få en definition av matematiska begrepp för att satserna ska ha någon mening (ibid.). Forskningen stämmer överens med den observerande eleven som förmodligen, vid detta tillfälle, inte utvecklat någon förståelse för symbolen vilket resulterar i att hon inte kan föra relevanta resonemang kring området.

Tidigare forskning om elevers begrepps bild visar att varje individ har en mängd personliga bilder av ett begrepp, vissa av begreppen lär vi oss när och hur de ska användas då den formella definitionen inte har fastlags än (Tall & Vinner, 1981). Det förekom även i vår studie; två av elever visar tendenser till det i uppgift 2a (avsnitt: 4.1.2). Eleverna indikerar att de lärt sig räknoperationen för subtraktion men i den aktuella situationen visas ingen reflektion över operationen som utförs. De verkar ha lärt sig en algoritm, ental och tiotal för sig, men då subtraktion med entalssiffran 0 ska utföras resonenerar eleverna; ”blir mindre än 0” och ”det går inte” och deras begrepps bild brister. Habibs begrepps bild indikerar ingen koppling i den aktuella situationen men i uppgift 2b klarar han att argumentera för sina slutsatser. Det fenomenet uprepade sig hos flera av eleverna; de visade förståelse i en problemsituation för att i nästa föra ett resonemang baserat på en icke-matematisk grund. Resultaten från TIMMS studie visar samma resultat; en enskild elev kunde tillämpa olika beräkningsprocedurer på en och samma beräkning (Skolverket, 2008). Det kan bero på att eleverna inte har en förståelse och fått möjlighet att utveckla begreppen tillräckligt.

Precis som i TIMMS resultat hade många problem med platsvärde (Skolverket, 2008). I uppgift 3 var syftet bland annat att se kunskaper om platsvärde. Sara visar, när hon i sin argumentation blandar tiotal och ental, att hon inte har kunskaper om platsvärde utan målet för

Sammanfattning är det svårt att dra en generell slutsats om vad för begreppsbild eleverna uppvisar. Misstagen som eleverna gör i studien är genomtänkta och bygger på att förståelsen av begreppen inte har utvecklats färdigt, vilket dras parallellt med TIMMS resultat (Skolverket, 2008). Uppdelningen av elevernas begreppsbild mellan ingen, ytlig och relevant koppling skulle även kunna ses som en skala. Då strukturen är mycket förenklad i denna studie används endast de tre kopplingar för att möjliggöra begreppsbilden, vilket resulterar i att karaktärisering av kopplingen vid vissa tillfällen var mycket svårdefinierad. Eleverna visar ett flertal gånger att de använder sig utav memorerande strategier för hur uträkningar av tal i positionssystemet går till, med ental och tiotal för sig, vilket visar på att de använder sina förkunskaper. Begreppsbilderna brister då de vid ett senare tillfälle visar att de inte har sådana färdigheter, när de förväxlar ental och tiotal för att få ”rätt” svar. Tidigare forskning poängterar att eleverna måste utveckla ett relativt språkbruk för att klara matematiskt resonemang, vilket eleverna inte alltid i denna studie inte uppnår (Skott m.fl., 2009). Resultatet i vår studie om vilka begreppsbilder elever uppvisar ger endast en indikation på hur det kan se ut.
7 Diskussion (gemensam)

Eleverna indikerar i många fall att de inte är förtrogna med de matematiska baskunskaper som krävs vid lösningsarbetet. Saknaden av ett inre förhållningssätt till begreppsdefinitionerna är något som kan leda till svårigheter i elevers fortsatta utveckling när baskunskaper inte erhålls. Utifrån studiens resultat indikerar eleverna att de redan i den här åldern har luckor i deras matematiska utveckling då de saknar baskunskaper som krävs för uppgiften när de i sin argumentation visar kraftiga felberäkningar inom addition och subtraktion. Dessa luckor är viktiga att upptäcka i tidig ålder för att eleverna ska ges möjlighet att utveckla sina matematiska kunskaper.

7.1 Förslag till vidare forskning

Forskning av elevers kunskaper inom matematik är av stor betydelse, resultat av tidigare studier visar att elever har bristande kunskaper och att svenska elever presterar under genomsnittet. För att ändra den negativa trend som förekommer är det viktigt att finna var problemen uppstår och beror på. Vår studie utgör ett litet kvantitet, genom att göra vidare forskning med större omfång kan det bidra till ökad förståelse om bristande kunskaper inom den grundläggande matematiken. Det vore intressant att forska vidare på hur problem i den matematiska utvecklingen uppstår och vilka konsekvenser de kan ta sig uttryck i de tidigare skolåren. Då vi fann ett stort bekräftelsebehov om rätt svar från eleverna så vore det intressant att forska vidare om relationen lärare- elev med utveckling av elevers resonemang i fokus.
8 Referenslista

45

Tall, David & Vinner, Shlomo (1981). Concept image and concept definition in mathematics with particular reference to limits and continuity.

Digitala källor:

Skolverket (2010). *Läroplanen för grundskolan, förskoleklassen och fritidshemmet (Lgr 11)*, del 3 kursplanen för matematik. http://www.skolverket.se/content/1/c6/02/38/94/Matematik.pdf

Vetenskapliga rådet, www.codex.vr.se

Vetenskapliga rådet,

Hej!

Det skulle betyda mycket för oss i vårt arbete om ert barn, i samförstånd med oss och er, kan vara med och delta i studien. Har ni frågor är ni välkomna att höra av er.

Med vänliga hälsningar

Sofia Hidefält
Sofia.Hidefalt.7042@student.uu.se

Susanna Davidsson
Susanna.Davidsson.8104@student.uu.se

Handledare ifrån Uppsala Universitet:

Lovisa Sumpter
lovia.sumpter@edu.uu.se

Jag har tagit del av ovanstående information och godkänner att mitt barn deltar i undersökningen.

Barnets namn:

Målsmans underskrift:

Namnförttydligande:
9.2 Uppgifter till videoobservation

1. Skriv siffrorna 6,7,8 och 9 på var sin plats så att det stämmer.

\[80 < _ _ < 100 \]

\[80 < _ _ < 100 \]

2. Vilken siffra ska du skriva på linjen så att svaret blir så stort som möjligt?

\[3_ - 24 = \]

\[72 - 3_ = \]

3. Vilka siffror ska du skriva på linjerna så att svaret stämmer?

\[5_ + _3 + 21 = 98 \]

\[_9 + 1_ + 39 = 87 \]