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Abstract. We develop a non-adiabatic generalization of holonomic quantum
computation in which high-speed universal quantum gates can be realized using
non-Abelian geometric phases. We show how a set of non-adiabatic holonomic
one- and two-qubit gates can be implemented by utilizing optical transitions in
a generic three-level 3 configuration. Our scheme opens up the possibility of
realizing universal holonomic quantum computation on qubits characterized by
short coherence time.
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1. Introduction

Circuit-based quantum computation relies on the ability to perform a universal set of quantum
gate operations on a set of quantum-mechanical bits (qubits). A key challenge in achieving this
goal is to find implementations of gates that are resilient to certain kinds of errors. Holonomic
quantum computation (HQC) [1] is a general procedure for building universal sets of robust
gates using non-Abelian geometric phases [2].

HQC is conventionally based on adiabatic evolution. The idea is to encode a set of qubits
in a set of degenerate eigenstates of a parameter-dependent Hamiltonian and to adiabatically
transport these states around a loop in the corresponding parameter space. This effectuates a
holonomic gate acting on the qubits. It has been shown [1] that adiabatic quantum holonomies
generically allow for universal quantum computation.

Adiabatic holonomic gates have been proposed for trapped ions [3], superconducting
nanocircuits [4] and semiconductor quantum dots [5]. These gates still await experimental
realization. An obstacle in achieving this is the long run time required for the desired parametric
control associated with adiabatic evolution. In other words, as these gates operate slowly
compared to the dynamical time scale, they become vulnerable to open system effects and
parameter fluctuations that may lead to loss of coherence. On the other hand, if the run time is
decreased in order to shorten the exposure, non-adiabatic corrections start to become significant
and parametric control is lost. These problems have been tackled [6] by using Abelian non-
adiabatic geometric phases [7] to realize quantum gates. However, such geometric phase gates
are limited to commuting operations and thus cannot perform universal HQC.

To combine speed and universality, we propose here a generalization of HQC based on
the non-adiabatic non-Abelian geometric phases proposed in [8]. The key advantage of our
holonomic setting is that it removes the problem of long run time associated with the original
form of HQC [1]. We demonstrate an experimentally feasible optical scheme to implement
a universal set of holonomic one- and two-qubit gates for non-adiabatic optical transitions in
three-level 3 configurations. The proposed setup allows for any quantum computation on any
number of qubits by purely geometric means.

The outline of the paper is as follows. The general theory of non-adiabatic HQC is
described in the next section. In section 3, we demonstrate a universal set of non-adiabatic
holonomic gates in a generic 3 configuration and show that these gates can be made robust to
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decay. The non-adiabatic holonomic gates are interpreted geometrically in section 4. The paper
ends with the conclusions.

2. Non-adiabatic holonomic quantum computation

Consider a quantum system characterized by an N -dimensional Hilbert space. A computational
system, typically a set of qubits, is encoded in a K -dimensional subspace M(0) of Hilbert
space. A quantum gate that manipulates the computational state can be induced by taking M(0)
around a smooth path C : [0, ⌧ ] 3 t 7! M(t) of K -dimensional subspaces in such a way that
M(⌧ ) = M(0). Thus, C is a loop of such subspaces generated by a suitable Hamiltonian H(t)
of the full system. In this way, any computational state residing in M(0) will, in general, end up
in a new state in the same subspace. The unitary transformation relating the final and initial states
is the quantum gate. The idea of non-adiabatic HQC is to make the resulting gate C dependent,
but independent of any dynamical parameters such as the run time ⌧ and the energies of the
system.

Let us formalize this idea by introducing a once differentiable set of orthonormal ordered
bases |⇣k(t)i, k = 1, . . . , K , of M(t) along C , such that |⇣k(⌧ )i = |⇣k(0)i. One may visualize
|⇣k(t)i as a K -tuple of vectors moving in the N -dimensional Hilbert space of the full system.
The final time evolution operator projected onto the initial subspace may be written as (h̄ = 1
from now on) [8]

U (⌧, 0) =
KX

k,l=1

⇣
Tei

R ⌧
0 (A(t)�H(t))dt

⌘
kl

|⇣k(0)ih⇣l(0)|, (1)

where T is time ordering. Here, Akl(t) = ih⇣k(t)|⇣̇l(t)i and Hkl(t) = h⇣k(t)|H(t)|⇣l(t)i are
Hermitian K ⇥ K matrices. Thus, U (⌧, 0) is a unitary operator on M(0).

To understand the meaning of A, let us check how it transforms under a smooth change
of basis spanning M(t). Such a transformation is known as a gauge transformation as it
changes the basis but not the subspace itself. Explicitly, if |⇣k(t)i !

PK
l=1 |⇣l(t)iV lk(t), V (t)

being a once differentiable family of unitary K ⇥ K matrices such that V (⌧ ) = V (0), then
A ! V † AV + iV †V̇ . This shows that A transforms as a proper vector potential. Thus, the
unitary

U = P ei
H

C

A, (2)

Akl = ih⇣k(t)|d⇣l(t)i being the matrix-valued connection one-form, is the holonomy matrix
generalizing the Wilczek–Zee holonomy [2] to non-adiabatic evolutions. Note that P is path
ordering along C and that U ! V †(0)U V (0) under a gauge transformation. This gauge
covariance essentially means that the holonomy matrix is a property of the loop C and we
may write U ⌘ U(C).

The following two conditions are necessary for universal non-adiabatic HQC: (i) there
should exist physically accessible loops C of subspaces along which the Hamiltonian matrix
Hkl(t) = h⇣k(t)|H(t)|⇣l(t)i vanishes; and (ii) there should exist at least two such loops C and
C 0, both based at M(0), for which the corresponding U(C) and U(C 0) do not commute. While
the first condition ensures that the evolution is purely geometric, the second one is necessary to
realize universality. Under conditions (i) and (ii), there is a set of quantum gates

U (⌧, 0) = U (C) =
KX

k,l=1

U kl(C)|⇣k(0)ih⇣l(0)| (3)
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that may be able to perform any computation on qubits encoded in M(0) based purely on the
geometric properties of the subspace paths. We demonstrate that these conditions can be met in
a generic three-level 3 configuration by means of which a universal set of one- and two-qubit
gates can be realized.

3. Physical implementation

3.1. One-qubit gate

Consider a three-level atom or ion consisting of the ‘bare’ energy eigenstates |0i, |1i and |ei
with energies w0, w1 and we, respectively. These states form a 3 configuration in which each
k $ e transition (k = 0, 1) is driven separately by a suitably polarized laser pulse with frequency
⌫k . In the rotating frame, the Hamiltonian describing the system–laser interaction takes the
form

H(t) =10|0ih0| +11|1ih1| +�(t) (!0|eih0| +!1|eih1| + h.c.) , (4)

where we have neglected rapidly oscillating counter-rotating terms (rotating wave
approximation). Here,1k = 2⇡⌫k �!ek , where !ek = we � wk , are detunings that can be varied
independently by changing ⌫k . The laser parameters !0 and !1 satisfy |!0|2 + |!1|2 = 1, and
describe the relative strength and relative phase of the 0 $ e and 1 $ e transitions. The
Hamiltonian is turned on and off at t = 0 and t = ⌧ , respectively, controlled by the pulse
envelope �(t). We take |0i and |1i to define the one-qubit state space M(0).

A universal holonomic one-qubit gate can be realized in the above 3 system by choosing
time-independent !0 and !1 over the duration of the pulse pair and by tuning the laser
frequencies so that the detunings 10 and 11 vanish. Under these conditions, the Hamiltonian
reduces to

H (1)(t) =�(t) (!0|eih0| +!1|eih1| + h.c.) (5)

with the corresponding coupling structure shown in figure 1. Given this choice of laser pulses,
the dark state |di = �!1|0i +!0|1i decouples from the dynamics, which in turn implies that the
evolution is reduced to a simple Rabi oscillation between the bright state |bi = !⇤

0|0i +!⇤
1|1i and

the excited state [9]. The Rabi frequency is�(t). It follows that the qubit subspace M(0) evolves
into M(t) spanned by | k(t)i = e�i

R t
0 H (1)(t 0)dt 0|ki = U (t, 0)|ki, k = 0, 1, which undergoes cyclic

evolution if the pulse pair satisfies
R ⌧

0 �(t 0) dt 0 = ⇡ . The evolution is purely geometric since
h k(t)|H (1)(t)| l(t)i = hk|H (1)(t)|li = 0 for t 2 [0, ⌧ ]. Under the above conditions, the final
time evolution operator U (⌧, 0) projected onto the computational space spanned by {|0i, |1i}
defines the holonomic one-qubit gate

U (1)(C
n

) = n · � , (6)

where n is a unit vector in R3 and � = (�x , �y, �z) are the standard Pauli operators
acting on |0i and |1i. By letting !0 = sin(✓/2)ei� and !1 = �cos(✓/2), we find that n =
(sin ✓ cos�, sin ✓ sin�, cos ✓). U (1)(C

n

) is a universal one-qubit gate. This can be seen
explicitly by noting that two pairs of laser pulses corresponding to the unit vectors n and m

applied sequentially result in

U (1)(C) = U (1)(C
m

)U (1)(C
n

) = n · m � i� · (n ⇥ m). (7)
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Figure 1. Setup for non-adiabatic holonomic one-qubit gate in a3 configuration.
A pair of zero-detuned laser pulses couple two ground state levels 0 and 1
to an excited state e (left panel). The two ground state levels define a single
qubit and the laser parameters satisfy |!0|2 + |!1|2 = 1. Note that the ‘bare’
ground state levels may be degenerate or non-degenerate since the lasers are
assumed to be tunable in an independent fashion. The dark state |di = �!1|0i +
!0|1i is decoupled from the bright state |bi = !⇤

0|0i +!⇤
1|1i by choosing time-

independent !0 and !1 over the duration of the pulse pair. The system thereby
performs Rabi oscillations between the bright and excited states with frequency
�(t) (right panel). The evolution of the qubit subspace is purely geometric and
becomes cyclic after completing a Rabi oscillation by choosing �(t) to be a
real-valued ⇡ pulse. The resulting unitary quantum gate operation acting on the
qubit is determined by the holonomy of the loop traced out by the subspace
spanned by e�i

R t
0 H (1)(t 0)dt 0|ki, k = 0, 1. By applying sequentially two ⇡ pulse pairs

with negligible temporal overlap, any desired holonomic one-qubit gate can be
realized.

This is an SU(2) transformation corresponding to a rotation of the qubit by an angle
2 arccos (n · m) around the normal of the plane spanned by n and m. Here, C

n

and C
m

are loops
based at M(0) and C = C

m

� C
n

. By suitable choices of n and m, any desired one-qubit gate
can be realized. For instance, the choice n = (cos�, sin�, 0) and m = (cos�0, sin�0, 0) results
in the phase shift gate |ki 7! e2ik(�0��)|ki, k = 0, 1, up to an unimportant overall phase factor.
A Hadamard gate |ki 7! 1p

2
[(�1)k|ki + |k � 1i], k = 0, 1, can be implemented by a single pulse

with n = 1p
2
(1, 0, 1).

3.2. Two-qubit gate

To complete the universal set, we propose a physical realization of a non-adiabatic holonomic
two-qubit gate in an ion trap setup. Our scheme is a non-adiabatic version of [3], which utilizes
the Sørensen–Mølmer setting [10] to design a holonomic two-qubit gate. The system consists of
an array of trapped ions, each of which exhibits an internal three-level structure 0, 1 and e. The
transitions 0 $ e and 1 $ e for an ion pair in the array are addressed by lasers with detunings
±⌫± � and ±⌫⌥ �, respectively, where ⌫ is a phonon frequency and � is an additional detuning.
Off-resonant couplings to the singly excited states |e0i, |0ei, |e1i and |1ei can be suppressed by
choosing the Rabi frequencies |�0(t)| and |�1(t)| smaller than ⌫ [10]. In this way, the effective
two-ion Hamiltonian in the Lamb–Dicke regime reads

H (2) = ⌘2

�

�
|�0(t)|2�0(�) ⌦ �0(�) � |�1(t)|2�1(��) ⌦ �1(��)

�
. (8)
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Here, ⌘ is the Lamb–Dicke parameter (⌘2 ⌧ 1), �0(�) = ei�/4|eih0| + h.c. and �1(��) =
e�i�/4|eih1| + h.c. Note that due to the non-adiabatic nature of our gate, the ancilla state
a of the original adiabatic scheme in [3] is no longer needed. The phase � and the ratio
|�0(t)|2/|�1(t)|2 = tan(✓/2) should be kept constant during each pulse pair. By expanding
�0(�) and �1(��), the Hamiltonian H (2) can be decomposed as

H (2) = ⌘2

�

p
|�0(t)|4 + |�1(t)|4 (H0 + H1) . (9)

The two terms

H0 = sin
✓

2
ei�/2|eei

⌧
00

���� � cos
✓

2
e�i�/2

����ee
�
h11| + h.c.,

H1 = sin
✓

2
|e0i

⌧
0e

���� � cos
✓

2

����e1
�
h1e| + h.c. (10)

commute, which implies that

e�i
R ⌧

0 H (2)(t)dt = e�i⇡H0 e�i⇡H1 (11)

under the ⇡ pulse criterion ⌘2

�

R ⌧
0

p
|�0(t)|4 + |�1(t)|4 dt = ⇡ . The second factor e�ipH1 on

the right-hand side of the time-evolution operator in (11) acts trivially on the computational
subspace spanned by {|00i, |01i, |10i, |11i}. Thus, H (2) effectively reduces to the 3-like
Hamiltonian ⌘2

�

p
|�0(t)|4 + |�1(t)|4 H0 from which the holonomic two-qubit gate

U (2)(C
n

) = cos ✓ |00ih00| + sin ✓ e�i�|00ih11| + sin ✓ ei�|11ih00| � cos ✓ |11ih11|
+|01ih01| + |10ih10| (12)

follows by analogy of the single-qubit gate above. The path C
n

, being characterized by the unit
vector n = (sin ✓ cos�, sin ✓ sin�, cos ✓) in R3, is traversed in the three-dimensional subspace
spanned by {|00i, |11i, |eei} of the internal degrees of freedom of the ions. For instance, a
conditional phase shift gate |kli 7! eikl⇡ |kli, k, l = 0, 1, can be implemented by choosing ✓ = 0.
Due to its entangling nature, U (2)(C

n

) is universal when assisted by one-qubit gates [11].

3.3. Robustness to decay

In practical implementations utilizing atomic or ionic systems, |0i and |1i typically correspond
to stable ground states, while the excited state |ei is unstable. Since the excited state is
significantly populated in the non-adiabatic scheme, it is important to check its robustness to
the error caused by the finite lifetime of e. To test this, we add decay of e to the non-adiabatic
holonomic gates. We compare the resulting fidelity with that of the corresponding adiabatic
gate. As a test case, we choose the one-qubit phase shift gate |ki ! eik⇡/2|ki, k = 0, 1, in the
non-adiabatic and adiabatic scenarios. This gate can be implemented adiabatically utilizing the
3-type system, but now by varying the two laser couplings independently so as to remain
approximately in an instantaneous dark state in the limit of large run time T . We assume that
the excited state decays to the auxiliary ground state level |gi with rate � . We model the decay
with the Lindblad equation

%̇t = �i[H (1)(t), %t ] + 2L%t L† � L†L%t � %t L†L , (13)

where %t is the density operator and L = p
� |gihe|. Furthermore, H (1)(t) =�(t)(!0|eih0| +

!1|eih1| + h.c.) and H (1)(t) =� (!1(t/T )|eih1| +!a(t/T )|eiha| + h.c.) are the Hamiltonians in

New Journal of Physics 14 (2012) 103035 (http://www.njp.org/)
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Figure 2. Influence of decay with rate � of the excited state e on the non-
adiabatic and adiabatic holonomic phase shift gate |ki ! eik⇡/2|ki, k = 0, 1. The
effect is quantified in terms of minimum (blue), average (black) and maximum
(red) fidelities. The three panels show, from left to right, the non-adiabatic
gate with decay, the adiabatic gate with decay and the adiabatic gate without
decay. Choosing hyperbolic secant ⇡ pulses with amplitude �, the non-adiabatic
fidelities are shown as functions of the dimensionless quantity �/� . We show
the adiabatic fidelities as functions of the dimensionless quantity �T , where �
is the time-independent global strength of laser couplings and T is the run time
of the gate. We have chosen�/� = 12.5 and �1t = 8, where1t is the temporal
separation of the two laser pulses in the non-adiabatic setting.1t is chosen to be
sufficiently large to guarantee negligible pulse overlap for the �/� range shown
in the left panel.

the non-adiabatic and adiabatic settings, respectively. In the adiabatic case, note that the 0-state
is decoupled from the excited state and that the a state is another ancillary ground state level [3].
Two hyperbolic secant ⇡ pulse pairs are chosen to implement the non-adiabatic phase shift
gate. Explicitly, we choose �(t) (!0,!1) = � sech(�t)(�1, 1)/

p
2 and �(t �1t)(!0

0,!
0
1) =

� sech[�(t �1t)](�1, e�i⇡/4)/
p

2, where � is the amplitude of the pulses and 1t is the
temporal separation of the two pulse pairs. The ideal adiabatic gate is generated in the T ! 1
limit by varying the laser couplings !1 = sin(#/2)ei' and !a = �cos(#/2) along the loop
(#,') = (0, 0) ! (⇡2 , 0) ! (⇡2 ,⇡) ! (0,⇡) ! (0, 0) at constant speed.

In figure 2, we show the fidelity h⇠ |U †(C)%outU (C)|⇠i, computed numerically for 4000
input states |⇠i, uniformly distributed over the Bloch sphere. Here, U (C) is the non-adiabatic or
adiabatic holonomic gate and %out is the output state computed from equation (13). The fidelities
are shown as functions of the dimensionless quantities �/� and �T in the non-adiabatic and
adiabatic cases, respectively. Note that the pulse duration in the non-adiabatic setting decreases
with increasing �/� since the pulse area is set to the fixed value ⇡ . Thus, by increasing �/� we
effectively speed up the gate. Furthermore, we have chosen �/� = 12.5 and �1t = 8, where
the latter choice guarantees that the pulse overlap is negligible for the �/� range shown in the
figure, a necessary condition to avoid any spurious dynamical contributions to the gate.

The fidelities of the non-adiabatic gate tend monotonically to unity in the large �/� limit
(left panel). This demonstrates that the non-adiabatic version of the holonomic phase shift gate
can be made robust to decay of the excited state by employing sufficiently short pulses. A key
point with adiabatic HQC is that the population of the decaying excited state becomes negligible
in the adiabatic limit. This behavior is confirmed as the fidelities of the adiabatic gate in the
presence of decay tend to unity in the large-T limit (middle panel). The oscillatory behavior, on
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the other hand, is due to non-adiabatic effects originating from the finite run time of the gate and
is thus present also when the decay is set to zero (right panel). The revivals seen in the fidelities
of the adiabatic gate without decay have been pointed out previously [12, 13].

Other types of errors may affect the gate fidelities. In a separate publication [14], we
consider the effect of dephasing (of relevance to superconducting qubits) and different types
of parameter errors on non-adiabatic and adiabatic holonomic gates.

4. Geometric interpretation

To understand the nature of the above holonomic gates, we need to introduce a few concepts
from differential geometry. A Grassmann manifold G(N ; K ) is the set of K -dimensional
subspaces of an N -dimensional Hilbert space. It is isomorphic to the set of complex K -planes in
CN . The closed path C of K -dimensional subspaces is a loop in G(N ; K ). The set of all bases
forms a Stiefel manifold S(N ; K ), which is a fiber bundle with G(N ; K ) as base manifold and
with the set of K ⇥ K unitary matrices as fibers [15]. A lift of the loop C in G(N ; K ) to a loop C
in S(N ; K ) corresponds to a single-valued choice of gauge. A gauge transformation is a unitary
change of bases over C . The unitary U(C) in equation (2) is the holonomy matrix associated
with the loop C in G(N ; K ).

Now, let us consider the holonomic one- and two-qubit gates described in section 3. These
gates are associated with loops in G(3; 2), where the Hilbert spaces relevant for the holonomies
are spanned by {|0i, |1i, |ei} and {|00i, |11i, |eei} in the one- and two-qubit cases, respectively.
We lift the loop C

n

in G(3; 2) to a loop C
n

in S(3; 2). As noted above, each such lift corresponds
to a choice of gauge. In the one-qubit case, the loop C

n

may be represented by a set of complex
two-planes spanned by the single-valued vectors

|⇣1(t)i = U (t, 0)|di = |di,
|⇣2(t)i = ei�(t)U (t, 0)|bi = ei�(t) [cos �(t)|bi � i sin �(t)|ei] (14)

in the three-dimensional complex vector space C3. Here, �(t) =
R t

0 �(t 0) dt 0 and the global
phase factor ei�(t) has been inserted to ensure that |⇣2(⌧ )i = |⇣2(0)i. The same expressions for
|⇣1(t)i and |⇣2(t)i apply to the two-qubit case by making the replacements |di ! cos(✓/2)|00i +
sin(✓/2)ei�|11i, |bi ! sin(✓/2)e�i�|00i � cos(✓/2)|11i and |ei ! |eei. The loop C

n

can be
visualized by noting that |⇣1i points in a fixed direction in C3 around which |⇣2i rotates.
Physically, |⇣1i represents the dark state and |⇣2i describes the Rabi oscillations between the
bright and excited states [9]. The oscillations correspond to a loop C

n

in S(3; 2) represented
by the single-valued gauge choice in equation (14) that projects onto the loop C

n

of complex
two-planes in G(3; 2). The connection one-form associated with this gauge reads

A=
✓

0 0
0 �(t)dt

◆
, (15)

which results in the holonomy matrix

U(C
n

) = Z =
✓

1 0
0 �1

◆
(16)

for a single Rabi oscillation. Note that the matrix Z is diagonal in the dark–bright basis
but, in general, off-diagonal in the computational basis. An explicit calculation confirms that
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9P
k,l Zkl |⇣k(0)ih⇣l(0)| = n · � . Similarly, for the composite path C = C

m

� C
n

, we obtain theP
k,l U kl(C)|⇣k(0)ih⇣l(0)| = n · m � i� · (n ⇥ m) from the holonomy matrix

U(C) = W † ZW Z. (17)

Here, the unitary overlap matrix with components W kl = h⇣ 0
k(0)|⇣l(0)i corresponds to an

integration of a pure gauge connection one-form iV † dV along any path D in S(3; 2) that
connects the initial bases {|⇣1(0)i, |⇣2(0)i} and {|⇣ 0

1(0)i, |⇣ 0
2(0)i} of C

n

and C
m

, respectively [16].
In other words, the loop C = C

m

� C
n

in G(3; 2) is lifted to the loop C = D�1 � C
m

�D � C
n

in
S(3; 2), where the four path segments correspond to the four non-commuting factors on the
right-hand side of equation (17).

We end this section with some remarks on the geometrical aspects of the idea put forward
by Zhu and Wang (ZW) [17] to realize non-commuting quantum gates by implementing
phase shift gates in different bases. To see how this works, consider the one-qubit phase
shift gates |ki ! ei(2k�1)� |ki, k = 0, 1, and |±i ! e±i� 0|±i, |±i = 1p

2
(|0i ± |1i), where � and

� 0 are the corresponding cyclic phases. These gates are non-commuting and can be used to
implement any one-qubit transformation by varying � and � 0. The dynamical phase contribution
to � and � 0 can be eliminated either by employing rotating driving fields with fine-tuned
parameters [17–19] or by driving the qubit along geodesics on the Bloch sphere by using
composite pulses [20–22]. These techniques result in non-commuting gates solely dependent
on the non-adiabatic geometric phases of the cyclic states.

There are several differences between the geometric phase gates in the ZW setting and
non-adiabatic HQC proposed in the present work. Firstly, the ZW scheme utilizes holonomies
generated by loops in G(N ; 1), which is a fundamentally different space than the relevant
Grassmannian G(3; 2) associated with the holonomies in equation (17). Secondly, the loops
that result in non-commuting gates in the ZW scheme are based at different points in G(N ; 1),
while in non-adiabatic HQC all gates are based at a single point in G(3; 2), namely M(0).
Finally, while the dynamical phases vanish for all input states in non-adiabatic HQC, all input
states except the cyclic ones pick up a non-zero dynamical phase in the geometric phase version
of the ZW scheme.

5. Conclusions

In conclusion, we have developed a non-adiabatic generalization of HQC with the primary
purpose of finding ways to construct universal sets of robust high-speed geometric quantum
gates. We have demonstrated an explicit realization of a universal set of holonomic one-
and two-qubit gates in non-adiabatic evolution in three-level 3 configurations. The scheme
requires coherent control of fewer levels and behaves more simply under decay of the
excited state compared to the holonomic gates proposed for adiabatic evolution in tripod
configurations [3–5]. Our gate opens up the possibility of realizing experimentally universal
quantum computation on short-lived qubits by purely geometric means.
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