








4. Model-based water/fat separation
by chemical shift imaging

In the simple chemical shift imaging method originally proposed by Dixon
[93], the signal is recorded while applying a readout gradient. Just like in the
method by Sepponen et al. [91], the spectral dimension is sampled by shifting
the position of the 180◦-pulse. However, in contrast to the Sepponen method,
Fourier transformation is only applied along the spatial dimensions. Addition-
ally, the spectral dimension is only sampled at two well-chosen points; one
where the readout gradient echo coincides with the spin echo, and one where
the readout is shifted relative to the spin echo with an interval corresponding
to the time needed for water and fat protons to get 180◦ out of phase. The

Fourier transformed data can be displayed as two images; one in-phase image
(IP) where the voxel brightness reflects the added transversal magnetization
of all chemical components, and one opposed-phase image (OP) where each

voxel reflects the difference between water and fat magnetization. Separate

water and fat images can then be obtained by a simple post-processing step:

adding the IP and OP images results in a water image, while subtracting the

OP image from the IP image gives a fat image [93].

In- and opposed-phase images are shown in fig. 4.1. In conventional spin
echo images, the signal contributions from all chemical species are in phase.
In the OP image, water-dominated and fat-dominated tissues are clearly de-
lineated as a result of the partial volume effect. This means that voxels at the
interface of such tissues contain substantial amounts of both water and fat pro-

Figure 4.1: Gradient echo recalled images shifted so that the water and fat protons are

in phase (a) and 180◦ opposed phase (b).
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tons, which cancel out in the OP image resulting in low intensity. This is also

called chemical shift artifact of second type or india ink artifact [99].
Even if Dixon’s method may seem simplistic, it has several qualities. It

is basically assumed that the proton spectrum has two discrete spectral lines
(which is a reasonable first-order approximation). This sparse spectrum model
allows heavy under-sampling of the spectral dimension; only two points are
needed if chosen wisely. This enables high spatial resolution to be maintained
with short acquisition time. Achieving high spectral resolution only to sample
a two-component spectrum can be regarded as inefficient sampling.

The great potential of Dixon’s method is accompanied with a number of
challenges, not least to handle phase errors due to static field inhomogeneity.
Therefore, a large number of extensions and modifications have been pro-
posed. Important advances cover acquisition strategies, number and timing of
the spectral samples, more accurate signal modeling, and algorithms to correct
for phase errors.

In this thesis, the term fat-water imaging (FWI) is used for model-based
separation of water and fat signal from chemical shift encoded data. Such
methods may also be referred to as Dixon techniques [100] or chemical shift
based water-fat separation [73]. In addition, other names have been used for
specific FWI algorithms. Some examples are DPE [101], CSISM [102], and

IDEAL [103].

4.1 Signal model

The spectral dimension is sampled by applying the readout gradient at time
shift t relative to a point t = 0 where all magnetization is in phase. For spin

echo acquisitions, t = 0 at the center of the spin echo. If the 180◦-pulse is
applied at time τ after excitation, the center of the spin echo occurs 2τ after

excitation. For gradient echo acquisitions, t = 0 at excitation so that t = T E.

Transmit

α◦

Gfast

Receive

t = TE

Figure 4.2: In gradient echo acquisitions, the signal is in phase directly after excita-

tion, so that the time shift t equals the echo time T E.
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90◦ 180◦

Gfast

Receive

τ τ t

TE

Figure 4.3: Spin echo acquisition with the signal readout shifted with t relative to the

conventional spin echo at 2τ .

Therefore, t is sometimes referred to as the echo time, although time shift
would be a more correct term in the case of spin echo acquisitions.

The time shifts of spin echo and gradient echo acquisitions is illustrated in
figs. 4.2 and 4.3. In spin echo acquisitions, a time shift t can be obtained in

two ways: either by shifting τ and keeping T E constant, or by shifting T E and
keeping τ constant.

In all studies described in this thesis, the data was acquired using gradient
recalled sequences.

4.1.1 Naive model

A model of the signal y in a voxel, representing how water and fat interfere as
a function of the time shift t, is given by:

y(t) = W +FeiωBt (4.1)

where W and F are the water and fat signals (at t = 0), and ωB = γB0(δB−δW )
is the difference in resonance frequency between water and fat due to chemical
shift (see table 3.3 on page 43). Note that ωB is known a priori and common
to all pixels, while y(t), W , and F are spatially dependent.

In this model, the fat signal is assumed to have a single resonance frequency
(resonance B) which is chemically shifted 3.4 ppm relative to water.

Adopting this model, the water and fat magnetization will be in phase every
t = n× 4.6 msec and exactly opposed phase every t = n× 4.6 + 2.3 msec
(assuming B0 = 1.5 T ).

In the conventional two-point method, one image is acquired in phase and
one opposed phase:

yIP = W +F
yOP = W −F

(4.2)
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Figure 4.4: Water (a) and fat (b) images reconstructed using the naive signal model.

In the water image, leakage of fat signal is seen in the subcutaneous adipose tissue.

Likewise, the water signal of muscle tissue leaks into the fat image.

Water and fat can then easily be separated voxel by voxel, according to:

2W = yIP + yOP

2F = yIP − yOP
(4.3)

This signal model is naive, since it assumes that the image phase is due

to chemical shift only. In practice, locally varying phase errors are always

present, causing leakage of water signal into the fat image and vice versa

[104, 105]. Water and fat images reconstructed using this method are shown

in fig. 4.4.
Outside the scope of FWI, in phase and opposed phase images can also be

useful in themselves [93, 99].

4.1.2 Simple model

Water and fat separation using the naive signal model results in unaccept-

able signal leakage between the water and fat images. To avoid this, phase

errors can be incorporated into the signal model. This allows estimation and

removal of the phase errors prior to separation of water and fat signal. Phase

errors occur because the resonance frequency will be offset from the nominal

frequency by an unknown frequency ω that varies from voxel to voxel. Such
off-resonance is caused by inhomogeneity in the B0 field, including effects

of imperfections in the applied field, and tissue susceptibility (although no

specific assumption of the underlying causes are required).
Incorporating the off-resonance in the signal model, it becomes:

y(t) = (W +FeiωBt)eiωt (4.4)

In contrast to ωB, ω is not known a priori, and is spatially varying. In

Dixon’s original method, eiωt was removed by taking the absolute value of
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the IP and OP images before addition and subtraction [93]. This approach is

only adequate for voxels where W > F , since the water image will always con-
tain the largest of the two signal components, and the fat image will always
contain the smallest [106].

A better strategy is to estimate ω in each voxel. As a side effect, a map
of the off-resonance (B0 inhomogeneity) will be provided along with the wa-

ter and fat images [104, 106]. Estimation of the off-resonance is simplified

by increasing the number of spectral samples (echo times) [106]. A common

approach is to obtain three complex samples of the spectral dimension, i.e.

three time shifts. This solution, often called the three-point Dixon method,
was first introduced by Kim et al. [104]. Images from a three-point acquisi-
tion are shown in fig. 4.5. Kim et al. [104], Lodes et al. [105], and Glover
and Schneider [107] used the time shifts t = −T , t = 0, and t = +T , where

T = π/ωB. This gives two opposed-phase and one in-phase image:

y−T = (W −F)e−iωT

y0 = (W +F)
y+T = (W −F)e+iωT

(4.5)

The off-resonance phase vector

eiωT = ±
√

y+T

y−T
(4.6)

can be analytically determined and removed from y+T by division, or from
y−T by multiplication. Then, water and fat images can be obtained by adding

and subtracting y0 and either y+T or y−T [104].
Equation 4.6 gives two solutions for the off-resonance, of which only one

can be correct. Choosing the false solution still gives a correct separation of
water and fat signal, but an incorrect identification, meaning that the water
signal will be interpreted as fat and the fat signal will be taken for water. In
the water and fat images, this manifests as swap artifacts. It can be seen in

Figure 4.5: Magnitude of complex images acquired using a gradient recalled triple-

echo acquisition at 1.5 T. The echo times were (a:) 3.1 msec, (b:) 6.0 msec, and (c:)

8.7 msec.
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Figure 4.6: Axial slice of the pelvis. Water (a) and fat ( b) images reconstructed using
a three-point Dixon method with off-resonance correction.
(image courtesy: Dr. Brian Welch, Vanderbilt University)

eq. 4.5 that adding multiples of π/T to ω has the same effect as swapping
W and F . The off-resonance ambiguity problem is discussed in section 4.3.
Images reconstructed using a three-point Dixon method with estimation of
the off-resonance map are shown in fig. 4.6.

The (−T , 0, T ) spectral sampling scheme of the three-point Dixon method

was generalized by Glover to (−Δt, 0, Δt) or (0, Δt, 2Δt) for arbitrary Δt [108],
and further by Xiang and An to (t0, t0 + Δt, t0 + 2Δt) for arbitrary t0 and Δt
[101]. An and Xiang generalized to an N-point (0, Δt, ..., (N−1)Δt) sampling
scheme [102], and Reeder et al. provided a solution for the general case were
all the time shifts are arbitrary [109].

In paper I, the signal model given by eq. 4.4 was used, and the signal was
sampled using a (t0, t0 +Δt, t0 +2Δt) sampling scheme.

Estimating complex-valued W and F , and the real-valued ω from a com-
plex triple-point acquisition, poses an over-determined problem, which may
be solved in the least-squares (LS) sense. LS estimation in this context was
first proposed by An and Xiang [102]. It is reasonable to use LS estimation,
since it is the maximum likelihood estimator for Gaussian noise, which is typ-
ically assumed in complex MR images [110].

The signal model in eq. 4.4 can be put on matrix form, assuming N time

shifts t1, ...,tN :

y = BA

[
W
F

]
(4.7)

where y =
[

y(t1) · · · y(tN)
]T

,

B(ω) =

⎡
⎢⎢⎣

eiωt1 · · · 0
...

. . .
...

0 · · · eiωtN

⎤
⎥⎥⎦ , and A =

⎡
⎢⎢⎣

1 eiωBt1

...
...

1 eiωBtN

⎤
⎥⎥⎦ (4.8)
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The signal model is separable with linear terms W and F [111]. Provided

the nonlinear term ω , the least squares solution for W and F is given by:[
WLS

FLS

]
= A+BHy (4.9)

where A+ = (AHA)−1AH is the pseudo-inverse and H denotes the conjugate
transpose. The pseudo-inverse is common for all voxels and needs to be cal-
culated only once. Section 4.3 describes different methods to determine ω in
every voxel.

4.1.3 Simultaneous estimation of T ∗
2 relaxation

In the simple signal model given by eq. 4.4, it is assumed that no relaxation
occurs during the time shifts, i.e. t � T ∗

2 . This is a fair assumption in most

cases. However, some tissues, such as cortical bone, have extremely short T ∗
2 .

Tissue T ∗
2 can also be shortened, for instance due to iron overload in the liver

[112, 113]. In these cases, T ∗
2 may be incorporated into the signal model. This

results in a more correct water and fat estimation, and jointly provides a T ∗
2 -

map, which may be useful in itself.

A simple approach to estimate T ∗
2 along with water and fat was first de-

scribed by Glover [108]. A more general method was presented by Yu et al.
[114], who used the following signal model:

y(t) = (W +FeiωBt)e(iω−R∗
2)t (4.10)

where the decay R∗
2 = 1/T ∗

2 is assumed to be equal for the water and fat

magnetization. Now, two nonlinear terms (R∗
2 and ω) must be estimated in

each voxel before solving for water and fat through eq. 4.9 using the modified
model matrix:

Figure 4.7: Axial slice across the liver. Water (a), fat (b), and R∗
2 (c) images were

reconstructed simultaneously. Since the R∗
2 is quantitative, the gray scale bar indicates

the rate of decay. Fast decay is seen in the intestine, and slow decay in the gall bladder

and the aorta.
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A =

⎡
⎢⎢⎣

e−R∗
2t1 e(iωB−R∗

2)t1

...
...

e−R∗
2tN e(iωB−R∗

2)tN

⎤
⎥⎥⎦ (4.11)

Now, A+ varies from voxel to voxel, since it depends on R∗
2. An easy way

to handle this is to discretize R∗
2 on a sufficiently fine grid and pre-calculate

one A+ for each discrete R∗
2 value.

R∗
2 can be found by minimization of the residual function, which will be

described in more detail in section 4.3.1. The minimization with respect to R∗
2

is not associated with the same difficulties as ω is [115].

Since more parameters are to be estimated, it is beneficial to use more than
three spectral samples. Typically, at least six points are used [114]. Fig. 4.7
shows water, fat, and R∗

2 images, reconstructed from a six-echo acquisition.

It has also been proposed to estimate independent T ∗
2 values for water and

fat [116].

This signal model is only valid for gradient echo acquisitions. In spin echo
acquisitions, dephasing due to T2 relaxation occurs during T E (see fig. 4.3),

while the time shift t induces reversible relaxation due to T ′
2 (see eq. 2.13).

4.1.4 Modeling multiple fat resonances

The assumption, that fat has a chemical shift of 1.3 ppm, is only valid for

≈ 60% of the fat protons. Other fat protons may have a similar chemical shift
such as 0.9 ppm or 2.0 ppm, but can also be found at 5.3 ppm, i.e. closer to
the water resonance [65]. A table of the chemical shifts of fat is found on page
43.

A signal model that accounts for the multiple resonances of fat was pro-

posed by Yu et al. [117]. The fat protons are assumed to be found at M reso-
nances ωm = γB0(δm−δW ) in relative amounts αm, normalized so that the αm
add up to unity. The model is given by:

y(t) = (W +F
M

∑
m=1

αmeiωmt)e(iω−R∗
2)t (4.12)

if used simultaneously with T ∗
2 estimation. Note that ωm and αm are assumed

to be known a priori and are common for all voxels. Thus, the multiple fat
resonance model does not increase the number of parameters to be estimated,
and comes at no expense but (slightly) increased complexity of the recon-
struction algorithm. The values of ωm and αm may be found in the literature,
or determined from spectroscopy measurements. The αm values can also be
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determined from the data itself, using a self-calibration algorithm [117]. With

this signal model, the model matrix becomes:

A =

⎡
⎢⎢⎣

e−R∗
2t1 ∑M

m=1 αme(iωm−R∗
2)t1

...
...

e−R∗
2tN ∑M

m=1 αme(iωm−R∗
2)tN

⎤
⎥⎥⎦ (4.13)

Taking the multiple resonances of fat into account increases the accuracy
of the model. This results in stronger suppression of fat signal in the water
images [118] and more accurate estimates in quantitative applications [119].
The effect of multiple fat resonances is illustrated in fig. 4.8.

Studying this more accurate signal model, it appears that there are no per-

fectly opposed-phase images. Similarly, the only true in-phase image is ob-

tained by setting t = 0.

This signal model was used in paper III.

Figure 4.8: Axial slice across the liver from a triple-echo acquisition. The water im-

ages are reconstructed using both (a:) a single fat resonance and (b:) multiple fat

resonances. The multiple fat resonance model achieves stronger and more uniform

suppression of the fat signal, which can be seen in the subcutaneous adipose tissue

(arrows).
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4.1.5 Four-component fat spectrum model

With reference to section 3.3, at least ten resonances are associated with fat.
However, the fat spectrum can be characterized by only four components be-
ing linear combinations of the ten resonances. The first component is common
to all triglycerides, regardless of fatty acid chain length or saturation degree.
The second component represents bulk methylene, and is a function of the
chain length. The third component is associated with the first double bond
on each fatty acid, and the fourth component represents the additional dou-
ble bonds. Introducing am = eiωmt for resonance m, the four components are
described by:

aF1 = 9aA +6aC +6aE +2aG +2aH +aI

aF2 = 2aB

aF3 = 4aD +2aJ

aF4 = 2aF +2aJ

(4.14)

The signal model can now be expanded by dividing F into four components:

y(t) = (W +F1aF1 +F2aF2 +F3aF3 +F4aF4)e(iω−R∗
2)t (4.15)

which gives the associated model matrix:

A =

⎡
⎢⎢⎣

e−R∗
2t1 aF1e−R∗

2t1 aF2e−R∗
2t1 aF3e−R∗

2t1 aF4e−R∗
2t1

...
...

...
...

...

e−R∗
2tN aF1e−R∗

2tN aF2e−R∗
2tN aF3e−R∗

2tN aF4e−R∗
2tN

⎤
⎥⎥⎦ (4.16)

Since several parameters are to be estimated in each voxel, many echoes
needs to be acquired (six at minimum). Conveniently, all the fat components
are linear in the signal model. However, components F1, F3 and F4 are typi-
cally of low signal strength (see fig. 4.9). The images are taken from the study
described in paper IV, in which this signal model was developed.

Figure 4.9: Images of an oil-water phantom. Simultaneous estimation of water (a) and

the fat components F1 (b), F2 (c), F3 (d), and F4 (e) from a 32-echo dataset.
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Techniques similar to the one described here were outlined in conference

abstracts by Peterson et al. [120], and later by Peterson and Månsson [121]

and by Bydder et al. [122].

4.2 Modified two-point Dixon techniques

Compared to three-point techniques, two-point datasets can in principle be

acquired faster. Although, resolving the off-resonance phase errors has been

reported to be more challenging [100, 123].
The first modification of Dixon’s original two-point technique was intro-

duced by Kim et al. [104], by using complex rather than magnitude IP/OP

images (see section 4.1.1). This technique is problematic, since it does not

account for off-resonance phase errors [104]. Resulting water and fat images

can be seen in fig. 4.4.

A more powerful modification of the two-point method taking phase errors
into account was described in 1987 by Borrello et al. [124] and in 1988 by
Brix et al. [125]. Similar methods were described ten years later by Skinner
and Glover [123], and Coombs et al. [126]. These approaches use the simple
model given by eq. 4.4, and acquire images in-phase and opposed-phase. Eq.
4.2 then becomes:

yIP = W +F
yOP = (W −F)eiωT (4.17)

Estimating two complex-valued (W and F) and one real-valued (ω) param-

eter from two complex valued samples (yIP and yOP) is an under-determined
problem. However, one degree of freedom can be removed from the model,
since water and fat should have a common phase φ at t = 0 [127]. This can

be imposed by introducing W = weiφ and F = f eiφ , where w and f are real-
valued. Eq. 4.17 can be written:

yIP = (w+ f )eiφ

yOP = (w− f )ei(φ+ωT ) (4.18)

Now, four real-valued parameters are to be estimated from two complex-

valued samples. Since w and f are real-valued, eiφ represents the phase of yIP,
and can be removed directly from yIP and yOP. Likewise, ±eiωT represents
the phase of yOP/eiφ , the sign depending on whether w or f is the larger com-

ponent. This ambiguity resembles eq. 4.6 and can be resolved using the tech-

niques described in section 4.3. When determined, this off-resonance phase

vector is removed prior to addition and subtraction to obtain the water and fat

images. Images reconstructed using this technique are shown in fig. 4.10.
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4.2.1 Relaxing one time constraint

Xiang generalized the two-point technique to allow the time shifts t1 and t2,
where y1 = y(t1) is acquired in-phase and y2 = y(t2) partially opposed phase
(POP) [128]. After removing eiφ given by the phase of y1, the off-resonance

phase vector eiω(t2−t1) can be determined analytically according to eq. 4.23.
Defining y∗1 and y∗2 as the signals after removing the phase errors, the real-

valued matrices corresponding to the definitions in eq. 4.8 become

y∗ =

⎡
⎢⎢⎢⎣

R (y∗1)
I (y∗1)
R (y∗2)
I (y∗2)

⎤
⎥⎥⎥⎦ , and A =

⎡
⎢⎢⎢⎣

1 R(a1)
0 I (a1)
1 R(a2)
0 I (a2)

⎤
⎥⎥⎥⎦ (4.19)

where R and I represent taking the real and imaginary parts, respectively,

and an = eiωBtn . The LS estimates for w and f are given by:[
wLS

fLS

]
= A+y∗ (4.20)

4.2.2 Relaxing both time constraints

In the general case of two time shifts without constraints, eq. 4.18 becomes:

y1 = (w+a1 f )ei(φ+ωt1)

y2 = (w+a2 f )ei(φ+ωt2)
(4.21)

Figure 4.10: Axial slice at the level of the kidneys. Water (a) and fat (b) images

reconstructed using a modified two-point Dixon method. Uniform separation of water

and fat signal is seen over the entire field of view.
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Introducing the two phase vectors eiθ = ei(φ+ωt1) and eiψ = eiω(t2−t1), the

phase errors can be removed from eq. 4.21 once eiθ and eiψ are known, in
order to obtain y∗. Then w and f can be found using eq. 4.20.

It can be shown that the fat signal fraction FF = f /( f + w) may be deter-

mined as:

FF =
c1 ±√

c3

c1 + c2
(4.22)

where

c1 = |y1|2 (1−R(a2))−|y2|2 (1−R(a1))
c2 = |y1|2 (|a2|2 −R(a2))−|y2|2 (|a1|2 −R(a1))
c3 = |y1|2 |y2|2 |a1 −a2|2 − (I (a1) |y2|2 −I (a2) |y1|2)2

It now follows from eq. 4.21 that eiψ can be determined as:

eiψ =
y2(1+FF(a1 −1))
y1(1+FF(a2 −1))

(4.23)

and that

θ = � y1(1−a2)− y2(1−a1)/eiψ

a1 −a2
(4.24)

The ± ambiguity of eq. 4.22 gives two eiψ candidates through 4.23. Again,
the process of choosing between these alternatives is described in section 4.3.
This flexible two-point Dixon method was described in paper II.

To efficiently remove noise from the resulting images, the smoothness as-
sumption can be imposed by low-pass filtering of the eiψ -map and subse-

quently of the eiθ -map, prior to solving for water and fat through eq. 4.20.
It should be emphasized that a1 and a2 can be any arbitrary a priori known

complex numbers, equations 4.22–4.24 still being valid. For instance, the mul-

tiple resonance fat spectrum model with T ∗
2 relaxation can be used with two-

point methods by letting an = ∑M
m=1 αme(iωm−R∗

2)tn . Since there are not enough

samples to estimate R∗
2, it must be assumed known a priori. In paper II, the

simpler model an = e(iωB−ν)tn was used, where ν represents the spectral broad-

ening of fat [129].
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4.3 The off-resonance problem

This section deals with the determination of ω , which is one of the major ob-
stacles in FWI, since it is more or less ambiguous. This ambiguity is reflected
in eqs. 4.6, 4.22, and 4.25. The ambiguity problem is best illustrated by the
simple signal model (eq. 4.4). With this model, it is not possible to differen-
tiate a voxel of only water from a voxel of only fat, since the observed res-
onance can be explained either by off-resonance or by chemical shift. Using
the multiple fat resonance signal model (eq. 4.12), the water and fat spectral
components are no longer identical, which should in principle resolve the am-
biguity. In practice however, the ambiguity problem remains due to noise and
model imperfections.

Some equations have already been given for analytical determination of the

off-resonance phase factor eiψ for the special cases of the two-point method
(eq. 4.23) and the three-point method using the (−T , 0, T ) acquisition scheme
(eq. 4.6). Analytical solutions for other cases have been described elsewhere
[101, 130, 131, 132, 133].

A general solution for the three-point (t0, t0 + Δt, t0 + 2Δt) acquisition

scheme (referred to as constant time shift spacing) is given by:

ψ = �
y2d1 ±

√
y2

2d2
1 −4y1y3d2d3

2y1d3
(4.25)

where
d1 = a3 −a1

d2 = a2 −a1

d3 = a3 −a2

The argument operator � of eq. 4.25 gives only a wrapped off-resonance
ω = ψ/Δt, i.e. it is only known within a principal period of 2π/Δt [134]. The
wrapped ω can still be used to determine the B matrix of eq. 4.9 to obtain the

LS water and fat estimates. The choice of period will only affect the phase

common to W and F , and has no practical implication. Thus, estimating the

wrapped off-resonance is sufficient for accurate separation of water and fat

[100, 101, 124].

In paper I, a special case of eq. 4.25 was used to determine the
off-resonance, valid only for the simple signal model in eq. 4.4. In contrast,
eq. 4.25 is valid for a wider class of signal models, such as the multiple
resonance fat model (eq. 4.12).
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4.3.1 Residual function

Rather than using analytical solutions, the model fit residual can be used to
find ω candidates. This solution is particularly useful when more than three
time shifts are used, since the estimation problem becomes over determined.

Re-substituting WLS and FLS given by eq. 4.9 into eq. 4.7 enables calculation
of the squared error residual J as a function of ω only [102, 134, 135]:

J(ω) = ‖ y−BA

[
WLS

FLS

]
‖

= ‖ y−BAA+BHy ‖
(4.26)

where ‖ ·‖ denotes the L2 norm. Simplifying eq. 4.26 gives:

J(ω) =‖ (I−AA+)BHy ‖ (4.27)

This corresponds to a variable projection of W and F , leaving only the
nonlinear variable ω as a target for optimization [111, 130]. Inserting the ω
that minimizes J(ω) into eq. 4.9 (through the B matrix) gives the total LS
solution for W and F .

Fig. 4.11 shows the residual function J(ω) from several voxels in a six-echo
dataset. Several local minima are present, reflecting the signal ambiguity. For
the case of constant spacing Δt of the time shifts, it can be shown that J(ω)
becomes periodic in ω with a period of Ω = 2π/Δt [134]. In such a scenario,
J(ω) needs to be considered in one period only [102]. This simplifies the

problem by effectively reducing the solution space and avoiding non-trivial

phase unwrapping [100]. The data in fig. 4.11 were acquired with constant

echo time spacing. Thus, a single period of the residual function is shown for

each voxel. It can be noted that two of the local minima within a period are

typically much smaller than the other minima. This seems to be a consequence

of the two-component model. It can be shown by simulation experiments that

the multitude of local minima cannot be attributed to noise, multiple resonance

fat modeling, or T ∗
2 modeling. Rather, there is a connection to the number of

acquired time shifts, N. Expanding on the calculations presented by Doneva

et al. [136], it can be shown that the residual function has at maximum N −1
minima within a period.

There are several ways to find the local minima of J(ω). For three-point

acquisitions with constant time shift spacing, there are at maximum two local

minima within a period, which can be found analytically [136]. In more gen-

eral cases, the minima may be found by optimization such as Gauss-Newton

[109] (requiring an initial guess) or golden section search [134] (requiring an

initial search interval). The simplest method is probably to evaluate J(ω) at
discrete point [102, 115, 130]. The local minima can then be identified by
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Figure 4.11: Plots of the residual J as a function of the off-resonance ω in seven

voxels at different anatomical sites. The number of time shifts was N = 6.

comparing each point with its adjacent points. This strategy was used in pa-

pers III and IV.
Once the off-resonance map is determined, the water and fat separation can

be done in each voxel separately, through eq. 4.9. However, determination of

the off-resonance map requires the signal ambiguity to be resolved. To do this,

some additional assumption must be made, for instance that the off-resonance

is close to zero. The most common assumption for resolving the ambiguity is

that the B0 field, and hence the off-resonance map, varies smoothly across the

field of view.

4.3.2 Voxel independent methods

These methods do not exchange information between voxels, but rely on re-

solving the ambiguity in each isolated voxel with the aid of some additional

assumption.

The simplest strategy is to use only magnitude data, as originally proposed
by Dixon [93]. This effectively eliminates the need for estimating any phase
errors due to off-resonance, but also the possibility to distinguish water from
fat as discussed in section 4.1.2. Nevertheless, this strategy has been used
along with more advanced signal modeling for liver fat quantification, assum-
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ing that W > F in all voxels [129]. This approach has been shown to give more

bias and noise in the estimates as compared to the use of complex data [137].
Another strategy is to assume that the off-resonance is close to zero. It is

then reasonable to choose the off-resonance candidate being closest to zero,
or the off-resonance phase vector eiψ with the smallest phase. The candidates
may have been obtained analytically, or may correspond to local minima in
the residual function. A similar result is achieved by performing a line search
minimization of the residual function, initialized at zero off-resonance [109].
This strategy would work fine for the voxels examined in fig. 4.11. The as-
sumption of a small off-resonance is typically only valid for a small field of
view. It is also necessary that the time shifts are chosen so that the false off-
resonance candidates become well separated from the true candidate.

A third strategy of voxel independent off-resonance identification is to as-

sume a small difference in phase between W and F . This is a valid assump-
tion, since W and F are defined as the water and fat magnetization vectors at

t = 0, i.e. they should be in-phase [127]. If one of the components is below
the noise level, their relative phase will be random. Therefore, this strategy
only works for voxels with signal contribution from both water and fat pro-
tons. It is necessary to choose the time shifts so that the relative water and fat
phase corresponding to false candidates is distinct from zero. For three-point
acquisitions, this is fulfilled only for asymmetric time shifts, meaning that the
first and third points must not be shifted symmetrically about an in-phase or
opposed-phase point [101]. This strategy is used in paper I to identify reliable
seed points.

Yet another voxel-independent strategy would be to choose the

off-resonance candidate with the smallest residual J [138]. In voxels with
only water or only fat, this strategy will not work using the single fat
resonance signal model. Even using the multiple fat resonance model, which
was done in fig. 4.11, this strategy would only be able to accurately identify
three of the seven highlighted voxels.

It has also been proposed to resolve the ambiguity by identifying water or
fat as the dominant component, based on differences in T1 relaxation acquired

using double flip angles [139].

4.3.3 Region growing

The strategies for resolving the off-resonance ambiguity presented in this sec-

tion and the following, are based on the assumption that the off-resonance map

is spatially smooth.

The idea of region growing is to expand the region of resolved off-resonance
one voxel at a time, starting from one or more seed points, until the entire

image is resolved. The determination of the off-resonance in the present voxel

is based on the off-resonance of previously resolved neighbor voxels.
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Region growing in the context of FWI was first proposed by Borrello et

al. [124]. Szumowski et al. described a 2D region growing scheme with one

manually resolved seed voxel [140]. After a voxel has been resolved, its four

closest neighbors are put on a voxel stack. The region growing continues by

picking a voxel from the stack and picking the ω candidate closest to the re-
solved ω of the ‘parent’ voxel. If the ω difference to the parent voxel exceeds

a certain threshold, that voxel is not put on the voxel stack. This scheme was

originally proposed for the three-point Dixon method, but has also been used

with the two-point method [126].
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Figure 4.12: Illustration of the multi-seeded region growing algorithm described in
paper I. (a:) Calculate the quality factor Q in all neighbor voxels. The voxel with the
highest Q is selected. (b:) Determine eiψ in the selected voxel as the candidate being
most phase coherent with the already determined neighbor voxels. (c:) Update the
quality factors and add new voxels to the queue.
(figure concept: Henric Rydén)
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Another region growing scheme for the two-point Dixon method was

proposed by Ma [141]. This scheme considers two candidates of the

off-resonance phase vector eiψ in each voxel, instead of determining the
absolute off-resonance. This binary choice is based on previously resolved
voxels in a small area close to the present voxel, rather than a single parent
voxel. Additionally, multiple voxel stacks are used, each corresponding
to a certain range of the off-resonance phase difference compared to the
neighbors. Voxels that are phase coherent with their neighbors are grown
first, allowing confident regions to be grown before regions with large phase
differences.

Yet another region growing scheme was described by Yu et al. [135]. Here,

a Gauss-Newton minimization of the residual function is performed in each

voxel. The initial guess is found by fitting a plane to already resolved voxels

in a neighborhood. The seed voxel is picked automatically near the image

centre, and minimized with an initial guess of zero off-resonance. The rest of

the voxels are resolved along a predestinated square-spiral trajectory.
Region growing techniques in combination with multi-resolution coarse-

to-fine propagation of the off-resonance map has been described both for the
two-point [142] and the three-point methods [134]. Lu and Hargreaves [134]
proposed single-seed region growing along a predestinated path at low res-
olution. The obtained off-resonance map is subsequently propagated to finer
resolution levels, and refined at each level on voxel basis. A scheme of multi-
ple single-seed region growing has also been proposed [102].

In paper I, a region growing scheme is described for the three-point Dixon
method, that can be viewed as an advanced version of that proposed by Ma
[141]. Since three samples are available, voxels containing both water and
fat may be resolved. Such voxels are identified by thresholding operations
and used as seeds in a 3D multi-seeded region growing scheme. Voxels are
resolved by picking the eiψ candidate out of two being most phase coherent

with the already resolved neighbor voxels. The region growing is guided by

a quality measure Q, which equals the absolute difference in phase coherence
between the two candidates. This means that voxels with one coherent and one
incoherent candidate are assigned high quality. If both candidates are equally
coherent, the choice is not obvious. Such voxels are assigned a low quality.
Neighbors of resolved voxels are put in one of several queues based on the
Q value. The next voxel to be resolved is picked from the non-empty queue

with the highest Q value. This scheme is repeated until all queues are empty
and the entire off-resonance map is determined. This region growing scheme
is illustrated in fig. 4.12.

4.3.4 Whole-image optimization

A sophisticated solution to the problem of resolving the off-resonance map is
to formulate an energy function based on every voxel in the image, so that the
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minimum energy corresponds to an off-resonance map that is spatially smooth

and fits the data well in each voxel. This is also a means of regularizing the
off-resonance map. The meaning of regularization here is to prevent data over-
fitting by utilizing the prior knowledge of spatial smoothness, with the goal to
decrease noise in the estimates. The whole-image minimization approach in
the context of FWI was first described by Hernando et al. [130].

Introducing V as the set of all voxels and N as the set of neighbor voxel
pairs, such an energy as a function of the off-resonance map ωωω can be written:

E(ωωω) = ∑
q∈V

Dq(ωq)+ μ ∑
(p,q)∈N

wp,qVp,q(ωp,ωq) (4.28)

where Dq represents the data fidelity of voxel q (data cost), and Vp,q is some

neighborhood consistency energy function (discontinuity cost). The weights

wp,q control the relative impact of the different neighbor pairs, and μ controls

the amount of regularization or, equivalently, the balance between data fidelity

and spatial smoothness.
This kind of energy function resembles that of a Markov Random Field

(MRF), where the energy equals the negative logarithm of the joint likelihood

of the hidden variables ωωω . The minimum energy of eq. 4.28 corresponds to the

estimate of ωωω with maximum a posteriori likelihood. Markov Random Field
models have previously been used in MRI for the related problem of phase
unwrapping [143].

Hernando et al. [130], used Dq = Jq(ωq) (see eq. 4.27), Vp,q = |ωp −ωq|2,
and wp,q = 1/d(p,q) where d(p,q) is the Euclidean distance between

voxels p and q. This energy formulation imposes smoothness on ωωω , since
a larger off-resonance difference of a neighbor pair results in a greater
energy E. The energy formulation was later improved [115] by including
min(J′′(ωmin

p ),J′′(ωmin
q )) in wp,q, where J′′(ωmin) is the second derivative

with respect to ω at the smallest minimum ωmin. Using such weights, the
location of energy minima becomes independent of the arbitrary scaling of
the signal y.

The connection to Markov Random Fields is an advantage, as there is a

rich literature on the subject, not least from the image analysis field of re-

search. However, the minimization of energy functions like eq. 4.28 is non-

trivial, and there is no guarantee to find the global optimum [144]. Hernando

et al. [130] proposed to use the iterated conditional modes (ICM) technique
[145]. An algorithm performing several graph cut moves [146] was later pro-

posed by the same group [115]. A solution using belief propagation [147, 148]
was described by Lu and Lu [149]. Other possible techniques for minimiz-
ing energies like eq. 4.28 include tree-reweighted message-passing (TRW-S)
[150, 151], and recent graph cut techniques such as quadratic pseudo-boolean
optimization (QPBO) [152] and fusion moves [153].
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In paper II, the problem of choosing between two candidates of eiωΔt in each

voxel was formulated in terms of the energy given by eq. 4.28 with Dq = 0,
V (ωp,ωq) = |eiωpΔt − eiωqΔt |2, and wp,q = mp,q/d2(p,q) where mp,q is the
smallest of the two voxel magnitudes. The solution ωωω was restricted in each

voxel to its two eiωΔt candidates. The problem was then solved using TRW-S.
This formulation naturally takes into account the periodic nature of the two-
point sampling scheme, and avoids the more complicated determination of the
unwrapped off-resonance map.

In paper III, the energy proposed by Hernando et al. [115] was modified by
using:

V (ωp,ωq) = min
(∣∣ωp −ωq

∣∣2
,(Ω− ∣∣ωp −ωq

∣∣)2
)

(4.29)

With this modified discontinuity cost, ω can be restricted to a single period
Ω. This reduces the solution space without affecting the estimation of the other
parameters. However, the graph-cut algorithm cannot be used since V (ωp,ωq)
is now non-submodular [144]. The problem was solved in two steps: first, the

solution space was constrained to the two smallest minima in an Ω period

in each voxel. This constrained problem was solved using QPBO [152]. The

result given by QPBO was then used as initial guess when solving the uncon-

strained problem using the locally convergent ICM [145].
In paper IV, the same method was used for resolving the off-resonance map

as in paper III.

4.3.5 Other methods

Several additional methods have been proposed to solve the off-resonance
problem under the assumption of spatial smoothness. Similar to energy min-
imization, the off-resonance problem has been described in terms of solv-
ing a Poisson equation [154, 155]. Techniques performing iterative low-pass
filtering and updating of the off-resonance candidates have also been used
[101, 128, 131, 138]. Other approaches include region merging [133] and the
use of normalized convolution [155].
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4.4 Acquisition strategies

An important consideration for the acquisition scheme is how to choose the
time shifts tn, which has been discussed above. Other considerations in the

acquisition strategy require special attention, not least since they have im-

pact on the image weighting and acquisition time. In Dixon’s original paper

[93], two spin echo images were acquired sequentially, according to fig. 4.3.

This doubles the acquisition time compared to conventional imaging. A sim-

ilar approach using gradient echo imaging (fig. 4.2) was described by Park

et al. [156]. The duration between the acquisitions of the images makes this

approach vulnerable to motion artifacts and image misregistration [157].

An alternative approach was described by Wang et al. [158], who acquired
three gradient recalled images in an interleaved fashion to reduce such prob-
lems. The acquisition time can be reduced by acquiring all the time shifts
within the same repetition [159]. A so-called flyback gradient with opposite
polarity to the readout gradient can be used to refocus the signal between
readouts. This approach has been described for spin echo [159] and gradient
echo acquisitions [119]. Alternatively, the flyback gradient can be replaced by
a readout gradient of opposite polarity, giving a so-called bipolar acquisition
[160, 161, 162, 163]. Fig. 4.13 shows a gradient echo acquisition, where all
echoes are sampled in the same repetition using alternating readout polarity.
This is a very efficient data sampling strategy. Although, inconsistent phase
errors between the polarities are caused by eddy currents and system imper-
fections [163]. A linear component along the fast encoding direction of such
phase errors may be corrected for, by identifying a corresponding peak shift
in k-space [162]. Alternatively, additional reference data may be acquired for
correction along the fast encoding direction [161] or correction along both
fast and slow encoding directions [163]. Acquiring all time shifts in the same

Transmit

α◦

Gfast

Receive

t1 Δt Δt Δt Δt

Figure 4.13: Timing diagram for a gradient recalled multi-echo acquisition with

bipolar readout gradients. The amplitude of the received signal diminishes between

echoes, due to T ∗
2 relaxation.
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repetition is time-efficient, but interleaved acquisition has the advantage of
complete freedom in the choice of tn.

In the studies described in this thesis, multi-echo data of the same polarity
was acquired using gradient recalled sequences.

FWI has been used with fast spin echo acquisitions [103, 118, 160, 164],
GRASE [161], spin echo and stimulated echo acquisitions [165], SSFP [131,
166] and balanced SSFP [167, 168]. Spin echo acquisitions with long T E
enable T2-weighted FWI [169].

It has been described how to perform the separation of water and fat in k-
space after estimating and demodulating the off-resonance map in image space
[162, 170]. With this approach, the duration of the signal readout can be taken
into account, removing artifacts of chemical shift displacement [92]. Such
effects can be substantial when using non-cartesian trajectories [132, 170].

Other work explores the combination of FWI with ultra-short echo time
imaging [171] and compressed sensing [136, 172].

4.5 Quantitative water/fat separation
Given the complex water and fat images, the fat signal fraction may be calcu-
lated as [173]:

FF =
|F |

|F |+ |W | (4.30)

Neglecting relaxation effects, this corresponds to the relative fraction of
fat protons [173]. As opposed to W and F , the intensity scale of FF is not
arbitrary. An FF-image thus serves as a quantitative mapping of the fat signal
fraction in each voxel [174]. A fat fraction map is shown in fig. 4.14.

The notion of qualitative and quantitative FWI identifies a major criterion
for applications. While the priority of quantitative FWI is to obtain as accurate
fat fraction estimates as possible, the qualitative approaches strive to achieve
sufficiently accurate water/fat separation for visual assessment.

Figure 4.14: Images of water (a), fat (b), and the derived fat fraction map (c). Here,
the fat fraction is coded in pseudo-color.
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Due to the utility of FF-maps for non-invasive estimation of the amount of

organ fat [175], quantitative FWI has been met with great interest, not least

in the assessment of fatty liver (steatosis) [176, 177]. FWI was used to detect

liver steatosis already in 1984 [178]. A FF of 5.6% has been proposed as a

threshold for the classification of liver steatosis [179].
The non-invasive gold standard method for measuring organ fat is local-

ized 1H spectroscopy [179]. This enables convenient comparison since MRS
and MRI measure the same entity, and can be performed in the same exami-
nation. Excellent correlation between liver fat fraction measured by FWI and
MRS has been demonstrated [119, 175, 180, 181, 182, 183, 184, 185, 186].
The liver fat fraction measured by MRS, in turn, has been shown to be highly
reproducible [179] and correlates well with chemical analysis [62, 187] and
steatosis assessed by histology grading [180, 188, 189] measured from biopsy
samples. Measurement of FF by quantitative FWI has been validated in phan-
tom experiments [129, 137, 175, 190, 191] and has been shown to be highly
reproducible [186], and to correlate well with chemical analysis [192] and his-
tology grading of steatosis [176, 192]. Taken together, there is a large body of
evidence for the clinical utility of quantitative FWI in the diagnosis of liver
steatosis.

Several sources of confounding have been identified, which must be ad-

dressed to obtain an accurate measurement of FF . Since relaxation weighting
is included in W and F , accurate fat fraction estimation requires either proton

density weighted images, or estimation and incorporation of the relaxation

factors into the calculation of FF [173].
To avoid effects from T ∗

2 , the most common approach is to use spoiled gra-

dient echo acquisitions and include T ∗
2 relaxation in the signal model [114,

129]. A short T ∗
2 may, when not accounted for, result in inaccurate fat fraction

estimates [114, 129, 137, 191]. In the liver, T ∗
2 may be short if the concen-

tration of iron is enhanced, which is common in patients with steatosis [119].
For accurate T ∗

2 estimation, at least six echoes are typically used [114].
T1 relaxation may also cause inaccurate fat fraction estimates. Bias from T1

can be avoided either by estimating and compensating for T1 [129, 173, 193],
or by achieving low T1-weighting using a low flip angle [129, 193].

Another source of error in fat fraction estimation is inaccurate signal model-

ing using the simple signal model with a single fat resonance [174]. As should

be expected, accounting for all the fat resonances (eq. 4.12) gives a more cor-

rect signal model and more accurate fat fraction estimates [117, 119, 137,

191].

The fat fraction as calculated by eq. 4.30 will be 0 ≤ FF ≤ 1. If the true fat
content is zero, any noise in the fat estimate will result in an FF > 0. Thus, the

74



fat fraction will be biased by noise [193]. This can be avoided by calculating

the fat fraction as:

FF =

{
| F
W+F | if |W | < |F |

1−| W
W+F | if |W | > |F | (4.31)

Yet another source of errors in the fat fraction estimates is eddy currents

[194]. In multi-echo gradient recalled sequences, eddy currents manifest as

phase errors, particularly in the first echo. This can be avoided by discarding

the phase of the first echo and including only the magnitude of the first echo

in the signal model [195].
Taking all these confounding factors into account, quantitative FWI enables

accurate and precise assessment of liver steatosis [185, 186].

4.6 Performance analysis

An important consideration, is how noise in the acquired data propagates into

the estimates. This can be investigated by direct measurement in the recon-

structed images, by mathematical analysis of the signal model, or by simu-

lation, employing a signal model and an estimation algorithm. These three

methods are complementary, since the direct measurement method makes no

assumption about the correctness of the signal model, mathematical analysis

reveals properties of the signal model itself, and simulation reveals properties

of a particular estimation method, assuming that the signal model is correct.
In FWI, analysis of the noise performance has been used to aid the choice

of time shifts, and to evaluate the efficacy of estimation methods.
Glover [108] defined the effective number of signal averages (NSA) as the

noise variance in the acquired images over the noise variance in the estimate.

For three-point acquisitions, assuming known off-resonance and using the sin-

gle fat resonance model, the optimal time shift spacing Δt was analytically de-

termined as Δt = 2T/3, where T = π/ωB, resulting in a maximum NSA of 3.0
[108]. Xiang [128] used the same method to examine two-point acquisitions,
where a maximum NSA of 2.0 is achieved for Δt = T .

Pineda et al. [196] included the off-resonance estimation into the analy-

sis of three-point acquisitions, and demonstrated that the NSA also depends

on the choice of the initial time shift, t1. A maximum NSA of 3.0 for this
more realistic situation is achieved for t1 = −T/6 + kT , where k is an inte-

ger. This was verified by Reeder et al. by direct measurement in an oil-water

phantom [103]. Pineda et al. also performed simulation experiments to show

that the maximum NSA was achieved by least-squares estimation of the off-

resonance, water, and fat, using several combinations of time shifts [196]. This

is not necessarily the case for certain analytical estimation schemes [197].

75



Yu et al. analyzed the maximum NSA for multi-echo gradient recalled ac-

quisitions, incorporating T ∗
2 in the signal model [114]. Due to T ∗

2 dephasing,
it was shown that a shorter initial echo time t1 resulted in higher maximum
NSA. Chebrolu et al. [198] analyzed the maximum NSA for three-point ac-

quisitions using the multiple resonance fat model (eq. 4.12) without T ∗
2 esti-

mation, and found good agreement with direct measurement in an oil-water
phantom. Hernando et al. [137] analyzed the bias and NSA for a wide vari-
ety of signal models using both mathematical analysis, simulation, and direct
measurement in an oil-water phantom. The best performance was found using
complex data and a multiple fat resonance signal model with T ∗

2 estimation
(eq. 4.12) or separate T ∗

2 estimation for the water and fat components [116].

In paper I, the NSA in the three-point method with analytical determination
of the off-resonance (eq. 4.25) and least squares estimation of water and fat
was examined by simulation. In paper II, the maximum NSA in the two-point
method with off-resonance estimation was analyzed as a function of the time
shifts. Simulation experiments were also performed to examine the noise ef-
ficacy of the proposed estimation method. In paper IV, the noise performance
was analyzed mathematically as a function of Δt.
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5. Contributions

This chapter summarizes papers I-IV.

5.1 Paper I

This work is entitled Three-point Dixon method enables whole-body water
and fat imaging of obese subjects.

5.1.1 Aim

To describe and evaluate a fast FWI method suitable for 3D whole-body imag-
ing of normal and obese subjects. 3D whole-body water and fat images are
mainly of interest in studies of various diseases, in particular diabetes and obe-
sity [199]. However, reconstructing water and fat images from such datasets is
challenging. Both due to the large amounts of data and due to the severe field
inhomogeneity caused by the large field of view.

5.1.2 Materials & methods

The described reconstruction algorithm requires the data to be obtained using
three time shifts with constant time shift spacing. The simple signal model
given by eq. 4.4 including off-resonance modeling was used. Two candidates
of the off-resonance phase factor eiψ were obtained in each voxel through eq.
4.25.

Assuming the true phase between W and F to be zero, voxels with sufficient
signal contribution from both water and fat can be resolved. Such voxels were
identified by thresholding operations and used as seed points in a region grow-
ing scheme described in more detail in section 4.3.3. The region growing path
is sensitive to the spatial gradient of the off-resonance map and to the signal
strength, allowing “safe” regions with high signal strength and homogeneous
B0 field (small gradient of the off-resonance) to be determined before less re-

liable regions with field inhomogeneity or low signal. After determining and

removing the off-resonance-induced phase errors, the least squares estimates

for water and fat are found in each voxel through eq. 4.9.
The reconstruction algorithm was evaluated on 3D whole-body datasets ac-

quired from 39 subjects with a wide range of body mass indexes (BMI: 19.8–

77



45.4 kg/m2). A 1.5 T clinical scanner was used with a triple-echo gradient re-

called sequence. The data was acquired in 18 stacks using a continuously mov-

ing table [57]. This, together with the short repetition time (T R = 5.9 msec)
allowed whole-body data of resolution 2.1×2.1×8.0 mm3 to be acquired in

only 5 min 15 sec.
Reconstruction of water and fat images was performed using the proposed

reconstruction algorithm and two reference methods [134, 135], also based on

region growing. The quality of the resulting water and fat images was subjec-

tively and independently scored in five body regions on a four-grade scale by

two radiologists.
The noise performance of the water and fat estimates was analyzed through

Monte-Carlo simulation. The proposed analytical solution was compared to

iterative optimization.

Figure 5.1: Water (a, b) and fat (c, d) images from one of the study subjects, re-

constructed using the proposed multi-seeded region-growing scheme. The 3D whole-

body images are shown in one coronal (a, c), and five axial slices (b, d).
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5.1.3 Results

The proposed method was found to give water and fat images with superior
quality compared to the reference methods, due to its better ability to deter-
mine the off-resonance. Uniform water/fat separation with few or without re-
construction artifacts was achieved for all subjects. Water and fat images from
one of the study subjects are shown in fig. 5.1.

Both reference methods received lower grades in body regions of more
complicated topology, such as the legs (separated by a background region)
and the thorax (containing the signal void of the lungs). The proposed method
performed well even in these regions, probably owing to the use of multiple
rather than single seeds, and the dynamic rather than predetermined region
growing path.

The average reconstruction time for the proposed algorithm was 1 min 53

sec. The Monte-Carlo simulation revealed no difference in noise performance

between the proposed method and iterative optimization.

5.1.4 Conclusion

The proposed method enables fast 3D whole-body FWI of normal weight and

obese subjects with few on no reconstruction errors and reasonable recon-

struction times. The noise performance of the analytical solution is equal to

that of iterative optimization, at least for the examined sets of echo times. Us-

ing constant spacing of the time shifts, estimating the wrapped off-resonance

map is sufficient for accurate water and fat separation.
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5.2 Paper II

This work is entitled Two-point Dixon method with flexible echo times.

5.2.1 Aim

To shorten the data acquisition times for FWI by removing the constraints on
the time shifts in two-point FWI. This will allow faster image acquisition, but
also more flexibility in terms of image resolution and readout bandwidth.

5.2.2 Materials & methods

By using real-valued water and fat estimates, the two complex samples in
each voxel provide sufficient information to solve for water, fat, and the two
phase error factors eiθ and eiψ . The equations are given in section 4.2.2. Each

voxel is assigned two candidates for the latter phase factor, due to the inherent

ambiguity of the signal model. An extension of the signal model to include

broadening of the fat resonance served as a simple way to account for multiple

fat resonances.
The off-resonance phase factor ambiguity problem was resolved by whole-

image optimization. The energy given by eq. 4.28 was used, setting Dq =
0, Vp,q = |eiωpΔt − eiωqΔt |2, and wp,q = mp,q/d2(p,q). This energy function

was formulated at low resolution, and minimized using the sequential tree-
reweighted message-passing algorithm, TRW-S [151].

Feasibility of the proposed method was demonstrated in breath-hold

imaging of the abdomen of three volunteer subjects. The water images

obtained from dual-echo acquisitions were compared to single-echo images

with conventional fat saturation (SPIR) and minimum T R, but otherwise
identical imaging parameters. Data was acquired from both 1.5 T and 3.0 T
clinical scanners.

The Cramér-Rao lower bound of the noise in the water and fat estimates
was studied analytically and compared to the actual noise in the estimates
given by the proposed method, as obtained by simulation experiments. The
noise properties were studied as a function of the two echo times.

5.2.3 Results

The proposed method demonstrated high quality water and fat images. Better
separation of water and fat signal was achieved using the broad fat resonance
spectrum model. The suppression of fat signal in the water images was found
superior compared to conventional fat saturation.

The acquisition times were comparable between the dual-echo and single-
echo acquisitions. At 3.0 T, acquisition of the single echo with fat saturation
was faster, while at 1.5 T, the dual-echo acquisition was the fastest. For the
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Figure 5.2: Single-breathhold water (a, b) and fat (c, d) images of the abdomen, ac-

quired at 1.5 T. One axial (a, c) and one coronal (b, d) slice from a 3D dataset are

shown. The images were reconstructed using the flexible two-point Dixon method.

The flexible acquisition scheme allowed the data to be acquired faster than a corre-

sponding dataset with conventional fat saturation.

protocols used in this study, removing the echo time constraints allowed ac-

quisition time reductions of 26 % and 43 % at 1.5 T and 3.0 T respectively, as

compared to the conventional in-phase/opposed-phase acquisition scheme.

The simulation experiment showed that the noise of the water and fat esti-
mates achieved the Cramér-Rao lower bound. The noise analysis serves as a
guide in choosing the echo times.

5.2.4 Conclusion

With the proposed technique, the usual constraints on the echo times in the
two-point Dixon method can be relaxed, allowing greater flexibility in the
acquisition. This flexibility can be used to shorten the acquisition time. The
estimation procedure is noise efficient and compatible with more advanced
signal models, including multiple fat resonances. The method is feasible in
breath-hold abdominal imaging.
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5.3 Paper III

This work is entitled Three-dimensional water/fat separation and T ∗
2 esti-

mation based on whole-image optimization – application in breathhold liver
imaging at 1.5 T.

5.3.1 Aim

To describe and evaluate a flexible FWI method suitable for both qualitative

and quantitative applications, and to develop an efficient algorithm for deter-

mining and regularizing the off-resonance map, feasible for 3D datasets.

5.3.2 Materials & methods

The signal model proposed by Yu et al. [117] given in eq. 4.12 was employed,

using values of the amplitudes and chemical shifts of the fat resonances given

by Hamilton et al. [66]. Simultaneous estimation of T ∗
2 was included in the

model [114], but can be omitted by assuming R∗
2 = 1/T ∗

2 = 0. The complex

water and fat estimates requires at least three echoes to be acquired. The am-

biguous estimation of the off-resonance map was based on the whole-image

optimization problem formulated by Hernando et al. [115], including a dis-

tance term [130] to account for non-isotropic voxels in 3D datasets. Constant

time shift spacing was used to obtain a periodic residual function. This peri-

odicity was taken into account in the problem formulation by using the dis-

continuity cost given by eq. 4.29. With this problem formulation, estimating

a wrapped off-resonance map is sufficient, efficiently reducing the solution

space. However, the graph-cut based algorithm [115] cannot be used, since

the discontinuity terms are no longer submodular [144].
The residual function was evaluated at discrete points within a period in

each voxel. The two local minima with the smallest residual were kept as

candidates for the off-resonance map. This constrained binary optimization

problem was solved by quadratic pseudo-boolean optimization (QPBO) [152].

In a second step, the unconstrained problem was solved approximately using

iterated conditional modes (ICM) [130, 145].

The method was evaluated using a 1.5 T clinical scanner with a six-echo 3D
spoiled gradient echo sequence to acquire data from ten volunteer subjects.
The acquisition was performed within a single breathhold, and the field-of-
view was set to cover most of the liver.

The reconstructed water and fat images were analyzed by two operators to

locate any reconstruction errors.
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5.3.3 Results

The image reconstruction was successful in all study subjects. Accurate sepa-
ration of water and fat was found despite wraps in the off-resonance map. Im-
ages reconstructed by the proposed method are shown in fig. 5.3. Only minor
reconstruction errors were found, primarily lung blood vessels being swapped
into the fat image (average volume: 6.7±4.6 mL).

The image acquisition time was 15.9 sec, and the average reconstruction
time was 13.0±0.9 sec (datasize: 128×96×15 voxels).

5.3.4 Conclusion

The proposed method enables fast quantitative FWI with accurate separation
of water and fat signal and simultaneous T ∗

2 estimation. The method is fea-

sible for 3D datasets. Estimating a wrapped off-resonance map is sufficient

for accurate water/fat separation, and the voxel-level signal ambiguity is well

captured by the two smallest local minima within a period of the residual

function.

Figure 5.3: Axial slice of 3D images acquired in a single breathhold, covering the

entire liver in one of the study subjects. Fat (a), water (b), and quantitative maps of fat

fraction (c) and R∗
2 (d) are shown. The fat fraction image reveals a signal fat fraction

of 11% in the liver, indicating steatosis.
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5.4 Paper IV

This work is entitled Model-based mapping of fat unsaturation and chain
length by chemical shift imaging: phantom validation and in vivo feasibility.

5.4.1 Aim

To develop and validate a method within the framework of FWI for quanti-
tative mapping of the triglyceride characteristics fatty acid chain length (CL),

number of double bonds (ndb), and number of methylene-interrupted double
bonds (nmidb), and to demonstrate feasibility of the method in vivo.

5.4.2 Materials & methods

The signal model proposed by Yu et al. [117] was extended to include four

components of the fat spectrum (eq. 4.15). The four fat components F1–F4

are linear combinations of the fat resonances, chosen to allow degrees of free-
dom in the model with respect to CL, ndb, and nmidb, in accordance to well-

established assignment of the fat resonances [64, 66]. When estimated, the fat

components were translated into CL, ndb, and nmidb according to:

CL = 4+ |(F2 +4F3 +3F4)/3F1|
ndb = |(F3 +F4)/F1|
nmidb = |F4/F1|

(5.1)

This enabled spatial mapping of fatty acid chain length and degree of unsat-
uration from spoiled gradient multi-echo data. Estimation of the off-resonance
and T ∗

2 maps was performed using the method described in paper III.
At least six echoes are needed for the estimation. In this study, 32 echoes

were acquired, which was the maximum allowed by the user interface of the

scanners. Imaging was performed in a single 2D slice. To achieve a high

signal-to-noise ratio, 32 signal averages were acquired.

The method was validated by imaging an oil phantom, containing ten food
oils of varying fatty acid composition. The oils were contained in plastic cups
placed in water stabilized with agar (see fig. 5.4 a). CL, ndb, and nmidb were
measured within regions-of-interests in the parametric images obtained using

the proposed method. The reproducibility of the estimates was measured by
calculating the intra class correlation (ICC) from repeated acquisitions. As a

reference method, the fatty acid composition of the oils was also measured
by gas-liquid chromatography (GLC), and translated into CL, ndb and nmidb.
The accuracy of the method was assessed by statistical tests of correlation and
linear regression.
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To demonstrate the feasibility of the method in vivo, the thigh of a volunteer

subject was also imaged with repeated acquisitions. The triglyceride quantities

were measured in three regions-of-interest in the subcutaneous adipose tissue.
All imaging was performed using both 1.5 T and 3.0 T clinical scanners.

5.4.3 Results

Images of the oil phantom obtained by the proposed method are shown in
fig. 5.4. The triglyceride quantities were relatively stable within each oil in
the phantom, as well as within the adipose tissue of the volunteer subject.

The ICC for measuring CL/ndb/nmidb of the oils were 0.964/0.997/0.999

(1.5 T) and 0.998/0.999/0.999 (3.0 T), indicating high reproducibility of all
three quantities at both fieldstrengths.

The measurements of all three quantities were found to be significantly
correlated between MRI and GLC at both fieldstrengths. The r2 values for

CL/ndb/nmidb were 0.878/0.972/0.994 (1.5 T) and 0.889/0.974/0.994

Figure 5.4: Resulting images from the oil phantom study. A photograph (a), water (b)

and fat (c) images are shown along with quantitative maps of fat fraction (d), R∗
2 (e),

off-resonance (f), and the triglyceride quantities CL (g), ndb (h), and nmidb (i). The

images g–i are masked to aid interpretation. Differences in triglyceride composition

of the ten oils are clearly visible in g–i.
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(3.0 T). The linear regression revealed good accuracy for measuring ndb and

nmidb, while the CL measurements were over estimated with respect to GLC.
The in vivo measurements from the repeated acquisitions were in good

agreement, and the three locations showed similar fatty acid composition, as
would be expected. All estimates were slightly higher at 1.5 T than at 3.0 T.
The measured values of ndb and nmidb were in agreement with literature val-

ues, while CL appeared over estimated.

5.4.4 Conclusion

This study demonstrated feasibility of quantitative mapping of CL, ndb, and

nmidb, both in phantom and in vivo, using standard clinical scanners. The
estimates are highly reproducible and correlate with GLC when measured in
phantom. The ndb and nmidb correlate strongly with GLC. The feasibility of
the method in vivo makes it potentially useful in large-scale studies of triglyc-
eride composition and its relation to diet and various diseases.
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6. Discussion

Different FWI methods have been available for more than 25 years. The ability

to handle off-resonance due to B0 field inhomogeneity makes these methods
an attractive alternative to conventional fat suppression methods, being poten-
tially insensitive to off-resonance induced phase errors. Yet, the use of FWI
has been relatively limited in clinical practice. This can be explained by sev-
eral problems associated with FWI. First, the image acquisition time will be
prolonged due to the requirement of multiple time shifts. Second, the model-
fitting approach requires an additional post-processing step in the image re-
construction. The algorithms for handling off-resonance tend to get quite com-
plicated, and the reconstruction times can be long. Third, the challenging es-
timation of the off-resonance map makes FWI vulnerable to reconstruction
errors, which may cause unacceptable degradation of the image quality.

A renewed interest in FWI methods has been noted recently. Not least, this
applies to quantitative FWI for diagnosis of liver steatosis. Widespread clinical
use of FWI will require implementation directly on the MRI machines. This
development has started recently among the major vendors.

6.1 Previous work

Some of the most important preceding work was described in chapter 4. The
development of the three-point Dixon method [104] offered a way to han-
dle the off-resonance problem. Concurrently, the problems of long acquisition
times, complicated post-processing algorithms, and long reconstruction times
were aggravated. In order to reduce the acquisition times, two-point meth-
ods with off-resonance correction are essential. Although such a method was
introduced as early as 1987 [124], the next step to further minimize the acqui-
sition time by relaxing the opposed-phase timing constraints was taken almost
20 years later [128].

Numerous methods have been proposed to solve the important
off-resonance ambiguity problem. Still, no method seems to be generally
accepted as the best one. Many of these methods require a certain choice
of the number and timing of the spectral samples. Some methods are not
described in sufficient detail to be reproducible, and many methods have not
been rigorously evaluated. A collection of benchmark datasets would aid a
comparison between the different methods.
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6.2 Present work

The author hopes that this thesis contributes to the increased understanding
and usage of FWI methods. It was intended to consult previous knowledge in
the development of new algorithms. Consequently, off-resonance unwrapping
or determination of the absolute off-resonance was avoided, since a wrapped
off-resonance map is known to be sufficient for accurate water/fat separation
[124]. The imposed requirement of constant time shift spacing is not believed
to be a serious limitation in most cases.

Chapter 4 provided a unified framework for signal modeling. It should be
noted that the four-component fat spectrum model (eq. 4.15) and the simple
model with T ∗

2 modeling (eq. 4.10) are special cases of the multiple fat res-
onance spectrum model (eq. 4.12). Further, the simple signal model (eq. 4.4)
is a special case of eq. 4.10, and the naive signal model (eq. 4.1) is a special
case of eq. 4.4. The use of the multiple fat resonance signal model, with or
without T ∗

2 estimation, is encouraged, as it enables more accurate estimates
in quantitative applications and stronger fat suppression in qualitative appli-
cations. Since all fat resonances are linear in the model and assumed known
a priori, additional signal samples are not required. Variation between tissues
and between subjects is not taken into account using this signal model, since
a fix fat spectrum model is assumed. It should be emphasized that the simple
signal model also assumes a fix fat spectrum model, namely the inaccurate
model of a single fat resonance.

All off-resonance correction algorithms were described and proven feasible
in 3D. This has the advantage of generality, 2D images forming a special case.
In addition, the use of 3D information might be beneficial, since the number
of neighbor voxels increases, and for topological reasons.

Three subproblems of FWI were identified as: 1) Estimation of
off-resonance candidates; 2), Solving the off-resonance ambiguity problem;
3) Estimation of water and fat signal components. These problems were
treated separately, the last one consequently being solved by least squares
estimation.

The reconstruction algorithms were developed with fast performance in
mind, and reconstruction times were measured in the experiments. Recon-
struction speed is regarded an important feature, crucial to the practical utility
of the methods. For implementation directly on the MRI machines, recon-
struction speed is even more important. It is desirable that the operator is able
to view the images directly after acquisition, in order to decide if complemen-
tary images are required.

Paper I described a solution to the off-resonance problem for three-point
acquisitions, being suitable in 3D whole-body applications. The authors were
not aware of any such method being described in the literature, since the chal-
lenging datasets imposed special requirements. The method was required to
utilize 3D information, and to handle complicated topology. Not least, time
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efficiency of the reconstruction was required due to the large datasets. The

method was evaluated for a particular acquisition scheme in several subjects,

to provide confidence in the reconstruction accuracy. The evaluation turned

out in favor for the proposed method, compared to the two reference methods.

Although, the reference methods were not developed for whole-body applica-

tions and were not described for 3D, so the comparison was not completely

fair. However, this highlighted the need for a fast 3D reconstruction algorithm.
A fast 3D FWI reconstruction algorithm was also described in paper III,

but for the more general case of three or more time shifts. In principle, the al-

gorithm described in paper I could have been used with minor modifications.

However, it was desired to avoid the dependence of thresholds used to identify

the seed points in the region growing method. The whole-image energy min-

imization approach [130] was found to be more attractive from a theoretical

point of view. In addition, regularization of the off-resonance map is enabled

within this framework. This serves as a means to reduce noise in the water and

fat images in a well-controlled manner. The experiments showed that fast 3D

reconstruction by whole-image energy minimization was indeed possible. In

addition, few reconstruction errors were found in the resulting images, even

for a challenging dataset with a very large field of view.
In paper II, a two-point Dixon method with a fully unconstrained choice of

the two time shifts was described. This method provides more flexibility in

the acquisition scheme compared to previous methods. In particular, shorter

acquisition times can be achieved with this method. Thus, it addresses one

of the major drawbacks of FWI, allowing water and fat images to be acquired

faster than previously possible. The conventional IP/OP sampling scheme will

not work well with the methodology described in paper II. However, this is a

consequence of the strategy for resolving the off-resonance ambiguity, rather

than the estimation of the off-resonance candidates. For the special case of

IP/OP sampling, some other method for resolving the off-resonance map can

be employed, such as region-growing [141].
After paper II was accepted for publication, a similar method was published

by Eggers et al. [200], including equations equivalent to 4.22 and 4.23. How-
ever, no analytical expression was given for eiθ , as in eq. 4.24. Instead, two
alternative solutions were proposed. The first solution involves an optimiza-
tion in each voxel to find w and f (although not in the least squares sense).
The second solution first removes eiψ from y2, and then finds the least-squares

solution for the complex-valued W and F . Since there are two complex known
and two complex unknown variables, the residual will be zero in this case.

The solution given in paper II is advantageous over the first solution given
by Eggers et al., since it does not require optimization and allows least-squares
estimation. An additional advantage of calculating eiθ analytically, is that

smoothing can be performed of both the eiψ -map and the eiθ -map. This avoids
the enhanced interface problem illustrated in fig. 5 of ref. [200]. It also enables
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higher NSA in the water and fat images, compared to the complex approach

[200].
Given the development of flexible time shifts, the two-point method might

turn out to be the method of choice for future qualitative applications.

Paper IV described a fully novel method for quantitative mapping of fatty
acid chain length, and degree of unsaturation and polyunsaturation. This is
quite different from conventional FWI. However, the method was described
within the FWI framework, using a relatively minor modification of the sig-
nal model (compare equations 4.15 and 4.12). The methods ability to measure
the degree of unsaturation and polyunsaturation was quite accurate with re-
spect to gas-liquid chromatography when measured in an oil phantom. The
same accuracy was not seen for the mapping of chain length. Similarly, the
degree of unsaturation and polyunsaturation measured in vivo were in rea-
sonable agreement with literature values, as opposed to the chain length. The
acquisition time is quite prolonged compared to conventional FWI. Both due
to the increased number of required samples, and due to the increased num-
ber of signal averages motivated by the relatively weak signal of the smaller
fat components. The feasibility of the method on 1.5 T and 3.0 T scanners
promises more widespread use of such triglyceride measurements, since cor-
responding spectroscopy methods [65] are difficult at 1.5 T and 3.0 T.

6.3 Limitations

An evident limitation common to all methods described in this thesis, was
the requirement of a constant time shift spacing. This served as a means to
impose periodicity of the apparent off-resonance. When acquiring multiple
echoes in a single T R, which was done in all the described studies, the use of
constant echo time spacing is natural. Related to this matter, a wrapped off-
resonance map was estimated in all the studies. If an absolute off-resonance
map is desired, one can be obtained in a separate unwrapping step.

A source of confounding common to all the described studies is the assump-
tion that all signal emerges from protons in water or fat molecules. MR-visible
resonances also originate from proteins, peptides, and small mobile metabo-
lites [61]. However, such species must be present in large amounts to confound
the signal from the much more abundant water and fat molecules. MR visible
lipids other than fat include cholesterol esters, which can be considered negli-
gible due to the low concentration and broad linewidth [62]. Other sources of
model errors are non-Lorentzian lineshapes and susceptibility shifts of fat in
different compartments [201].

Eddy currents are a known source of confounding in quantitative FWI that

was not addressed. Further, all resonances were assumed to have a common

T ∗
2 value for simplicity. However, water and fat are known to have different

T ∗
2 values [129], as are the different fat resonances [66].
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Water and fat signal separation in k-space [170] was not performed. Separa-

tion in k-space is known to remove chemical shift displacement artifacts [92].

In all the studies, strong gradient amplitudes were used. Therefore, chemical

shift displacement was not considered to be a problem.

A major drawback of FWI that was not addressed in this thesis is the re-
quirement of advanced post-processing algorithms. All the described algo-
rithms are indeed rather advanced. Although, care was taken to describe the
methods in great detail, and as clearly as possible.

The evaluation of the methods was also subject to some limitations. In pa-
pers I and III, the methods were evaluated in several subjects, but only at 1.5 T,
and only using a single acquisition scheme in each of the studies. Strictly, the
accuracy of these methods cannot be generalized to other acquisition schemes
or other field strengths. In paper III, only qualitative but not quantitative accu-
racy was evaluated. The flexible two-point method was evaluated at both 1.5 T
and 3.0 T using a few different acquisition schemes, but only four datasets
were evaluated in total. The method described in paper IV was not validated
in vivo.

The measurement of reconstruction time is problematic, since it is heavily

dependent on the computer used for reconstruction. In the described studies,

the reconstruction algorithms were run on a standard laptop computer. Thus,

the measured reconstruction times are indicative of what is to be expected

using offline implementation.

6.4 Future work

Further evaluation of the developed methods is of special interest, both general

evaluation of method performance in larger study cohorts, and evaluation for

specific applications. In particular, the flexible two-point Dixon method needs

to be evaluated in more subjects and in different anatomical locations, inves-

tigating several sets of time shifts. Further, the method described in paper III

needs to be evaluated with respect to quantitative accuracy, for instance using

an oil-water phantom [190]. The method introduced in paper IV needs to be

validated in vivo, for example by GLC of biopsy samples. It is also desirable

to investigate sources of error in the estimation of fatty acid chain length in

order to improve the estimation.

Specific applications of special interest for future investigation include dy-
namic imaging of the liver using the flexible two-point technique, and precise
quantitative measurements of the fat signal fraction in the myocardium. Using
rapid FWI in MR angiography is another area of interest, where improved fat
suppression might enable reduction of contrast agent doses.

There are some applications where modified FWI methods could be devel-
oped as an alternative to conventional fat suppression. One such application is
diffusion-weighted imaging, where conventional fat suppression might leave
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residual fat signal causing artifacts due to the large chemical shift displace-

ment [202]. The same problem is also apparent in fMRI. Another interesting

area of FWI method development is absolute temperature mapping based on

the temperature dependence of the chemical shift between water and fat [203].

6.5 Implications

This thesis advances the field of model-based water/fat separation by chemical

shift imaging. The developed methods enable fast qualitative 3D whole-body

fat-water imaging and fast quantitative 3D fat-water imaging, with few recon-

struction errors. Faster image acquisition in qualitative fat-water imaging than

previously possible can be achieved by the described flexible two-point Dixon

method. Finally, non-invasive quantitative mapping of fatty acid chain length

and degree of unsaturation and polyunsaturation is rendered possible.

All methods are feasible using standard clinical MRI machines. The devel-
oped methods are already being used in several research projects (see Related
work) which include studies of diet, obesity and the metabolic syndrome.
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