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1. Introduction

1.1 Objective and motivation

In recent years, great improvements have been made in the field of

microscopy, both microscope hardware and staining techniques. This has

allowed scientists to generate vast amounts of high content data in a short

period of time. Manual analysis of the data is time consuming and in some

cases even impossible. Together with the rapid growth in computer power,

digital image analysis has become a part of everyday work in biology and

medicine.
Microscopy provides a excellent tool for studying gene and protein expres-

sions in cells. Examining a single cell or organism often provides little sig-

nificant knowledge due to sample heterogeneity. Even a homogeneous pop-

ulation will show a certain degree of variability. Increasing the number of

examined cells/organisms will provide better statistics and an opportunity to

study the variation in the population. However, the high number of examined

samples will result in large amounts of data that are extremely time consuming

to manually quantify. Furthermore, some characteristics are almost impossi-

ble to manually quantify in a consistent and unbiased manner. Image analysis

provides a tool for fast measurements on huge amounts of data. In addition,

the unbiased nature of an analysis performed by a computer provides the op-

portunity to perform an analysis that is neutral towards the outcome and fully

reproducible.

Acquisition of cell images with point like signals as markers for specific
DNA sequences or proteins are common in biomedical research. Cells in a
sample will always show some degree of variation in their characteristics. To
catch these variations the analysis must be performed on single cells, since
individual characteristics will be lost in an average of the image. Methods
and software that can accurately detect and quantify the number of signals for
individual cells will provide extremely useful tools in the biomedical research
field.

High-Throughput Screening (HTS) is a technique for searching large li-

braries of chemical or genetic perturbants, to find new treatments for a disease

or to better understand disease pathways. HTS of cell-based assays has been

widely used [10, 31]. However, studying the effects of a disease on isolated

cells will not always reveal information on the effects on the whole animal.

As a result, HTS on whole animal is becoming more popular and new tech-

niques are emerging rapidly [14]. The zebrafish is one of the animal models
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that is becoming increasingly popular for use in HTS [78]. These new sys-

tems require new image analysis methods that can work in a fully automated

manner.

1.2 Thesis outline

This thesis is focused on the development of image analysis methods for de-

tecting and quantifying signals and structures in 2D and 3D image data from

cells and zebrafish.
Chapter 2 consists of a brief introduction to the different microscopy and

staining techniques used throughout the thesis for image acquisition. In ad-

dition, the basic terminology of digital image analysis is introduced. Further-

more, the main image analysis methods in this thesis are introduced and briefly

explained.

Chapter 3 contains a description and discussion of the papers included in
this thesis. This chapter is divided in two parts; methods and applications for
cell images, and methods and applications for zebrafish images.

Chapter 4 contains concluding remarks and future work.
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2. Background

This chapter will provide some background information in order to get a better

understanding of the methods and applications discussed in chapter 3. First,

the two different types of biological models used in the thesis are described

briefly. Secondly, the different image acquisition methods are presented and

described in brief. The last part consists of an introduction to some basic con-

cepts in digital image analysis and a more in depth description of some of the

methods commonly used throughout the thesis.

2.1 Models

The human body is a system built up of many small complex systems. De-

pending on the biological question we can observe this system on different

scales. Starting from subatomic particles that build up the atoms. The atoms

in turn are the components that build up molecules. Molecules together form

the next level, which contains macromolecules. The macromolecules, DNA

and proteins, are the basis of cells. Numerous cells then form tissues that to-

gether with other tissues form organs. Finally, all the organs in the end build

up the whole organism [43].

By studying the subatomic level, interaction of protons and electrons, we
will gain knowledge of how different molecules are built up. However, if we
want to know how organs in the organism function together, studying the sub-
atomic level will provide us little useful information. In a system, like the
human body, the combination of lower level systems provides a higher order
system with new and unique properties that could not have been predicted, a
priori, from the laws of the lower level [3]. This feature leads to a loss of lin-

earity when moving from one level to another, and as a consequence we need

to study several levels or choose the level that is best suited for the question

asked.

A model system can be thought of as a simplification of a complex system.
In biology it is common to perform experiments on a model system with the
expectation that the discoveries can be translated into more complex systems.
The model system can be, e.g., cell cultures [22], unicellular organisms [44]
or mutli-cellular organisms [48]. The choice of model system will depend on
the question asked. If we want to identify a protein change as a result of a
certain mutation, an isolated cell culture is an appropriate model. However, if
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we aim to examine the phenotype change in an animal as a result of the same

mutation we need to use the whole animal as a model.

2.1.1 The cell

The cell is the functional and structural unit in all living organisms and is often

called the building block of life. The human organism consists of ∼ 1014 cells.
The average diameter of cells in a multicellular organism is between 10 and
30μm [68]. The DNA is contained inside the cell and is responsible for all
genetic instructions in the development and function of the cells. Through
a complex system of chemical signals the cells divide and differentiate into
building blocks of different parts of an organism.

Living organisms are built up by cells, therefore, a defect in any or multiple

cells will affect the entire organism. For example, in tumors, the cell cycle is

disrupted and this is causing the individual cells to grow uncontrollably. This

leads to failure in regulating the tissue growth in an individual. The lack of

control in growing tissue may cause the tumor to invade and destroy adjacent

tissues, causing malignancy. By studying how and why the cells start to lose

control of their cell cycle, it is possible to get a better understanding of the

causes of cancer tumors. For all types of diseases, investigating on a cellular

level will provide information of the cellular mechanisms of the disease.

2.1.2 The zebrafish

The zebrafish (Danio reiro) is a very good model organism for vertebrate de-

velopment. The zebrafish embryos develop externally and therefore all stages

of the development can be easily viewed and manipulated. The organization

of the embryo is simple and the body is transparent, making it easy to study

by microscopy. In addition, the embryonic development is very rapid. After

5-6 days post-fertilization (dpf) all major organs are present in the larvae. Fur-

thermore, after 3-4 months the zebrafish is able to generate new offspring. A

female zebrafish produces hundreds of eggs each week. The zebrafish genome

has been fully sequenced, and many transgenic lines with different mutations

are available. All these features make the zebrafish an ideal model organ-

ism for studying organ development and pathways related to human disease

[6, 59].

2.2 Microscopy

Optical microscopy is a technique used to magnify small objects, making it

essential for the study of cells or small organisms. Visible light and a system

of lenses, is used to magnify the sample. All the images used in this thesis are
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acquired with some type of microscopy. A brief introduction to the different

types of microscopes is presented in this section.

2.2.1 Bright field microscopy

In bright field microscopy white light is transmitted through a sample and the

differences in absorptions are visualized. Only specimen that have properties

that affect the amount of light that passes through can be visualized with this

type of microscope. The setup consists of a light source, a condenser lens

that concentrates the light onto the specimen, an objective lens that collects

the light and magnifies the sample, and a detector consisting of oculars or a

camera [9]. Many unstained cells are transparent and therefore have little con-

trast in bright field microscopy. Staining adds color to a sample and enhances

contrast. Unfortunately, many dyes are toxic and can only be used with fixed

(dead) cells, thus limiting the use of bright field microscopy.

2.2.2 Fluorescence microscopy

In fluorescence microscopy a sample is irradiated with a specific band of

wavelengths. These wavelengths are absorbed by fluorophores and light of

longer wavelengths are emitted. Through optical filters only specific wave-

lengths of the emitted light reach the detector (see Fig. 2.1). In fluorescence

microscopy, the use of a fluorophore capable of emitting light in the detectable

visible range, defined by the filters, is required to visualize the sample [58].
In contrast to bright field microscopy, where the sample is observed together

with the incident light, fluorescence microscopy makes use of the difference

in excitation and emission wavelengths to block the incident light. This results

in an image with high contrast between sample and background.

2.2.3 Confocal microscopy

In a wide field fluorescence microscope (Sec. 2.2.2) the entire sample is il-

luminated at the same time, all the emission from the specimen is collected

including the unfocused background light. A confocal microscope eliminates

the out of focus light by using point illumination and a pinhole in an optically

conjugate plane in front of the detector. In order to create an image the fo-

cused spot of light must be scanned across the specimen. The use of a focused

spot of light enables the control of imaging different depth of the specimen.

By imaging several different focal depths a 3D image can be acquired [53].

Confocal microscopy poses several advantages over conventional wide field

optical microscopy: reduction of information outside the focal plane, depth of

field control and the ability to collect serial optical sections.
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Figure 2.1: Simplified diagram of a fluorescent microscope setup.

2.2.4 Point spread function

In microscopy, a point source or point object will be seen as a blurred spot in
the acquired image. The point spread function (PSF) describes the relationship
between the point object and the blurred response produced in the microscope.
An image from a microscope consists of a sum of all PSF from the point
objects in the scene. A wider PSF will decrease the resolution in the acquired
image.

The PSF differs between different microscopes and microscopy techniques.

More blurring is usually seen in the z-direction (axial) than in the x− y direc-
tion (lateral). Confocal microscopes decrease the size of the PSF in all di-
rections, i.e., improving the resolution in all directions. Even though the axial
resolution is improved, it is still lower than the lateral [7]. If the PSF of the mi-
croscope is known, deconvolution methods can be used to reduce the blurring
effect caused by the PSF [74].

2.2.5 Optical projection tomography

Optical Projection Tomography (OPT) was invented by Dr James Sharpe at
the Medical Research Council, Human Genetics Unit, in Edinburgh 2001 [63].
OPT combines conventional light microscopy with tomography to acquire 3D
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images of samples that are too large (>1mm) to be imaged with confocal mi-

croscopy. In Computerized Tomography (CT), images are acquired from dif-

ferent angles of a sample and combined to produce a 3D image [32]. CT has

been used with X-ray images for a long time, but in OPT a conventional light

microscope is used. By imaging the whole sample with a large depth of field,

keeping the whole sample in focus, specimen between 1 and 15 mm can be

reconstructed in 3D. This technique can also be combined with staining tech-

niques to label internal structures and complex gene activity.

2.3 Labeling techniques

Cells and cellular structures are often colorless or transparent making them

hard to see in a microscope. Labeling techniques can be used to enhance, e.g.,

specific detection events, parts of a cell, cell populations or tissues.

2.3.1 Fluorescent labels

In order for a sample to be visible in fluorescence microscopy it must be fluo-

rescent. This can be done by using a fluorescent stain or through the expression

of a fluorescent protein. Sometimes the intrinsic fluorescence of a sample can

also be used, called autofluorescence.

Some fluorescent stains consist of molecules that are intrinsically fluores-
cent and can bind to biological molecules of interest, e.g., DAPI binds to DNA
and labels the nucleus of a cell [33]. Immunofluorescence is an antibody-based
labeling technique. A highly specific antibody, conjugated to a fluorophore,
binds to its antigen and labels specific proteins or molecules within the cell.
An alternative approach is to use a secondary antibody that is conjugated to
a fluorophore and binds specifically to the unlabeled primary antibody, raised
in another species [34].

The green fluorescent protein (GFP) produced by the jellyfish Aequorea
victoria is commonly used in labeling. GFP emits bright green light when
exposed to blue light. The gene for the production of GFP has been isolated
and chimeric genes, artificial genes consisting of fragments of unrelated genes
or other DNA segments, can be constructed of the GPF gene and a gene of
interest. This makes it possible to have an in vivo fluorescent protein that can

be followed in a living system [69].
In DNA and RNA analysis, a small number of target sequences must be ac-

curately detected among a large background of irrelevant nucleic acids. Pad-

lock probes together with rolling-circle amplification (RCA) exhibit very high

specificity and are a good tool for this type of task [5]. Padlock probes are

oligonucleotides that become circularized when an appropriate target DNA

or RNA sequence is present, see Fig. 2.2(a-c). The reaction is highly specific

since it requires a perfect match at both ends of the probe to join the ends and
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Figure 2.2: Overview of padlock probes with rolling-circle amplification. (a) Target

DNA. (b) The target DNA is made single stranded and padlock probes are added. (c)

The target-matched padlock probes are circularized after perfect match. (d) Amplifi-

cation of the signal through rolling-circle amplification, and subsequent detection by

fluorescently labeled oligonucleotides

after ligation produce a circularized probe around the target sequence. RCA is
a process of synthesizing multiple copies of circular DNA or RNA by repli-
cation. When the padlock probe has ligated and formed a circular DNA or
RNA strand, RCA will create a long strand of multiple copies of the first cir-
cle. These copies are detected by fluorescently labeled oligonucleotides creat-
ing a strong fluorescent signal, see Fig. 2.2d. Another advantage is that when
multiple probes are added simultaneously, unlike Polymerase Chain Reaction
(PCR), cross-reactions are unlikely to arise and the risk of false products are
low [5].

In situ Proximity Ligation Assay (PLA) can be used to visualize proteins,

protein-protein interactions, and post-translational modifications in cells and

tissues. The method was developed by Professor Ulf Landegren et al., and

commercialized by Olink Biosciences (Uppsala Science Park, Sweden) [66].

PLA is a method that uses two primary antibodies that recognize the target

antigen or antigens of interest. Secondary antibodies, PLA probes, with a

unique short DNA strand attached to it, bind to the primary antibodies. When

the PLA probes are in close proximity they will, together with added connec-

tor oligonucleotides, form circular DNA. After ligation, similar to the padlock

probes, the circular DNA strand will be amplified with RCA and produce a

strong signal, when detected. Since the in situ PLA technology requires pos-
itive identification of two different proteins or epitopes on the same protein,
specificity is enhanced compared to assays that depend only on single binding
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recognition [39]. When two primary antibodies are used in in situ PLA, they

must be raised in different species.

2.3.2 Bright field labels

Many different light absorbing and light scattering stains exist for bright field

microscopy. Here we focus on two stains used in this thesis work.
Alcian blues are a family of polyvalent basic dyes. Alcian blue 8GX is the

most commonly used member of the family. The dye can be used to visual-

ize glycosaminoglycans with a light or electron microscope [28]. The stain

is commonly used in histochemistry and cytochemistry. Furthermore, alcian

blue can be used as a bone marker in zebrafish [17].
Similar to PLA in fluorescence microscopy, Zeiba. et. al developed

a method for the use of PLA with bright field microscopy. Horseradish

peroxidase (HRP) is conjugated to oligonucleotides similar to fluorescent

molecules in the fluorescence-based readout. HRP/NovaRED uses enzymatic

conversion of NovaRED substrate by HRP to a colored product visualizing

the proteins in situ. The bright field PLA shows equivalent results to the

fluorescent method. The staining is compatible with conventional histologic

staining [77].

2.4 Digital image analysis

A digital image is an image represented in a computer or any other digital

device. It is a discrete representation of the continuous scene that was imaged.

Digital image analysis extracts information from a digital image through the

aid of a computer. Image processing is closely related to image analysis but

here the output is a processed image, enhanced in some way, instead of infor-

mation.
This section describes some of the general concepts in image processing

and image analysis. Some concepts and methods that are used throughout the

thesis are described in more detail.

2.4.1 Basic concepts

Every image analysis task is unique but there is a general scheme with some

fundamental steps that are common for almost all image analysis problems:
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Image acquisition Image acquisition is the process of digitizing a
scene into a digital image. This is a crucial step
since the acquired image reflects the scene and lim-
its the information that subsequently can be ex-
tracted from it. It is important to acquire the image
in such a way that it is optimally suited for the in-
formation that is intended to be extracted.

Pre-processing Pre-processing, as the name suggests, is processing
done to the image prior to analysis. This step al-
ters the image to make it more suitable for analy-
sis through, e.g., reduction of noise, normalizing in-
tensity non-uniformities, enhancing edges, aligning
images, etc.

Segmentation Segmentation refers to the process of partitioning
the image into multiple segments. Segmentation is
often used to separate objects from the background
or to identify different objects in the image. Seg-
mentation is further described in section 2.4.2.

Feature extraction Feature extraction consists of the extraction of in-

teresting features from the objects of interest in the

image. The set of relevant features has to be selected

based on the information that is of interest in the

analysis. Features can be, e.g., color, shape, size,

texture, etc.

Classification Classification is the step of separating the seg-

mented objects into different categories. For exam-

ple, a cell culture might contain large and small

cells. After segmentation, the size feature can be

extracted from each cell. The classification then di-

vides the segmented cells into groups of large and

small cells based on this size feature.

Data analysis Data analysis consists of gathering information
from the previous steps and representing them as an
information output, e.g., number of large cells vs.
number of small cells.

Evaluation Evaluation is necessary during development. This
step consists of evaluating the method and results
through statistical tools to validate the analysis. This
can be done by comparing the method with ground
truth data or a manual/visual expert analysis.
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2.4.2 Segmentation

The aim of segmentation is to divide the image into different regions that are
homogeneous with respect to certain criteria. The segments are often referred
to as objects and can be labeled with a unique number identifying the different
segments in the image.

2.4.2.1 Thresholding
Thresholding is the simplest method of image segmentation. It is a pixel-based

segmentation method, where each pixel is segmented based only on the indi-

vidual pixel value. The output from the thresholding is a binary image g(x,y)
(an image consisting of 0 and 1). A threshold value T is defined and pix-
els with values above T are considered to be part of the object in the image
f (x,y):

g(x,y) =

{
1 if f (x,y)≥ T
0 if f (x,y)< T

. (2.1)

The value T can be set manually or selected automatically from certain cri-

teria. As a guide for choosing an appropriate threshold value, an image his-

togram is often used. The image histogram p( f ) of the image f (x,y) is the
probability density function which gives the frequency of the different pixel
values in f (x,y).

Often, using a manual threshold is not the most desirable way of threshold-

ing an image. Manual input is undesired, as it is time consuming and may vary

depending on the user, and should be minimized. Many different automatic

thresholding techniques have previously been developed [61]. One commonly

used method was developed by Otsu in 1979 [52]. From the histogram, Otsu’s

algorithm selects a threshold that minimizes a weighted intra-class variance

of the background and foreground, see Fig. 2.3. The method relies on the as-

sumption that all the pixels in the image belong to either the background or the

foreground (i.e. objects). Otsu’s method of thresholding is used for separation

of foreground and background in papers I, II, III and IX.

Figure 2.3: (a) Original image f (x,y). (b) Histogram p( f ) with T representing the

selected threshold for image segmentation. (c) Binary image g(x,y) after thresholding

with value T .
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2.4.2.2 Watershed
The watershed algorithm was originally presented by Beucher and Lentuéjoul

(1979) [37] and later refined in a more efficient implementation by Vincent
and Soille (1991) [72]. The watershed segmentation is a region-based segmen-
tation method and has been extensively used in many areas of image analysis,

e.g., cell segmentation [11, 45, 73].
The watershed segmentation can be understood by seeing the image as a

landscape. The gray-level intensity represents the elevation in this landscape.

The landscape image can be, e.g., the original gray-level image, a distance

transformed image (an image containing a distance value to the nearest ob-

ject pixel or nearest background pixel) [47], or a gradient magnitude image

(edge image), see Fig. 2.4b. The algorithm can be illustrated by letting water

enter through the local minima and start to rise. A lake around a local min-

imum is created and referred to as catchment basin. When the water fronts

from different catchment basins meet they form a dam or watershed that sep-

arates the catchment basins. All that is left after the watershed segmentation

are watershed lines separating the objects, see Fig. 2.4. If objects of interest

are bright rather than dark, the image is inverted before applying watershed

segmentation.

Figure 2.4: (a) Binary image before watershed segmentation. (b) Landscape like representa-

tion of the distance transformed image. (c) Image after watershed segmentation.

Watershed segmentation is commonly used in cell-segmentation. In papers
I, II, III, IV and VI, watershed is used to separate clustered nuclei and/or to
segment the cytoplasm.

2.4.2.3 Level sets
Level set methods present a powerful tool for image segmentation [12, 13,
41, 51]. In level set methods, a level set function is defined as φ(i, j, t), where

(i, j) are coordinates of the image and t is time. At any given time the level set
function defines a contour at φ = 0 and the segmentation regions are defined

by φ < 0 and φ ≥ 0. The contour of the function evolves according to some
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partial differential equation and finally reaches a steady state, corresponding

to the final segmentation.
The Chan-Vese level set algorithm uses variational calculus to evolve the

level set function φ [13]. This method differs from most other level set meth-

ods in the sense that here the curve evolution is driven by region-based energy,

instead of edge-based energy. The method works by seeking a function that

minimizes a functional. The goal of the segmentation is to minimize the func-

tional for a given image, and the segmentation will be defined by the level set

function φ . A general form of the functional is

F(c1,c2,φ) = μ
∫

Ω
|∇H(φ(x,y))|dxdy+ν

∫
Ω

H(φ(x,y))dxdy+

λ1

∫
Ω
|I(x,y)− c1|2H(φ(x,y))dxdy+λ2

∫
Ω
|I(x,y)− c2|2(1−H(φ(x,y)))dxdy,

(2.2)

where μ , ν , λ1 and λ2 are parameters that are set by the user to fit a certain
type of image. I is the image and c1 and c2 are the averages of the image in

the regions inside and outside of the contour, respectively. H is the Heaviside
function.

H(φ) =

{
1 if φ ≥ 0

0 if φ < 0
(2.3)

The first term in (2.2) represents the length penalty term. If regions are ex-
pected to have smooth borders then this term should be heavily weighted with
parameter μ . Similarly, the second term in (2.2) is a penalty term for the total
area of the foreground, regulated by parameter ν . The third term is a variance

measure of the intensities in the foreground and the fourth term is the vari-

ance of the intensities in the background. The final segmentation is acquired

by minimizing the sum of all these terms. This should lead to a segmentation

that has a background and foreground region that are as uniform as possible.

The Chan-Vese level set method is used in paper VI to separate the cells from

the background.

2.4.2.4 Point detectors
Fluorescent biomarkers make biomolecules visible as point-like signals (PLS)

in the captured microscope image data. Large experiments of this type produce

huge amounts of data where manual detection of the signals is a time consum-

ing task. Several automatic methods to detect PLS have previously been pre-

sented [65]. A PLS in this context can generally be defined as a small object,

relatively higher in intensity than the image background. For a point detector

to work well the method should be robust to different intensities and sizes of
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the signals. In addition, the method should be able to distinguish individual

signals that are clustered together.
A few of common point detector methods, with which we compare our

novel method in Paper V, are described here in more detail.

TopHat transformation. The morphological TopHat transformation (TH)
makes use of the difference between a morphologically opened image and
the original image [49]. The TopHat transformation to find signals of high
intensity is defined by

ITopHat = I −maxB(minB(I)), (2.4)

where I is the input image and maxB is the maximum in a neighborhood de-
fined by structuring element B, and minB is the minimum. The size and shape

of the structuring element is crucial for the performance of the method. The

signal to be detected should fit inside the structuring element for the method

to enhance the signal. The structuring element must take the PSF of the micro-

scope into consideration. Often the signal is more smeared along the axial (z)
direction than the lateral (x− y), and the structuring element should therefore

be larger in the axial direction. The output from the algorithm is an image con-

taining all the local maxima of the input image that fit inside the structuring

element.
Difference of Gaussian. The Difference of Gaussian (DoG) is an edge and

signal detection filter that works by blurring the image with a wide and nar-

row Gaussian kernel [60]. The result after applying the wider Gaussian is

subtracted from the result after applying the narrow Gaussian and an image

with enhanced signals is created. Setting the different sizes of the two Gaus-

sians is crucial to get a good detection of signals of a certain size. A 2D DoG

proposed in [35] has the following form:

DoGσ ,γ(x,y) =
1

2πσ2γ2
exp

− x2+y2

2γ2σ2 − 1

2πσ2
exp

− x2+y2

2σ2 , (2.5)

where σ is the standard deviation of the wide Gaussian and γ (0 < γ < 1) is
the ratio of the standard deviation of the wide and narrow Gaussian. The zero
crossing of the DoG is important when choosing the correct value of the two
Gaussians. Setting the equation DoGσ ,γ = 0 a relationship between radius r,

distance to zero crossing, and σ for any value of γ (0 < γ < 1) can be derived.

r = 2γσ

√
− lnγ
1− γ2

, (2.6)

σ =
r

2γ

√
1− γ2

− lnγ
. (2.7)
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From (eq. 2.7) it is easy to get the σ from a desired radius r of the zero

crossing. The γ parameter can be used to regulate the valleys of the DoG.
A high value of γ will result in narrow valleys and will make the filter smaller
and consequently better at separating signals that are close in space. On the
other hand a low value of γ will produce wider valleys that provide more
smoothing.

In [35] the DoG is defined in 2D only. In paper V we use the same derivation
as above to yield a relationship between σ and the desired distance to the zero

crossing r in 3D.
Multiscale Product. The Multiscale Product (MP) was proposed by Olivo-

Marin [50] and detects signals with a Multiscale Product from the á trous
wavelet decomposition of the original image. The original method was pro-
posed in 2D but was extended to 3D in [71]. The method is designed to detect
signals that resemble a 3D Gaussian intensity profile of a given lateral size.
The 3D confocal PSF can be approximated by a 3D Gaussian [76]. Since the
PSF is often anisotropic, an anisotropic 3D Gaussian is required. In [71] the
axial to lateral ratio has been set to 3, a typical ratio in confocal microscopy.
This gives

G(σi) =
1

3σ3
i (2π)3/2

exp

(
−1

2

(
x2

σ2
i
+

y2

σ2
i
+

z2

9σ2
i

))
. (2.8)

A Gaussian scale space gi is produced, by convolving the image with Gaussian

filters of different widths. A scale base, b, is used to define the different widths
of the the Gaussian,

σi = b
√

2
i
. (2.9)

The last step consists of multiplying the differences in the Gaussian scale

space, resulting in an image, IMP, with enhanced contrast where signals are
present,

IMP = (g−g0)(g0 −g1)(g1 −g2). (2.10)

2.4.3 Tomographic reconstruction

When imaging a sample in 2D, underlying structures will be obscured by the
overlaying structures. Tomography is a non-invasive 3D imaging technique
that allows visualization of internal (underlying) structures by acquiring pro-
jection images from several different angles. There are many different tomog-
raphy techniques available, e.g., X-ray Computed Tomography (CT), Single-
Photon Emission Computed Tomography (SPECT) and Positron Emission To-
mography (PET) [16]. Reconstructing the 3D image can be done by backpro-
jection (Sec. 2.4.3.1) or with iterative methods (Sec. 2.4.3.2).
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2.4.3.1 Filtered Backprojection
Backprojection is a direct implementation of the inverse radon transform [56].

Each single projection corresponds to an absorption pattern for a specific di-
rection through the sample. The projection data is projected back across the
image in the same direction it was acquired. This is done for all angles used

in the acquisition, Fig. 2.5.

Figure 2.5: (a) Projections p(s,θ) from image f (x,y). (b) Backprojection of p(s,θ)
to reconstructed image f̂ (x,y)

.

We define p(s,θ) as the line integral of the image f (x,y), along a line with

distance s from the origin and an angle of θ off the x axis. Backprojection
assigns an equal weight to all the pixels contributing to a particular projec-
tion. This process is repeated for all projections at all angles producing the
reconstructed image f̂ (x,y) [8].

f̂ (x,y) =
∫ ∫

p(s,θ)δ (xcosθ + ysinθ − s)dsdθ , (2.11)

where δ (Dirac delta function) is nonzero along the line xcosθ + ysinθ = s.
This method produces a blurred image with low contrast as can be seen in
Fig. 2.7b. In order to reduce the artifacts associated with the backprojection,
a method called Filtered Backprojection (FBP) [8] is commonly used. The
FBP consists of applying a filter to each projection before performing the
inverse radon transform. One commonly used filters is the Ramachandran-
Lakshminarayanan (Ram-Lak) filter [57]. This filter suppresses low frequen-
cies and amplifies high frequencies. Some other commonly used filters are
Shepp-logan, low-pass cosine and generalized Hamming [15]. Since convo-
lution is computational intensive, in practice FBP is performed in the fre-
quency domain. The frequency responses for the different filters can be seen
in Fig. 2.6. The result of the FBP, with the Ram-Lak filter, can be seen in
figure Fig. 2.7c.
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Figure 2.6: Some common filter functions used in Filtered Backprojection. 1=Ram-

Lak, 2=Shepp-logan, 3=Low-pass Cosine, and 4=generalized Hamming

Figure 2.7: (a) Original Shepp-Logan phantom (b) Reconstruction with backprojec-

tion (c) Reconstruction with Filtered Backprojection

2.4.3.2 Iterative reconstruction
Iterative reconstruction methods are commonly used in tomographic recon-
struction today. These methods are more computationally expensive but pro-
duce better reconstructions than the FBP in some cases, e.g., if there are a
small number of projections, or if the projections are not evenly distributed
over 180◦ or 360◦. Furthermore, the iterative methods make it easier to com-
pensate for ray bending from refraction and attenuation along the ray paths
[32].

The basic principle of the iterative methods consists of constructing a sys-
tem of linear equations according to the imaging geometry and physics. The
system of equations is often overdetermined. In most cases, it is not possi-
ble to exactly solve the equation system. Therefore, iterative algorithms that
converges to the correct solution are used. There are numerous methods avail-

29



able to solve these types of system for tomographic reconstruction, e.g., ART,

SIRT, SART, MLEM, and OSEM [4, 23, 29, 30, 36].
One commonly used iterative method for tomographic reconstruction is the

Maximum Likelihood Expectation Maximization (MLEM) algorithm [24].
The MLEM algorithm computes

xn+1
i =

xn
i

∑p Api
∑
p

[
Apiyp

∑i′ Api′xn
i′

]
, (2.12)

where xn
i is the estimated ith pixel of the reconstructed image in the nth iter-

ation, and Api is the element in the system matrix describing the relationship
between pixel i in the image and the projection p. The variable yp is the mea-

sured projection pixel at position p.
The system matrix contains the pixel coverage for each projection that

reaches the detector. Depending on the system set-up used to acquire the im-
ages, the system matrix can be constructed to optimally represent the path for
each ray passing through the sample.

A method called Ordered Subset can be used to optimize iterative methods.
The projection data is grouped into an ordered sequence of subsets. The iter-

ative reconstruction is then performed on the subsets. Using Ordered Subsets

Expectation Maximization (OSEM) provides a significant increase in speed

compared to MLEM [30]. Furthermore, the quality of the reconstruction from

OSEM is comparable with reconstruction from MLEM. In paper IX, OSEM

is used in the tomographic reconstruction of zebrafish.
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3. Methods and applications

In this section the methods and applications of the included papers are pre-

sented briefly. In addition, some further development of previously published

results are presented. The work can be divided into two groups; the first part

focuses on image analysis on cells, and the second part on image analysis on

zebrafish.

3.1 Digital image cytometry

Digital image cytometry is the field in image analysis that deals with auto-

mated measurements and extraction of quantitative data from images of cells.

3.1.1 Cell segmentation

Cell cultures, as well as cells in tissue, always show a certain degree of vari-

ability, and measurements based on cell averages will miss important infor-

mation contained in a heterogeneous population. Single cell analysis performs

analysis on each individual cell instead of an average over the image. The cell

segmentation is therefore a crucial step in single cell analysis. Depending on

the sample type and the staining the difficulty in segmentation may vary, e.g.,

tissue samples generally contain more clustered cells as compared to cultured

cells making the segmentation increasingly difficult.

3.1.1.1 Nucleus segmentation
In fluorescence microscopy, DAPI is commonly used to stain cell nuclei, see
Fig. 3.1. If the nuclei are similar in intensity level, a threshold is often good
enough to separate the cells from the background. Otsu’s method of threshold-
ing works well due to the assumption that only background and foreground is
present in the image. Sometimes, dark areas inside the nuclei appear as holes
after the threshold. These holes can be filled using a flood fill algorithm. The
algorithm floods the background from all background image border pixels.
All pixels reached by the flood fill will be set as background while all pixels
not reached by the flood fill will be set as objects. This method of separating
nuclei from background is used in Paper I, II and III.

Sometimes Otsu’s thresholding method does not provide a suitable initial

separation of foreground and background. This is the case in paper VI where

31



(a) (b)

Figure 3.1: (a) Contour from segmentation by Otsu’s threshold. (b) Contour from

segmentation by Chan-Vese level set.

we used the Chan-Vese level set method to detect the objects in the image

[13]. The Chan-Vese method and Otsu’s method are based on the same idea,

but Chan-Vese is trying to solve a local minimization problem rather than, as

for Otsu, a global one. To get the level set method to work optimally for nuclei

images we have to adjust the parameters of the level set. The weight for the

area term, ν , is set to zero since we don’t want to have a restriction on the

total area of the nuclei. We set some weight on the first term, μ , to achieve
smoother borders of the segmentation. There is some variation in the inten-
sities of the nuclei while the background is more uniform. Therefore we use
a lower weight on the foreground than the background, λ1 < λ2. This allows

more variation of the intensities inside the cell than outside. In Fig. 3.1, a com-

parison of the initial separation of foreground and background with Otsu’s and

Chan-Vese level set can be seen.

The binary image from the initial separation of the nuclei and background is
transformed to a landscape-like image using a distance transform [47]. Seeds,
entry points for the water in watershed segmentation, representing the dif-
ferent nuclei, are needed in order to separate clustered nuclei into different
objects. The seeds are the local maxima of the distance transform. Due to im-
perfect circularity of the nuclei, distance transformation may lead to multiple
seeding points for the same nucleus. This will result in over-segmentation.
The h-maxima transform is able to suppress maxima whose height is smaller
than a given threshold [67]. By suppressing all small maxima several adjacent
local maxima are merged into one regional maximum, i.e., one seed point
for each nucleus is achieved. This method of separating clustered nuclei with
watersheds is used in Papers I, II, III and VI.
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3.1.1.2 Delineation of cytoplasm
In single cell analysis it is necessary to assign a detected fluorescent probe to

a specific cell. Biomolecules are not always contained inside the nucleus, in-
stead located in the cytoplasm. If no cytoplasmic or membrane stain is present,
as is often the case, the delineation of the entire cell must be made with some

assumptions. One commonly used assumption is that a signal belongs to its

closest cell nuclus [11]. In paper I we examine how well this segmentation

(NCS) performs in comparison to manual segmentation and a segmentation
constrained by a cytoplasmic stain (CS). The main goal of the segmentation

is to, in the end, accurately count the number of signals per cell rather than

achieving a perfect delineation of the cytoplasm.
The evaluation of the segmentation methods consists of three parts. The

first part is the segmentation evaluation of the manual segmentation and the

two automatic segmentation methods (NCS and CS). In the second part we

evaluate the single cell analysis based on the segmentation NCS on cells with
known distribution of mutated mtDNA (mitochondrial DNA). In the third part,
the same single cell analysis method is compared to a biomedical method,
Polymer Chain Reaction-Restriction Fragment Length Polymorphism (PCR-
RFLP).

To evaluate the three different cytoplasmic segmentation methods a frame-
work for evaluating segmented images presented by Udupa et. al. [70] was
used. A total of 56 cells were used in the evaluation. Accuracy (agreement
with truth), precision (reproducibility) and efficiency (time) are compared
for the different segmentation methods. Accuracy is based on three different
quantities: False Negative Area Fraction (FNAF), False Positive Area Frac-
tion (FPAF), and True Positive Area Fraction (TPAF). We define S the result

from automated segmentation, and compare it to St , the true segmentation.
There is no true segmentation available, therefore we use one of the manually
segmented results as St . FNAF is the fraction of St that is not included by S.
FPAF is the area that is falsely identified by S as a fraction St . In our case, the

parts of S that overlap with the image background, as defined in St , are not a
part of the FPAF because the background does not give rise to any signals and
hence will not affect the calculations of signals per cell. TPAF describes the
total amount of cytoplasm defined by S that coincides with St as a fraction of
St . The precision is a measure of reproducibility and naturally the automated

methods in this comparison will always reproduce the same results. The effi-

ciency measure consists of the time spent by computer or human to achieve

the segmentation.
Regarding the accuracy, there are small advantages seen in the manual de-

lineation for the TPAF and FNAF. The biggest difference can be seen in the

FPAF, where both automatic methods have significantly higher values. On the

other hand, the precision is lower for the manual delineation, due to a high

degree of inter and intra observer variability, see Table. 3.1.
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Table 3.1: Comparison of segmentation methods. O1a is the first manual segmenta-
tion performed by observer 1. O1b is the second manual segmentation performed by
observer 1. O2 is the manual segmentation performed by observer 2. NCS is segmen-
tation without cytoplasmic stain and CS is the segmentation with cytoplasmic stain.

Method Accuracy Precision Efficiency

vs. TPAF FNAF FPAF (%) Cells/min

NCS O1a 0.87±0.03 0.14±0.03 0.12±0.04 100 30

CS O1a 0.85±0.03 0.16±0.03 0.11±0.03 100 30

O2 O1a 0.84±0.02 0.16±0.02 0.02±0.01 79 1

O1b O1a 0.90±0.02 0.10±0.02 0.03±0.01 84 1

The single cell analysis used in this evaluation is based on the cytoplasm

segmentation without a cytoplasmic stain NCS. Mutation load is the propor-
tion of mutated mtDNA compared to wild type mtDNA per cell. Two different
cell cultures where used to evaluate the single cell analysis; a co-culture of
cells with either no or all mtDNA mutated and a culture containing cells with
approximately equal number of mutated and wild type mtDNA. The results
from the single cell analysis on the co-culture shows distinct distributions at
the extremes, indicating that we mainly have cells with either no or all mtDNA
mutated. For the second cell culture we observe a peak close to 50%, which is
expected.

The quantification of mtDNA mutation with the image-based method is

compared to quantification performed by PCR-RFLP. In Paper I, we show

that the results from the two different quantification methods are compara-

ble. Furthermore, in Paper II the image-based method is compared to another

biomedical method, PCR-RFMT, a PCR-RFLP mutation load assay based on

melting curve analysis. The result shows good agreement between the image-

based method and PCR-RFMT.
The measurements of mutation load from the image-based single cell analy-

sis without a cytoplasmic stain shows good agreement with the a priori known
mutation loads for the two different cultures. In addition it shows good agree-
ment with the measurements performed by PCR-RFLP and PCR-RFMT. The
presented automatic image-based single cell quantification provides a good
segmentation method that agrees with the predictions.

The described method for single cell analysis is used in Papers I, II, III and
VI.

3.1.1.3 3D cell segmentation
Cell segmentation in 2D is often enough, but some applications, such as exact
localization of signals, require a segmentation of the cell in 3D. In Paper IV a
semi automatic method is used to delineate the cell nuclei in 3D. The method
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was applied to biological data studying the localization of Smad2-Smad4 pro-

tein complexes in relation to the nuclear membrane over time.
The algorithm starts by allowing the user to define background and object

seed points through a graphical user interface. The seeds are marked on a
maximum intensity projection of all z-slices in the channel containing the nu-
clei. No extensive requirements on precision are needed in the marking pro-
cess. The volume image is smoothed by using anisotropic diffusion [55], that
smooths while preserving the important edge information. The edge informa-
tion is crucial since it will be used as a merging and splitting criterion. A 3D
Sobel filter that approximates the gradient is then applied on the smoothed
image. The Sobel filter is applied in all three dimensions and combined to an
edge enhanced image. A seeded watershed algorithm is applied to the edge
image. The seeds will grow and eventually meet at the borders, which are in-
tensity maxima of the edge image. The texture inside the nuclei often produce
maxima in the edge image resulting in more than one region for each object,
i.e., oversegmentation. A merging criterion that preserves the strongest edges
is applied to the oversegmented image [73].

The signal detection is performed with the method 3DSWD, described in

section 3.1.2.2. The subnuclear positions of the signals are of interest and

therefore subnuclear regions must be defined. A distance transform from the

borders of the nuclei is applied. The distance at the border will be zero, and the

inside if the nucleus will have negative distance values while the outside will

have positive distance values. From the distance transform there will be shells

of different distance values in and around the nucleus. The number of signals

detected in each shell is measured. Since the volumes of all the shells will

differ, a normalization is done with the shell volume, resulting in a concentra-

tion measurement. For a given time point, a measure of signal concentration

in each shell for each individual nucleus is obtained.
Paper IV provides a method for detecting and localizing of Smad-

complexes inside the cell over time. The results show that the Smad

complexes are formed at a very early time point after stimulation. However,

more data is needed to draw conclusions regarding the their spatial location

inside the cell over time.

3.1.2 Point-like signal detection

Fluorescent markers are often used to identify subcellular structures such as

protein complexes, chromosomes, genes and mutations in genes. There are

many different methods utilized to detect these subcellular structures, but the

images produced share many similarities. The fluorescent biomarkers make

detection events visible as point-like signals (PLS) in the captured image data.

Quantification of these PLSs is an essential part of analyzing these types of

images. There are many algorithms that are developed for detecting PLSs and
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finding the optimal algorithm will depend on the application and the type of

images acquired [65].

3.1.2.1 Counting vs measuring intensity
In paper III, we design and perform a test to evaluate ways of quantifying the
amount of fluorescent markers present in an image. The first approach consists
of measuring the number of detected signals while the other approach consists
of measuring the total intensity of the detected signals.

The enhancement of the signals was performed with a Laplace filter. The
enhanced image was thresholded manually and each object after thresholding
was counted as one signal. In the intensity measure, instead of counting the
number of detected signals, the sum of all intensities in a neighborhood around
the center of a detected signal is used as the measurement. A third method that
could have been tested was to sum all intensities in the channel that contains
the signals. This option would work in an ideal case, but in practice the pres-
ence of autofluorescence makes this measurement very unreliable.

We constructed artificial data with an increasing concentration of signals
to evaluate the signal quantification using the two different methods. PLS
were created by randomly distributing values in an image. To simulate a point
spread function the signals were filtered with a Gaussian filter. In addition,
Gaussian noise was added to the image.

The amount of signal was quantified with both measurements. In the low

concentration region both methods give similar and reasonably accurate re-

sults. However, when reaching a high signal concentration, the intensity mea-

surement gives better results. The results are in line with the logical assump-

tion that, at high concentration, signals are difficult to separate due to cluster-

ing. For clustered signals, the intensity measurement will compensate for the

missed detections by quantifying the intensity in a neighborhood around the

detected signals. Furthermore, the intensity measurement still depends on the

detection of a signal, and therefore at extremely high concentrations the mea-

surement deviates from the true number of signals. This is an ideal case where

none of the signals are saturated. If a lower bit depth was used many clustered

signals would result in saturation, reducing the accuracy of the result from the

intensity measure.

In conclusion, when there are many clustered signals present, using an in-
tensity measurement provides more accurate results. On the other hand, when
working with well separated signals, it is more suitable to count the number
of signals. The intensity of the signals will differ in a sample and these differ-
ences will affect the intensity measure more than only counting the signals.
Furthermore, it is easier to interpret and evaluate data that gives information
on the number of detected signals rather than an intensity measure.
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3.1.2.2 3DSWD
In many applications the accuracy of PLS detection is of high importance.

The use of a Laplace filter, as in the previous section, is sometimes not good
enough to get the desired detection accuracy. In Paper V we present a novel
method for robust 3D signal detection in fluorescence images, called 3DSWD.

The method is compared to three commonly used methods; TopHat, DoG and

MP, all described in Sec. 2.4.2.4.

3DSWD
The idea of the 3DSWD is based on a method called Stable Wave Detector
(SWD) that is used for landmark detection in 2D images [19]. The main idea
of the 3DSWD is the combination of two steps in the detection of a signal: a
detector and verifier/separator. The aim of the detector is to enhance regions
with point-like source signals. The verifier/separator aims to verify if a high
value from the detector is a true signal by examining the slope around the
point. The verifier/separator is also used to separate signals that are close in
space.

We performed several tests to evaluate the performance of the 3DSWD.
Two tests were performed on artificial data: robustness to noise, and resolv-
ing power and sensitivity to signal intensity. The tests on robustness to noise
showed that the 3DSWD had the highest number of True Positive (TP) and
the lowest total amount of False Positive (FP) signals among all methods.
From these tests the 3DSWD shows better robustness to noise than the other
methods used in the comparison. We also showed that the 3DSWD is better
at resolving signals that are in close proximity, and less sensitive to signal
intensity differences, compared to the other methods.

Tests on artificial images provide a good tool to evaluate the differences
in performance between the methods. However, using only artificial data is
not enough to prove that they work in a real application; the methods need to
be evaluated on real images. A simple GUI was constructed to allow experts
from the application field to mark true signals in real fluorescence data. These
manual signal detections were compared with the results from TopHat, MP,
DoG and 3DSWD. Precision, recall, and F-score were used to quantify the

performance of the different methods. Precision is the fraction of the detected
signals that are actually true signals, while recall is the fraction of the true sig-

nals that are detected. The F-score is a weighted average of the two measures
precision and recall. The precision for MP, TopHat and DoG are all higher

than for the 3DSWD. However, when comparing the recall the 3DSWD out-
performs the other methods. For the F-score, which is considered an overall
measure of the method performance, the 3DSWD has the highest value among
the tested methods. In addition, the F-score of the inter and intra-observer
variability is in the same range as the 3DSWD.
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Evaluation of verifier/separator step to other methods
Each of the conventional methods used in the evaluation could be used

together with a verifier/separator for performance improvement. We have
tested these methods on artificial data with and without the addition of a
verifier/separator. We created 100 artificial images with increasing Gaussian

noise, σ ranged from 0.04 to 1.24 and mean of 0. Similar to as we did
in paper V, 3D signals were created with an anisotropic Gaussian. All
parameters were optimized individually for each method. The strength of
the verifier/separator is that it makes it possible to decrease the threshold to
detect weaker signals without picking up additional false signals. If we use
the same threshold for the methods with and without the verifier/separator no
increase in TP will be seen so we decrease the threshold with 5% when using
the verifier/separator. The results for all the methods can be seen in Fig 3.2.

If we look at the performance of all the methods without a verifier/separator

we can see that the 3DSWD has the highest robustness to noise. The DoG has

a slightly poorer performance than the 3DSWD. TopHat seems to be the least

robust method to noise in these tests. The ranking order of performance of the

methods is the same as in Paper V, where Poisson noise was used.
There is a performance enhancement for all methods when the

verifier/separator step is added. The DoG has a small decrease in the FP and

in addition an increase in the TP. The enhancement of the TopHat is similar

to that of the DoG when the verifier/separator is added, with the difference

that the FP has decreased more for the TopHat. The enhancement for the MP

differs slightly from the other two methods. There is no significant increase in

the number of TP, but there is a clear decrease of for the FP. With the addition

of the verifier/separator to the DoG there is no significant difference between

the signal detection performed by DoG and the 3DSWD. This is no surprise

since the DoG is very similar to the detector used in 3DSWD. For these

tests the combination of DoG-Verifier/separator and 3DSWD performed

best. However, there is no method that will work perfectly on all types of

images. In Paper VII we use a combination of MP and verifier/separator to

detect neuron cells. We concluded from visual evaluation of result from

different methods that this combination produced optimal signal detection

performance. These neuron cells had a more flat peak than regular PLS and

they varied in size, and that could be the reason why MP in combination with

verifier/separator worked best in this case.
To conclude, the presented method, 3DSWD, has shown better performance

than the conventional methods that were used for comparison. The concept of

using both a detector and verifier/separator makes the signal detection more

stable. The detector enhances regions with point-like source signals while the

verifier/separator, by examining the direction of the slope around each de-

tected point, verifies if a high value from the detector in fact is a true signal.

We also show that the addition of a verifier/separator to other methods can

improve their performance. Furthermore, the verifier/separator used in these

38



(a) (b)

(c)

Figure 3.2: Comparison of signa detection using TopHat (a), MP (b) and DoG (c)

with and without a verifier/separator. In each graph the result from the 3DSWD is

also shown. The upper part of each diagram (TPr) represent the ratio of correct de-

tected signals and the lower part of the each diagram (FPr) represent the ratio of false

detected signals. Error bars represent a 99% confidence interval.

evaluations consist of a sine function, but could be substituted with any type
of derivative filter. It should also be added that, if the signal concentration is
very high and there are clustered and saturated signals the performance of the
verifier/separator will be reduced.

3.1.2.3 Increasing the dynamic range
Sometimes the concentration of the biomolecular events detected by point-
like signal is extremely high and the signals are saturated. Saturation means
lost information in an image and accurate signal measurement is impossible,
limiting the dynamic range of event detection. Changes can be made in the
concentration of the detection probe, reporting on the analyte, to detect only
a fraction of the occurrence. However, this will not work in heterogeneous
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samples such as tissue sections, where the amount of a specific protein may

vary greatly between neighboring cells.
In Paper VI we developed a method to increase the dynamic range of the

PLA-based protein detection in order to allow detection of both abundant and
scarce target molecules in the same sample. Reagents that give rise to three
variants of the reporter DNA circles are added in a concentration ratio of
1:10:100. For any target molecule the probability of giving rise to each variant
of Rolling Circle Product (RCP) is thus 1:10:100/111. The RCPs are detected
with different fluorescent labels and the distinct signal concentrations can then
be visualized in different colors. If the detection reaction is saturated in one
color, then less abundant RCP detectable with another fluorophore can be used
to quantify signals, thereby extending the dynamic range of an assay. The ap-
proach is not limited to in situ PLA, but can be applied to other RCA-based

methods such as Immuno-RCA and padlock probes [26, 38, 62]. To evaluate

this approach for increasing the dynamic range, we used the 3DSWD, de-

scribed in Paper V. The cell and cytoplasm segmentation was done as previ-

ously described in Sec. 3.1.1. We performed the analysis on a cell line, on

which we had produced a low to extremely high signal concentration for

demonstrational purposes through a varying antibody concentration. Three

oligonucleotides (A, B and C in Fig. 3.3) of the concentration ratio 100:10:1

were used together with three different fluorescent labels. The signal quantifi-

cation in the different color channels can be seen in Fig. 3.3.

Figure 3.3: The number of signals detected for each oligonucleotide at different anti-

body concentrations (13-20 cells per data point; error bars show standard deviation).

We also analyzed a heterogeneous tissue sample, wherein the amount of

target protein varied greatly. By using the proposed method of extending the

dynamic range we could measure locally abundant and locally scarce target

protein at the same time. Without the dynamic range extension, measuring
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the abundant target molecule could only be done at the expense of loss of the

scarce signals, and vice versa (see Fig. 3.4).

Figure 3.4: Result image from increased dynamic range showing the number of sig-

nals for each cell. The colors represent the amount of signals detected in each cell. An

increased dynamic range enables the possibility of measuring both locally abundant

(red nuclei) and locally scarce (blue nuclei) signals in the same sample.

3.1.3 Software

Development of new algorithms is the core of research in image analysis.

The community that in the end will benefit from use of the novel methods, in

this case the biomedical community, is not always able to use novel methods

easily. The new algorithms developed are often just available as source code

for some specific language, making it difficult for an external user to try them.

Developing stand-alone applications that can be used by external users in the

community provides a great opportunity to get several evaluators of the newly

developed methods. The evaluation will be on real data, in large scale, and

done by several independent users, providing a great feedback of the method’s

performance. As part of this thesis work, we have made some of the presented

methods available in stand-alone software or made them available through

existing software.

3.1.3.1 Visiopharm
For Paper I and II a plug-in was developed for the commercial software pack-

age VIS Image Analysis Software (Visiopharm, Denmark). The plug-in pro-
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vided a user-friendly environment to perform single-cell analysis of fluores-

cence images. The cell segmentation for the plug-in is described in 3.1.1. The

signal detection is performed with a Laplace filter and a threshold. The system

can analyse one or a batch of images and export results as a spread sheet. The

plug-in was implemented in C++ and incorporated in the VIS Image Analysis

Software in order to utilize all the good features that already exist in the soft-

ware. Incorporating the methods into the VIS software provides a user friendly

application for performing single cell analysis. In addition, it provided us, the

algorithm developers, a good feedback on the method’s performance in “real

life” and showed that there is a demand for such analysis.

3.1.3.2 BlobFinder
Based on request from our collaborators, we developed BlobFinder, a free

software optimized for the analysis of images generated by the in situ PLA,
described in section 2.3.1. The software can be used for other types of fluores-
cence microscopy images with point-source signals, such as data from, e.g.,
Fluorescent in Situ Hybridization (FISH). There exists a number of different
image analysis software packages that can be programmed to perform a wide
array of useful measurements, similar to the analysis in BlobFinder [1, 11].
However, the multi-application capability often compromises the simplicity
of the tool. Therefore BlobFinder was developed for a specific task, making it
easy to use, easy to learn and optimized for its task.

The software is implemented in MATLAB with a user-friendly GUI (graph-
ical user interface) [46]. The Matlab code is compiled into a standalone appli-
cation that can be run without MATLAB installed on the user’s computer.

The algorithms in BlobFinder are similar to the algorithms implemented in
VIS Image Analysis Software, see section 3.1.3.1. One difference from the
plug-in to VIS, is that BlobFinder can import and analyze 3D images. The
analysis is performed on a pre-filtered maximum projection of the 3D data.
Even though the analysis is performed on a maximum projection, signals from
different depths in the sample can be detected. All details on the software are
described in Paper III.

3.1.3.3 BlobFinder Bright Field
A bright field version of BlobFinder was developed based on the paper by
Zieba et al [77]. The RGB image is transformed to HSI colorspace [21]. The
nuclei are segmented based on two thresholds: one threshold in the hue chan-
nel, defining everything that is blue (nuclei), and a threshold in the intensity
channel to separate the nuclei from the background.

The signals are detected in the same way as in the original BlobFinder,
but with an addition of a threshold in the hue channel. Blue spots inside the
nucleus are sometimes detected as signals, but by using a color threshold we
can discriminate the true red signals from the false blue.
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BlobFinder Bright Field shares the same features as the original version of

BlobFinder, such as single cell analysis, average analysis, signal count, signal

intensity measure and batch process of large data sets.

3.1.3.4 Duolink ImageTool
BlobFinder has been widely used and the demand for more features of the

software was high. The implementation in MATLAB was limited and there-

fore a software, purely implemented in C++, was developed. The commercial

software, Duolink ImageTool, was developed together with Olink Bioscience

(Uppsala Science Park, Sweden). Duolink ImageTool works on both bright

field and fluorescence images. A large amount of time was spent on creating

an intuitive GUI and enabling the user to get started with the software right

away [2], see Fig. 3.5. All code for the image analysis was rewritten in C++

for optimal performance. Furthermore, the software contains direct file import

from some of the most commonly used microscope manufacture file formats.

Figure 3.5: A screenshot of the GUI in Duolink ImageTool.
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3.2 Zebrafish image analysis

High-Throughput screening (HTS) is used to find new treatments for disease,
or better understand disease pathways through searching large libraries of
chemical or genetic perturbants. Small size, optical transparency of complex
organs and ease of culture makes the zebrafish larva an ideal organism for
large-scale in vivo genetic and chemical screens not feasible in higher verte-
brates such as mice. Zebrafish models of several human diseases have been
developed [42, 48, 59, 64, 78] and lead compounds discovered by screening
chemical libraries for efficacy in zebrafish disease models. These have been
useful for pharmaceutical discovery owing to the high level of conservation of
drug activity between humans and zebrafish [42, 48, 59, 64, 78].

However, visualizing most zebrafish organs requires manipulating and

properly orienting the larvae. Even with confocal or two-photon microscopy,

optical access is often impeded by pigmentation, by intervening organs such

as eyes and heart, or by the highly autofluorescent yolk sac. Current methods

to address these challenges involve treatment with the toxic chemical

phenylthiourea to suppress pigmentation, and transferring zebrafish from

multiwell plates or reservoirs and orienting them in viscous media such as

agar using forceps.

To improve the throughput and complexity of zebrafish screens, the Yanik
lab at the Research Laboratory of Electronics, MIT, developed the Vertebrate
Automated Screening Technology (VAST) that automatically manipulates and
images zebrafish at cellular resolution in three dimensions [54] (see Fig. 3.6).

Here we describe our contribution to the system, developed in close collab-

oration with the members of Yanik lab. One of the key features of the system

is positioning of the fish before imaging. In Papers VII and VIII we present

the automation of lateral and rotational positioning of zebrafish larvae using a

10x lens and bright field microscopy. The primary goal of accurate position-

ing is to subsequently acquire single cell resolution images from the brain of

the animal by confocal microscopy, described in Paper VII.
In Paper IX we describe a further development of the system. Inspired by

the rotation of the animal during positioning we developed a new system for

high-throughput zebrafish tomography, both in bright field and fluorescence.

3.2.1 Vertebrate Automated Screening Technology (VAST)

The VAST system loads larvae from reservoirs or multiwell plates and drives

them through the system using a syringe pump. A photodetector and a high-

speed CCD are used to detect when a larva is entering the tube and the field

of view of the microscopes. The tube is then rotated 360 degrees with the help

of motors while a high-speed CCD camera acquires bright field images. An

overview of the system is shown in Fig. 3.6. The rotational images are used to

correctly position the fish and find the region of interest (ROI) that later will
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be used for fluorescence acquisition. A dorsal and sagittal view of the fish can

be seen in Fig. 3.7.

Figure 3.6: Figure from C. Pardo-Martin, Nature Methods 2009 [54], with permission

from Nature Publishing Group (NPG). Schematic of the zebrafish manipulation and

imaging platform Vertebrate Automated Screening Technology (VAST). The larvae

are present in multiwell plates or reservoirs. They are loaded through a microfluidic

system and a syringe pump at the other end. A photodetection system is used to dis-

tinguish the passage of a larva from air bubbles and debris. The larvae enters the field

of view of the microscopes in a capillary that is hold in place by two stepper motors.

The stepper motors enables rotation of the capillary and the larvae. There are two mi-

croscopes in the system, one upright confocal and an inverted bright field microscope.

A femtosecond laser beam used for microsurgery is focused on the sample through

the upper objective.

3.2.1.1 Zebrafish positioning in VAST
The larvae can enter the capillary either head- or tail-first, and this direction

needs to be determined. By summing the inverse intensity values along axis

orthogonal to the main tube axis we acquire a 1D profile along the fish fdv(x).
There is a large intensity difference between the tip of the head and the empty
tube in front of the fish. By taking the derivative of fdv(x) we obtain high abso-
lute values in this region. The center of mass (CM) of fdv(x) is approximately

at the center of the fish and by looking at the tip of the head and the CM it is
possible to get the direction of the fish using

CM =

n
∑

x=1
fdv(x)x

n
∑

x=1
fdv(x)

. (3.1)
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Figure 3.7: Top: A dorsal view of the fish inside the tube. Bottom: A sagitall view of

the fish inside the tube.

D =

⎧⎪⎨
⎪⎩

1, CM− x0 > 0

0, CM− x0 = 0

−1, CM− x0 < 0

, (3.2)

where x0 is a point where | f ′dv(x)| attains a maximum. D = 1 means head to
the left and D =−1 means head to the right.

To find the correct rotational orientation of the fish we calculate normal-
ized cross-correlation [40] with two different templates of the larva, dorsal
and sagittal, see Fig. 3.7. Normalized cross-correlation of image f (x,y) with

template t is defined as

Corr(u,v) =
∑
x,y
[ f (x,y)− f̄u,v][t(x−u,y− v)− t̄ ]

(
∑
x,y
[ f (x,y)− f̄u,v]2 ∑

x,y
[t(x−u,y− v)− t̄ ]2

) 1
2

, (3.3)

where f̄u,v is the mean of f (x,y) in the region under the template and t̄ is the

mean of the template.
Since all larvae, at approximately the same age, share similar gross mor-

phology, we only need to construct the template once. A cross-correlation is
calculated with both templates on all rotational images. Two vectors CorrD
and CorrS containing the maximum correlation of the two templates, dor-

sal and sagittal, respectively, at different rotations are produced. The dorsal

and ventral view share many similarities, hence we see two distinct peaks in

CorrD. In contrast, in CorrS, only one clear peak can be seen. With the three
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peaks and the known rotation direction, the rotational position of the fish can

be found. The motors can then rotate the tube and larvae to the desired view.
The ROI is experiment specific and before the experiment the user draws

the desired ROI on one of the templates. The information from the cross-
correlation can be used to find the optimal position of the template on the
desired view and from there the region of interest can be overlaid. Once the
ROI is identified in the bright field view, the coordinates of this view are trans-
formed to the confocal microscope and single cell resolution images can be
acquired of the desired region. This minimizes the ROI to be captured by
confocal microscopy, saving time, optimizing image quality, and minimizing
strain for live animals.

The methods for zebrafish alignment and positioning are described in both
Papers VII and VIII. Apart from the overlap in method description, Paper VII
also present the result from a small-scale sample screen on the effect of drugs
on neuron development as quantified by automated cell segmentation. Paper
VIII provides a more thorough description of the system.

3.2.2 Zebrafish tomography

Conventional 2D microscopy is not always sufficient to capture all the com-
plex 3D morphological details of an animal. Confocal microscopy and two-
photon microscopy are routinely used to visualize larvae’s organs in 3D. How-
ever, these techniques have a limited penetration depth and cannot be used
to image the entire animal. In addition, they only work in combination with
fluorescent probes. Optical projection tomography (OPT), described in sec-
tion 2.2.5, has the penetration depth necessary to image an entire zebrafish
and can be used both with bright field and fluorescently labeled fish [63]. Cur-
rent optical projection tomography systems, however, have very low through-
put and require the immersion of the sample in solid gels. This makes these
techniques unsuitable for large-scale screens, and limits the possibilities with
in-vivo samples. In Paper IX we present a new high-throughput optical projec-

tion tomography system cable of fast acquisition and reconstruction that can

be used in large-scale in vivo or in vitro screens.

3.2.2.1 Tomography system setup
The tomography system is similar to the VAST system but optimized for to-

mography. The fish is loaded into the tube with a pump and detected as it

enters the field of view. The fish is rotated, and bright field and fluorescent

images are acquired throughout the rotation. The smoothness in the rotation

is more important than in the VAST system, therefore a square tube surround-

ing the capillary is used to limit the movement of the tube. A low Numerical

Aperture (NA) lens is used to get a large depth of field.
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3.2.2.2 Alignment
The images acquired from multiple angles of the larva can be used to recon-

struct a 3D image of the larva. To obtain a good reconstruction, the alignment
of the rotational images is crucial. There are two major misalignments that
need to be corrected; vertical movement of the tube and horizontal movement

of the fish inside the tube. In addition, the tube must be in complete horizontal

position and the center of rotation must be detected, see Fig 3.8.

Figure 3.8: Red image channel of head of fish stained with Alcian blue, and acquired by bright

field microscopy.

The system is intended to be fully automatic and the alignment therefore
needs to be fully automated. To speed up the rest of the alignment the image
is cropped to ensure that only the fish and the tube are in the image. The
tube wall appears dark in the images, due to total internal reflection, and can
therefore be easily detected with Otsu’s thresholding method. A minimum
intensity projection is performed on all rotational images to ensure that the
cropped image will contain the whole tube in a all rotational images.

An edge detection method is applied on one of the rotational images fol-
lowed by the Hough transform [18]. The angles of the detected lines are used
to rotate the tube in a completely horizontal direction.

After rotating all images we need to correct for the vertical movement of
the tube during the rotation. The center part of the tube wall contains a bright
white line. We detect these lines in all rotational images with a filter that en-
hances thin lines. We perform a subpixel registration for the upper and the
lower line of the tubewall separately with the initial rotational image [25].
During the rotation the tube is moving slightly up and down, towards and
away from the microscope, this movement results in small size differences in

48



(a)

(b)

Figure 3.9: (a) Sinogram before (a) and after (b) vertical alignment and scaling of the

tube. Note that both upper and lower thin white lines are straight after alignment and

scaling of the tube.

the acquired images. By registering both sides of the tube separately we can
get an estimate of the deviation in size during the rotation. The rotational im-
ages are then scaled to obtain the same diameter of the tube for all images.
In addition, the lines are aligned accordingly to get a full vertical alignment,
Fig. 3.9.

The tube is now vertically aligned and rotated in an exact horizontal posi-
tion. The fish can enter the tube head first or tail first and the direction of the
fish needs to be determined. The fish direction is detected in the same way as
described in Section 3.2.1.1.

After detecting the direction of the fish, we need to compensate for the hor-
izontal movement of the fish inside the tube. The fish is segmented in each
rotational image. If the image is in grayscale, the segmentation is done with
an intensity threshold and the largest object is considered to be the fish. If the
image is a color image, a color classification is used to classify the image pix-
els as belonging to the fish or background. Training data for the classification
is collected from one fish prior to the analysis. The user marks two training
regions, inside the fish (object) and outside the fish (background). The largest
object from the classification is considered to be the fish. The tip of the fish is
adjusted in all rotational images to ensure that the fish is always in the same
position.

Center of Rotation Correction
After the tube and fish is horizontally and vertically aligned, the Center of Ro-

tation (COR) must be determined. This is a two-step process consisting of first
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detecting the symmetry axis by cross correlation and second fine adjustment

of the COR by performing several test reconstructions.
If all rotational images are summed together, the center of rotation should

be the same as the horizontal symmetry axis. The symmetry axis is detected by
looping over several rows in the image and cross correlating a region above the
row with a mirrored region below that row. The row containing the maximum
correlation is considered to be the axis of symmetry and the COR. This usually
gives a good estimate of the COR but in some cases additional fine tuning is
needed to get a better estimate. This is done by performing reconstructions
with Filtered Backprojection (FBP) for a few slices of the fish with different
assumptions for the positions of the rotational axis. We calculate the variance
for each of the assumed positions of the COR. The position that has the highest
variance is considered to be closest to the true COR [75], see Fig. 3.10.

(a) (b) (c)

Figure 3.10: Reconstructions made with different position of the Center of Rotation

(COR). (b) has the clearest edges and can be considered as the best approximation of

the true COR.

Illumination correction
Refraction between the tube wall and the surrounding fluid creates uneven
illumination inside the tube. The part of the tube not occluded by the fish
clearly shows how the illumination is not uniform, Fig. 3.11a. From previous
alignment the tip of the fish has been detected and we therefore also know
where the empty tube is located. By averaging this empty part of the tube,
for all rotational images, we can get a cross-sectional profile of how much
light passes through the tube at each position from the center of the tube. The
aligned image is divide by the profile, resulting in an illumination corrected
image. Furthermore, we take the logarithm of the data, Beer’s law (3.4), to get
a linear relationship between the intensities in the images, see Fig. 3.11b

A = log10(I/I0), (3.4)

where I0 is the intensity of the light before it enters the sample, I is the light

intensity after absorption in the sample and A is the absorbance. Before the
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reconstruction the image is inverted and the background is set to zero, see

Fig. 3.11c.

(a) (b)

(c)

Figure 3.11: (a) Aligned image without illumination correction. (b) Aligned image

after illumination correction. (c) Aligned image after inversion and removal of back-

ground.

3.2.2.3 Light ray simulation
We know that there are some distortions in the light due to differences in re-
fractive index between the tube wall and the surrounding fluid. By simulating
the path of each of the rays through the tube it is possible to compensate for
the distortions from the refraction.

In the simulation we trace each ray coming in to the detector in the micro-
scope. We trace the rays from the light source to the detector and calculate the
refractions at all boundaries of the tube, see Fig. 3.12. Each bin in the detector
will collect light from an area inside the tube. The area for each bin can be
simplified with a polygon containing four vertices.

The system matrix in the reconstruction, Sec. 2.4.3.2, describes the path
that the light travels along, through the sample, to reach the detector bins. The
system matrix is a large sparse matrix with θN ×N2 elements, where θ is
the number of acquisition angles and N is the number of detector bins. The
polygon area that we calculated for each detector bin must be converted into
a system matrix that can be used in the reconstruction. For each polygon we
need to find the pixels that are contained inside the polygon. A pixel can fall
between two regions and hence we need to use sub-pixel precision.
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Figure 3.12: Ligh ray path through the tube. Each polygon consists of four lines.

The procedure for finding the sub-pixel coverage for a polygon described
here is applied for all polygons and for all rotational angles used in the acqui-
sition. First, we find the bounding box of the polygon, only pixels inside the
bounding box are further used in determining the area coverage of the poly-
gon. We then identify all pixels that are inside the polygon. Point p is inside
a polygon if a ray starting from point p, in any direction, has an odd number
of crossings with the polygon’s edges [27]. This will determine if the center
point of a pixel is inside a polygon. However, for pixels lying on the edge
of the polygon we need to find the fraction of the pixel contained inside the
polygon. Before we calculate the fractional pixel coverage we need to identify
the pixels that are intersecting with the lines from the polygon. For each pixel
we calculate the shortest distance to each of the line segments. A pixel p is
intersected by a line segment l if the distance to the line is less than a threshold
Td (see Fig 3.13a),

Td =
1√
2

sin
(π

4
+α

)
, (3.5)

where

α =

{
αl if 0 ≤ αl ≤ π/4

π/2−αl if αl > π/4
, (3.6)

and αl is the angle of the line l, 0 ≤ αl ≤ π/2.
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Figure 3.13: (a) If a line of angle α is intersecting the corner of a pixel, the shortest

distance from the line to the center point of the pixel will be Td . If an arbitrary line

with the same angle α has a distance to the center of a pixel that is shorter than or

equal to Td the line is crossing that pixel.(b) Line l is crossing the pixel and divides

it in two regions. To determine the area of the region Al the area A for a triangle with

known sides is used.

If the pixel is intersecting with the line l we need to find the fractional
pixel coverage Al (see �PlQlR in Fig. 3.13b). The shortest distance between

the center of pixel p and line l is defined as dp. The length of PR and QR is
known, and hence we can calculate the area A of �PQR,

A =
tan(α)

2
. (3.7)

The shortest distance between the center point of the pixel and the line seg-
ment PQ is defined as,

d =
1√
2

sin
(π

4
−α

)
. (3.8)

To get the area Al we use the relationship �PlQlR ∼ �PQR. There are two
cases we need to observe when calculating Al:

(i) If dp > d then

Al =

(
tan(α)−QQl

tan(α)

)2

·A, (3.9)

where

QQl =
|dp −d|
cos(α)

. (3.10)
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(ii) If dp ≤ d then

Al = A+QQl. (3.11)

Previously we detected if the center point of the pixel is inside or outside the
polygon. This, together with the calculated Al , is used to get the sub-pixel

coverage of the polygon and the pixel p:

Al =

{
1−Al if pixel center is inside polygon

Al if pixel center is outside polygon
. (3.12)

There are a couple of special cases to consider when calculating the sub-pixel

coverage of the polygons, see Fig 3.14.

Figure 3.14: Special cases for pixel coverage. (a) Two lines crossing the same pixel

and the center point of the pixel is between the lines. (b) Two lines crossing the same

pixel and the center point of the pixel is not between the lines. (c) A vertex point of

the polygon inside the pixel.

To solve case (a), for each line we calculate the part that is outside the

polygon, i.e., the side without the center point of the pixel. This area for both

of the lines are summed together and the total area of the coverage pixel is

calculated by subtracting this value from the total area of a pixel. In case (b)

the center point of the pixel is not between the lines. To get the area coverage

we need to subtract the area Al1 from Al2 , calculated with (eq. 3.12). The area
coverage in (c) is approximated by using sub-pixel precision for only one of
the lines. The polygons in this case always have four lines, see Fig. 3.12. The
dotted lines in Fig. 3.12 (upper and lower line segments) will be short and
on the inner border of the tube, while the other two will be long and border
adjacent polygons. The lines that are on the edge of the glass tube are assumed
to be of less importance. To simplify the vertex problem we therefore chose to
not have sub-pixel precision for the lines on the edge of the glass tube (dotted
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lines); they will be either inside or outside the polygon, depending on the

position of center point of the pixel.
Once the pixel coverage for all polygons at all the acquisition angles are

calculated, the system matrix can be filled with the ray paths for each of the
bins in the detector.

It is hard to evaluate the increase in accuracy of the reconstructions follow-

ing this new light path algorithm. A good phantom object in zebrafish size

that will fit inside the tube is yet to be designed to truly evaluate image quality

improvements.

3.2.2.4 Tomographic reconstruction
As mentioned in section 3.2.2.2 the FBP is used to get a fast reconstruction
for detecting the COR. When performing the reconstruction of the complete
data set, the quality of the reconstruction is more important than the speed, we
therefore use the OSEM algorithm together with the system matrix described
in Sec. 3.2.2.3.

A gray-scale reconstruction of one fish, approximately 300 images per rev-
olution and size of reconstruction 250x250x450 pixels, takes 50 sec with FPB.
With OSEM, using 12 subsets and 2 iterations, the reconstruction time is
around 3.5 min. These measurements were done on a Intel Core i7 2.67GHz
with 6GB of RAM.

Bright field tomography
Tomographic reconstruction of bright field images is possible with stained

or unstained fish. In paper IX an Alcian blue stain was used to enhance the

bone of the fish, see Fig. 3.15. The alignment was done as described in Sec-

tion 3.2.2.2. For color reconstruction, each channel is reconstructed individu-

ally and combined after reconstruction. An RGB reconstruction can be seen

in Fig. 3.16.

Figure 3.15: A single rotational image from a zebrafish larvae stained with Alcian

blue
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In paper IX, bone structure in the fish is segmented from the RGB recon-

struction. The segmentation is done with a color classification. The user trains

the classifier before segmenting all the fish by marking regions that belong

to bone and not bone. Linear discriminant Analysis (LDA) is used to classify

each pixel in the image as bone or not [20]. The feature vector consists of

the three colors. Furthermore, a minimum threshold for the volume of bone

structure is used to remove small objects. The result after color classification

can be seen in Fig. 3.17. The segmentation provides a possibility to extract

quantitative measurements of the bones.

Fluorescence tomography
When studying structures not easily targeted by light absorbing stains it is
desirable to use fluorescence, and reconstruct 3D volumes by fluorescence to-
mography. Since both fluorescence and bright field images can be acquired
at the same time, we only need to align one of them. We use the bright field
alignment described in Section 3.2.2.2 and then use the same transformation
for the fluorescence images. As for the bright field reconstruction, the fluores-
cent images are reconstructed with OSEM.
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Figure 3.16: RGB reconstruction of zebrafish stained with Alcian blue.

Figure 3.17: Color segmentation from RGB reconstruction of zebrafish stained with

Alcian Blue.
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4. Conclusion

4.1 Summary

Single cell analysis is crucial to capture variations between cells in the same

population. Papers I and II present and evaluate a single cell analysis method

for quantifying the number of signals per cell. This method provides suffi-

ciently good results to discriminate between cells of different characteristics

in the same sample. The algorithms where incorporated in the freely available

software BlobFinder and BlobFinder Bright Field, which since the publica-

tion of Paper III in 2009 have been downloaded more than 500 times. This has

provided good feedback of the single cell analysis method and shows that the

demand for user-friendly applications of this type is high.
The detection of point-like signals in fluorescence microscopy images is

an important field and many different algorithms have been developed to ac-
curately detect these signals. In papers IV and V a novel method for signal
detection is presented. The method shows better performance than the com-
monly used methods compared in the paper, both on synthetic and real data.

In samples with highly variable concentrations of signals, simultaneous de-

tection of high and low concentrations is difficult and sometimes even impos-

sible. Paper VI presents a method for extending the dynamic range of signal

detection from PLA probes in order to allow detection of both abundant and

scarce target molecules. The increased dynamic range provides a great tool for

measuring signals in cell cultures with high variation in signal concentration.

High-throughput screening is an effective strategy for discovering disease
pathways and new potential drugs. In Papers VII and VIII, improvements to
the previously developed zebrafish high-throughput system VAST are pre-
sented. The throughput and utility of the system has been significantly in-
creased by multi-threading the platform and adding fully automatic orienta-
tion and positioning of zebrafish. The improvements enable larger and more
complex screening studies, using this model organism.

Paper IX presents a high-throughput optical projection tomography (OPT)
system capable of acquiring 3D images of live zebrafish both in bright field
and fluorescence. The combination of high-throughput and optical projection
tomography provides a novel and useful tool for visualization and quantifica-
tion of 3D features in large screens.
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4.2 Concluding remarks

The increased use of digital images in microscopy, together with the develop-
ment of new staining and acquisition techniques, has created a high demand
for fast and accurate analysis of the data. Image analysis provides an invalu-
able tool for quantitative analysis of many types of microscopy images. Today,
image analysis is an integral part in many biologists’ everyday work. However,
there are still many analyses performed manually that can be automated to in-
crease accuracy and throughput. This thesis has presented several algorithms,
methods, and software that will increase automation for many applications in
the areas of biology and medicine.

The single cell analysis method presented and evaluated in this thesis is ap-
plicable on a wide range of different types of cells and cell cultures. The var-
ious software programs developed have been widely used, and the feedback
from the users confirms the previously mentioned demand for these types of
analysis. As the acquisition and staining techniques are continuously being
improved, the software and algorithms also need to develop further to ac-
commodate these changes. One such example is the increased dynamic range
presented in this thesis. For biologists to fully utilize the benefits of multiple
staining colors, a method and software that can automatically quantify large
data sets of these types of images is required.

Detection of point source signals is application dependent, and the choice

of detection algorithm might differ depending on the image data. In our eval-

uation, the 3DSWD performed better than the other methods used in the com-

parison. However, there are numerous other methods, not mentioned in this

thesis, that can be used for detection of point-like signals. There are better or

worse methods depending on the application, but no method will work per-

fectly on all types of images. Providing a library containing many different

algorithms for signal detection would help users find the optimal algorithm

for their specific type of images.
Information extracted from studying individual cells or cell cultures is lim-

ited when it comes to revealing information on the effects seen on a whole
organism in response to the addition of potential drugs or genetic changes.
There is a growing interest in studying model organisms as they provide a
possibility to study effects on the organism as whole system. VAST and the
hight throughput tomography system presented in this thesis not only pro-
vide a possibility to study the zebrafish as a whole organism, but also allow
biologists to do this in a high throughput in vivo environment. It allows the
power to extract information at the cellular scale by combining low resolution
microscopy for positioning, and high resolution confocal microscopy for cell
detection. This enables large-scale in vivo studies of biological processes such

as organ development, neural degeneration and regeneration, pathogenesis,

and drug toxicity.
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Summary in Swedish

Datoriserad bildanalys är en teknik som används för att automatiskt analy-

sera/extrahera information från digitala bilder. Datoriserad bildanalys omfat-

tar många områden, t.ex. identifiering av fingeravtryck, automatiskt läsning

av registreringsskyltar, eller räkning av celler i biologiska bilder. Med dagens

kraftfulla datorer och nya bildalstrande tekniker har datoriserad bildanalys fått

en betydande roll inom många forskningsområden.
Inom den medicinska forskningen används ofta ljusmikroskopi för att titta

på celler eller organismer som är för små för att synas med blotta ögat. Man
använder ofta odlade celler för att studera sjukdomar eller hur olika mediciner
påverkar sjukdomstillstånd som kan modelleras på cellnivå. För att kunna se
cellerna i ett mikroskop används ofta någon typ av infärgning av cellens olika
delar. Genom att specifikt märka t.ex. DNA eller proteiner, går det att påvisa
olika egenskaper hos celler. Mats Nilsson och Ulf Landegren vid Rudbeck-
laboratoriet i Uppsala har tagit fram en metod som kallas ’pad-lock’ eller
’proximity-ligation’ som på ett mycket exakt sätt märker platser där en viss
gen eller ett vist protein finns. Detta syns som små prickar, s.k. punktsignaler,
runt eller i en cell i en fluorescensmikroskopibild. När bilderna sedan ska anal-
yseras vill man räkna hur många DNA- eller proteinsignaler som existerar i de
olika cellerna under olika förhållanden. Att analysera manuellt är extremt tid-
skrävande då det finns många prickar i varje cell, många celler i varje bild, och
många bilder i varje experiment. Datoriserad bildanalys är då en bra lösning
för en automatisk och snabb beräkning av celler och prickar.

Precis som människor så är ingen cell den andra lik, utan egenskaper vari-
erar mellan olika celler. När det gäller analys av celler så är det viktigt att
bildanalysmetoderna räknar prickar per cell och inte bara räknar den totala
mängden prickar och celler i en bild. I den här avhandlingen presenteras och
utvärderas en metod för att automatiskt analysera mängden DNA eller pro-
teiner per cell i mikroskopibilder. Vi visar att med dessa metoder går det att
på att ett robust sätt kvantifiera skillnader i celler som har olika egenskaper.
Metoderna har utvärderats på artificiella bilder, sedan testats på flera olika
typer av mikroskopibilder, och visat bra kvantifiering av antalet prickar per
cell. Dessa metoder har sedan paketerats i olika mjukvaror för att både öka
tillgängligheten av metoderna och användarvänligheten för forskar från andra
områden än datoriserad bildanalys.

För att en automatisk analysmetod ska kunna räkna antalet punktsignaler
per cell behövs det en robust metod för att detektera dessa signaler. I den här

63



avhandlingen presenteras en ny metod för robust detektion av punktsignaler i

3D-bilder; 3DSWD. Metoden har visat sig fungera bra genom tester på både

artificiella och riktiga mikroskopibilder. 3DSWD har jämförts mot flera tidi-

gare välkända metoder och visat bättre kvantifiering av signaler.

Människans kropp är ett komplext system uppbyggt av organ och min-
dre system som interagerar med varandra. Organfunktioner och denna sorts
interaktioner är svåra att studera på cellnivå. För att lättare studera kom-
plexa system används olika djurmodeller som t.ex. bananflugor, rundmaskar
och zebrafiskar. Dessa djurmodeller är betydligt mindre och har ett mer lät-
töverskådligt system än människan. De har också en betydligt kortare gen-
erationstid (dagar-veckor) och det är oftast etiskt mer försvarbart att utföra
storskaliga studier på enkla modellorganismer än på mer komplexa djur så
som råttor och möss eller människor. Samtidigt är grundfunktionen för många
organ och organinteraktioner, och därmed även sjukdomsmekanismer, väl be-
varade genom evolutionen. Genom att utföra experiment på djurmodeller kan
slutsatser dras om sjukdomsförlopp eller hur mediciner påverkar vissa sjuk-
domar hos människan. Av dessa enkla djurmodeller är zebrafisken en mycket
bra modell för tidig utveckling hos ryggradsdjur. Dess embryon är enkelt upp-
byggda och transparanta, vilket gör dem möjliga att studera med mikroskopi.
Embryoutvecklingen är snabb och efter bara några dagar så har de flesta organ
utvecklats. Efter 3-4 månader så kan en hona producera avkomma. Honan kan
lägga 100-tals ägg under loppet av en vecka. Ett stort antal zebrafiskar kan
alltså tas fram på mycket kort tid. Detta gör att zebrafisken är mycket lämplig
att använda i storskaliga experiment.

Helautomatiserad hantering av zebrafiskar (eller celler) tillsamns med bil-

danalysteknik gör det möjligt att undersöka effekten av olika substanser på

kort tid, så kallad ’High Throughput Screening’ (HTS). HTS-system gör det

möjligt att analysera effekten av en stor mängd substanser på ett stort an-

tal djur. På Yanik lab, Research Laboratory of Electronics, MIT, har ett HTS

system utvecklats för att titta på zebrafiskar. Levande fiskar transporteras i

systemet genom små tunna rör tills de kommer in i ett mikroskops synfält

där de sedan avbilds. Vid olika experiment studeras olika regioner av fisken.

För att systemet automatiskt ska kunna ta bilder av en specifik region så be-

hövs algoritmer för att detektera fiskens position. I den här avhandlingen så

beskrivs bildanalysalgoritmer som är framtagna för att detektera och position-

era fisken korrekt så att bilder av den önskade regionen kan tas automatiskt.

Dessutom beskrivs ett nytt HTS system som har utvecklats för att ta tredi-

mensionella (3D) volymsbilder av zebrafiskar. Fördelen med att använda 3D

bilder är att man får ut mer och precisare information än som är möjligt att

få från en 2D bild. Tillexempel volym, positioner i 3D rymden och vinklar

mellan olika objekt mäts mer exakt i 3D än i 2D. 3D bilderna tas fram genom

att fisken roteras och bilder tas under rotationen. Dessa bilder används sedan

för att rekonstruera en 3D bild ungafär på samma sätt som i en röntgento-

mograf, men i detta fall används ett vanligt ljusmikroskop. Systemet är helt
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automatiserat och medför nya möjligheter att göra storskaliga experiment på

zebrafiskar. Avhandlingen visar bland annat att systemet kan användas för att

se om varierande koncentration av olika läkemedel påverkar utvecklingen av

zebrafiskars käkben, något som kan ge information om dess effekt på män-

niskan.
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