








be used for fluorescence acquisition. A dorsal and sagittal view of the fish can

be seen in Fig. 3.7.

Figure 3.6: Figure from C. Pardo-Martin, Nature Methods 2009 [54], with permission

from Nature Publishing Group (NPG). Schematic of the zebrafish manipulation and

imaging platform Vertebrate Automated Screening Technology (VAST). The larvae

are present in multiwell plates or reservoirs. They are loaded through a microfluidic

system and a syringe pump at the other end. A photodetection system is used to dis-

tinguish the passage of a larva from air bubbles and debris. The larvae enters the field

of view of the microscopes in a capillary that is hold in place by two stepper motors.

The stepper motors enables rotation of the capillary and the larvae. There are two mi-

croscopes in the system, one upright confocal and an inverted bright field microscope.

A femtosecond laser beam used for microsurgery is focused on the sample through

the upper objective.

3.2.1.1 Zebrafish positioning in VAST
The larvae can enter the capillary either head- or tail-first, and this direction

needs to be determined. By summing the inverse intensity values along axis

orthogonal to the main tube axis we acquire a 1D profile along the fish fdv(x).
There is a large intensity difference between the tip of the head and the empty
tube in front of the fish. By taking the derivative of fdv(x) we obtain high abso-
lute values in this region. The center of mass (CM) of fdv(x) is approximately

at the center of the fish and by looking at the tip of the head and the CM it is
possible to get the direction of the fish using

CM =

n
∑

x=1
fdv(x)x

n
∑

x=1
fdv(x)

. (3.1)
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Figure 3.7: Top: A dorsal view of the fish inside the tube. Bottom: A sagitall view of

the fish inside the tube.

D =

⎧⎪⎨
⎪⎩

1, CM− x0 > 0

0, CM− x0 = 0

−1, CM− x0 < 0

, (3.2)

where x0 is a point where | f ′dv(x)| attains a maximum. D = 1 means head to
the left and D =−1 means head to the right.

To find the correct rotational orientation of the fish we calculate normal-
ized cross-correlation [40] with two different templates of the larva, dorsal
and sagittal, see Fig. 3.7. Normalized cross-correlation of image f (x,y) with

template t is defined as

Corr(u,v) =
∑
x,y
[ f (x,y)− f̄u,v][t(x−u,y− v)− t̄ ]

(
∑
x,y
[ f (x,y)− f̄u,v]2 ∑

x,y
[t(x−u,y− v)− t̄ ]2

) 1
2

, (3.3)

where f̄u,v is the mean of f (x,y) in the region under the template and t̄ is the

mean of the template.
Since all larvae, at approximately the same age, share similar gross mor-

phology, we only need to construct the template once. A cross-correlation is
calculated with both templates on all rotational images. Two vectors CorrD
and CorrS containing the maximum correlation of the two templates, dor-

sal and sagittal, respectively, at different rotations are produced. The dorsal

and ventral view share many similarities, hence we see two distinct peaks in

CorrD. In contrast, in CorrS, only one clear peak can be seen. With the three

46



peaks and the known rotation direction, the rotational position of the fish can

be found. The motors can then rotate the tube and larvae to the desired view.
The ROI is experiment specific and before the experiment the user draws

the desired ROI on one of the templates. The information from the cross-
correlation can be used to find the optimal position of the template on the
desired view and from there the region of interest can be overlaid. Once the
ROI is identified in the bright field view, the coordinates of this view are trans-
formed to the confocal microscope and single cell resolution images can be
acquired of the desired region. This minimizes the ROI to be captured by
confocal microscopy, saving time, optimizing image quality, and minimizing
strain for live animals.

The methods for zebrafish alignment and positioning are described in both
Papers VII and VIII. Apart from the overlap in method description, Paper VII
also present the result from a small-scale sample screen on the effect of drugs
on neuron development as quantified by automated cell segmentation. Paper
VIII provides a more thorough description of the system.

3.2.2 Zebrafish tomography

Conventional 2D microscopy is not always sufficient to capture all the com-
plex 3D morphological details of an animal. Confocal microscopy and two-
photon microscopy are routinely used to visualize larvae’s organs in 3D. How-
ever, these techniques have a limited penetration depth and cannot be used
to image the entire animal. In addition, they only work in combination with
fluorescent probes. Optical projection tomography (OPT), described in sec-
tion 2.2.5, has the penetration depth necessary to image an entire zebrafish
and can be used both with bright field and fluorescently labeled fish [63]. Cur-
rent optical projection tomography systems, however, have very low through-
put and require the immersion of the sample in solid gels. This makes these
techniques unsuitable for large-scale screens, and limits the possibilities with
in-vivo samples. In Paper IX we present a new high-throughput optical projec-

tion tomography system cable of fast acquisition and reconstruction that can

be used in large-scale in vivo or in vitro screens.

3.2.2.1 Tomography system setup
The tomography system is similar to the VAST system but optimized for to-

mography. The fish is loaded into the tube with a pump and detected as it

enters the field of view. The fish is rotated, and bright field and fluorescent

images are acquired throughout the rotation. The smoothness in the rotation

is more important than in the VAST system, therefore a square tube surround-

ing the capillary is used to limit the movement of the tube. A low Numerical

Aperture (NA) lens is used to get a large depth of field.
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3.2.2.2 Alignment
The images acquired from multiple angles of the larva can be used to recon-

struct a 3D image of the larva. To obtain a good reconstruction, the alignment
of the rotational images is crucial. There are two major misalignments that
need to be corrected; vertical movement of the tube and horizontal movement

of the fish inside the tube. In addition, the tube must be in complete horizontal

position and the center of rotation must be detected, see Fig 3.8.

Figure 3.8: Red image channel of head of fish stained with Alcian blue, and acquired by bright

field microscopy.

The system is intended to be fully automatic and the alignment therefore
needs to be fully automated. To speed up the rest of the alignment the image
is cropped to ensure that only the fish and the tube are in the image. The
tube wall appears dark in the images, due to total internal reflection, and can
therefore be easily detected with Otsu’s thresholding method. A minimum
intensity projection is performed on all rotational images to ensure that the
cropped image will contain the whole tube in a all rotational images.

An edge detection method is applied on one of the rotational images fol-
lowed by the Hough transform [18]. The angles of the detected lines are used
to rotate the tube in a completely horizontal direction.

After rotating all images we need to correct for the vertical movement of
the tube during the rotation. The center part of the tube wall contains a bright
white line. We detect these lines in all rotational images with a filter that en-
hances thin lines. We perform a subpixel registration for the upper and the
lower line of the tubewall separately with the initial rotational image [25].
During the rotation the tube is moving slightly up and down, towards and
away from the microscope, this movement results in small size differences in
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(a)

(b)

Figure 3.9: (a) Sinogram before (a) and after (b) vertical alignment and scaling of the

tube. Note that both upper and lower thin white lines are straight after alignment and

scaling of the tube.

the acquired images. By registering both sides of the tube separately we can
get an estimate of the deviation in size during the rotation. The rotational im-
ages are then scaled to obtain the same diameter of the tube for all images.
In addition, the lines are aligned accordingly to get a full vertical alignment,
Fig. 3.9.

The tube is now vertically aligned and rotated in an exact horizontal posi-
tion. The fish can enter the tube head first or tail first and the direction of the
fish needs to be determined. The fish direction is detected in the same way as
described in Section 3.2.1.1.

After detecting the direction of the fish, we need to compensate for the hor-
izontal movement of the fish inside the tube. The fish is segmented in each
rotational image. If the image is in grayscale, the segmentation is done with
an intensity threshold and the largest object is considered to be the fish. If the
image is a color image, a color classification is used to classify the image pix-
els as belonging to the fish or background. Training data for the classification
is collected from one fish prior to the analysis. The user marks two training
regions, inside the fish (object) and outside the fish (background). The largest
object from the classification is considered to be the fish. The tip of the fish is
adjusted in all rotational images to ensure that the fish is always in the same
position.

Center of Rotation Correction
After the tube and fish is horizontally and vertically aligned, the Center of Ro-

tation (COR) must be determined. This is a two-step process consisting of first
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detecting the symmetry axis by cross correlation and second fine adjustment

of the COR by performing several test reconstructions.
If all rotational images are summed together, the center of rotation should

be the same as the horizontal symmetry axis. The symmetry axis is detected by
looping over several rows in the image and cross correlating a region above the
row with a mirrored region below that row. The row containing the maximum
correlation is considered to be the axis of symmetry and the COR. This usually
gives a good estimate of the COR but in some cases additional fine tuning is
needed to get a better estimate. This is done by performing reconstructions
with Filtered Backprojection (FBP) for a few slices of the fish with different
assumptions for the positions of the rotational axis. We calculate the variance
for each of the assumed positions of the COR. The position that has the highest
variance is considered to be closest to the true COR [75], see Fig. 3.10.

(a) (b) (c)

Figure 3.10: Reconstructions made with different position of the Center of Rotation

(COR). (b) has the clearest edges and can be considered as the best approximation of

the true COR.

Illumination correction
Refraction between the tube wall and the surrounding fluid creates uneven
illumination inside the tube. The part of the tube not occluded by the fish
clearly shows how the illumination is not uniform, Fig. 3.11a. From previous
alignment the tip of the fish has been detected and we therefore also know
where the empty tube is located. By averaging this empty part of the tube,
for all rotational images, we can get a cross-sectional profile of how much
light passes through the tube at each position from the center of the tube. The
aligned image is divide by the profile, resulting in an illumination corrected
image. Furthermore, we take the logarithm of the data, Beer’s law (3.4), to get
a linear relationship between the intensities in the images, see Fig. 3.11b

A = log10(I/I0), (3.4)

where I0 is the intensity of the light before it enters the sample, I is the light

intensity after absorption in the sample and A is the absorbance. Before the
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reconstruction the image is inverted and the background is set to zero, see

Fig. 3.11c.

(a) (b)

(c)

Figure 3.11: (a) Aligned image without illumination correction. (b) Aligned image

after illumination correction. (c) Aligned image after inversion and removal of back-

ground.

3.2.2.3 Light ray simulation
We know that there are some distortions in the light due to differences in re-
fractive index between the tube wall and the surrounding fluid. By simulating
the path of each of the rays through the tube it is possible to compensate for
the distortions from the refraction.

In the simulation we trace each ray coming in to the detector in the micro-
scope. We trace the rays from the light source to the detector and calculate the
refractions at all boundaries of the tube, see Fig. 3.12. Each bin in the detector
will collect light from an area inside the tube. The area for each bin can be
simplified with a polygon containing four vertices.

The system matrix in the reconstruction, Sec. 2.4.3.2, describes the path
that the light travels along, through the sample, to reach the detector bins. The
system matrix is a large sparse matrix with θN ×N2 elements, where θ is
the number of acquisition angles and N is the number of detector bins. The
polygon area that we calculated for each detector bin must be converted into
a system matrix that can be used in the reconstruction. For each polygon we
need to find the pixels that are contained inside the polygon. A pixel can fall
between two regions and hence we need to use sub-pixel precision.
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Figure 3.12: Ligh ray path through the tube. Each polygon consists of four lines.

The procedure for finding the sub-pixel coverage for a polygon described
here is applied for all polygons and for all rotational angles used in the acqui-
sition. First, we find the bounding box of the polygon, only pixels inside the
bounding box are further used in determining the area coverage of the poly-
gon. We then identify all pixels that are inside the polygon. Point p is inside
a polygon if a ray starting from point p, in any direction, has an odd number
of crossings with the polygon’s edges [27]. This will determine if the center
point of a pixel is inside a polygon. However, for pixels lying on the edge
of the polygon we need to find the fraction of the pixel contained inside the
polygon. Before we calculate the fractional pixel coverage we need to identify
the pixels that are intersecting with the lines from the polygon. For each pixel
we calculate the shortest distance to each of the line segments. A pixel p is
intersected by a line segment l if the distance to the line is less than a threshold
Td (see Fig 3.13a),

Td =
1√
2

sin
(π

4
+α

)
, (3.5)

where

α =

{
αl if 0 ≤ αl ≤ π/4

π/2−αl if αl > π/4
, (3.6)

and αl is the angle of the line l, 0 ≤ αl ≤ π/2.
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Figure 3.13: (a) If a line of angle α is intersecting the corner of a pixel, the shortest

distance from the line to the center point of the pixel will be Td . If an arbitrary line

with the same angle α has a distance to the center of a pixel that is shorter than or

equal to Td the line is crossing that pixel.(b) Line l is crossing the pixel and divides

it in two regions. To determine the area of the region Al the area A for a triangle with

known sides is used.

If the pixel is intersecting with the line l we need to find the fractional
pixel coverage Al (see �PlQlR in Fig. 3.13b). The shortest distance between

the center of pixel p and line l is defined as dp. The length of PR and QR is
known, and hence we can calculate the area A of �PQR,

A =
tan(α)

2
. (3.7)

The shortest distance between the center point of the pixel and the line seg-
ment PQ is defined as,

d =
1√
2

sin
(π

4
−α

)
. (3.8)

To get the area Al we use the relationship �PlQlR ∼ �PQR. There are two
cases we need to observe when calculating Al:

(i) If dp > d then

Al =

(
tan(α)−QQl

tan(α)

)2

·A, (3.9)

where

QQl =
|dp −d|
cos(α)

. (3.10)
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(ii) If dp ≤ d then

Al = A+QQl. (3.11)

Previously we detected if the center point of the pixel is inside or outside the
polygon. This, together with the calculated Al , is used to get the sub-pixel

coverage of the polygon and the pixel p:

Al =

{
1−Al if pixel center is inside polygon

Al if pixel center is outside polygon
. (3.12)

There are a couple of special cases to consider when calculating the sub-pixel

coverage of the polygons, see Fig 3.14.

Figure 3.14: Special cases for pixel coverage. (a) Two lines crossing the same pixel

and the center point of the pixel is between the lines. (b) Two lines crossing the same

pixel and the center point of the pixel is not between the lines. (c) A vertex point of

the polygon inside the pixel.

To solve case (a), for each line we calculate the part that is outside the

polygon, i.e., the side without the center point of the pixel. This area for both

of the lines are summed together and the total area of the coverage pixel is

calculated by subtracting this value from the total area of a pixel. In case (b)

the center point of the pixel is not between the lines. To get the area coverage

we need to subtract the area Al1 from Al2 , calculated with (eq. 3.12). The area
coverage in (c) is approximated by using sub-pixel precision for only one of
the lines. The polygons in this case always have four lines, see Fig. 3.12. The
dotted lines in Fig. 3.12 (upper and lower line segments) will be short and
on the inner border of the tube, while the other two will be long and border
adjacent polygons. The lines that are on the edge of the glass tube are assumed
to be of less importance. To simplify the vertex problem we therefore chose to
not have sub-pixel precision for the lines on the edge of the glass tube (dotted
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lines); they will be either inside or outside the polygon, depending on the

position of center point of the pixel.
Once the pixel coverage for all polygons at all the acquisition angles are

calculated, the system matrix can be filled with the ray paths for each of the
bins in the detector.

It is hard to evaluate the increase in accuracy of the reconstructions follow-

ing this new light path algorithm. A good phantom object in zebrafish size

that will fit inside the tube is yet to be designed to truly evaluate image quality

improvements.

3.2.2.4 Tomographic reconstruction
As mentioned in section 3.2.2.2 the FBP is used to get a fast reconstruction
for detecting the COR. When performing the reconstruction of the complete
data set, the quality of the reconstruction is more important than the speed, we
therefore use the OSEM algorithm together with the system matrix described
in Sec. 3.2.2.3.

A gray-scale reconstruction of one fish, approximately 300 images per rev-
olution and size of reconstruction 250x250x450 pixels, takes 50 sec with FPB.
With OSEM, using 12 subsets and 2 iterations, the reconstruction time is
around 3.5 min. These measurements were done on a Intel Core i7 2.67GHz
with 6GB of RAM.

Bright field tomography
Tomographic reconstruction of bright field images is possible with stained

or unstained fish. In paper IX an Alcian blue stain was used to enhance the

bone of the fish, see Fig. 3.15. The alignment was done as described in Sec-

tion 3.2.2.2. For color reconstruction, each channel is reconstructed individu-

ally and combined after reconstruction. An RGB reconstruction can be seen

in Fig. 3.16.

Figure 3.15: A single rotational image from a zebrafish larvae stained with Alcian

blue
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In paper IX, bone structure in the fish is segmented from the RGB recon-

struction. The segmentation is done with a color classification. The user trains

the classifier before segmenting all the fish by marking regions that belong

to bone and not bone. Linear discriminant Analysis (LDA) is used to classify

each pixel in the image as bone or not [20]. The feature vector consists of

the three colors. Furthermore, a minimum threshold for the volume of bone

structure is used to remove small objects. The result after color classification

can be seen in Fig. 3.17. The segmentation provides a possibility to extract

quantitative measurements of the bones.

Fluorescence tomography
When studying structures not easily targeted by light absorbing stains it is
desirable to use fluorescence, and reconstruct 3D volumes by fluorescence to-
mography. Since both fluorescence and bright field images can be acquired
at the same time, we only need to align one of them. We use the bright field
alignment described in Section 3.2.2.2 and then use the same transformation
for the fluorescence images. As for the bright field reconstruction, the fluores-
cent images are reconstructed with OSEM.
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Figure 3.16: RGB reconstruction of zebrafish stained with Alcian blue.

Figure 3.17: Color segmentation from RGB reconstruction of zebrafish stained with

Alcian Blue.
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4. Conclusion

4.1 Summary

Single cell analysis is crucial to capture variations between cells in the same

population. Papers I and II present and evaluate a single cell analysis method

for quantifying the number of signals per cell. This method provides suffi-

ciently good results to discriminate between cells of different characteristics

in the same sample. The algorithms where incorporated in the freely available

software BlobFinder and BlobFinder Bright Field, which since the publica-

tion of Paper III in 2009 have been downloaded more than 500 times. This has

provided good feedback of the single cell analysis method and shows that the

demand for user-friendly applications of this type is high.
The detection of point-like signals in fluorescence microscopy images is

an important field and many different algorithms have been developed to ac-
curately detect these signals. In papers IV and V a novel method for signal
detection is presented. The method shows better performance than the com-
monly used methods compared in the paper, both on synthetic and real data.

In samples with highly variable concentrations of signals, simultaneous de-

tection of high and low concentrations is difficult and sometimes even impos-

sible. Paper VI presents a method for extending the dynamic range of signal

detection from PLA probes in order to allow detection of both abundant and

scarce target molecules. The increased dynamic range provides a great tool for

measuring signals in cell cultures with high variation in signal concentration.

High-throughput screening is an effective strategy for discovering disease
pathways and new potential drugs. In Papers VII and VIII, improvements to
the previously developed zebrafish high-throughput system VAST are pre-
sented. The throughput and utility of the system has been significantly in-
creased by multi-threading the platform and adding fully automatic orienta-
tion and positioning of zebrafish. The improvements enable larger and more
complex screening studies, using this model organism.

Paper IX presents a high-throughput optical projection tomography (OPT)
system capable of acquiring 3D images of live zebrafish both in bright field
and fluorescence. The combination of high-throughput and optical projection
tomography provides a novel and useful tool for visualization and quantifica-
tion of 3D features in large screens.
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4.2 Concluding remarks

The increased use of digital images in microscopy, together with the develop-
ment of new staining and acquisition techniques, has created a high demand
for fast and accurate analysis of the data. Image analysis provides an invalu-
able tool for quantitative analysis of many types of microscopy images. Today,
image analysis is an integral part in many biologists’ everyday work. However,
there are still many analyses performed manually that can be automated to in-
crease accuracy and throughput. This thesis has presented several algorithms,
methods, and software that will increase automation for many applications in
the areas of biology and medicine.

The single cell analysis method presented and evaluated in this thesis is ap-
plicable on a wide range of different types of cells and cell cultures. The var-
ious software programs developed have been widely used, and the feedback
from the users confirms the previously mentioned demand for these types of
analysis. As the acquisition and staining techniques are continuously being
improved, the software and algorithms also need to develop further to ac-
commodate these changes. One such example is the increased dynamic range
presented in this thesis. For biologists to fully utilize the benefits of multiple
staining colors, a method and software that can automatically quantify large
data sets of these types of images is required.

Detection of point source signals is application dependent, and the choice

of detection algorithm might differ depending on the image data. In our eval-

uation, the 3DSWD performed better than the other methods used in the com-

parison. However, there are numerous other methods, not mentioned in this

thesis, that can be used for detection of point-like signals. There are better or

worse methods depending on the application, but no method will work per-

fectly on all types of images. Providing a library containing many different

algorithms for signal detection would help users find the optimal algorithm

for their specific type of images.
Information extracted from studying individual cells or cell cultures is lim-

ited when it comes to revealing information on the effects seen on a whole
organism in response to the addition of potential drugs or genetic changes.
There is a growing interest in studying model organisms as they provide a
possibility to study effects on the organism as whole system. VAST and the
hight throughput tomography system presented in this thesis not only pro-
vide a possibility to study the zebrafish as a whole organism, but also allow
biologists to do this in a high throughput in vivo environment. It allows the
power to extract information at the cellular scale by combining low resolution
microscopy for positioning, and high resolution confocal microscopy for cell
detection. This enables large-scale in vivo studies of biological processes such

as organ development, neural degeneration and regeneration, pathogenesis,

and drug toxicity.
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Summary in Swedish

Datoriserad bildanalys är en teknik som används för att automatiskt analy-

sera/extrahera information från digitala bilder. Datoriserad bildanalys omfat-

tar många områden, t.ex. identifiering av fingeravtryck, automatiskt läsning

av registreringsskyltar, eller räkning av celler i biologiska bilder. Med dagens

kraftfulla datorer och nya bildalstrande tekniker har datoriserad bildanalys fått

en betydande roll inom många forskningsområden.
Inom den medicinska forskningen används ofta ljusmikroskopi för att titta

på celler eller organismer som är för små för att synas med blotta ögat. Man
använder ofta odlade celler för att studera sjukdomar eller hur olika mediciner
påverkar sjukdomstillstånd som kan modelleras på cellnivå. För att kunna se
cellerna i ett mikroskop används ofta någon typ av infärgning av cellens olika
delar. Genom att specifikt märka t.ex. DNA eller proteiner, går det att påvisa
olika egenskaper hos celler. Mats Nilsson och Ulf Landegren vid Rudbeck-
laboratoriet i Uppsala har tagit fram en metod som kallas ’pad-lock’ eller
’proximity-ligation’ som på ett mycket exakt sätt märker platser där en viss
gen eller ett vist protein finns. Detta syns som små prickar, s.k. punktsignaler,
runt eller i en cell i en fluorescensmikroskopibild. När bilderna sedan ska anal-
yseras vill man räkna hur många DNA- eller proteinsignaler som existerar i de
olika cellerna under olika förhållanden. Att analysera manuellt är extremt tid-
skrävande då det finns många prickar i varje cell, många celler i varje bild, och
många bilder i varje experiment. Datoriserad bildanalys är då en bra lösning
för en automatisk och snabb beräkning av celler och prickar.

Precis som människor så är ingen cell den andra lik, utan egenskaper vari-
erar mellan olika celler. När det gäller analys av celler så är det viktigt att
bildanalysmetoderna räknar prickar per cell och inte bara räknar den totala
mängden prickar och celler i en bild. I den här avhandlingen presenteras och
utvärderas en metod för att automatiskt analysera mängden DNA eller pro-
teiner per cell i mikroskopibilder. Vi visar att med dessa metoder går det att
på att ett robust sätt kvantifiera skillnader i celler som har olika egenskaper.
Metoderna har utvärderats på artificiella bilder, sedan testats på flera olika
typer av mikroskopibilder, och visat bra kvantifiering av antalet prickar per
cell. Dessa metoder har sedan paketerats i olika mjukvaror för att både öka
tillgängligheten av metoderna och användarvänligheten för forskar från andra
områden än datoriserad bildanalys.

För att en automatisk analysmetod ska kunna räkna antalet punktsignaler
per cell behövs det en robust metod för att detektera dessa signaler. I den här
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avhandlingen presenteras en ny metod för robust detektion av punktsignaler i

3D-bilder; 3DSWD. Metoden har visat sig fungera bra genom tester på både

artificiella och riktiga mikroskopibilder. 3DSWD har jämförts mot flera tidi-

gare välkända metoder och visat bättre kvantifiering av signaler.

Människans kropp är ett komplext system uppbyggt av organ och min-
dre system som interagerar med varandra. Organfunktioner och denna sorts
interaktioner är svåra att studera på cellnivå. För att lättare studera kom-
plexa system används olika djurmodeller som t.ex. bananflugor, rundmaskar
och zebrafiskar. Dessa djurmodeller är betydligt mindre och har ett mer lät-
töverskådligt system än människan. De har också en betydligt kortare gen-
erationstid (dagar-veckor) och det är oftast etiskt mer försvarbart att utföra
storskaliga studier på enkla modellorganismer än på mer komplexa djur så
som råttor och möss eller människor. Samtidigt är grundfunktionen för många
organ och organinteraktioner, och därmed även sjukdomsmekanismer, väl be-
varade genom evolutionen. Genom att utföra experiment på djurmodeller kan
slutsatser dras om sjukdomsförlopp eller hur mediciner påverkar vissa sjuk-
domar hos människan. Av dessa enkla djurmodeller är zebrafisken en mycket
bra modell för tidig utveckling hos ryggradsdjur. Dess embryon är enkelt upp-
byggda och transparanta, vilket gör dem möjliga att studera med mikroskopi.
Embryoutvecklingen är snabb och efter bara några dagar så har de flesta organ
utvecklats. Efter 3-4 månader så kan en hona producera avkomma. Honan kan
lägga 100-tals ägg under loppet av en vecka. Ett stort antal zebrafiskar kan
alltså tas fram på mycket kort tid. Detta gör att zebrafisken är mycket lämplig
att använda i storskaliga experiment.

Helautomatiserad hantering av zebrafiskar (eller celler) tillsamns med bil-

danalysteknik gör det möjligt att undersöka effekten av olika substanser på

kort tid, så kallad ’High Throughput Screening’ (HTS). HTS-system gör det

möjligt att analysera effekten av en stor mängd substanser på ett stort an-

tal djur. På Yanik lab, Research Laboratory of Electronics, MIT, har ett HTS

system utvecklats för att titta på zebrafiskar. Levande fiskar transporteras i

systemet genom små tunna rör tills de kommer in i ett mikroskops synfält

där de sedan avbilds. Vid olika experiment studeras olika regioner av fisken.

För att systemet automatiskt ska kunna ta bilder av en specifik region så be-

hövs algoritmer för att detektera fiskens position. I den här avhandlingen så

beskrivs bildanalysalgoritmer som är framtagna för att detektera och position-

era fisken korrekt så att bilder av den önskade regionen kan tas automatiskt.

Dessutom beskrivs ett nytt HTS system som har utvecklats för att ta tredi-

mensionella (3D) volymsbilder av zebrafiskar. Fördelen med att använda 3D

bilder är att man får ut mer och precisare information än som är möjligt att

få från en 2D bild. Tillexempel volym, positioner i 3D rymden och vinklar

mellan olika objekt mäts mer exakt i 3D än i 2D. 3D bilderna tas fram genom

att fisken roteras och bilder tas under rotationen. Dessa bilder används sedan

för att rekonstruera en 3D bild ungafär på samma sätt som i en röntgento-

mograf, men i detta fall används ett vanligt ljusmikroskop. Systemet är helt
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automatiserat och medför nya möjligheter att göra storskaliga experiment på

zebrafiskar. Avhandlingen visar bland annat att systemet kan användas för att

se om varierande koncentration av olika läkemedel påverkar utvecklingen av

zebrafiskars käkben, något som kan ge information om dess effekt på män-

niskan.
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