




introducing user bias, this approach also removes regions with low dye con-
centration. Fig. 4.2 shows a procedure for noise estimation, i.e., a step per-
formed prior to image acquisition. Paper I presents a method for quantiza-
tion noise compensation in ideal sensors and Paper IV introduces a model
for photon noise in CCD sensors.
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Figure 4.1: Hematoxylin (A) and Hematoxylin/Eosin (B) stained prostate gland sec-
tion and corresponding scatter plots (C,D).

4.2 Chromaticity spaces
The purpose of chromaticity spaces is to present spectral information and
remove intensity variations. In spectral images, intensity is approximated
by the length of the sampled spectral signature of the mixture c:

‖c‖1 =
n

k=1
ck ≈

λ
c(λ)dλ. (4.1)
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Figure 4.2: An ideal sensor (A) is dominated by quantization noise. In modern CCD
sensors, however, the level of dark current noise determines the dynamic range of
the sensor and consequently the number of quantization levels. Then, the pho-
ton noise is dominant (B) and can be estimated by measuring variance of the dark
frame and the blank image. As the photon noise is Poisson distributed, standard
deviation grows with the square root of the signal (C).

For each imaged position p, the sampled spectral signature of the mixture
cp is either directly proportional to the spectral image sp compensated
for the background fluorescence, or it requires transformation by the
Beer-Lambert law of absorption. After the transformation to a chromaticity
space, two spectral signatures with different intensities but identical shape
of the corresponding continuous spectral signatures overlap in the same
position within the plane.

Paper IV implements decoupling as perspective projection to the chro-
maticity plane of the sampled spectral signature of the mixture [39]:

αp

βp
=

1p
2

− 1p
2

0

− 1p
6

− 1p
6

2
3

cp

cp 1

. (4.2)

As an alternative, Paper I presents a method for quantization noise com-
pensation incorporated in decoupling of intensity and spectral informa-
tion. For each imaged position p, sampled spectral signature cp is presented
as a ratio of the two spectral channels, i.e., an angle

αp = arctan
cp,2

cp,1
. (4.3)

Analysis of patterns in chromaticity spaces
Figure 4.3 illustrates count of points in the chromaticity plane as a two-
dimensional histogram and shows Gaussian-like distributions. Each distri-
bution corresponds to dye j is characterized by:
• mean value (α( j ),β( j )) which determines the sampled spectral signature

of the dye, and
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Figure 4.3: The result of transformation of image data shown in three-dimensional
scatter plots Fig. 4.1C and Fig. 4.1D to two-dimensional chromaticity planes A and
B, respectively. It can be observed from B that the eosin stained tissue is strongly
affected by biochemical noise.

• covariance Q( j ) which is the measure of biochemical noise.
The Gaussian assumption [40] is reasonable from a statistical point of view
as the noise term ε is random with zero-mean and there is no prior knowl-
edge about variation of spectral signatures.

Gaussian assumption opens a possibility for maximum-likelihood
estimation of the linear mixture model parameters a j by means of
expectation-maximizations. However, fitting n Gaussian distributions in
a direct manner to data in the chromaticity space may not always match
with the correct distributions. For instance, in the H/E example shown
in Fig. 4.3B, the distribution associated with eosin is of low amplitude
relative to the dominant distribution. In order to increase robustness
to biochemical noise, Paper IV presents a method based on k-means
clustering, a variation of expectation-maximization algorithm that
assumes small, diagonal and equal covariances.

By taking the inverse of equation 4.2, under assumption a j 1 = 1, the

mean values (α( j ),β( j )) uniquely determine sampled spectral signatures of
all dyes a j , j = 1, ...,n.

4.3 Piecewise linear decomposition
The previous section describes how to estimate model parameters in the
chromaticity space. If the sampled spectral signatures of dyes form a well-
conditioned mixing matrix A = [a1 . . . an]T , relative dye concentrations are
provided by linear decomposition, i.e., by using equation 3.18. Figure 4.4
shows the result of separation of hematoxylin and eosin stained histological
section by linear decomposition.

On the other hand, spectral angle mapping [41] offers a stable solution
when the mixing matrix is ill-conditioned. Unlike linear decomposition,
angle mapping is a crisp pixel classification algorithm as it assigns each im-
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A B

Figure 4.4: Estimated relative dye concentration maps of the hematoxylin (A) and
eosin (B) stained tissue section shown in Fig. 4.1B.

aged position p to one of the n dyes with smallest angle

θp, j = arccos
cp ·a j

cp 2 a j 2

, (4.4)

between the two sampled spectral signatures of the observed mixture cp

and sampled spectral signatures of dyes a j .
In addition to the two classical algorithms, piecewise linear decomposi-

tion is a novel method applicable to ill-conditioned cases, such as decom-
position of the Gömöri trichromatic stain presented in Paper IV and detec-
tion of colocalization presented in Paper I. The first step is obtaining an-
gular distances to sampled spectral signatures of dyes θp, j for the imaged
position p. Next, two dyes j1 and j2 are chosen such that

j1, j2, j3 ∈ {1,2,3} , j1 6= j2, j2 6= j3, j3 6= j1,and θp, j1 < θp, j3 ∧θp, j2 < θp, j3 .
(4.5)

The estimated relative dye concentrations are

dp, j1

dp, j2

= a j1 a j2
T a j1 a j2

−1
a j1 a j2

T cp, (4.6)

and
dp, j3 = 0. (4.7)

Detected projections of sampled spectral signatures (α(1),β(1)),(α(2),β(2))
and (α(3),β(3)) form a triangle in the chromaticity plane. The circumcenter
of the triangle represents a sampled spectral signature where all dyes are
mixed in equal proportions. Thus, if the triangle is acute, or ideally equi-
lateral, the equation 3.18 holds as it is possible to unmix all three dyes. If
the triangle is obtuse, the circumcenter lies outside of the triangle and rel-
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ative dye concentrations are estimated by piecewise linear decomposition
assuming that the two dyes associated acute vertices do not mix.

The following chapter presents a number applications where angle distri-
butions α and chromaticity planes (α,β) were used in quantitative analysis
of microscopy images. First, for extraction of sampled spectral signatures
of dyes a j and, eventually, to perform angle mapping, linear, non-linear or
piecewise linear decomposition.
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5. Results – applications in
biotechnology and pathology

Data! Data! Data!
I can’t make bricks without clay.

– Sherlock Holmes,
from “The Adventure of the Copper Beeches” by

Arthur Conan Doyle (1859-1930)

5.1 Quantification of colocalization (Paper I)
Colocalization occurs when two or more dyes are purposely mixed and
appear physically co-located in the same imaged position. They combine
spectrally to a new signature which is a linear combination of the signals
from the two original dyes. For any number of spectral channels nc ,
the mixing matrix A = [a1 a2 a1+2] is non-invertible, thus neither model
parameters nor relative densities can be obtained using least-squares
based methods described in Chapter 3.

Paper I introduces angle histograms (equation 4.3) to estimate sampled
spectral signatures of dyes a1, a2 and a1+2 in a dual-color image. The pa-
per presents the basic example of colocalization (nc = 2, n = 3) created
using simulated images of an unknown source of fluorescent light. There-
fore, it only deals with quantization noise and uniform background inten-
sity offset. The simple method for parameter estimation is designed to ex-
tract dominant angles from predetermined angle intervals. Decomposition
is implemented as angle mapping.

The result is a quantitative global measure of the degree of colocalization
– coefficients M1 and M2. The colocalization coefficients represent approx-
imation of the total amount of fluoresce of the colocalized dye a1+2 divided
by the total amount of fluorescence by the pure dyes, determined by a1 and
a2, respectively.

Conclusion: Angle mapping was compared to pixel classification meth-
ods based on intensity thresholding commonly used for quantification
of colocalization. The method ensures that imaged positions containing
either strong or weak signals from dyes belong to the same class. It
outperforms related methods when applied to both simulated and real
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microscopy images [42, 43, 44]. The study demonstrated in Paper III
confirms this conclusion.

5.2 Suppression of cross-talk and background
fluorescence (Paper I and Paper II)
Background fluorescence, also known as autofluorescence [45], and cross-
talk or bleed-through [46, 47] are two problems in fluorescence microscopy
often solved by spectral decomposition. When imaging biological speci-
mens, the detected signal j in spectral channel k contains contributions
from fluorescence originating from sources other than the imaged dye. This
fluorescence could either come from the specimen itself (background flu-
orescence), or from dyes with partly overlapping emission spectra (cross-
talk). According to equation 3.1, in order to resolve spectral components at
least nc = 2 distinct wavelength bandwidths have to be imaged or used for
excitation.

In situations when spectral signatures are unknown, linear mixture
model parameters are extracted from angle histograms and consequently
used for compensating cross-talk, independent of the microscope
hardware. Cross-talk shows up as shifts of the peaks in the histogram. Thus
sampled spectra a1 and a2, represented by angles α1 and α2, respectively,
can be estimated from the image data. In Paper I, this is implemented
using the same histogram segmentation algorithm as for determining
classification rules for angle mapping.

Paper II demonstrates that autofluorescence removal by carefully
designed non-linear decomposition enables quantification of protein
complexes in brain tissue detected by proximity ligation assay (see
Section 2.4). In Chapter 3 fluorescence background was assumed to be
equal to the black level offset. The paper addresses a situation when the
assumption does not hold. While protein complexes are detected by
probes excited at 563nm, lipofuscin and hemoglobin, main contributors
to autofluorescence, have very broad spectral profiles. Background
fluorescence was excited at 488nm providing an image free of point-source
signals. Since images contain only a few signals per field of view,
non-negative matrix factorization or direct segmentation of the angle
histogram are inapplicable. Paper II presents an application-specific
algorithm that provides parameters for decomposition. Finally, by applying
non-linear decomposition the measure of relative dye concentration is
lost. However, point-source signals are equally important irrespectively to
their intensity and the level of background fluorescence, hence non-linear
unmixing provides higher signals-to-noise ratio.

Conclusion: In addition to colocalization coefficients, the analysis of
angle histograms presented in Paper I can be employed for estimation of
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sampled spectral signatures in dual-channel fluorescence microscopy. By
employing linear decomposition, cross-talk-free fluorescence microscopy
images are generated. For the specific application presented in Paper II,
the algorithm also saves time and space for storage of multispectral images
as only two spectral channels need to be recorded and processed to remove
autofluorescence. The non-linear decomposition algorithm proposed in
Paper II for enhancement of point-source signals shows improvement in
comparison to linear decomposition.

5.3 Classification of multicolored signals (Paper III)
Paper III presents a study of biomolecular methods for specific detection
of single molecules and single molecule interactions. Specificity of the de-
tection originates from the circular-DNA molecule created only if padlock
or PLA probes bind to a well-defined DNA sequence or pair of proteins [19,
23]. Subnanometer-sized molecules are labeled and enlarged by means of
rolling-circle amplification, hence increasing the local intensity and ulti-
mately satisfying the Shannon-Nyquist sampling theorem. Further on, flu-
orescent colors are incorporated at a hybridization site and utilized for mul-
tiple detection of single molecules providing a unique spectral signature
for each molecule or molecular interaction of interest. During rolling circle
amplification, the characteristic spectral signature of a dye or a mixture of
dyes is multiplied, and intensity ratios vary within boundaries determined
by the level of biochemical noise.

Point-source signals are modeled by their shape as each signal, in ad-
dition to increased brightness, expands spatially. Paper III demonstrates a
method that combines object based detection of point-source signals [48]
and the global measure of colocalization presented in Paper I. The result-
ing angle histogram can be employed to classify multicolored signals or to
estimate the level of biochemical noise.

Conclusion: Paper III demonstrates that the choice of the method for
oligonucleotide synthesis does not affect ability of multiplexing. The pa-
per presents a procedure for comparison of methods for quantification of
protein-DNA interactions, which has also been employed by Weibrecht et
al. [49].

5.4 Color decomposition of histological images
(Paper IV)
Paper IV presents the method explained in the previous chapter applied
to color decomposition of histopathological stains. The main challenge ad-
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dressed in this paper is automated detection of sampled spectral signatures
with a minimum of a priori information.

While the methods in Papers I-III initially collect data points in angle
bins to form an angle histogram, this paper presents a method based on k-
means clustering. The simple pattern analysis algorithm is employed to es-
timate sampled spectral signatures of dyes. In comparison to non-negative
matrix factorization, which is a method implemented as an alternating least
squares procedure [35], the proposed pattern analysis technique performs
at least as well or better than non-negative matrix factorization. It can also
detect collinear projections of sampled spectral signatures and thus ad-
dress ill-conditioned cases. Naturally, very little or no stain in tissue makes
all blind methods fail, which is a practical limitation of the approach.

In addition to decomposition of light-absorbing stains that follow
the Beer-Lambert law, the paper offers a solution for treatment of
light-scattering stains. Those stains, such as diaminobenzidine, do
not adhere to the Beer-Lambert law and have to be removed in the
pre-processing step. The paper also presents compensation for photon
noise that particularly affects regions with low dye concentration.

Conclusion: Paper IV demonstrates that estimation of the linear model
parameters by analyzing data in the chromaticity plane outperforms state-
of-the-art algorithms both for well-conditioned cases (such as H/E) and ill-
conditioned cases (Gömöri trichrome).
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6. Discussion

I have had my results for a long time:
but I do not yet know how I am to arrive at them

– Carl Friedrich Gauss (1777-1855)

This chapter covers a wide range of topics ranging from description of
limitations of the proposed linear model and method to a discussion on
color spaces, sampling and that major advances will result from collabora-
tive work.

6.1 Limitations of the linear mixture model
The transfer functions of optical imaging systems equations 3.3 and 3.9
have limitations. In particular they do not take into account the point
spread function of the lens, which is also wavelength dependent [3], but
assume lenses of infinite size. Thus, a complete model of the system
would require integration over three spatial dimensions to compensate for
different degrees of blurring when photons from imaged position p reach
the detector.

In fluorescence microscopy, the main limitation of the model stems from
colocated dyes that may interact. For example, Förster resonance energy
transfer [50] introduces artifacts visible at high concentrations in the color
cube [31]. In bright-field microscopy, the linear mixture model does pro-
vide quantitative information, i.e., relative dye concentrations, when light-
absorbing dyes are used for specimen preparation. Nevertheless, it is com-
mon to use light-scattering stains which results in loss of quantitative infor-
mation [12, 32, 51]. Paper IV proposes a solution to the problem, but also
suggests that light-scattering stains (including diaminobenzidine) require
a new model.

Epifluorescence and bright-field microscopes shown in Fig. 3.1 and 3.2,
respectively, are wide-field microscopes. They use sensor array to acquire
two-dimensional images, while confocal microscopes use photomultiplier
tubes (single-pixel cameras) to acquire three-dimensional spatial informa-
tion [3]. While wide-field microscopes suffer from both longitudinal and
lateral chromatic aberrations, only longitudinal chromatic aberrations in-
fluence confocal microscope imaging. The methods for spectral and color
decomposition presented in this thesis require images free of chromatic
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aberrations, just as spectral unmixing or intensity-based quantification of
colocalization algorithms. In wide-field microscopy, lateral chromatic aber-
rations may affect results significantly, particularly quantification of point-
source signals. Algorithmic compensation for chromatic aberrations solves
this problem [52, 53].

Finally, the definition of colocalization proposed in a previous chapter
may be different from the description in Paper I: “The source of two dif-
ferent emission signals can often be physically located in the same area or
very near each other in the final image due to their close proximity within
the microscopic structure. This is known as colocalization." Although two
single-colored objects laying next to each other may be considered as colo-
calized [54], an underlying assumption of the proposed method is existence
of a significant number of dyes co-located in area smaller than area ςp pro-
jected to the specimen plane.

6.2 In light microscopy, there is no such thing as – hue
This thesis presents a method for decoupling light intensity from spectral
information. It also considers tri-chromatic red-green-blue color sensors
as one type of spectral imaging systems. In modern digital image process-
ing, researchers tend to follow Goethe’s description of color as a mixture of
primaries as perceived by humans and refer to separation of color into hue
and saturation as decoupling of spectral information. But in microscopy,
the method based on the linear mixture model has been proven to be supe-
rior to hue-based solutions [55].

On the other hand, with the exception of a physically-based approach
[56], computer vision researchers often prefer decoupling of intensity and
spectral information by transforming input data to the L*a*b* color space.
The transformation is modeled by the non-linear response of human eyes.
Therefore, the chromaticity plane a*b* preserves color differences as per-
ceived by humans. Since the most commonly observed objects in computer
vision and multimedia are man-made (apart from the human skin color
[57]) this transformation appears to be suitable. The question is: Should
quantitative microscopy represent color as it is perceived by humans? And
the answer supported by this thesis is – no. The chromaticity plane intro-
duced in Chapter 4 preserves chromaticity differences as differences be-
tween sampled spectral signatures of dyes. It also opens a possibility of
modeling and measuring biochemical noise as a finite sum of Gaussian dis-
tributions.

Finally, Newton left it unclear what he meant by “centers of gravity let Cir-
cles proportional to the number of Rays of each Colour in the given Mixture
be describ’d” (see Chapter 2). But in the context of modern optical imaging,
the following explanation is plausible: the color wheel is not a wheel (and
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certainly should not be used to represent color as a hue-saturation couple);
it is a projection of a seven-dimensional color cube to a two-dimensional
space – simply for visualization purposes.

6.3 Uniform vs. irregular sampling
Hyperspectral cameras (Fig. 2.7A) can be used for identification of
molecules with distinct line spectra. Uniform sampling of the light
spectrum in such imaging systems is band limited by the diffraction
grating and sampling occurs in accordance with the Shannon-Nyquist
criterion (eq. 2.5). Thus, a sampled spectral signature with a large number
of spectral channels for each imaged spatial position is recorded. The main
drawback of hyperspectral imaging systems is poor signal-to-noise ratio
caused by narrow band channels, i.e., high resolution of the system.

Several studies demonstrate that the number of spectral channels does
not need to exceed the number of dyes to maintain separability of overlap-
ping spectra and high signal-to-noise ratio [58, 59, 60]. Therefore, in fluo-
rescence microscopy sampling of spectral information is characterized by
assumed emission spectra of fluorescent dyes and it is in its nature – irregu-
lar. In addition, using a red-green-blue filters arranged into a form of a mo-
saic filter, the most common sensor in commercial cameras [33], is another
example of irregular sampling of spectral information.

Thus, irregular sampling of spectral information prevails in all fields of
science and technology. On the other hand, irregular sampling of temporal
and spatial information [61] is still not very common in applied sciences
or medicine where high resolution uniform sampling generates image data
both for visualization and image analysis. Perhaps, the answer to why it is
so common to sample the spatial and temporal domains uniformly lies in
the fact that human perception affects the way engineers implement sen-
sors. Apart from biologists’ desire to study three-dimensional high resolu-
tion imagery, recent papers indicate that time-sequences [62] also play an
important role in quantitative microscopy. And while large amount of data
from the proliferation of sensors with ever increasing resolution is bene-
ficial, it also represents one limiting factor for the 21st century computer
architectures.

Guided by the following facts: (1) irregular sampling of light spectra
did not show any major drawbacks; (2) information of interest is often
distributed over more than two dimensions; (3) imaging time grows
often linearly with the amount of data; (4) the amount of data grows
exponentially with each new dimension; it appears reasonable to pose
the following question: Could sparse sampling of temporal and spatial
information [63] be a technique for efficient image acquisition that will
revolutionize image processing that we know today?
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6.4 Future of image processing in medicine and
biology
The methods published in Paper III have already been employed for
evaluation of molecular biology protocols, i.e., detection of individual
sequence-specific protein-DNA interactions in situ [49]. Image processing
in this work was not limited to analysis of visually acceptable images
provided by biotechnologists (see Fig. 2.4), but it was an integral part
of protocols for measuring the detection probe quality and accuracy
(Fig. 6.1).
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Figure 6.1: An example of collaborative work – information processing applied in
all stages of research may minimize subjectivity in diagnosis and decrease bias.

Furthermore, as a consequence of accurate estimation of relative dye
concentrations in Paper IV morphological structures are preserved. For ex-
ample, Gleason grading of prostate cancer [64] uses a number of morpho-
logical features, from shape of glandular units to the size of nuclei. In addi-
tion, by using image analysis, computers can help pathologists by providing
extensive statistics of a number of features, e.g., chromatin distribution in
cell nuclei, an important feature for severity grading [65].

Section 2.4 describes two different philosophies in quantitative analysis,
machine learning and analytical modeling. Today, the first approach pre-
vails. And while it is cost effective, its conclusions are limited by the material
provided for the training step. In medicine, this means that image analy-
sis is limited by the performance of medical doctors [66] because statistical
models based on experts’ annotations and opinions are not always optimal.
However, employing researchers from both biomedicine and engineering
(see Fig. 6.1) to develop and adopt new stains and protocols jointly, derive
mathematical models and test their limitations should be the approach.
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Sammanfattning på svenska

Färgteori och mikroskopi har samexisterat i flera århundraden. I och med
1900-talets teknologiska framsteg har tidigare nära relaterade forskning-
sområden som färgteori, spektroskopi, mikroskopi och datoriserad bild-
analys sammanfogats i sann synergi. Parallellt med detta har förståelsen för
människans förmåga att tolka färginformation ökat. Detta har lett till såväl
kvantitativa mått på färg som till modeller för hur vi uppfattar färg visuellt.

Med tanke på att målet med bildbehandling inom naturvetenskapliga
tillämpningar och medicin är att säkerställa en objektiv analys, är denna
avhandling fokuserad på färgteori inriktad på kvantitativ analys snarare
än det subjektiva angreppssätt som dominerar forskningsområdet idag.
Ett område där detta är särskilt angeläget är inom histopatologi, där
målet är att undvika subjektiva bedömningar och öka tillförlitligheten för
en diagnos och därmed uppnå bättre behandlingsplanering. Dessutom
kan datoriserad bildbehandling dra nytta av matematiska modeller
som kan bekräfta eller förkasta vetenskapliga hypoteser på ett tidigt
forskningsstadium genom att öka noggrannheten och analyskapaciteten
och minska subjektiviteten.

Avhandlingen presenterar en modell för spektral bildanalys som kan
tillämpas såväl på fluorescens- som ljusfältsmikroskopi. Genom att
tillämpa den inversa modellen erhålls uppskattningar av den relativa
koncentrationen för var och en av komponenterna i den observerade
blandningen av infärgningar. Modellens parameterskattning grundar sig
på att vi skiljer på intensitetsinformation och spektral information. Denna
nya spektrala uppdelningsmetod är uppbyggd i tre steg: 1) Modellering
av foton- och halvledarbrus leder till parametrar för utjämning av
signalerna 2) Transformering av bilden till ett kromaticitetsplan tar bort
intensitetsvariationer samtidigt som skillnader i färgnyans bevaras. 3)
styckvis linjär uppdelning kombinerar fördelarna av spektral mappning
och linjär uppdelning och leder till relativa koncentrationer av färgämnen.

Metoderna inkluderar en matematisk modell och algoritmer för automa-
tiserad parameterskattning. Ett antal ljusmikroskopitillämpningar viktiga
för kvantitativ mikroskopi presenteras:
• Kvantifiering av närliggande fluorescenssignaler. När flerfärgade

prover avbildas händer det ofta att fluorescenssignaler från olikfärgade
men närliggande mikroskopiska strukturer hamnar i samma fysiska
bildpunkt. Detta leder till ett spektralt uppdelningsproblem som
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inte kan lösas med klassisk egenvektorbaserad multivariat analys. I
avhandlingen presenteras ett spektralt vinkelhistogram; ett nytt verktyg
för visualisering och kvantitativ analys inom mikroskopi. Vinkelhis-
togrammet separerar spektral information från intensitetsinformation
och tar hand om de illa-konditionerade uppdelningsproblem som
nämns ovan.

• Spektral uppdelning vid autofluorescens och signalöverhörning.
Bakgrundsfluorescens, också kallad autofluorescens, och signalöver-
hörning är två problem inom fluorescensmikroskopi som har sitt
ursprung i liknande fysiska fenomen, och ofta löses med hjälp av
spektral uppdelning. När biologiska prover avbildas innehåller den
detekterade signalen ofta bidrag från andra källor än den avbildade
fluorokromen. Dessa signalbidrag kommer kommer antingen från
provet självt (bakgrundsfluorescens) eller från fluorokromer med
delvis överlappande emissionsspektra (signalöverhörning). För
att kunna separera signaler från olika källor krävs avbildning av
åtminstone två olika våglängdsintervall, alternativt avbildning med
två olika excitationsspektra. För klassisk spektraluppdelning krävs
spektrala signaturer av individuella komponenter, och dessa spektrala
signaturer måste avbildas innan spektraluppdelning är möjlig. I
situationer där spektrala signatur är okända kan vinkelhistogram
användas för att bestämma parametrar för både linjär och icke-linjär
spektraluppdelning. En annan fördel med metoden är att enbart ett
fåtal spektrala kanaler behöver avbildas och behandlas – något som
spar både tid och lagringsutrymme.

• Färgbaserad vävnadsklassificering i ljusmikroskopi. Genom att tillämpa
den inversa modellen som extraherar spektrala komponenter från ett
vävnadsprov kan en färgkoncentrationskarta skapas. Variationer i färgin-
tensitet är därmed borträknade, och artefakter från provpreparation och
infärgning reduceras. Dessutom kan modellen kombineras med statis-
tisk modellering av brus och mjuka klassificeringsmetoder möjliggör lin-
jär färgseparation.
Slutligen presenteras metoder för kvantitativ bildanalys tillämpade

inom ett samarbetsprojekt med biomedicinska forskare. Traditionellt sett
brukar forskare inom bildanalys bli inblandade i samarbetsprojekt först
efter att de biomedicinska metoderna utvecklats, och ibland även efter
att bilddata insamlats. Detta gör att resultaten begränsas av att bilderna
inte är anpassade för bildanalys. För att övervinna begränsningarna
med detta angreppssätt har vi utvecklat metoder för bildbehandling
parallellt med metoder för att kvantifiera interaktioner mellan enskilda
molekyler visualiserade med hjälp av flerfärgade signaler. Vi beskriver hur
bildbehandling används för att utvärdera biokemiska metoder, inklusive
provpreparering, avbildning och kvantitativ analys. På liknande sätt har
överföringen av färginformationen i bilderna till ett kromaticitetsplan
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Figur 1: Informationsbehandling inom medicin och biologi.

möjliggjort en teoretisk beskrivning av en perfekt infärgning. Dess
referensfärger skall vara belägna i hörnen på kromaticitetsplanet och
alla vävnadstyper skall ha lika stort upptag av färg (ingen övermättnad,
inga bleka infärgningar). Dessa kriterier hjälper patologer att utveckla
nya infärgningar som är optimerade primärt för kvantiativ analys med
datorer och i andra hand för att fungera för det mänskliga synsinnet. Figur
1 illustrerar flödet i den bildbehandlingsprocess som skapades för att
uppfylla behoven inom detta interdisciplinära projekt.
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