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Notation

x italics denote scalars and scalar-valued functions

x boldface lower-case letters denote vectors

X boldface upper-case letters denote matrices

R set of real numbers

Z set of integer numbers

ι imaginary unit

[·]T vector or matrix transpose

‖·‖p p-norm of the vector

ln(·) the natural logarithm

exp(·) the exponential function

Logarithm and exponential functions of a vector are ap-
plied element-wise.

p imaged position in R3 space, p ∈Z3

np number of imaged positions

λ wavelength

cp(λ) spectral signature at position p

nc number of spectral channels

k = 1, ...,nc index over the nc spectral channels

cp sampled spectral signature at position p

sp spectral image

n number of dyes

j = 1, ...,n index over the n dyes

dp relative dye concentrations at position p

a j estimated sampled spectral signature of a dye j

A mixing matrix

9





1. Introduction

Motivation
With the twentieth century technological advancements, otherwise closely
related fields of color theory, spectroscopy, microscopy and image process-
ing were merged in a true synergy. In parallel, a growing understanding of
the human visual information processing created space for a quantitative
presentation of color as compared to that perceived by humans. Having in
mind that the aim of image processing in natural sciences and medicine is
to secure objective analysis, this thesis relies on fundamentals of color the-
ory that promote quantitative analysis instead of the subjective approach
that prevails in the field today. Guided by this, the purpose of incorporat-
ing color and spectral image processing into histopathology is to minimize
subjectiveness and increase the reliability of diagnostics. Further on, image
processing benefits from of mathematical models that can, with maximum
reliability, confirm or disapprove scientific hypotheses at an early stage in
research.

The aim of this thesis is to present a unified framework for processing of
microscopy images based on decoupling light intensity and spectral infor-
mation. The method comprises a mathematical model and algorithms for
automated identification of its parameters. It deals with a number of light
microscopy applications important for quantitative analysis:
• Suppression of cross-talk (bleed-through) in fluorescence microscopy
• Suppression of background fluorescence (autofluorescence)
• Detection of colocalization
• Color decomposition of histological images in bright-field microscopy,

both well-conditioned and ill-conditioned cases.

Thesis outline
The central motive of the thesis and the four included papers is quantitative
analysis of color and spectral images with applications in microscopy.

Chapter 2 presents the theoretical fundamentals of the problem from dif-
ferent perspectives: What is an image? What is color? How to acquire spec-
tral images? How image data is processed and what scientists in related
fields can do to facilitate the process?

Chapter 3 derives a linear model from the Beer-Lambert law and de-
scribes how related spectral image processing methods estimate its param-
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eters. Chapter 4 introduces novel chromaticity spaces and describes how
they can be employed to solve two main problems: estimation of the model
parameters and evaluation of the dyes. The chapter ends with a descrip-
tion of a piecewise linear decomposition algorithm designed to solve ill-
conditioned problems.

Chapter 5 describes several applications where the method was success-
fully applied. The chapter also includes brief summaries of the included
papers and the most important conclusions. Finally, Chapter 6 is dedicated
to describing limitations of the model and the method and discussion con-
cerning the future development of the field.
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2. Background

Alas, I have studied philosophy,
the law as well as medicine,
and to my sorrow, theology;

studied them well with ardent zeal,
yet here I am, a wretched fool,

no wiser than I was before.
– Faust,

from the homonymous play by
Johann Wolfgang von Goethe (1749-1832)

2.1 Digital images

Image processing and related fields
In electrical engineering, sensors are devices that measure and convert
physical quantities to analogue signals. Analogue signals contain
continuous spatial, time-varying, or spectral information and have
continuous magnitude. In contemporary sensors, electric circuits sample
analogue signals and analogue-to-digital converters quantize those
magnitudes, hence forming digital signals represented as finite sequences.
Signal processing comprises a group of techniques that aim to represent
and transform these finite sets of input measurements from sensors
(i.e., signals) using some useful operation. For instance, a useful signal
processing operation could increase the signal-to-noise ratio.

Image processing is a field concerned with transforming the input image.
Similarly to the definition of signals, here the image is a discrete represen-
tation of the quantized spatial energy distribution of a source of radiant en-
ergy [1]. If the sensor by any means succeeds in measuring physical quan-
tities of interests at spatial positions p = (px , py , pz ), it is common to define
an image as a discrete function over three-dimensional discrete space, giv-
ing discrete geometry a fundamentally intrinsic role in image processing.
For example, it is not trivial to define a digital straight line [2].

Historically, early image processing techniques followed the invention of
television, but the field started to develop at a higher pace in the 1960’s
with sufficiently powerful computers, advancements in satellite imagery,
medical imaging and the invention of CCD cameras. As humans visualize
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and comprehend images with less difficulty than raw numerical data from
sensors, a new field was born - image analysis. The aim of image analysis
techniques is to extract useful information from the input image, whereas
application experts designate what is useful.

In the given context, this thesis presents image processing methods that
transform microscope sensor data (photon counts) to relative dye concen-
trations of biomolecules of interest across the imaged area.

Sampling and spectra
In image processing, resolution ideally depends on information contained
in the measured spatial energy distribution of interest. This section
describes sampling criteria for a one-dimensional continuous function
f (x), where x is the element of R, i.e., the function f represents variation
of the measured physical quantity over space, time, electromagnetic
spectrum or similar.

Any regular change of the value of the function f (x) is a sign of pattern.
The extent of the change, a frequency ν, should figure as the input vari-
able of a transformation of the input signal f (x) to a new domain. Hence
the expression f (x) (cos(2πνx)− ιsin(2πνx)), which gives the value of how
much of frequency ν exists in f (x), is the basis of the transformation to the
frequency domain:

f (x) (cos(2πνx)− ιsin(2πνx)) = f (x)e−2πινx . (2.1)

The Fourier transform F integrates the term over the entire domain R

F { f (x)} = F (ν) =
∞

−∞
f (x)e−2πινx d x. (2.2)

The transform exists if the integral of the absolute value of f (x) is finite
which is satisfied for all finite functions, i.e., digital signals and images. The
Fourier transform is complex, and as such preserves both the magnitude
and phase of each frequency ν.

The classical approach is to sample the function f at uniform sampling
intervals∆x of the variable x. Mathematically, such sampling function is an
impulse train, i.e., sum of periodic impulses ∆x units apart, and gives the
sampled function

f̃ (x) = f (x)
∞

px=−∞
δ(x −px∆x), (2.3)

where px ∈ Z. Next, a Fourier transform of the sampled function F̃ (ν) is
derived by means of the Fourier analysis

F̃ (ν) = 1

∆x

∞

px=−∞
F ν− px

∆x
. (2.4)
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Since the aim of sampling is a discrete representation of the input signal
or image without loss of information, it is necessary to introduce limita-
tions to f (x). Equation 2.4 suggests that the Fourier transform, as well as the
Fourier spectrum, of the sampled function is an infinite periodic sequence
of the Fourier transform of the input function f (x) separated 1

∆x units apart.
The input function f (x) can be fully recovered from the sampled function if
none of the two contiguous replicates of F (ν) in F̃ (ν) overlap. The maximal
frequency νmax that exists in f (x) should satisfy the condition

2νmax < 1

∆x
, (2.5)

known as the Shannon-Nyquist sampling theorem. The theorem is natu-
rally applicable for digital imaging systems that sample spatial energy dis-
tribution in two or even three spatial dimensions.

In practice, reaching the theoretical resolution means that the sampling
interval has to be smaller than one-half the period of the finest detail within
the image [1]. In biomedical microscopy, that is a never-ending challenge
as desire for acquisition of fine details has no limits. Unfortunately for biol-
ogists, imaging devices do have resolution limits determined by optics and
the wavelength of light [3].

The word spectrum in this section has a common signal processing
meaning - the spectrum shows how the Fourier transform decomposes
signal to its constituent frequencies. Such choice of words was not a
coincidence since a few centuries earlier, Newton introduced the same
word in science when describing colors dispersed through an optical
prism.

2.2 Optical spectroscopy
The purpose of all spectroscopic techniques, from optical, to nuclear mag-
netic resonance, X-ray, and mass spectroscopy is to give researchers insight
into the amount, type or molecular properties of measured materials. This
chapter describes principles of optical spectroscopy as well the most avail-
able of all spectroscopic techniques - human color vision.

Light and color
In quantum mechanics, according to the wave-particle duality, both light
and matter can behave as wave or particle. Light keeps both of its proper-
ties while interacting with materials, yet the wave properties of light are pri-
marily of interest in spectral imaging. Measured light is therefore a form of
electromagnetic radiation with approximate wavelength range from 400nm
to 740m. In addition, the range of the electromagnetic spectrum designated
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as light expands significantly when the ultraviolet and infrared parts of the
spectrum are included - from nanometres to almost 1mm.

Newton described some spectral properties of light in his famous book
published in 1704, Opticks: Or, A Treatise of the Reflections, Refractions, In-
flexions and Colours of Light. The most interesting experiment, from spec-
troscopic point of view, is the prism experiment. Newton used a prism to
disperse a ray of light to rainbow colors visible on a screen. On the other
hand, the book does not contain the drawing of the prism experiment. The
engraving in Fig. 2.1 shows Newton himself observing the light spectrum.

Figure 2.1: Engraving of Isaac Newton’s prism experiment from 1666. Credit: Sci-
ence Photo Library, IBL Bildbyrå.

Fig. 2.2 shows how Newton described colors:

Let GM be produced to X, that MX may be equal to GM, and conceive GX,
λX , ιX , ηX , εX , γX ,αX , MX, to be in proportion to one another, as the num-
bers, 1, 8

9 , 5
6 , 3

4 , 2
3 , 3

5 , 9
16 , 1

2 , and so to represent the Chords of the Key, and of
a Tone, a third Minor, a fourth, a fifth, a sixth Major, a seventh and an eighth
above that Key: And the Intervals Mα, αγ, γε, εη, ηι, ιλ, and λF , will be the
Spaces which the several Colours (red, orange, yellow, green, blue, indigo,
violet) take up. [4]

Newton divided the visible part of the spectrum into seven intervals, i.e.,
primary colors, and used musical tones to set the range of each primary
color. Thus red color is between tones with the lowest frequency, it takes
two ninths of the visible part of the light spectrum; orange color takes one
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Figure 2.2: Spectrum divided by musical tones. The figure shows the original draw-
ing 4 from Part II of The First Book of Opticks [4].

ninth of the visible part of the light spectrum; etc. Even though sound is
a mechanical wave and light (as a wave) is electromagnetic radiation, the
comparison with musical tones is intuitively correct. Musical tones ideally
have line spectra, or at least very narrow spectra, while materials in the na-
ture often emit, reflect or and transmit light characterized by wide spectra.

Figure 2.3: Color mixing experiment. Two prisms ABC and abc with equal refracting
angles B and b are placed parallel to one another. Light projected through them fall
on the screen MN. The figure shows the original drawing 10 from Part II of The First
Book of Opticks [4].

Newton also practiced mixing colors by using two or more prisms as
shown in Fig. 2.3. “And the Colours generated by the interior Limits B and
c of the two Prisms, will be mingled at PT, and there compound white”,
later followed by conclusion “perfect whiteness may be compounded of
Colours” [4]. It is possible to state principles of optical spectroscopy by
analyzing the work by Newton. First, each of the colors in the series of
colors correspond to one of the seven wavelength bandwidths, spaces,
determined by distinct wavelengths, i.e., musical tones. A combination of
predefined colors approximate the spectrum of the incident ray, which
is a continuous function of wavelength. Next, the spectrum is a line, not
a circle, but if a number of musical tones with very high and very low
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frequencies are played simultaneously, the spectrum closes into the circle
Fig. 2.4:

Let the first Part DE represent a red Colour, the second EF orange, the third
FG yellow, the fourth CA green, the fifth AB blue, the sixth BC indigo, and
the seventh CD violet. And conceive that these are all the Colours of uncom-
pounded Light gradually passing into one another, as they do when made
by Prisms; the circumference DEFGABCD, representing the whole Series of
Colours from one end of the Sun’s colour’d Image to the other, so that from
D to E be all degrees of red, at E the mean Colour between red and orange,
from E to F all degrees of orange, at F the mean between orange and yellow,
from F to G all degrees of yellow, and so on. Let p be the center of gravity
of the Arch DE, and q, r, s, t, u, x, the centers of gravity of the Arches EF, FG,
GA, AB, BC and CD respectively, and about those centers of gravity let Circles
proportional to the number of Rays of each Colour in the given Mixture be
describ’d; that is, the Circle p proportional to the number of the red-making
Rays in the Mixture, the Circle q proportional to the number of the orange-
making Rays in the Mixture, and so of the rest. [4]

For instance, a mixture of blue and violet gives a nonspectral color purple,
nowadays known as magenta.

Figure 2.4: Newton’s color wheel. The figure shows the original drawing 11 from
Part II of The First Book of Opticks [4].

There is no doubt that Newton, one of two founding fathers of mod-
ern calculus, presented a method for quantitative analysis of light spectra.
However, it is important to stress that Newton’s papers were not very clear
even though he spent more than three decades preparing the book Opticks.
It also appears as if he did not fully understand that his vision, as well as
vision of his colleagues, was trichromatic, and not heptachromatic! For ex-
ample, in the experiment with two prisms Newton drew conclusions based
on appearance of mixed colors:

For when I was trying this, a Friend coming to visit me, I stopp’d him at the
Door, and before I told him what the Colours were, or what I was doing; I
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asked him, Which of the two Whites were the best, and wherein they dif-
fered? And after he had at that distance viewed them well, he answer’d, That
they were both good Whites, and that he could not say which was best, nor
wherein their Colours differed. [4]

Combined with the lack of accurate explanations and drawings, this caused
misinterpretations of his work throughout the XIX century [5].

Human color vision vs. a spectroscopic approach
This section explains fundamentals of the human color vision, a
well-established field of research in biology, physiology and neuroscience
[6]. Eyes detect incident light and generate electro-chemical signals, a role
equivalent to that of sensors in electrical engineering. The optic nerve
transmits the acquired signal to the image processing unit in the lateral
cortex. Finally, the information stream from image based visual sensations
combines with visual recollections in the cortex, thus performing image
analysis tasks.

In 1980 Bowmaker and Dartnall [7] measured absorption spectra of pho-
toreceptors of human eyes (Fig. 2.5 shows the original figure from the Jour-
nal of Physiology), photosensitive cells that allow humans to sample spec-
tral properties of observed objects. The photosensitive cones produce sig-
nals proportional to the logarithm of the light intensity. Next, retinal ganglio
cells combine the signals and generate the electro-chemical output signal
consisting of three components:
• luminance – adding the responses of the green and red-sensitive cones
• the red/green ratio – subtracting the responses of the green and red-

sensitive cones
• the blue/yellow ratio – subtracting the response of the blue-sensitive

cones and the luminance
This way of sampling with three primary colors is rather different in com-
parison to Newton’s quantitative approach where the incident light is a mix-
ture of seven primary colors. Johann Wolfgang von Goethe systematically
repeated Newton’s experiments and created a new theory in which human
color perception is the key concept [8]. Naturally, painters quickly accepted
Goethe’s standpoint and also influenced the modern color theory. For ex-
ample, modern image compression algorithms reduce the amount of data
while changes in the appearance of an image should remain below just-
noticeable difference. Another byproduct of Goethe’s color theory is inclu-
sion of extraspectral colors in the color wheel as red-blue mixtures of pri-
mary colors appeared as relevant as cyan and yellow, all three denoted as
secondary colors [9].

Image processing literature often prioritizes perceived color instead of
offering Newton’s quantitative approach. A typical example is transforma-
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Figure 2.5: Primates have four types of photoreceptors in the retina of an eye, each
absorbing light over a wide range of wavelengths [7]. The three curves labeled with
420, 534 and 564 are mean absorbance spectra of blue, green and red-sensitive
cones, respectively. They are active in well illuminated surroundings. The curve
with the peak at 498 nm is the mean absorbance spectrum of the rods, photorecep-
tors active in dark surrounding. Reprinted with the permission from John Wiley &
Sons Ltd.

tion of input red-green-blue triplets to hue-saturation-luminance [9]. “Hue
represents dominant color as perceived by an observer. Thus when we call an
object red, orange, or yellow, we are referring to its hue. Saturation refers to
the relative purity or the amount of white light mixed with a hue.” There-
fore, in color image processing, even the non-spectral magenta which is a
balanced red-blue mixture, is considered as a pure spectral color. Since ma-
genta is not associated with any wavelengths, it is then unclear why a per-
fectly balanced red-green-blue mixture (the gray color) is left out. To con-
clude, with respect to quantitative analysis of spectral information, New-
ton’s approach is unambiguous.

Interestingly, not all animals have trichromatic vision. Mantis shrimps
use 16 types of photoreceptors with twelve different absorbance
spectra [10]. So far, no one has described an animal species with seven
types of photoreceptors, each corresponding to distinct wavelength
bandwidths – just like Newton’s primary colors. Irrespectively of the
number of types of photoreceptors nc , eyes are sensors that produce
ordered nc -tuples as they unevenly sample the light spectrum and provide
insight into the nature of the observed object.

Material investigation
Optical spectroscopic techniques facilitate analysis of light-material inter-
actions by using an external light source that illuminates the material [11].
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In emission spectroscopy, the material partially absorbs and re-emits the
incident light in all directions. Emission spectroscopy analyzes the spec-
trum of the re-emitted light; usually different from the spectrum of the inci-
dent light. Another type of spectroscopy is absorption spectroscopy. In this
experimental setup the incident light beam is attenuated by the material,
hence the difference between the incident and transmitted light exhibits
material properties.

Modern spectrophotometers resemble Newton’s prism experiment,
sometimes with one addition: instead of optical prisms, diffraction
gratings are preferred (Fig. 2.6). This approach allows decomposition of the
incident beam into a number of spatially separated spectral components,
i.e., samples of the continuous spectral profile of the beam. Therefore,
from an engineering point of view, the challenge is to design a sensor that
counts the number of incident photons to electric signals and provides a
sampled spectrum.

incident

beam

diffraction 

gratting

spectral profile s( )

sampled spectral profile s

Figure 2.6: Absorption spectroscopy may be described in terms of the Newton’s
original theory. The incident achromatic light beam passes through the material
and the grating diffracts the transmitted light which then falls onto the sensor.

2.3 Optical imaging systems
Optical imaging systems provide information about radiant energy
reflected or emitted from the material, or transmitted through the material
at all spatial position p and wavelength λ [1]. The level of detail provided
by an ideal sensor, i.e., resolution of such multidimensional image sp(λ),
depends on conditions determined by the Shannon-Nyquist theorem. The
same theorem holds even if the sensor acquires images at all times.

However, real optical imaging systems have a number of limitations. In
general, every system imposes restriction on the maximum intensity, i.e.,
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saturation level of the sensor ssat

0 É sp(λ) É ssat , (2.6)

as well as limitations of the range of spatial positions where the image is
captured. The first step is sampling the light spectrum using a number of
optical elements. The imaging system gives the sampled spectrum, i.e., the
spectral image:

sp,k =
λ

R(λ)Fk (λ)sp(λ)dλ, (2.7)

where Fk (λ),k = 1, ...,nc , are spectral responses of optical filters and R(λ) is
the transfer function of the sensor. In practice, sampling of spectral infor-
mation is implemented by compromising the level of spatial and temporal
details [12]. For example, the system shown in Fig. 2.6 provides spectral
information at the cost of one spatial dimension. If the spectral resolution
is 10nm or less, the system collects on the order of ten or more spectral
channels. If the maximum frequency in the signal along the λ is band lim-
ited by the grating, this system satisfies the Shannon-Nyquist theorem. But
as the following chapters describe, it is very common to undersample the
light spectrum using optical filters that transmit light over wide wavelength
bandwidths. Figure 2.7 shows spectral responses Fk (λ).

The most common imaging sensors today are two-dimensional sensor
arrays that uniformly sample spatial information, e.g., charge-coupled
devices (CCD) and their low-cost alternatives based on complementary
metaloxide-semiconductors (CMOS). Unlike the human eye photore-
ceptors with logarithmic transfer function, the CCD sensors have linear
transfer function (Fig. 2.8), i.e., the output signal is proportional to the
number of photons in the incident light [13, 14].

Limitations of optical elements primarily affect sampling of spatial and
spectral information. In addition, optical imaging sensors have a number
of limitations with respect to dynamic range of the output signals. During
photon production, the number of photons emitted from a constant light
source over a finite time interval is stochastic [15]. Under normal operating
conditions, it is Poisson distributed and represents the dominant source of
noise in sensors, denoted as the photon noise.

The dynamic range of sensors is defined as a ratio between the maximal
and minimal measurable values. In the process of converting the number
of incident photons to the digital output, a number of physical processes
affect the noise level and consequently dynamic range of the system and
the signal-to-noise ratio [13, 14, 15, 16, 17]:
• Incident light generates electron-hole pairs separated by an electric field.

It exists due to uncertainty of the number of generated electrons and,
just like photon noise, follows Poisson distribution.
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Figure 2.7: Examples of spectral responses of three common optical imaging sys-
tems. (A) A hyperspectral camera uniformly samples the spectrum, nC ∼ 10 or
even nC > 100 spectral channels. (B) A multispectral camera irregularly samples
the spectrum. This example illustrates the cut-off frequencies determined by New-
ton’s musical tones shown in Fig. 2.2. (C) A standard tri-color RGB camera. Optical
filters are modeled by human photoreceptor absorbance spectra. Note that (A) and
(B) show idealized bandpass filters. In practice, there are transition zones from full
transmission to full blocking depending on how the filters are implemented.

• Some electrons are thermally generated irrespectively of the number of
incident photons. Their number increases with temperature and results
in dark current noise.

• The electron flow from the semiconductor accumulates on the positive
plate of the capacitors at the input of the operational amplifier circuits.
Amplifiers integrate the number of electrons and produce output volt-
age. Readout noise models fluctuations from the linear transfer function
of amplifier circuits, and it is dominant only when amplifiers are read
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at high rate. In addition, impulse noise (also known as salt-and-pepper
noise in image processing literature [9]) used to be a relevant source of
noise up to the late 1970’s [16]. It was caused by malfunction of early op-
erational amplifiers.

• Quantization noise is present even in ideal noise-free sensors. It is a re-
sult of converting the measured analogue value to the discrete domain.
The number of quantization levels should be chosen to allow maximal
dynamic range of the sensor.

0

saturation

0

output voltage [V]

number of incident photons number of incident photons

noise variance [V2]

dark 

current

Figure 2.8: Important properties of CCD sensors – both the output measurements
and noise variance are linearly dependent on the number of incident photons. The
consequence of which is that signal-to-noise ratio grows with the square root of the
signal.

A previous section describes signal and image processing as a group of
techniques that aim to represent and transform measurements from sen-
sors using some useful operation. In optical imaging, examples of useful
operations are suppression of noise by filtering methods or compensation
for distortions introduced by the imaging system by deconvolution [3]. But
this is often just an initial step in high-level image processing techniques.

2.4 Imaging in natural sciences and medicine

Information processing from image based measurements
Today, imaging techniques play a prominent role in materials science, earth
sciences, chemistry and biology as well as in many fields of medicine, par-
ticularly in radiology and pathology. This section describes the significance
of digital image processing techniques in context of the generalized infor-
mation processing flowchart shown in Fig. 2.9.

Scientific problem. Medical researchers employ scientific methods to
answer questions about a cause of a disease and treatment or provide med-
ical doctors with diagnostic tools. For instance, in radiology, one strives to
provide information about internal organs and tissues without harming the
patient – a mission impossible to accomplish without use of imaging. Not
far from radiology (at least from engineering point of view), pathologists
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Figure 2.9: Information processing in sciences and medicine, from problem to solu-
tion. Image processing is closely tied to data acquisition and quantitative analysis,
helping experts to find a solution.

provide information about the mechanism of a disease, from cause to man-
ifestation and, in particular, look for changes in tissues and organs, i.e., a
manifestation of a disease or injury. Describing content of a tissue biopsy in
a quantitative manner is a typical problem addressed in pathology and em-
ployed for malignancy grading. On the other hand, in sciences, researchers
pose hypotheses and need to either confirm or disprove them. Both out-
comes are equally favorable solutions to the problem in the context of test-
ing the hypothesis.

Specimen preparation as well as patient preparation for radiological
procedures comprises a number of methods employed to enhance the
measurable physical quantity of interest. For instance, in X-ray based
imaging techniques, diatrizoic acid acts as a contrast agent which
amplifies the signal from blood vessels, while in fluorescence microscopy,
4’,6-diamidino-2-phenylindole binds and labels primarily DNA. This step
is particularly important for spectral image processing, and is therefore
addressed in more details in subsequent section.

Data acquisition is sampling of spatial energy distribution radiated from
the specimen and storing discretized values on a digital storage medium.
Acquisition is, as the previous section describes, closely related to image
formation, a process that transforms the data to a form suitable for pro-
cessing as well as visualization on an arbitrary display.

Quantitative analysis may be based on mathematical modeling,
machine learning, or a combination of the two. It often starts with
image segmentation, a method for separating individual objects from
the background, where an object is a spatially connected set of imaged
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positions. In approaches based on machine learning, a priori knowledge
consists of a number of numerical descriptors assigned to individual
objects, e.g., object size or shape. Numerical descriptors, so called features,
build feature vectors that span multidimensional spaces. A training set
of images, where the solution is known, determines what features are
statistically significant, and provides classification rules. During the
verification procedure, consistency of the classification rules is tested.

While a priori knowledge of underlying processes in the machine
learning approach provides a set of possibly relevant features, it is essential
for mathematical modeling. Basic laws of physics, chemistry or biology
describe the energy radiated from the specimen in form of a system of
equations. Statistical methods may be employed to estimate parameters of
the model. Once the analytical model and its limitations are established,
this approach does not require verification as the solution of the system of
equations is the solution to the problem.

The following section describes staining methods used in biotechnology
and pathology for identification of biomolecules of interest.

Staining – from histological labeling to detection of single
molecule
In optical imaging, tissues and cells exhibit limited spectral characteristics
and display limited contrast between different imaged positions. Detection
of different cellular, subcellular and molecular structures or events in situ is
possible with spatial resolution that satisfies the condition shown in eq. 2.5
and enhancement by an appropriate staining method. Staining helps visu-
alizing and quantifying desired subcellular entities required for identifica-
tion, while no dramatic changes disrupt the native cell or tissue morphol-
ogy [18].

Histochemistry favors selective staining with chemical compounds
(dyes) that specifically interact with particular cellular components. For
instance, a commonly used histochemical dye hematoxylin specifically
stains the cell nucleus while eosin stains the cytoplasm and connective
tissue. A wide range of dyes is available for the staining of different cellular
structures providing distinct spectral signatures. However, not every
cellular component is large enough or sufficiently abundant in every tissue
to be detected by a histochemistry approach. In such situations, the small
amount of stained biomolecules (signal) does not introduce detectable
changes in characteristic spectra.

Here immunohistochemistry techniques can be applied to amplify
biochemical signals by increasing local concentrations of dyes, and
consequently yielding higher biochemical signal-to-background ratio.
The method employs antibodies that specifically label proteins. In optical
imaging, the location of an antibody is detected by binding a dye molecule
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Figure 2.10: Overview of labeling techniques, from left to right: histochemistry, di-
rect immunostaining, indirect immunostaining, detection of molecule interactions
by rolling circle amplification [19].

to the antibody. This is the direct method of immunostaining. If the signal
obtained from direct immunostaining remains insufficiently strong to be
detected, one relies instead on indirect immunostaining, a method that
implies usage of a dye-labeled secondary antibody that binds specifically
to the primary antibody bound to the target. This which ultimately results
in increased biochemical signal [18].

There are still ways to amplify the signal derived from the secondary anti-
bodies, with additional modifications. Having such properties, immunohis-
tochemistry is an invaluable technique not only for establishing the pres-
ence of cellular and molecular targets but also for determining their spa-
tial and temporal localization. The detection of biomolecular structure and
function extends itself even further by making targets accessible to the anti-
body while maintaining morphology of the specimen intact. In reality there
is a number of methods for single molecule detection and a handful of
methods and techniques available for the detection of protein-protein in-
teractions and specific DNA sequences in situ. But the majority of presently
available methods for detecting protein-protein interactions assume alter-
ing the proteins in question in such way that their function can be poten-
tially disrupted [20]. In contrast, there is a growing demand for methods for
detection of single molecules and single molecule interactions in their na-
tive environments. Here one cannot rely on histochemistry since high con-
centrations of dye molecules interact unspecifically with the tissue [21, 22],
causing high levels of biochemical noise.

Methods which fulfill such demands for single molecule detection are
padlock probes [23] which target a specific DNA segment. Padlock probes
hybridize with the DNA segment, get ligated, and replicated by rolling cir-
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cle amplification. Similarly, rolling circle amplification can amplify the sig-
nal originating from proteins or protein-protein interactions detected by
proximity ligation [19]. In addition to specific detection, rolling circle am-
plification as well as histochemical and immunohistochemical techniques
fulfill the requirements of the model described in the following chapter.
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3. Linear mixture model

Essentially, all models are wrong, but some are useful.
– George Edward Pelham Box (born 1919)

The linear mixture model has been widely accepted in the microscopy
community [24]. The model assumes that the spectral signature cp(λ) of
dyes mixed at imaged positions p is a linear combination of spectral sig-
natures of individual dyes. In addition, the model makes the assumption
that the contribution of each individual dye is proportional to its molar
concentration. The aim of methods based on the linear mixture model is
to estimate relative concentrations of individual dyes dp from the spectral
image data. This is known as color compensation [25, 26], color deconvolu-
tion [27], unmixing [28, 29] or decomposition (Papers I and IV).

3.1 Fluorescence microscopy
In both wide-field and confocal fluorescence microscopy, optical elements
such as filters or grating sample light spectra and acquire spectral images [3,
12]. Fig. 3.1 shows how the microscope uses a light source to excite fluores-
cent dyes and then acquires light emitted from the specimen. The contri-
bution of dye j to spectral channel k at imaged position p is [30, 31]

cp,k, j = tk lpςpρp, j
λ

R(λ)Tem,p, j (λ)Fem,k (λ)dλ
λ′

L(λ′)Texc,p, j (λ′)Fexc,k (λ′)dλ′,
(3.1)

where
• for each imaged position ρp, j is the molar concentration of dye j , p, lp

is optical depth (the measure of the fraction of photons emitted from
the specimen that fall onto the sensor) and ςp is the area covered by the
sensor element,

• R(λ) is the transfer function of the CCD sensor, e.g., quantum efficiency,
a probability that a photon of wavelength λ hitting the sensor generates
an electron-hole pair,

• L(λ) is the excitation source flux at wavelength λ,
• for each fluorescent dye j at imaged position p, Texc,p, j (λ) and Tem,p, j (λ)

are excitation and emission spectra, respectively, i.e., probabilities of in-
cident photon absorption and emission, at certain wavelength λ,
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Figure 3.1: Simplified diagram of a fluorescence microscope.

• for imaging in the channel k, tk is the exposure time, Fexc,k (λ) are com-
bined transmission spectra of the excitation filters and reflection spec-
tra of dichroic mirrors, Fem,k (λ) are combined transmission spectra of
dichroic mirrors and barrier filters.

Usually sensor elements have the same area and the optical depth does not
vary much over the specimen, thus ∀p,ςp ≡ ς, lp ≡ l . In spite of the fact
that spectral imaging systems acquire only emitted photons the product
suggests that emission is dependent on excitation. According to the linear
model, the total measured light intensity is

sp,k =
n

j=1
cp,k, j +bp,k , (3.2)
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where bp,k is the black level offset for channel k at imaged position p
(also dependent on the exposure time). By substituting equation 3.1,
equation 3.2 becomes

sp,k =
n

j=1
tk lς

λ
R(λ)Tem,p, j (λ)Fem,k (λ)dλ

λ′
L(λ′)Texc,p, j (λ′)Fexc,k (λ′)dλ′

ap,k, j

ρp, j+bp,k .

(3.3)
The equation shows that the transfer function of the system ap,k, j is not
constant due to variations in probabilities of photon absorption and emis-
sion over the specimen, i.e., excitation and emission spectra,

sp,k =
n

j=1
ap,k, jρp, j +bp,k . (3.4)

Assuming that for each j , the differences in spectra over the specimen are
never greater than variations in spectra between the dye j and any other
dye, the equation 3.4 can be written as

sp,k =
n

j=1
ak, jρp, j +bp,k +εp,k , (3.5)

where ak, j depends on the average values of Texc,p, j (λ) and Tem,p, j (λ) over
all imaged positions p and εp,k is the biochemical noise term, the measure
of variation in dye spectra over the specimen [31]. The background level is
assumed to be equal to the black level offset, hence the noise term is zero-
mean and random after background subtraction.

If the parameters of the transfer function ak, j are known, the system of
linear equations 3.5 allows estimation of molar concentration ρp, j up to a
constant, i.e., the relative dye concentration dp, j ∝ ρ̂p, j yielded by mini-
mizing the noise term

sp,k −bp,k =
n

j=1
ak, j dp, j , (3.6)

which can be written in vector form as

sp −bp = Adp, (3.7)

where the columns of the mixing matrix A are sampled spectral signatures
of respective dyes in the mixture.

The sampled spectral signature of the mixture cp is thus in linear rela-
tionship with the spectral image sp and, as stated above, dp estimates ρp

up to a constant. For the sake of simplicity, the 1-norm of sampled spectral
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signature of a dye a j is arbitrarily set to one. Therefore,

cp = Adp, (3.8)

where A is the mixing matrix – it determines this model which is linear in
its parameters.

3.2 Bright-field microscopy
From a spectroscopic point of view, the absorption spectroscopy experi-
mental setup in Fig. 2.6 may be considered as a single-pixel bright-field mi-
croscope. Unlike fluorescence microscopy, in bright-field microscopy the
relationship between spectral images and sampled spectral signatures of
mixtures is non-linear and requires application of the Beer-Lambert law of
absorption in order to linearize the mixture [24, 27, 32].

L( )

Köhler illumination

image sp

specimen 

p, Tabs,p,j( )

sensor 

R( ),Fk( )

objective

projection

lens

Figure 3.2: Simplified diagram of a bright-field microscope.
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Fig. 3.2 shows the imaging system with the following non-linear transfer
function:

sp,k = bk + t wk lpςp
λ

L(λ)exp −
n

j=1
Tabs,p, j (λ)ρp, j Fk (λ)R(λ)dλ, (3.9)

where
• for each imaged position, ρp, j is molar concentration of the dye j , p, lp is

optical depth and ςp is the area covered by the sensor element, ∀p,ςp ≡
ς, lp ≡ l ,

• t is the exposure time and R(λ) is the transfer function of the CCD sensor,
• bk is the background offset and L(λ) is the the light source flux at wave-

lengthλ; it is not dependent on p as Köhler illumination corrects for oth-
erwise non-uniform illumination from the lamp,

• for each fluorescent dye j at imaged position p, Tabs,p, j (λ) is the ab-
sorbance at certain wavelength λ,

• for imaging in the channel k, wk is the operational amplifier gain, Fk (λ)
are spectral responses of optical filters.
In fluorescence microscopy systems (Section 3.1), spectral channels are

acquired sequentially, while bright-field microscopes acquire all spectral
channels simultaneously, thus ∀k1,k2 = 1, ...,nc , tk1 = tk1 ≡ t . In addition,
the background offset can be easily set to zero, ∀k = 1, ...,nc ,bk = 0. The
system response to the blank image s0 is recorded

∀p, j ,ρp, j ⇒ s0
k = t wk lς

λ
L(λ)Fk (λ)R(λ)dλ. (3.10)

The operational amplifier gains wk tune the spectral signature of the blank
image s0. For instance, if the microscope is equipped with an RGB camera
setting the gains to achieve s0

1 = s0
2 = s0

3 is referred to as white balance [33].
According to the first mean value theorem for integration applied n times

to equation 3.9, there exist n wavelengths for each spectral channel such
that

sp,k = t wk lς
n

j=1
exp −Tabs,p, j (λ j ,k )ρp, j

λ
L(λ)Fk (λ)R(λ)dλ, (3.11)

which by substituting equation 3.10, becomes:

sp,k = s0
k exp −

n

j=1
Tabs,p, j (λ j ,k )ρp, j . (3.12)
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By applying the logarithm to each side of the equation the model linear in
its parameters for bright-field microscope is derived:

ln s0
k − ln sp,k =

n

j=1
Tabs,p, j (λ j ,k )ρp, j . (3.13)

Analogously to the fluorescence microscope system, here the biochemi-
cal noise term originates from varying absorbance over the specimen. Fol-
lowing the same procedure, for each j , relative dye concentration dp, j es-
timates molar concentrations ρp, j up to a scalar constant, so that the bio-
chemical noise term is minimal, thus:

ln s0
k − ln sp,k =

n

j=1
ak, j dp, j . (3.14)

By introducing sampled spectral signature of a mixture cp to the model,
∀k = 1, ...,nc ,cp,k ≡ ln s0

k − ln sp,k , the previous equation is transformed to:

cp,k =
n

j=1
ak, j dp, j , (3.15)

which can be written in vector form:

cp = Adp. (3.16)

3.3 Parameter estimation
Least-squares fit

Equations 3.8 and 3.16 show that applying matrix pseudo-inversion results
in relative dye concentrations. Naturally, sampled spectral signatures
of dyes a j that represent columns of the mixing matrix A need to be
determined beforehand. For instance, Dickinson et al. [34] and Ruifrok [27]
published the following simple procedure in fluorescence and bright-field
microscopy, respectively. They recorded sampled spectral signatures
of pure dyes, normalized them to the unit length, and used them as
approximation of the mixing matrix.

The procedure requires that the mixing matrix has full rank, i.e., its
columns are linearly independent. If n = nc , relative dye concentrations at
imaged positions p are estimated by the unique solution of the least square
problem [35]:

dp = A−1cp, (3.17)
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or if the number of spectral channels is greater using the matrix pseudo-
inversion:

cp = Adp ⇒ AT cp = AT Adp ⇒ dp = AT A
−1

AT cp, (3.18)

which is the optimal solution of overdetermined least-squares
problems [35]. In addition, if the number of spectral channels is greater
than n, singular value decomposition guarantees numerically stable
solutions.

Estimation of unknown model parameters by optimization

An alternative to the manual approach is using experimental data to
estimate elements of the mixing matrix. Matrix C, C ∈ Rnc×np , stores np

recorded measurements cp. Result of the algorithm is the mixing matrix
A and estimates of relative dye concentrations D, D ∈ Rn×np yielded by
solving an optimization problem.

Minimize ‖C−AD‖2 subject to (∀ j ,k)ak, j Ê 0 (∀p, j )dp, j Ê 0, (3.19)

where ‖·‖2 is the sum of squares of the elements of the mixing matrix. Non-
negative matrix factorization [36] is a common name for this optimization
problem.

Methods described in this section first found application in processing
of hyperspectral satellite imagery [37], when nc À n and the spectra are
sampled uniformly. The following chapter presents a method for parameter
estimation and linear decomposition adapted for biomedical applications.
Limitations of the linear mixture model are presented in Chapter 6.
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4. Methods for decoupling light
intensity and spectral information

Prediction is very difficult, especially about the future.
– Niels Bohr (1885 - 1962)

The previous chapter described the model linear in parameters which
allows estimation of relative dye concentrations. The model parameters
are linearly independent sampled spectral signatures of dyes. If the
parameters are known, the solution to the least squares problem is the
estimate of relative dye concentrations. If the model parameters are
unknown, non-negative matrix factorization can be employed to the
training data to estimate them, but other estimation techniques may
also be of interest as well [29, 38]. This chapter presents a method for
estimation of the model parameters that covers a wider range of light
microscopy applications where two or three spectral channels are used to
provide spectral information.

4.1 Noise compensation
Fig. 4.1A shows a histological specimen stained with hematoxylin. It is a tri-
channel spectral image acquired using a bright-field microscope and op-
tical filters with spectral responses illustrated in Figure 2.7C. Figure 4.1C
shows a scatter plot of the distribution of the image data [sp,1 sp,2 sp,3]T in
a three-dimensional color space. The data is distributed from s0, i.e., white
regions with low molar dye concentration, to gray-blue and bends to the
dark blue. Clearly, the main source of variation in the specimen is the dye
concentration that varies with light intensity. Fig. 4.1C also shows the bio-
chemical noise described in the previous chapter, i.e., data points associ-
ated with the same dye hematoxylin, on the same distance from s0 exhibit
different spectral properties. Figure 4.1B shows the specimen imaged after
eosin was added. The counter-stain eosin also affects the color of hema-
toxylin stained tissue as illustrated in Fig. 4.1D.

While a general model for characterization of biochemical noise has not
been developed, CCD sensor noise is described in Section 2.3. Sensor noise
disturbs regions with low molar concentration and a common approach is
to set an arbitrary background intensity threshold. However, in addition to
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introducing user bias, this approach also removes regions with low dye con-
centration. Fig. 4.2 shows a procedure for noise estimation, i.e., a step per-
formed prior to image acquisition. Paper I presents a method for quantiza-
tion noise compensation in ideal sensors and Paper IV introduces a model
for photon noise in CCD sensors.

s1

s2s3 s
0

s1

s2s3 s
0

A

C

B

D

0 0

Figure 4.1: Hematoxylin (A) and Hematoxylin/Eosin (B) stained prostate gland sec-
tion and corresponding scatter plots (C,D).

4.2 Chromaticity spaces
The purpose of chromaticity spaces is to present spectral information and
remove intensity variations. In spectral images, intensity is approximated
by the length of the sampled spectral signature of the mixture c:

‖c‖1 =
n

k=1
ck ≈

λ
c(λ)dλ. (4.1)
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Figure 4.2: An ideal sensor (A) is dominated by quantization noise. In modern CCD
sensors, however, the level of dark current noise determines the dynamic range of
the sensor and consequently the number of quantization levels. Then, the pho-
ton noise is dominant (B) and can be estimated by measuring variance of the dark
frame and the blank image. As the photon noise is Poisson distributed, standard
deviation grows with the square root of the signal (C).

For each imaged position p, the sampled spectral signature of the mixture
cp is either directly proportional to the spectral image sp compensated
for the background fluorescence, or it requires transformation by the
Beer-Lambert law of absorption. After the transformation to a chromaticity
space, two spectral signatures with different intensities but identical shape
of the corresponding continuous spectral signatures overlap in the same
position within the plane.

Paper IV implements decoupling as perspective projection to the chro-
maticity plane of the sampled spectral signature of the mixture [39]:

αp

βp
=

1p
2

− 1p
2

0

− 1p
6

− 1p
6

2
3

cp

cp 1

. (4.2)

As an alternative, Paper I presents a method for quantization noise com-
pensation incorporated in decoupling of intensity and spectral informa-
tion. For each imaged position p, sampled spectral signature cp is presented
as a ratio of the two spectral channels, i.e., an angle

αp = arctan
cp,2

cp,1
. (4.3)

Analysis of patterns in chromaticity spaces
Figure 4.3 illustrates count of points in the chromaticity plane as a two-
dimensional histogram and shows Gaussian-like distributions. Each distri-
bution corresponds to dye j is characterized by:
• mean value (α( j ),β( j )) which determines the sampled spectral signature

of the dye, and
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Figure 4.3: The result of transformation of image data shown in three-dimensional
scatter plots Fig. 4.1C and Fig. 4.1D to two-dimensional chromaticity planes A and
B, respectively. It can be observed from B that the eosin stained tissue is strongly
affected by biochemical noise.

• covariance Q( j ) which is the measure of biochemical noise.
The Gaussian assumption [40] is reasonable from a statistical point of view
as the noise term ε is random with zero-mean and there is no prior knowl-
edge about variation of spectral signatures.

Gaussian assumption opens a possibility for maximum-likelihood
estimation of the linear mixture model parameters a j by means of
expectation-maximizations. However, fitting n Gaussian distributions in
a direct manner to data in the chromaticity space may not always match
with the correct distributions. For instance, in the H/E example shown
in Fig. 4.3B, the distribution associated with eosin is of low amplitude
relative to the dominant distribution. In order to increase robustness
to biochemical noise, Paper IV presents a method based on k-means
clustering, a variation of expectation-maximization algorithm that
assumes small, diagonal and equal covariances.

By taking the inverse of equation 4.2, under assumption a j 1 = 1, the

mean values (α( j ),β( j )) uniquely determine sampled spectral signatures of
all dyes a j , j = 1, ...,n.

4.3 Piecewise linear decomposition
The previous section describes how to estimate model parameters in the
chromaticity space. If the sampled spectral signatures of dyes form a well-
conditioned mixing matrix A = [a1 . . . an]T , relative dye concentrations are
provided by linear decomposition, i.e., by using equation 3.18. Figure 4.4
shows the result of separation of hematoxylin and eosin stained histological
section by linear decomposition.

On the other hand, spectral angle mapping [41] offers a stable solution
when the mixing matrix is ill-conditioned. Unlike linear decomposition,
angle mapping is a crisp pixel classification algorithm as it assigns each im-
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A B

Figure 4.4: Estimated relative dye concentration maps of the hematoxylin (A) and
eosin (B) stained tissue section shown in Fig. 4.1B.

aged position p to one of the n dyes with smallest angle

θp, j = arccos
cp ·a j

cp 2 a j 2

, (4.4)

between the two sampled spectral signatures of the observed mixture cp

and sampled spectral signatures of dyes a j .
In addition to the two classical algorithms, piecewise linear decomposi-

tion is a novel method applicable to ill-conditioned cases, such as decom-
position of the Gömöri trichromatic stain presented in Paper IV and detec-
tion of colocalization presented in Paper I. The first step is obtaining an-
gular distances to sampled spectral signatures of dyes θp, j for the imaged
position p. Next, two dyes j1 and j2 are chosen such that

j1, j2, j3 ∈ {1,2,3} , j1 6= j2, j2 6= j3, j3 6= j1,and θp, j1 < θp, j3 ∧θp, j2 < θp, j3 .
(4.5)

The estimated relative dye concentrations are

dp, j1

dp, j2

= a j1 a j2
T a j1 a j2

−1
a j1 a j2

T cp, (4.6)

and
dp, j3 = 0. (4.7)

Detected projections of sampled spectral signatures (α(1),β(1)),(α(2),β(2))
and (α(3),β(3)) form a triangle in the chromaticity plane. The circumcenter
of the triangle represents a sampled spectral signature where all dyes are
mixed in equal proportions. Thus, if the triangle is acute, or ideally equi-
lateral, the equation 3.18 holds as it is possible to unmix all three dyes. If
the triangle is obtuse, the circumcenter lies outside of the triangle and rel-
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ative dye concentrations are estimated by piecewise linear decomposition
assuming that the two dyes associated acute vertices do not mix.

The following chapter presents a number applications where angle distri-
butions α and chromaticity planes (α,β) were used in quantitative analysis
of microscopy images. First, for extraction of sampled spectral signatures
of dyes a j and, eventually, to perform angle mapping, linear, non-linear or
piecewise linear decomposition.
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5. Results – applications in
biotechnology and pathology

Data! Data! Data!
I can’t make bricks without clay.

– Sherlock Holmes,
from “The Adventure of the Copper Beeches” by

Arthur Conan Doyle (1859-1930)

5.1 Quantification of colocalization (Paper I)
Colocalization occurs when two or more dyes are purposely mixed and
appear physically co-located in the same imaged position. They combine
spectrally to a new signature which is a linear combination of the signals
from the two original dyes. For any number of spectral channels nc ,
the mixing matrix A = [a1 a2 a1+2] is non-invertible, thus neither model
parameters nor relative densities can be obtained using least-squares
based methods described in Chapter 3.

Paper I introduces angle histograms (equation 4.3) to estimate sampled
spectral signatures of dyes a1, a2 and a1+2 in a dual-color image. The pa-
per presents the basic example of colocalization (nc = 2, n = 3) created
using simulated images of an unknown source of fluorescent light. There-
fore, it only deals with quantization noise and uniform background inten-
sity offset. The simple method for parameter estimation is designed to ex-
tract dominant angles from predetermined angle intervals. Decomposition
is implemented as angle mapping.

The result is a quantitative global measure of the degree of colocalization
– coefficients M1 and M2. The colocalization coefficients represent approx-
imation of the total amount of fluoresce of the colocalized dye a1+2 divided
by the total amount of fluorescence by the pure dyes, determined by a1 and
a2, respectively.

Conclusion: Angle mapping was compared to pixel classification meth-
ods based on intensity thresholding commonly used for quantification
of colocalization. The method ensures that imaged positions containing
either strong or weak signals from dyes belong to the same class. It
outperforms related methods when applied to both simulated and real
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microscopy images [42, 43, 44]. The study demonstrated in Paper III
confirms this conclusion.

5.2 Suppression of cross-talk and background
fluorescence (Paper I and Paper II)
Background fluorescence, also known as autofluorescence [45], and cross-
talk or bleed-through [46, 47] are two problems in fluorescence microscopy
often solved by spectral decomposition. When imaging biological speci-
mens, the detected signal j in spectral channel k contains contributions
from fluorescence originating from sources other than the imaged dye. This
fluorescence could either come from the specimen itself (background flu-
orescence), or from dyes with partly overlapping emission spectra (cross-
talk). According to equation 3.1, in order to resolve spectral components at
least nc = 2 distinct wavelength bandwidths have to be imaged or used for
excitation.

In situations when spectral signatures are unknown, linear mixture
model parameters are extracted from angle histograms and consequently
used for compensating cross-talk, independent of the microscope
hardware. Cross-talk shows up as shifts of the peaks in the histogram. Thus
sampled spectra a1 and a2, represented by angles α1 and α2, respectively,
can be estimated from the image data. In Paper I, this is implemented
using the same histogram segmentation algorithm as for determining
classification rules for angle mapping.

Paper II demonstrates that autofluorescence removal by carefully
designed non-linear decomposition enables quantification of protein
complexes in brain tissue detected by proximity ligation assay (see
Section 2.4). In Chapter 3 fluorescence background was assumed to be
equal to the black level offset. The paper addresses a situation when the
assumption does not hold. While protein complexes are detected by
probes excited at 563nm, lipofuscin and hemoglobin, main contributors
to autofluorescence, have very broad spectral profiles. Background
fluorescence was excited at 488nm providing an image free of point-source
signals. Since images contain only a few signals per field of view,
non-negative matrix factorization or direct segmentation of the angle
histogram are inapplicable. Paper II presents an application-specific
algorithm that provides parameters for decomposition. Finally, by applying
non-linear decomposition the measure of relative dye concentration is
lost. However, point-source signals are equally important irrespectively to
their intensity and the level of background fluorescence, hence non-linear
unmixing provides higher signals-to-noise ratio.

Conclusion: In addition to colocalization coefficients, the analysis of
angle histograms presented in Paper I can be employed for estimation of
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sampled spectral signatures in dual-channel fluorescence microscopy. By
employing linear decomposition, cross-talk-free fluorescence microscopy
images are generated. For the specific application presented in Paper II,
the algorithm also saves time and space for storage of multispectral images
as only two spectral channels need to be recorded and processed to remove
autofluorescence. The non-linear decomposition algorithm proposed in
Paper II for enhancement of point-source signals shows improvement in
comparison to linear decomposition.

5.3 Classification of multicolored signals (Paper III)
Paper III presents a study of biomolecular methods for specific detection
of single molecules and single molecule interactions. Specificity of the de-
tection originates from the circular-DNA molecule created only if padlock
or PLA probes bind to a well-defined DNA sequence or pair of proteins [19,
23]. Subnanometer-sized molecules are labeled and enlarged by means of
rolling-circle amplification, hence increasing the local intensity and ulti-
mately satisfying the Shannon-Nyquist sampling theorem. Further on, flu-
orescent colors are incorporated at a hybridization site and utilized for mul-
tiple detection of single molecules providing a unique spectral signature
for each molecule or molecular interaction of interest. During rolling circle
amplification, the characteristic spectral signature of a dye or a mixture of
dyes is multiplied, and intensity ratios vary within boundaries determined
by the level of biochemical noise.

Point-source signals are modeled by their shape as each signal, in ad-
dition to increased brightness, expands spatially. Paper III demonstrates a
method that combines object based detection of point-source signals [48]
and the global measure of colocalization presented in Paper I. The result-
ing angle histogram can be employed to classify multicolored signals or to
estimate the level of biochemical noise.

Conclusion: Paper III demonstrates that the choice of the method for
oligonucleotide synthesis does not affect ability of multiplexing. The pa-
per presents a procedure for comparison of methods for quantification of
protein-DNA interactions, which has also been employed by Weibrecht et
al. [49].

5.4 Color decomposition of histological images
(Paper IV)
Paper IV presents the method explained in the previous chapter applied
to color decomposition of histopathological stains. The main challenge ad-
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dressed in this paper is automated detection of sampled spectral signatures
with a minimum of a priori information.

While the methods in Papers I-III initially collect data points in angle
bins to form an angle histogram, this paper presents a method based on k-
means clustering. The simple pattern analysis algorithm is employed to es-
timate sampled spectral signatures of dyes. In comparison to non-negative
matrix factorization, which is a method implemented as an alternating least
squares procedure [35], the proposed pattern analysis technique performs
at least as well or better than non-negative matrix factorization. It can also
detect collinear projections of sampled spectral signatures and thus ad-
dress ill-conditioned cases. Naturally, very little or no stain in tissue makes
all blind methods fail, which is a practical limitation of the approach.

In addition to decomposition of light-absorbing stains that follow
the Beer-Lambert law, the paper offers a solution for treatment of
light-scattering stains. Those stains, such as diaminobenzidine, do
not adhere to the Beer-Lambert law and have to be removed in the
pre-processing step. The paper also presents compensation for photon
noise that particularly affects regions with low dye concentration.

Conclusion: Paper IV demonstrates that estimation of the linear model
parameters by analyzing data in the chromaticity plane outperforms state-
of-the-art algorithms both for well-conditioned cases (such as H/E) and ill-
conditioned cases (Gömöri trichrome).
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6. Discussion

I have had my results for a long time:
but I do not yet know how I am to arrive at them

– Carl Friedrich Gauss (1777-1855)

This chapter covers a wide range of topics ranging from description of
limitations of the proposed linear model and method to a discussion on
color spaces, sampling and that major advances will result from collabora-
tive work.

6.1 Limitations of the linear mixture model
The transfer functions of optical imaging systems equations 3.3 and 3.9
have limitations. In particular they do not take into account the point
spread function of the lens, which is also wavelength dependent [3], but
assume lenses of infinite size. Thus, a complete model of the system
would require integration over three spatial dimensions to compensate for
different degrees of blurring when photons from imaged position p reach
the detector.

In fluorescence microscopy, the main limitation of the model stems from
colocated dyes that may interact. For example, Förster resonance energy
transfer [50] introduces artifacts visible at high concentrations in the color
cube [31]. In bright-field microscopy, the linear mixture model does pro-
vide quantitative information, i.e., relative dye concentrations, when light-
absorbing dyes are used for specimen preparation. Nevertheless, it is com-
mon to use light-scattering stains which results in loss of quantitative infor-
mation [12, 32, 51]. Paper IV proposes a solution to the problem, but also
suggests that light-scattering stains (including diaminobenzidine) require
a new model.

Epifluorescence and bright-field microscopes shown in Fig. 3.1 and 3.2,
respectively, are wide-field microscopes. They use sensor array to acquire
two-dimensional images, while confocal microscopes use photomultiplier
tubes (single-pixel cameras) to acquire three-dimensional spatial informa-
tion [3]. While wide-field microscopes suffer from both longitudinal and
lateral chromatic aberrations, only longitudinal chromatic aberrations in-
fluence confocal microscope imaging. The methods for spectral and color
decomposition presented in this thesis require images free of chromatic
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aberrations, just as spectral unmixing or intensity-based quantification of
colocalization algorithms. In wide-field microscopy, lateral chromatic aber-
rations may affect results significantly, particularly quantification of point-
source signals. Algorithmic compensation for chromatic aberrations solves
this problem [52, 53].

Finally, the definition of colocalization proposed in a previous chapter
may be different from the description in Paper I: “The source of two dif-
ferent emission signals can often be physically located in the same area or
very near each other in the final image due to their close proximity within
the microscopic structure. This is known as colocalization." Although two
single-colored objects laying next to each other may be considered as colo-
calized [54], an underlying assumption of the proposed method is existence
of a significant number of dyes co-located in area smaller than area ςp pro-
jected to the specimen plane.

6.2 In light microscopy, there is no such thing as – hue
This thesis presents a method for decoupling light intensity from spectral
information. It also considers tri-chromatic red-green-blue color sensors
as one type of spectral imaging systems. In modern digital image process-
ing, researchers tend to follow Goethe’s description of color as a mixture of
primaries as perceived by humans and refer to separation of color into hue
and saturation as decoupling of spectral information. But in microscopy,
the method based on the linear mixture model has been proven to be supe-
rior to hue-based solutions [55].

On the other hand, with the exception of a physically-based approach
[56], computer vision researchers often prefer decoupling of intensity and
spectral information by transforming input data to the L*a*b* color space.
The transformation is modeled by the non-linear response of human eyes.
Therefore, the chromaticity plane a*b* preserves color differences as per-
ceived by humans. Since the most commonly observed objects in computer
vision and multimedia are man-made (apart from the human skin color
[57]) this transformation appears to be suitable. The question is: Should
quantitative microscopy represent color as it is perceived by humans? And
the answer supported by this thesis is – no. The chromaticity plane intro-
duced in Chapter 4 preserves chromaticity differences as differences be-
tween sampled spectral signatures of dyes. It also opens a possibility of
modeling and measuring biochemical noise as a finite sum of Gaussian dis-
tributions.

Finally, Newton left it unclear what he meant by “centers of gravity let Cir-
cles proportional to the number of Rays of each Colour in the given Mixture
be describ’d” (see Chapter 2). But in the context of modern optical imaging,
the following explanation is plausible: the color wheel is not a wheel (and
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certainly should not be used to represent color as a hue-saturation couple);
it is a projection of a seven-dimensional color cube to a two-dimensional
space – simply for visualization purposes.

6.3 Uniform vs. irregular sampling
Hyperspectral cameras (Fig. 2.7A) can be used for identification of
molecules with distinct line spectra. Uniform sampling of the light
spectrum in such imaging systems is band limited by the diffraction
grating and sampling occurs in accordance with the Shannon-Nyquist
criterion (eq. 2.5). Thus, a sampled spectral signature with a large number
of spectral channels for each imaged spatial position is recorded. The main
drawback of hyperspectral imaging systems is poor signal-to-noise ratio
caused by narrow band channels, i.e., high resolution of the system.

Several studies demonstrate that the number of spectral channels does
not need to exceed the number of dyes to maintain separability of overlap-
ping spectra and high signal-to-noise ratio [58, 59, 60]. Therefore, in fluo-
rescence microscopy sampling of spectral information is characterized by
assumed emission spectra of fluorescent dyes and it is in its nature – irregu-
lar. In addition, using a red-green-blue filters arranged into a form of a mo-
saic filter, the most common sensor in commercial cameras [33], is another
example of irregular sampling of spectral information.

Thus, irregular sampling of spectral information prevails in all fields of
science and technology. On the other hand, irregular sampling of temporal
and spatial information [61] is still not very common in applied sciences
or medicine where high resolution uniform sampling generates image data
both for visualization and image analysis. Perhaps, the answer to why it is
so common to sample the spatial and temporal domains uniformly lies in
the fact that human perception affects the way engineers implement sen-
sors. Apart from biologists’ desire to study three-dimensional high resolu-
tion imagery, recent papers indicate that time-sequences [62] also play an
important role in quantitative microscopy. And while large amount of data
from the proliferation of sensors with ever increasing resolution is bene-
ficial, it also represents one limiting factor for the 21st century computer
architectures.

Guided by the following facts: (1) irregular sampling of light spectra
did not show any major drawbacks; (2) information of interest is often
distributed over more than two dimensions; (3) imaging time grows
often linearly with the amount of data; (4) the amount of data grows
exponentially with each new dimension; it appears reasonable to pose
the following question: Could sparse sampling of temporal and spatial
information [63] be a technique for efficient image acquisition that will
revolutionize image processing that we know today?
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6.4 Future of image processing in medicine and
biology
The methods published in Paper III have already been employed for
evaluation of molecular biology protocols, i.e., detection of individual
sequence-specific protein-DNA interactions in situ [49]. Image processing
in this work was not limited to analysis of visually acceptable images
provided by biotechnologists (see Fig. 2.4), but it was an integral part
of protocols for measuring the detection probe quality and accuracy
(Fig. 6.1).
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Figure 6.1: An example of collaborative work – information processing applied in
all stages of research may minimize subjectivity in diagnosis and decrease bias.

Furthermore, as a consequence of accurate estimation of relative dye
concentrations in Paper IV morphological structures are preserved. For ex-
ample, Gleason grading of prostate cancer [64] uses a number of morpho-
logical features, from shape of glandular units to the size of nuclei. In addi-
tion, by using image analysis, computers can help pathologists by providing
extensive statistics of a number of features, e.g., chromatin distribution in
cell nuclei, an important feature for severity grading [65].

Section 2.4 describes two different philosophies in quantitative analysis,
machine learning and analytical modeling. Today, the first approach pre-
vails. And while it is cost effective, its conclusions are limited by the material
provided for the training step. In medicine, this means that image analy-
sis is limited by the performance of medical doctors [66] because statistical
models based on experts’ annotations and opinions are not always optimal.
However, employing researchers from both biomedicine and engineering
(see Fig. 6.1) to develop and adopt new stains and protocols jointly, derive
mathematical models and test their limitations should be the approach.
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Sammanfattning på svenska

Färgteori och mikroskopi har samexisterat i flera århundraden. I och med
1900-talets teknologiska framsteg har tidigare nära relaterade forskning-
sområden som färgteori, spektroskopi, mikroskopi och datoriserad bild-
analys sammanfogats i sann synergi. Parallellt med detta har förståelsen för
människans förmåga att tolka färginformation ökat. Detta har lett till såväl
kvantitativa mått på färg som till modeller för hur vi uppfattar färg visuellt.

Med tanke på att målet med bildbehandling inom naturvetenskapliga
tillämpningar och medicin är att säkerställa en objektiv analys, är denna
avhandling fokuserad på färgteori inriktad på kvantitativ analys snarare
än det subjektiva angreppssätt som dominerar forskningsområdet idag.
Ett område där detta är särskilt angeläget är inom histopatologi, där
målet är att undvika subjektiva bedömningar och öka tillförlitligheten för
en diagnos och därmed uppnå bättre behandlingsplanering. Dessutom
kan datoriserad bildbehandling dra nytta av matematiska modeller
som kan bekräfta eller förkasta vetenskapliga hypoteser på ett tidigt
forskningsstadium genom att öka noggrannheten och analyskapaciteten
och minska subjektiviteten.

Avhandlingen presenterar en modell för spektral bildanalys som kan
tillämpas såväl på fluorescens- som ljusfältsmikroskopi. Genom att
tillämpa den inversa modellen erhålls uppskattningar av den relativa
koncentrationen för var och en av komponenterna i den observerade
blandningen av infärgningar. Modellens parameterskattning grundar sig
på att vi skiljer på intensitetsinformation och spektral information. Denna
nya spektrala uppdelningsmetod är uppbyggd i tre steg: 1) Modellering
av foton- och halvledarbrus leder till parametrar för utjämning av
signalerna 2) Transformering av bilden till ett kromaticitetsplan tar bort
intensitetsvariationer samtidigt som skillnader i färgnyans bevaras. 3)
styckvis linjär uppdelning kombinerar fördelarna av spektral mappning
och linjär uppdelning och leder till relativa koncentrationer av färgämnen.

Metoderna inkluderar en matematisk modell och algoritmer för automa-
tiserad parameterskattning. Ett antal ljusmikroskopitillämpningar viktiga
för kvantitativ mikroskopi presenteras:
• Kvantifiering av närliggande fluorescenssignaler. När flerfärgade

prover avbildas händer det ofta att fluorescenssignaler från olikfärgade
men närliggande mikroskopiska strukturer hamnar i samma fysiska
bildpunkt. Detta leder till ett spektralt uppdelningsproblem som
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inte kan lösas med klassisk egenvektorbaserad multivariat analys. I
avhandlingen presenteras ett spektralt vinkelhistogram; ett nytt verktyg
för visualisering och kvantitativ analys inom mikroskopi. Vinkelhis-
togrammet separerar spektral information från intensitetsinformation
och tar hand om de illa-konditionerade uppdelningsproblem som
nämns ovan.

• Spektral uppdelning vid autofluorescens och signalöverhörning.
Bakgrundsfluorescens, också kallad autofluorescens, och signalöver-
hörning är två problem inom fluorescensmikroskopi som har sitt
ursprung i liknande fysiska fenomen, och ofta löses med hjälp av
spektral uppdelning. När biologiska prover avbildas innehåller den
detekterade signalen ofta bidrag från andra källor än den avbildade
fluorokromen. Dessa signalbidrag kommer kommer antingen från
provet självt (bakgrundsfluorescens) eller från fluorokromer med
delvis överlappande emissionsspektra (signalöverhörning). För
att kunna separera signaler från olika källor krävs avbildning av
åtminstone två olika våglängdsintervall, alternativt avbildning med
två olika excitationsspektra. För klassisk spektraluppdelning krävs
spektrala signaturer av individuella komponenter, och dessa spektrala
signaturer måste avbildas innan spektraluppdelning är möjlig. I
situationer där spektrala signatur är okända kan vinkelhistogram
användas för att bestämma parametrar för både linjär och icke-linjär
spektraluppdelning. En annan fördel med metoden är att enbart ett
fåtal spektrala kanaler behöver avbildas och behandlas – något som
spar både tid och lagringsutrymme.

• Färgbaserad vävnadsklassificering i ljusmikroskopi. Genom att tillämpa
den inversa modellen som extraherar spektrala komponenter från ett
vävnadsprov kan en färgkoncentrationskarta skapas. Variationer i färgin-
tensitet är därmed borträknade, och artefakter från provpreparation och
infärgning reduceras. Dessutom kan modellen kombineras med statis-
tisk modellering av brus och mjuka klassificeringsmetoder möjliggör lin-
jär färgseparation.
Slutligen presenteras metoder för kvantitativ bildanalys tillämpade

inom ett samarbetsprojekt med biomedicinska forskare. Traditionellt sett
brukar forskare inom bildanalys bli inblandade i samarbetsprojekt först
efter att de biomedicinska metoderna utvecklats, och ibland även efter
att bilddata insamlats. Detta gör att resultaten begränsas av att bilderna
inte är anpassade för bildanalys. För att övervinna begränsningarna
med detta angreppssätt har vi utvecklat metoder för bildbehandling
parallellt med metoder för att kvantifiera interaktioner mellan enskilda
molekyler visualiserade med hjälp av flerfärgade signaler. Vi beskriver hur
bildbehandling används för att utvärdera biokemiska metoder, inklusive
provpreparering, avbildning och kvantitativ analys. På liknande sätt har
överföringen av färginformationen i bilderna till ett kromaticitetsplan
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Figur 1: Informationsbehandling inom medicin och biologi.

möjliggjort en teoretisk beskrivning av en perfekt infärgning. Dess
referensfärger skall vara belägna i hörnen på kromaticitetsplanet och
alla vävnadstyper skall ha lika stort upptag av färg (ingen övermättnad,
inga bleka infärgningar). Dessa kriterier hjälper patologer att utveckla
nya infärgningar som är optimerade primärt för kvantiativ analys med
datorer och i andra hand för att fungera för det mänskliga synsinnet. Figur
1 illustrerar flödet i den bildbehandlingsprocess som skapades för att
uppfylla behoven inom detta interdisciplinära projekt.
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