IT 11 070

Examensarbete 15 hp
November 2011

UPPSALA
UNIVERSITET

An Android Application for Saving
|deas

Goran Nehlin

Institutionen for informationsteknologi
Department of Information Technology

Sammanfattning

En Androidapplikation dr ett program for smartphones som kor operativsyste-
met Android. Det hir examensarbetet handlar om hur jag utvecklat en Andro-
idapplikation for att kunna spara idéer och ladda upp dem till en webbtjénst.
Tanken med applikationen var att den skulle komplettera den nystartade webb-
tjinsten Creado, en tjinst som kunde liknas vid en delad whiteboard dir an-
viandarna kunde ladda upp och kommentera bilder, video, text och andra filer.
Webbtjansten var centrerad kring att jobba kreativt och dela idéer. Tanken var
att den skulle vara en plats att spara och dela sina idéer.

Tanken med Androidapplikationen var att anvindarna av webtjinsten skulle
ha en mojlighet att spara ner sina idéer dven nir de inte hade tillgang till en
dator. Anvindaren kan spara anteckningar i text-, bild- och ljudformat och
ifall hon saknar internetuppkoppling ska anteckningarna kunna sparas lokalt pa
telefonen tills dess att de kan laddas upp.

Uppgiften handlade om att designa och implementera en applikation som
klarade av anvindarinteraktion, skapande av anteckningar och uppladdning av
de skapade anteckningarna. Malet var inte att gora en applikation fardig att
slappas, utan snarare en stabil grund att bygga en sadan applikation fran.

I den hir rapporten beskriver jag designprocessen. Jag har inriktat mig pa tre
huvudomraden: Datalagring, dverforingsprotokoll och anvindargrénssnitt. Da-
talagringen beskriver den bakomliggande SQLitedatabasen, hur den samarbetar
med vanliga filer sparade pa telefonenes externa SD-kort och hur applikationen
hanterar avbrott i kdrningen fran till exempel telefonsamtal eller SMS.

Overféringsprotokollet handlar om hur jag 6verfor anteckningarna fran data-
basen och SD-kortet till ett webbgrénssnitt for Creado. Creados webbgranssnitt
blev aldrig klart sa darfér designade jag ett protokoll som jag tror skulle fungera
bra som webbgranssnitt. Det har avsnittet behandlar bade hur anteckningarna
fran databasen omvandlas till ett format som l&mpar sig f6r 6verféring och hur
applikationen och det tdnkta webbgrinssnittet kommunicerar med varandra.

I avsnittet om anvidndargrinssnittet beskriver jag hur applikationen &r de-
signad och fungerar fran ett anvindarperspektiv. Dar beskriver jag ocksa hur
jag tagit hinsyn till konventioner och oskrivna regler som finns for Android-
applikationer. Eftersom den hir applikationen &r ténkt som ett tilligg till en
befintlig webbtjanst sa har jag ocksa tagit hidnsyn till hur den &r designad for
att forsoka fa anvindare att kdnna att applikationen och webbtjansten hér ihop.

Avslutningsvis beskriver jag hur applikationen borde vidareutvecklas. Som
jag ndmnde tidigare dr den en stabil grund att bygga vidare pa snarare dn en
fardig produkt. Har beskriver jag vad som behdver géras med den innan den &r
klar att slédppas.

Innehall

1 Introduction
1.1 Background
1.11 Creado
1.1.2 Android applications
1.1.3 Android concepts
1.2 Problem description and limitations

2 Design
2.1 Persistent storage
2.1.1 SQLite database
2.1.2 External SD card

2.1.3 Handling suspension/termination

2.2 Synchronisation

2.2.1 Local versus global identifiers

2.2.2 Protocol
2.2.3 Local operations
2.2.4 Duplication problem
2.3 Interface design
2.3.1 The design process

2.3.2 Description of the user interface

2.3.3 Design choices

3 Results
3.1 Screenshots
3.2 Future improvements
3.2.1 Loggingin.

3.2.2 Thumbnail data moved to SDcard

3.2.3 Protecting data on SD card

3.2.4 Encode title/content before transfer
3.2.5 Adding audio playing Activity

3.2.6 Replace built in components
3.2.7 Serialise the synchronisation
3.3 Move code away from onCreate ()

4 Conclusion

with self made
Service

16
16
18
18
18
19
19
19
19
19
20

21

1 Introduction

1.1 Background
1.1.1 Creado

Creado is a web based service for storing and sharing ideas in text, image, au-
dio or video format. Initially, the format closely resembled a shared whiteboard
where users could see what other users did in real time. During the summer,
Creados focus moved away from the shared whiteboard concept and more to-
wards a note taking/sharing service, though focus is still on sharing, viewing
and editing files.

When Creados focus shifted, they took a break in developing the web appli-
cation. As a result of this, they did not create the planned web interface that
my mobile application was going to use.

1.1.2 Android applications

An Android application (commonly known as an app) is a program for smartp-
hones running the Android operating system. Writing applications for mobile
devices requires some extra consideration compared to writing traditional desk-
top applications. A smartphone, compared to a desktop computer, has very
limited resources. The processor is slow, the memory is limited and power usage
should be kept as low as possible. Interruptions (phone calls, text messages,
etc.) may occur at any time or the device may simply run low on resources and
suspend /kill applications.

Android devices usually have both internal and external memory. The inter-
nal memory is where applications are typically stored, but this memory is very
limited in size, so storing large files there is not advised. The external memory
however, has it’s own problems. Normally external memory means an external
SD card!, which might be removed and replaced by the user.

Android applications have to take all of this into account and still act reliably
and fast. This includes saving user data when applications are suspended /killed
as well as resuming as if nothing happened when the application is relaunched
and manually putting work intensive tasks on separate threads to offload the
user interface thread and keep the application responsive.

Applications for Android are written in Java using the Android Software De-
velopment Kit (Android SDK). An application is a complete package, containing
graphics, text resources and layout as well as the actual program.

1.1.3 Android concepts

Here is a few Android concepts that useful to know in order to understand the
design process:

1Secure Digital memory card. A type of memory card typically used in cameras and smartp-
hones

Activity A specific task running in its own thread and having a user interface.
Examples of Activities in my application is the view where the user can list
all existing notes or create a new note. From this Activity, the Activity for
creating/editing text notes can be launched or if the user wants to look at
pictures that she has taken before, she can do so using the picture viewing
Activity.

Service A Service, unlike an Activity, does not have a user interface. They are
typically work intensive or otherwise slow tasks running in the background.
The point of services is to separate work intensive tasks that do not need
user interaction from the user interface to keep it responsive. An example
in my application is the synchronisation Service. Once it is started, it runs
in the background until complete, while the user can keep working with
the application.

Intent Intents are used when you want to specify what kind of task you want
to be carried out. Once you specify an Intent and launches it in an (unspe-
cified) Activity, the operating system launches an Activity that matches
your Intent. For example if we specify the intent to be “pick a picture from
the device memory”, the file browser set to display only pictures or the
gallery application may respond to this call. This is a way to use existing
applications as components in your own application.

1.2 Problem description and limitations

The typical use case for the mobile application of Creado is a user being away
from her computer when a great idea strikes her. She should then be able to
record this idea in some way (text, picture, audio) as well as upload it to the
web application. Even if her phone currently lacks internet access, she should
be able to store the idea in the phone and the mobile application should upload
it as soon as possible. Further, she should be able to review the ideas that she
created using her phone as well as edit ideas in text form.

While being able to view and work with existing notes (I will refer to the
data created in text, picture or audio format as “notes”) would be useful for a
mobile application, this is beyond the scope of what I am doing in this thesis.
This application is focusing on creating, displaying and to some extent editing
local notes, and to upload them to the web application. Since I make local notes
viewable and editable, another developer may later use this functionality by
fetching notes from the web application and work with them as local data, but
for the scope of this thesis, the communication is basically one-way.

The task of creating the mobile application included both designing the
architecture and implementing it. I did this while at the same time learning
how Android applications works, which is why I had to limit the scope to just
uploading, editing and viewing local notes.

Since the web interface would not be completed while I was working on the
mobile application, I had to design a protocol for transmitting notes. My aim
was that this protocol could later be used directly as the web interface, or at least

used after minor modifications. Lastly, the purpose of this mobile application is
not to be a complete application ready to release to the public, but rather the
basics of such an application that will require some small redesign, testing and
possibly optimising before public release.

2 Design

2.1 Persistent storage

The Android application must be able to store notes in a way that ensures
no data is lost if the application gets suspended/terminated by the operating
system. The data storage must also be efficient and not waste too much space
on the internal memory, but rather use the external SD card.

2.1.1 SQLite database

There are several ways to store data on an Android device (internal file, external
file or in a database). A note consists of data (title, content) and meta data
(creation date, type, etc.) and to be able to store all this in a file, I would have
to design a file format.

Also, there are several occasions when querying the data is necessary. For
example, synchronisation? requires finding all unsynchronised notes, and dis-
playing the existing notes requires getting the title and thumbnails for all notes.
Querying and the fact that I would rather not design my own file format (since
the web application uses a database) if not necessary led me to think that a
database was the best solution.

The Android platform provides a built in SQLite database® which is ideal
for querying and being able to access parts of notes. The database is located
on the internal memory. This database however, is not suitable for large files.
In fact, trying to insert a too large file into it may actually cause it to crash
and become corrupted, something I learned along the way. Thus files had to be
saved elsewhere, namely on the external SD card.

The database in the application is a pretty straight forward one, containing
a single table for all types of notes. This is mainly for convenience reasons as
performance is not an issue in a database this small. The database contains the
following fields:

id Identifier for the note in the local database.

title Title for each note. For text notes, this may be null. In that case the title
is computed from the first few letters in content.

content For text notes, this simply contains the text. For other notes, this
contains a URI* to the file where the content is located.

type This determines the type (text, picture, audio) of the note.

2Synchronising in this context simply means to upload a note as soon as it’s created or
updated

3A light-weight SQL database

4Uniform Resource Identifier, in this case the path and file name of the file.

thumb This field contains the data for image thumbnails®. Unlike the other
raw data, thumbnails are small enough not to cause any trouble in the
database.

creationDate The date when the note was created.

modificationDate The date when the note was last modified. Used to deter-
mine order when listing all notes.

synced A boolean value telling whether the note is synchronised or not. Used
to count and find unsynchronised notes.

globalld Identifier for the note in the global database. Will be further discussed
in the synchronisation section.

The field worth discussing is thumb. Initially I planned to store all data
in the database. Compared to audio and full size images, the impact of storing
thumbnail data and having empty fields in notes of other types was negligible.
As it is now, the vast majority of the database probably contains thumbnail
data which may be a good reason to reconsider this design decision. Right now
though, it works, and before any profiling is done, there’s no telling if this would
make any significant improvement.

2.1.2 External SD card

As mentioned before, data on the internal storage is precious. Not only does it
bother users if you use up too much of it, if the system gets critically low on
storage, data stored there might get deleted. Simply put, storing large amounts
of data is not for the internal memory.

The external memory also have its problems though. For one thing it’s exter-
nal, meaning the user might simply remove the card and replace it with another
one. This would not affect the database (since it’s stored on the internal me-
mory) so notes would still appear to exist, even though their data might not.
This is a problem all Android developers have to face, and the standard solution
seems to be to assume that the card is not removed, but to test for and handle
the case when it is. This is the approach I've chosen. If the memory card is
removed (which is the most probable cause for not being able to read a file from
it) the user is alerted that file loading failed.

Another problem with the external memory is that, unlike the internal, it
is not private to the application. External memory might be accessed by any
application on the device. For example, the gallery application on some Android
devices search the entire memory card for pictures to display in the gallery, and
this would include the pictures from picture notes from my application. There
are solutions for restricting access to files on the external memory for other
applications but I did not see this as a big problem, so I left this for future
improvements.

5A thumbnail is a small preview of a picture.

2.1.3 Handling suspension/termination

Android has built in mechanism to handle the fact that the system might need
to suspend or terminate a process at any time. When the operating system is
about to kill a process, the method onSaveInstanceState(Bundle outState)
is run. In the variable outState small amounts of data may be stored. In my
application, I only need to consider data loss when editing text. Capturing
images and recording audio is done by calling default components which handle
the potential data loss by themselves. Besides, text notes are usually the ones
requiring most time to make, so this is the part where preventing data loss is
the most important.

In the code for the text editor I have a variable called rowId. This represents
the row in the database where the currently edited node is located. If it is a
new note (rather than an existing one being edited) rowId is null. I wrote a
function called saveState() which saves the title and content field to a note in
the database. If rowId is null the data is saved to a new note and rowlId is set
to the id of that note. Otherwise the note with id = rowId is updated.

Either way, after calling saveState() rowId contains the database id of the
newly saved note. rowId is now all that’s needed to resume the program without
data loss, so I save it to outState. This is the code called when the application
is about to be killed:

protected void onSaveInstanceState(Bundle outState){
super.onSavelnstanceState (outState);

/* Saves the title and content to the note with id = rowld.

¥ If rowId = null a new note is created in the database and
* rowId is set to the id of the newly created note.
*/

saveState ();

outState.putSerializable(SparkDBA.T_KEY_ROWID, rowId);

Once the application is restarted, rowId can be read from a Bundle passed
to the initialisation function onCreate(Bundle savedInstanceState). Once
rowld is read, the text fields can be repopulated and the text editor is back to
the same state it was in before getting killed.

2.2 Synchronisation

The synchronisation is an integral part of the mobile applications functionality.
It is the link between the mobile application and the web application but since
the development of the web application was halted, I had to invent the protocol
for communication with the web server myself. I wanted this protocol to be as
close to the real thing as possible so that when Creado resumed the development
of the web application they could use my protocol, or at least spend minimal
time adjusting it.

2.2.1 Local versus global identifiers

Before going further, let me first explain the difference between the local and
global identifier of a note. Notes are locally stored in a database, and a numerical
identifier is typically used as the unique primary key. The local identifier is used
everywhere in the mobile application, but outside the mobile application, it
does not hold any meaning. The same global note may even have different local
identifiers if loaded on different mobile devices. This of course means that the
local identifier cannot be used as a global identifier.

The global identifier is the unique identifier in the web applications database.
This database contains all existing notes on Creado, so this is truly a unique
identifier. Since it is unique to the global database, only the global database
may create it. As the mobile application is able to create notes without being
in contact with the global database (creating notes in offline mode is one of the
requirements of the mobile application), the global identifier cannot be used as
local identifier.

Currently there is actually no need for the mobile application to know the
global identifier. This is because the communication is one-way. When the web
application receives a note from the mobile application, it knows that this note
was created on the mobile application and that it should be inserted as a new
item into the global database. In the future however, this is will not always
be the case. A note may be created on the web application, uploaded to and
edited on the mobile application and then returned to the web application. In
this case, the web application must be able to identify this note as the same it
sent before. The web application should update its existing copy of the note,
rather than creating a new one and keeping the old. For this to work, the note
needs a global identifier even on the mobile application. Since I wanted to make
my protocol as close to a real protocol as possible, this was something I had to
consider.

Because of this, there are two parts of the synchronisation. Firstly, the ob-
vious one, to upload the notes from the mobile application to the web applica-
tion. Because of the future need for the mobile application to know the global
identifier, there is also the second part, where the web application responds
that notes have been successfully received and lets the mobile application know
about their new global identifiers.

2.2.2 Protocol

When we initially discussed the protocol with the developers of the web appli-
cation we decided that we should use JSON® for all communication and this is
what I used for my protocol. The protocol is a pretty straight forward wrapping
of the data into a JSON array. Since JSON sends data in plain text, the binary
data of the pictures and audio has to be converted first.

6 JavaScript Object Notation, a light weight alternative to XML. All data is sent as plain
text.

10

I chose to use Base64 encoding” to encode the data to text suitable for
JSON. Base64 has a reasonable overhead (slightly above 33%®) and is widely
supported. Android also has built-in support for it, making the encoding process
very easy.

The idea is that when the web application receives and successfully decodes
a note from the mobile application, this note is inserted into the global database.
As this happens, the note gets a global identifier. To let the mobile application
know this global identifier, the web application replies by a JSON array contai-
ning tuples of {localldentifier, globalldentifier} for each element that
was successfully received.

The mobile application receives this reply. For each tuple {localIdentifier,
globalIdentifier} in the received JSON array, the note with identifier id ==
localIdentifier gets its globalld set to globalldentifier. They also get
their synced field set to true.

Below is a (formatted) sample JSON object created when uploading a text
note and the reply sent by the web application:

Mobile application sending a note to the web application:

L

{
Ilidll:lllll,
"title":"Pancakes",
"content":"2 eggs 2 dl wheat flour 4 dl milk a little salt",
"type":“l",
"createDate":"1312977857",
"modifyDate":"1312991350",
"globalId":"null"
¥

Web application replying to the mobile application:

C

"localldentifier":"1",
"globalldentifier":TEOMQOFUUzwz"

This hopefully explains how the protocol works. What is also visible is that
the title and the content is sent in plain text, which is not really a good idea. I
will discuss this further in the future improvements section.

Since there was no real interface to test against, I had to be inventive. The
fact that JSON is both human-readable and widely supported made the test
process much easier, as all I needed to do was to set up a server to receive the

"Base64 is an encoding scheme where binary data is converted into a subset of the ASCII
characters so that the characters used are only ones that are easy to unambiguously trans-
mit. This means omitting blank spaces, commas, quotation marks and using alphanumerical
characters.

8Since 6 bits are used per byte, and blank spaces are ignored.

11

input, write it to a file and then use online tools for validation and manual
inspection to see that data was successfully transmitted. For testing the Base64
I could easily test the decoding using online tools to see that the correct data
was sent. Knowing that the received data was valid JSON data containing the
correct binary data, I knew that the sending worked as intended.

2.2.3 Local operations

Now that I have explained how the data is sent, I am going to explain what
happens locally in the mobile application. Each time the application is started
or a note is created/edited the synchronisation method is called. This method
first queries the database to find out whether there are any unsynchronised
notes in the database. Secondly it asks the device if it has a functioning internet
connection. If both those conditions are met, the device needs to and is able to
attempt to synchronise. This launches the synchronisation Service.

Synchronisation requires database queries, conversions of data and network
operations, actions that are all potentially work intensive and time consuming.
As such, I want to make sure that these operations do not block the user in-
terface, and that is why I use a Service, launched in a separate thread. The
synchronisation Service begins by extracting all unsynchronised notes from the
database. Each such note is then converted to a JSON object, which includes
encoding data in Base64 for the binary data. All objects are stored into a JSON
array, which is later sent to the web server. The server reply (in my case just
pre-defined to return a reply for local identifier 1 and 2, for testing reasons)
is stored into a JSON array, which is then iterated over to update the global
identifier and synced fields of the notes for which a reply was received. Once this
is done, the database is once again queried to see if it has any unsynchronised
notes, and if it has not, the synchronisation is reported as successful.

2.2.4 Duplication problem

A potential problem with this protocol could occur if the reply from the web
application gets lost. The web application (according to my protocol) is supposed
to treat any note with a global identifier equal to null as a new note. Let us look
at an example where that could go wrong:

1. Mobile application sends note N with local identifier L and global identifier
= null.

2. Web application receives N.

3. Asglobal identifier of N is null, a new note is created in the global database.
The new note in the global database gets a global identifier G.

4. Web application replies with reply R containing L and G.

5. R gets lost/corrupted in transfer.

12

6. Mobile application does not receive a reply and therefore considers N to
be unsynchronised and its global identifier equal to null.

7. Mobile application is relaunched or some note is being created/edited.
8. Synchronisation Service is called on the mobile device.

9. N is among the unsynchronised notes and will therefore be sent having
null as its global identifier.

10. N is received by the web application and since its global identifier equals
null, a duplicate note is created in the global database.

One way to solve this problem would be to assign a unique identifier for each
mobile device. The combination of that identifier and the local identifier could
be used to uniquely identify notes. This would enable the web application to
detect that it had already created the note that it was about to make a duplicate
from. Another solution would be to not create the global note unless the reply
is successfully sent and received. Since my knowledge of network protocols is
quite limited, I will simply mention this problem, rather than try to solve it.

2.3 Interface design

Designing the interface for an Android device is a little different from designing
interfaces for desktop applications. The user interacts with the device primarily
by the touch screen. Other than the touch screen, all android devices have a
hardware button for going back. If you are in an Activity A and from there you
launch an Activity B, pressing the back button while in B will take you back to
A. If you press it again while being in A, you return to wherever A was launched
from. This is not something you as a developer have control over.

There are also conventions for how things are done in an Android application.
For example if items are listed, users can expect that long pressing (pressing
and holding down for a few seconds) one of the items will show a context menu
where the item can be modified (deleted, renamed, etc.). Another example is
that Android users expect that using the back button don’t cause them to lose
data.

Another problem when you design something for an Android device is that
an Android device can be a lot of different things. An android device is simply
a device running a specific operating system. The most relevant aspect that I
had to consider for the design was the screen size. A design should look good
on everything from the 240 x 320 pixel screen of the Sony Ericsson Xperia X10
mini to the 540 x 960 pixels of the Motorola Droid X2.

2.3.1 The design process

I created the design of the application together with the people from Creado
and Emilio Nyaray, the developer of their iPhone application. We wanted the
mobile applications to look and function roughly the same, while still respecting

13

device specific conventions. Furthermore we wanted the mobile application to
resemble the web application, or at least what the web application looked like
when we started the design process.

2.3.2 Description of the user interface

In the web application there was a grid of notes sorted first left to right, then top
to bottom based on most recently edited. In the place where the first note would
be, a button for adding new notes was placed. This design was mimicked from
the web application. A good thing about using a grid is that it is an efficient
way to adapt to different screen sizes. On really small screens, there would be
only two columns, while the really large screens can take advantage of their size
and display 4-5 columns. The grid layout also works well in landscape mode
(when the phone is rotated 90°) as the fewer visible rows are compensated by
more visible columns, unlike a layout where each node takes up a separate row,
which in landscape mode would just mean fewer but wider rows.

This grid is where the application starts. Pressing any of the existing notes
launches the Activity to view/edit that kind of note. For text notes, this means
launching the text editor. For picture notes a very simple Activity that simply
displays the picture and its title is launched. For audio notes, there is no available
Activity, simply because I did not have time to make one. The important task
for this application was to be able to save ideas and upload them, so I felt that
reviewing existing ones could be added later.

When the button for adding a new note is pressed, a menu is shown over
the grid where the user may pick what type of note to create: Text, Picture or
Audio). Pressing Text launches the note editing Activity, pressing picture shows
two new menu options, Camera or Gallery. For each of the options Camera, Gal-
lery and Audio I specify an Intent and launch a built in application application
that matches it.

2.3.3 Design choices

The big reason for using Intents is that writing my own applications for browsing
galleries, taking pictures and recording audio would be very time consuming.
The only benefit of doing so would be that I had direct control over exactly
how they looked and worked. Using Intents I instead uses existing applications
that the user is likely to be familiar with. These applications are either supplied
by the phones manufacturer or installed by the user. The ones supplied by the
phones manufacturer are most likely of higher quality than I would be able to
write as a part of this project. The user installed applications are probably even
better, since the user got through the trouble of installing them instead of using
the ones provided by the phone manufacturer. Either way, most likely better
than if I wrote them myself. The only real downside of using Intents is cosmetic:
not everything looks like a part of the same application. This is something that
could be added in later versions.

As mentioned, one of the conventions for Android applications is that you

14

are supposed to be able to press the back-button without losing data. Since I
use Intents for creating all but text notes, the text editor is the only place where
I need to worry about this. My solution to this is that when the user presses
the back button I simply save the note, overwriting the old if the note already
existed or creating a new note if it did not. Another convention I adhere to is
the convention of long pressing listed items. If the user long presses a note in
the grid view she gets the option to delete the note.

15

3 Results

The result of this project is a working Android application which provides the
basic functionality of creating and uploading notes in text, picture and audio
format. The application is not tested on any real users, nor is it bug free, op-
timised or tested on a lot of different devices. There is a lot of work left to
do, but the code is well documented and structured in a way that should make
it easy to continue developing the application. The source code is commented
using Javadoc.

In this section I will show how the application looks. I will also describe
where whoever keeps developing the application should continue my work.

3.1 Screenshots

This is what the application looks like:

Add new Img Rec
2011-08-10 2011-08-10
13:37 13:36

Pancakes

Figure 1: In this view existing notes are displayed and the user may access the
menu for creating new notes. The order of the notes are based on when they
were last created/modified. The picture note was the most recently modified,
while the text note was the least recently modified. Pressing “Add new” takes
us to Figure 2

16

Settings

Add new mg Rec
2011-08-10 2011-08-10
13:37 13:36

Cancel

Figure 2: The buttons functions as follows: “Note” launches the text editor with
a new empty note (Figure 3, except the fields are empty). “Picture” accesses the
menu where the gallery or camera Intents are launched from. “Audio” launches
the audio recording Intent. Cancel simply removes the menu and returns the
user to the main view.

17

‘ %ﬁ@ﬁ:w\

Pancakes

2 eggs

2 dl wheat flour
4 dl milk

a little salt

Figure 3: In this Activity text notes are created, edited or deleted. The title
field is optional, and if it is left blank, a title will be computed from the first
few letters of the content.

3.2 Future improvements

In this section I will describe what I think should be added to the application
in the future. These are both things I did not have time to complete myself and
things I was not able to complete because of the absence of a working interface
to the web application. Many of the things mentioned here are also available as
TODO-comments in the code. TODO-comments are supported by Eclipse, the
development environment recommended for Android by Google.

3.2.1 Logging in

Since there is currently no interface between the web application and the mobile
application, I had no way of implementing any scheme for logging in. This is a
task that should be done as soon as the interface between the web application
and the mobile application is done.

3.2.2 Thumbnail data moved to SD card

As I mentioned before, my initial plan was to store all data in the database on
the internal memory. With the database full of large files, having the thumbnails
there as well wouldn’t make much difference. Now the thumbnails are the only

18

large files in the database, and as such their impact on the overall database size
is significant. Possibly this does not have any significant impact on the applica-
tion, but whoever continues my work should at least look into the possibility of
moving the thumbnail data to the SD card.

3.2.3 Protecting data on SD card

Asg it is now, the data is stored fully visible on the SD card. One consequence of
this is that on many phones this data is visible through the gallery view. Since
the data can come from the internal gallery on the phone, this will just create
duplicates in the gallery, which will probably be annoying to the user. A good
change would probably be putting the data in a hidden folder. As for saving
the data from unauthorised access, this seems a little unnecessary to me, but at
least I want it to be known to whoever will keep developing the application that
data located on the SD card is available to any application for reading and/or
modifying.

3.2.4 Encode title/content before transfer

The title and content field is now sent in plain text. The plain text is simply
inserted between quotation marks in the JSON string. If the user would have
quotation marks in either the title or the context, this would cause the JSON
to malfunction. It also causes some problems with white spaces and line breaks.
This is simply something I forgot about and did not have time to solve myself.
The solution is simple. Just use the same Base64 encoding as was used for the
binary data of the pictures and audio.

3.2.5 Adding audio playing Activity

Audio notes cannot currently be reviewed. Before the application is ready to
be released to the public, an Activity for listening to recorded Audio should be
written. As it is now, picture and text notes can be reviewed while audio cannot.
Users will probably expect all types of notes to have similar functionality, so
implementing this should be a priority task.

3.2.6 Replace built in components with self made

This task is, in my opinion, not the highest prioritised one. The application
functions and as mentioned before, the benefits of implementing this is mainly
cosmetic. However, for the application to look its best it should probably have
its own self made Activities for recording audio, browsing the gallery and taking
pictures eventually.

3.2.7 Serialise the synchronisation Service

Currently the synchronisation service works as follows: When it is called it
queries the database if there are unsynchronised notes. If there are, it launches

19

a new thread which grabs them, uploads them, gets a response and (assuming
the synchronisation was successful) once the response is parsed updates the
database. This means that from the time where the thread is started to where
it has done all its work the state of the database is not altered.

If a synchronisation attempt is made while a synchronisation thread is alre-
ady running trying to update the notes N but has not reached the point where
it updates the database, the new thread would query the database and find that
the the notes N are not updated and would attempt to update them at the same
time as the initial thread does. This is an unwanted behaviour and a solution
would be to only allow one synchronisation thread to run at a time.

3.3 Move code away from onCreate ()

Until the very last day of implementing it was my firm belief that the onCreate
method was the Activity equivalent of a main function. This belief came from
the fact that basically every single Android tutorial I have read so far used it in
that way. It however turned out that this is not the case. The onCreate method
is called when an Activity is launched, but it is also called when the phone is
rotated.

This turned out to cause a rather amusing bug where you can crash the
application by simply tilting the phone back and forth. This is because I call
the synchronisation service in my initialisation code for the main view. Since the
synchronisation Service is currently allowed to run in parallel (which should be
corrected) it launches a new thread every time the the phone is tilted until the
max number of allowed threads is exceeded. Needless to say, fixing this problem
has very high priority.

20

4 Conclusion

Before starting this project I had never developed anything significant in Ja-
va and I did not know anything about smartphones. Because of this a large
part, possibly the majority, of the project was about learning how Java and
Android applications work. As a result, the application probably contains some
poor design choices due to my lacking experience in designing for the Android
platform.

While there are some issues with the current code, I still believe that it is
a good foundation for building a good functioning application that could be
released. As a learning experience it has been very interesting. Some parts, for
example the main view for displaying existing notes, took considerably more
time than planned while adding support for audio recording (which we had
planned to take a week) took about 2 hours.

One of the biggest challenges was understanding the Android devices. The
varying screen sizes and different varying input devices was a lot to consider. I
had to make some assumptions: mainly that a external SD card existed and that
some kind of gallery/file browsing application and a camera was available. This
is true for the vast majority of Android devices, but having to consider things
like how I would handle the situation if no external storage was available made
me understand what a difficult task it is to write good Android applications.

Another big challenge was understanding the structure of an Android ap-
plication. How to link the database to the main grid view and how to store
the resulting data of calling the camera Intent are two examples of tasks where
I had to spend considerable time just learning about how things fit together.
Understanding good practices comes with experience, but I tried to learn as
many of them as possible so that the application would be as easy to extend
as possible. One example of such a good practice is that all text strings in the
application are located in a separate XML-file. This is a good way to do it as it
makes translating the application to different languages easy.

All in all T am quite satisfied with the results. The application is not very
advanced, but that is expected since I knew nothing about Android before star-
ting this project. While it is not advanced, it still does what it should (except
for a few bugs mentioned earlier) and I have learned a lot about Java, Android
and programming in general.

21

