Uppsala University

This is an accepted version of a paper published in Geophysical Journal International. This paper has been peer-reviewed but does not include the final publisher proof-corrections or journal pagination.

Citation for the published paper:

Access to the published version may require subscription.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-163597

http://uu.diva-portal.org
Upper crustal resistivity structure of the Kristineberg area, Skellefte district, northern Sweden revealed by 3-D magnetotellurics

J. Hübert*, M. García Juanatey†, A. Malehmir‡, A. Tryggvason*, and L. B. Pedersen*

*Department of Earth Sciences, Geophysics, Uppsala University, Villavägen 16, SE-752 36 Uppsala, Sweden
†Corresponding author. Now at: Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Canada, T6G 2E3. Contact huebert@ualberta.ca

Abstract

A three-dimensional model of the crustal electrical resistivity was constructed from the inversion of magnetotelluric data in the Kristineberg area, Skellefte district, the location of one of Sweden’s most successful mining activities. Forward modeling of vertical magnetic transfer data supports our model which was derived from the magnetotelluric impedance only. The dominant features in the 3-D model are the strong conductors at various depth levels and resistive bodies of variable thickness occurring in the shallower subsurface. The deepest conductor, previously identified as the Skellefte crustal conductivity anomaly, is imaged in the southern part of the area as a north-dipping feature starting at ~ 4 km depth. Several shallow conductors are attributed to graphite in the black shales defining the contact between the metasedimentary rocks and the underlying metavolcanic rocks. Furthermore, an elongated intermediate depth conductor is possibly associated with alteration zones in the metavolcanic rocks that host the ore occurrences. The most prominent crustal resistors occur in the southern and northern part of the area, where their lateral extent on the surface coincides with the late-orogenic Revsund type intrusions. To the east, a resistive feature can be correlated to the early-orogenic Viterliden intrusion. The 3-D model is compared with two previous 2-D inversion models along two perpendicular profile. The main electrical features are confirmed with the new model and previous uncertainties regarding 3-D effects, caused by off-profile conductors, can be better assessed in 3-D, although the resolution is lower due to a coarser model discretization. The comparison with seismic sections along two north-south profiles reveals structural correspondence between electrical features, zones of different reflectivity and geological units.

1 Introduction

Complex geological structures have always been a challenge to two dimensional magnetotelluric (2-D MT) inversion models. Forward modeling studies, e.g., [Munoz et al. (2008)], have illustrated the importance of 3-D conductivity models for an undistorted image of the composition and structure of the Earth’s crust, even though the common practice of field setup and available inversion codes allowed only for 2-D conductivity models. The limitations of interpreting three-dimensional (3-D) structures with 2-D MT have been observed and studied by e.g., [Ledo et al. (2002) and Pedersen and Engels (2005)], but only recent advances in algorithms (e.g., Newman and Alumbaugh (2000), Farquharson et al. (2002), Siripunvaraporn et al. (2005), Zhdanov et al. (2010) and affordable as well as expedient instrumentation have made it feasible to both measure and invert 3-D data sets. With these developments it is now possible to overcome dimensionality issues in a variety of complex geological settings (e.g., Hautot et al. (2007), Arnason et al. (2010), Heise et al. (2010)).

We present an example of integrating 3-D magnetotellurics into an interdisciplinary study, “Vinnova 4D modeling of mineral belts” (official web page), that comprises both geophysical and geologic observations. The study area is located in the Paleoproterozoic Skellefte district in northern Sweden, one of Europe’s most productive mining areas. Our aim is to image the structure of the area with magnetotellurics in order to aid the assessment...
of the geological development of the whole district.

Over the last years, a total of 67 broad band magnetotelluric sites were installed in the area, mainly along one E-W oriented and three N-S profiles. As a first approach, 2-D inversion models were derived and interpreted (Hübert et al., 2009; Garcia Juanatey et al., 2012). In this paper we present a 3-D conductivity model of the whole Kristineberg area and assign lithological units to the observed electrical features. Previous uncertainties regarding the dimensionality of the data and the validation of the 2-D assumption are overcome with the inversion of the complete impedance tensor, although with a loss of resolution, in respect to the 2-D resistivity sections, in the final 3-D model. To examine the validity of the 3-D model, we performed forward modeling of the vertical magnetic transfer function (VMTF) and a detailed comparison with the 2-D result.

1.1 Geological background

The Skellefte District (see Figure 1) in northern Sweden is known for its abundances in volcanic hosted massive sulfides (VHMS) mineral occurrences. It constitutes part of the Svecofennian province (ca. 1.90 to 1.8 Ga) and lies at the boundary between the domain of supracrustal rocks with reworked Archean rocks (Gaal and Gorbatshev, 1987; Weihed et al., 1992; Rutland et al., 2001) to the north and the high-grade metamorphic (amphibolite facies) rocks of the Bothnian basin to the south. The latter consists largely of greywackes, gneisses and migmatites (Weihed et al., 1992; Bergström, 2001). The supracrustal rocks in the western part of the Skellefte district (see Figure 2) comprise (1) the Skellefte Group, a sequence dominated by subaqueous volcanic rocks (1.89 – 1.88 Ga, Skyttä et al., 2011), (2) the Vargfors Group dominated by shallow-water to subaerial sedimentary (1.88-1.87 Ga Billstrom and Weihed (1996)), (3) the Viterliden intrusion, ~1.85 Ga, Skyttä et al. (2011) and (4) the postorogenic Revsund granite which belongs to the Transscandinavian igneous belt (1.82-1.78 Ga, Weihed et al. (2002)). The origin of the basement is in debate. Tryggvason et al. (2006), Malehmir et al. (2006) and Hübert et al. (2009) have been suggesting a Bothnian Basin metasedimentary affinity based on the coincident presence of major north dipping reflectivities and a zone of high electrical conductivity. Due to a quite limited number of outcrops, the surface geology (see Figure 2) is mainly defined with the support of airborne geophysical data (magnetic and Bouger gravity anomaly measurements provided by the Geological Survey of Sweden, see e.g., Malehmir et al. (2007)).

The Kristineberg area, the focus of our study, is located in the Western Skellefte District (Arebäck et al., 2005; Skyttä et al., 2010). The main lithological units are metamorphic rocks of the Skellefte and Vargfors groups forming an anticline that is plunging to the west, cored by the Viterliden intrusion to the east and constrained by the intrusive rocks of the Revsund granite to the south, west and north, with an estimated maximum depth extent of about 3-4 km (Malehmir et al., 2009b).

1.2 Previous geophysical studies

The Kristineberg area has been intensively investigated during recent years: A pilot study of geophysical investigations was launched in 2003, including potential field modeling and two reflection seismic profiles (Tryggvason et al., 2006; Malehmir et al., 2007). One of the main findings was a group of strong and north dipping reflectors at 3–12 km depth that were interpreted as a possible thrust fault between the Skellefte volcanics and a sedimentary basement. A pilot 3-D geological model was presented by Malehmir et al. (2009b) including 3-D inverse gravity modeling and reflection seismic studies. A subsequent profile with broad band magnetotelluric measurements was collected in 2007 (Hübert et al., 2009) and led to a 2-D conductivity model that revealed a zone of high electrical conductivity coinciding with the north dipping reflector. To further study the Skellefte District, the Vinnova project “4D modeling of mineral belts” was initiated in 2008, including the acquisition of two perpendicular reflection seismic (Dehghannejad et al., 2010) and MT profiles (Garcia Juanatey et al., 2012). The new reflection seismic data allowed for another possible origin of the north dipping reflectors as a fault...
Figure 1: Location of the Skellefte district, northern Sweden. Key: Left: Geological overview of the Fennoscandian Shield. Right: Geological sketch of the western part of the Skellefte District. 1) Late- to post-tectonic granites, 2) metasediments, 3) Skellefte Group metavolcanic rocks, 4) mafic intrusions 5) metagranitoids, 6) active mines, 7) axial trace of the main folds, 8) post-main deformation shear zones. Geology after Bergman-Weihed (2000); Kathol and Weihed (2005).

Figure 2: Geologic map of the study area (reproduced with kind permission from the Geological Survey of Sweden) with position of MT sites and reflection seismic profiles. Different shadings for MT sites indicate different field seasons.
zone within the Viterlien intrusion instead of a lithological contrast. The MT data revealed the strong influence of a shallow highly conductive zones associated with black shales in the contact between the metavolcanic and metasedimentary units. Additionally, the presence of a strong conductivity anomaly at depth was confirmed. Furthermore, the geoelectrical properties of the Skellefte volcanics were portrayed as inhomogeneous. A strong diffraction pattern in the seismic reflection data from Profile 5 (Figure 2) that apparently coincides with a zone of higher conductivity was investigated using 3-D crooked line techniques. Malehmir et al. (2009a) concluded that both resistivity and reflectivity anomalies could be caused by a zone of sheared and highly altered metavolcanic rocks.

2 MT data

The measurements were carried out during the field seasons of 2007-2010. Data coverage is mainly controlled by the limited accessibility of the Swedish forest and the presence of lakes and infrastructure (see Figure 2). We used induction coil magnetometers MFS05/MFS06 from Metronix, Germany and LEMI from Lviv, Ukraine as well as non polarizable Pb-PbCl electrodes. The temporal variations in the horizontal electric fields (e_x in north-south and e_y in east-west direction) and of all three components of the magnetic field (h_x, h_y, h_z) were recorded with a continuous sampling of 20 Hz for at least one day and a two-hour local midnight time burst recording at 1000 Hz (not available at all sites). The signal strength due to solar activity increased from a low in 2007. However, the data quality was mainly controlled by the distance to infrastructure.

The complex impedance tensor Z is defined as the relation in frequency domain between the components of the magnetic field H and those of the electric field E measured at the surface of the earth:

$$ \begin{bmatrix} E_x \\ E_y \end{bmatrix} = \begin{bmatrix} Z_{xx} & Z_{xy} \\ Z_{yx} & Z_{yy} \end{bmatrix} \cdot \begin{bmatrix} H_x \\ H_y \end{bmatrix} \tag{1} $$

measured in magnetic North (x-direction) and East (y-direction). The quality of the data was varying, ranging from excellent along Profile 5 in the west to partly noisy close to the Kristineberg mine. For a more detailed description of the data and dimensionality analysis in the area we refer to Hübert et al. (2009) and Garcia Juanatey et al. (2012).

As these previous studies showed, it is difficult to determine a common geoelectrical strike direction along the profile lines that would be needed to satisfy the 2-D assumption. Where for Profile 5 a rather consistent strike direction of 75° deg could be determined and correlated with main geological contacts (Hübert et al., 2009), strike directions were ambiguous for the area west of the mine along the N-S and E-W Profile (Garcia Juanatey et al., 2012). With the application of a 3-D inversion algorithm using the whole impedance tensor, it is now possible to overcome these inconsistencies.

3 3-D inverse modeling

With recent advances in available algorithms and a sufficient data coverage of the area it has become feasible to construct 3-D inversion models. These simulate the complete impedance tensor and are not dependent on any dimensionality assumptions. Due to the much larger computational costs and the high effort in collecting data in a 3-D grid the resolution of these models is reduced compared to 2-D models. We used the inversion code WSINV3DMT by Siripunvaraporn et al. (2005), which is a data space based occamlie minimum-structure inversion scheme that allows for the incorporation of the complete impedance tensor. The model space is discretized in a rectangular grid using the finite difference method. The model grid has 45x45x25 cells in x, y and z direction respectively. The cell size in the horizontal plane is 500 m x 500 m (with growing cell sizes outside the space of observations), which ensured at least two cells between neighboring stations to allow the inversion to compensate for local inhomogeneities that can be re-
sponsible for galvanic distortion of the data. Where necessary, the station positions were slightly shifted (<250 m) to reside in the middle of the cells. The minimum cell size in the vertical direction was set to 20 m to satisfy the condition that it should be smaller than the minimum skin depth in conductive regions (Siripunvaraporn et al., 2005). For an expected minimal resistivity of 11 Ωm the approximate skin depth is 40 m for the highest frequency in use (128 Hz). Out of the total number of 67 sites 42 were chosen, prioritizing high data quality and omitting too dense sampling in the 3-D grid. In addition to the real errors we tested different error floors of 5% and 10%, calculated from the absolute value of a main impedance element and applied also on the corresponding diagonal element (ΔZ_{xy} = ΔZ_{xx} and ΔZ_{yx} = ΔZ_{yy}). Twelve periods between 128 Hz and 16 s were selected.

The inversion was run with different starting models: homogeneous half spaces of 100 Ωm and 1000 Ωm as well as a layered starting model. The latter was derived from 1D inversion of an averaged impedance over the whole array and contained three layers (with thickness d_1 = 1 km and resistivity 2000 Ωm; d_2 = 1.5 km, 10000 Ωm, d_3 = 7 km, 10 Ωm) over a half space of 100 Ωm. Using a 1D structure as starting model did not result in improved models probably due to the presumed strong lateral changes in electrical resistivity especially in the center of the investigation area. Different Lagrange and smoothing parameters were tested as well as different combinations of starting and prior models and error floors. The strategy was to start the inversion process with a set of parameters and starting/prior models until a reasonable model was achieved. This model was then used in a second step as the starting and prior model for another inversion run to further reduce RMS data fit. The final and chosen model with an RMS of 3.3 was accordingly derived with a homogeneous starting model of 1000 Ωm using an error floor of 10%, the same smoothing in x-, y- and z-direction, a medium time step τ of 5 and the default Lagrange multiplier and step size. Examples of data and model responses for all impedance tensor elements of nine stations are displayed as scaled impedances (Figure 3), which are similar to the more familiar representation of apparent resistivity ρ_a (T - period in sec, μ_0 - magnetic constant):

\[|Z'| = \frac{Z}{\sqrt{2\pi\mu_0}} \approx \sqrt{\rho_a}. \]

As the final RMS of 3.3, although not ideal, is reasonable in comparison with other results using data from geological complex areas (e.g., Heise et al., 2010), the resulting model most likely represents the main geoelectrical structure of the Kristineberg area reasonably well and adds valid information to the existing 2-D interpretations.

3.1 Model assessment

The spatial distribution of the RMS in the eight responses of the impedance as seen in Figure 4 indicates that data fit in the central part of the area is the most problematic. Still, zones of worse fit are spread out in the responses and periods. To ensure that the conductivity distribution in the final model was sufficiently discretized, the inversion was re-run with a denser grid (55x55x45 cells) with distinctively finer discretization in the vertical direction (starting with a cell size of 2 m). The resulting inversion model was very close to the one obtained with the coarser discretization, i.e. it included the main electrical features and had a comparable RMS. Therefore, in all subsequent tests the discretization was limited to the original setup. To test for the stability of the main model features, systematic forward modeling was performed. We excluded the conductors (shallow, intermediate and deep) from the final model and started another inversion to check if the data actually require their presence. The RMS of the modified models from the forward calculation without the conductive structures were significantly higher. When used as starting models, the inversion introduces these features again. This is an evidence that all the main conductive features in the model are required by the data.

The time consuming computation and limitations for including a priori information do currently not allow for a more thorough sensitivity analysis as was performed in 2D (García Juanatey et al., 2012).
Figure 3: Comparison of observed and modeled data. Impedance tensor elements are scaled with $(\frac{\sqrt{T^2}{\pi\mu_0}}{T})^{-1}$. Measured data (circles for the real and crosses for the imaginary part respectively) with the errors used in inversion (maximum floor, original error) and responses (solid lines) from the final model for a selection of sites are shown. The location of the presented sites can be seen in Figure 9a.
Figure 4: Spatial distribution of RMS for the final model for four selected periods and all eight responses, normalized to the overall RMS of 3.3 (white color). Blue colors indicate better fit, red worse.
3.2 Forward modeling of the vertical magnetic transfer function

To further test the consistency of the derived conductivity model, we performed 3-D forward modeling of the vertical magnetic transfer function (VMTF) data. The VMTF, sometimes referred to as tipper, is the transfer function \(T \) between the vertical magnetic field \(H_z \) and the horizontal components \(H_x \) and \(H_y \):

\[
H_z = \begin{bmatrix} T_x & T_y \end{bmatrix} \begin{bmatrix} H_z \\ H_x \\ H_y \end{bmatrix}.
\] (3)

The VMTF contains independent information about the conductivity structure of the subsurface and is usually incorporated in 2-D inverse modeling. However, this is not yet possible with the available 3-D inversion routine, so our evaluation of the VMTF data remains qualitative. Displayed as induction arrows, they give very instructive insights into the dimensionality of the underlying conductivity distribution. Following the Wiese convention (Wiese, 1962) the arrows are pointing away from conductive structures. The measured VMTF data (see Figure 5, left panel) in the Kristineberg area is of varying quality both spatially and in the different frequency bands. Local conductivity anomalies can be identified within the higher frequencies, where the induction arrows in the central part point towards east and on Profile 5 mainly north or south. For longer periods a general north-north-east pointing trend for the whole array indicates a strong conductor to the south-south-west.

The forward modeling was performed with the algorithm x3d by Avdeev et al. (2002). This code uses an integral equation approach for the electromagnetic fields of both natural and artificial origin. The model is discretized in a rectangular mesh with increasing vertical layer thicknesses. The forward responses for three selected periods (Figure 5) generally exhibit a lower amplitude than the measured data. This might be caused by the regional 2D structures, known to dominate the area Rasmussen et al. (1987), which could reinforce the induction errors on a scale that is not modeled here.

Nevertheless, we believe that the forward VMTF data lend support to the conductivity structure of the final inversion model with several strong shallow conductors in the center of the array and a deep conductor to the south-south-west. Because the VMTF data was not included in the inversion process, this qualitative agreement between the measured and forward data supports the validity of the derived model.

4 Results and discussion

The final result of the inversion process is a smooth model with very distinctive features. The conductivities show distinct contrasts, ranging from several thousand \(\Omega m \) in the resistive parts (features RI-III in Figs. 6-11) to as low as around 1 \(\Omega m \) (features CI-III). There are some agreements between the surface geology and lateral changes in conductivity that support the correlation between electrical features and lithological units.

4.1 The final resistivity model

4.1.1 Conductive structures

The most dominant features in the 3-D model are the strong conductors at various depth levels. Starting at \(\sim 4 \) km in the southern part of the area is the deep conductor CI. Hübert et al. (2009) earlier identified it as the Skellefte crustal conductivity anomaly that was discovered by Rasmussen et al. (1987) with measurements east of the Kristineberg area. With the available frequency band, the electromagnetic field does not penetrate the base of the anomaly, therefore we cannot present new thickness constraints. CI vanishes towards the north and possibly towards the east, which is qualitatively confirmed by the induction arrows for periods \(> 10s \), that point towards north-east (see Figure 5). Several shallow conductors (CII) appear directly at the surface in the central part of the Kristineberg area with an approximated thickness of \(\approx 200 m \). The insufficient spatial resolution due to the station spacing and horizontal model discretization does not allow to distinguish between actual conductivity anomalies at this depth and artifacts that were introduced by the inversion to account for galvanic distortion caused by local inhomogeneities. Nevertheless, additional information from borehole data close to site MT 104 and airborne EM data (not shown due to confidentiality) confirms the presence of
Figure 5: Real induction arrows, plotted after Wiese (1962), pointing away from regions of electric current concentrations) for three selected frequencies 16 Hz, 1 s and 16 s. Left: measured data, right: forward response from final model. For the geologic legend see Figure 2.
features: RIa+b - Revsund granite, RII - Viterliden intrusion, RIII - Mafic dykes within metasediments, CI - Skellefte crustal anomaly, CII - shale-bearing metasediments, CIII - alteration zones within the metavolcanic rocks.

black shales (with enhanced conductivity due to graphite) in the contact between metasediments and Skellefte volcanics (Garcia Jua- natey et al., 2012) at a depth of 200 m. Also interesting are the intermediate depth conductors (CIII) starting at ca. 1 km depth, which already occurred as a then presumably off-profile feature on the 2-D model from Profile 5 (Hübert et al., 2009). Their origin is unclear, but could be explained with alteration zones or ore occurrences in the metavolcanics.

4.1.2 Resistive structures

Almost the whole area is covered with electrically resistive zones of various thicknesses. Most prominent are the southern and northern resistors (Ria,b) which coincide with the surface geologic trace of the Revsund intrusions. To the south their depth is estimated to be 3-4 km underlain with the very high conductivity of CI, whereas the northern resistor reaches to at least 5 km and is not bound by a deeper conductor. To the east, the resistor RII is mapped as a sheet like resistor whose northern boundary agrees well with the surface trace of the contact between metasediments and metavolcanics (see Figure 6). Extending to 3 km depth in the east, it is thinning out towards the west to ca. 1.5 km depth. It can be associated with the Viterliden intrusion, but cannot be distinguished entirely from the metavolcanics. In the central part of Profile 5, N of site MT13, a resistive feature (RIII) with a depth extent of less then 2 km is possibly caused by many mafic dikes in the metasediments. These also have a strong magnetic signature (cf. Malehmir et al., 2007).

4.1.3 Intermediate conductive structures

The metasediments in the absence of mafic dykes are depicted as medium conductive structures (ca. 30-300 Ωm, green colors in Figs. 9-11). The metavolcanic rocks of the Skellefte group do not show unique electrical properties, as previously stated by Garcia Jua- natey et al. (2012). In zones with less alterations (e.g., in the northern segment of Profile 5) resistivities seem to be high and they cannot be easily distinguished from the metasediments or the Viterliden intrusion, whereas in the central part of the area (stations MT102-MT109) also areas with higher conductivity
can occur.

4.2 Comparison between 2-D and 3-D inversion models

The comparison of 2-D and 3-D magnetotelluric inversion models serves two purposes: Firstly, to assess if the 3-D inversion produces similar results in respect to required electrical features in the model along the 2-D profiles. Since it is easier to perform extensive sensitivity tests in 2-D, it is a support for the 3-D model if there is correspondence between the models and no new anomalies are introduced. Secondly, to determine the actual positioning of possible off-profile features in the 2-D sections and show the advances of using the full 3-D inversion. In 2-D it is often difficult to determine a strike direction that is valid along the whole profile and/or period range. Therefore a decoupling of TE/TM modes becomes difficult and mode mixing can occur (Becken et al., 2007). While using the determinant of the impedance tensor avoids defining modes, it is still possible that the projection of conductivity anomalies onto the profile section produces a distorted picture.

The comparison is sufficiently fair, since from a methodological point of view both 2-D and 3-D strategies used a similar approach: the inversion algorithms (REBOCC for 2-D (Siripunvaraporn and Egbert, 2000) and WSINV3DMT for 3-D (Siripunvaraporn et al., 2005)) have a similar inversion scheme and model discretization (finite differences). The main difference is that the data set for the 3-D inversion was composed of the complete impedance tensor, whereas apparent resistivities and phases of the determinant average of the impedance tensor were used in the 2-D inversion. The data set for the 2-D case comprised 33 periods (128 Hz-128 s) at 10 sites on each profile, whereas in the 3-D case 12 periods (128 Hz-16 s) at 42 sites were used. To account for static shift effects due to local inhomogeneities, i.e. anomalies on and off-profile in 2-D with smaller depth extent than the shallowest penetration depth, it is common practice to down-weight apparent resistivity data with a higher error floor. In the 3-D case, the inversion model should be able to represent local inhomogeneities, provided that the discretization is sufficient (Newman et al., 2003). Due to the smaller computational cost for the 2-D inversion, the 2-D model was discretized with a finer grid. Data sampling along a 2-D profile line has also higher coverage than in the 3-D case. Accordingly, the 3-D model has lower resolution due to the coarser grid and sparser sampling.

We compare the previous 2-D inversion models from Garcia Juanatey et al. (2012) along the two central profiles (N-S and E-W in Figure 2) with sections through the new 3-D model. A general difference between the models is that the highest conductivities, especially for the intermediate and deep conductors, are not as extreme in the 3-D models. Resistivities well below 1 Ωm in the 2-D case were most likely caused by 3-D effects on the phase data (Pedersen and Engels, 2005).

Along the E-W Profile (Figure 7), there is correspondence between 2-D and 3-D results:
the position and depth estimates of the intermediate conductor (CIII) and of the resistor related to the Viterliden intrusion (RII) are similar. Nevertheless, in the 3-D model there is no evidence for the deep conductor. This might be due to the more limited period range used in 3-D. On the other hand forward studies from [Garcia Juanatey et al., 2012] revealed that the presence of a deep off-profile conductor can effect the model and introduce ghost conductors.

Along the N-S Profile (Figure 8), there are strong east-west variations in the resistivity distribution, therefore we compare the 2-D model with two parallel slices through the 3-D model which are 1 km apart (see Figure 9a). The southern part of the 2-D model corresponds well with the western slice (Figure 8 right upper panel): the position of the shallow conductor (CII) and the resistor associated with the Revsund intrusion (RIa) are very similar. The largest difference though is that the 3-D model does not depict the intermediate conductor below CII, which was already identified as a zone of less sensitivity in the 2-D model. The 3-D model places the intermediate conductor further to the east, starting at 2.5 km. This is an example where the 2-D inversion projected off-profile features onto the profile line and an interpretation was difficult. With the results from 3-D inversion it is now clear that the downward smearing of the shallow conductor is an artifact.

Along Profile 5 ([Hubert et al., 2009]), the comparison (not shown) reveals very similar features, with similar depths and resistivities. Especially the position of the deep and intermediate conductors are almost identical. A sharp lateral change in resistivity coincides with the surface border between granites and metasediments. This correspondence appears to be related to the fact that the data, which had quite high quality, could be already reasonably well explained by a 2-D model.

4.3 Integrated geophysical interpretation

The combination of reflection seismics and MT has proven to be a successful joint venture in the assessment of the subsurface structure (e.g., [Jones, 1998; Varentsov et al., 2002; Korja et al., 2008]). Particularly, MT can image steeply dipping contrast that cannot be resolved in seismics and add information on bulk properties. In the Kristineberg area, [Malehmir et al., 2009b] derived a geologic model based mainly on 2-D reflection seismic data and 3-D potential field modeling. Interpreted seismic sections from

Figure 8: Comparison between 2-D (left) and 3-D (right) inversion models along the N-S Profile. The 2-D model is modified from [Garcia Juanatey et al., 2012] and coincides with the seismic reflection line on the N-S Profile (location see Figure 2). Due to the strong lateral changes we present two slices through the 3-D model, 1 km apart from each other. The location of the profile line and slices can be seen in Figure 6a. Boxed station names indicate sites included in the 3-D inversion.

12
Figure 9: a) Position of stations and slices through 3-D inversion model and profiles shown in Figure 7-8. b-f) Horizontal slices through the 3-D inversion model at different depth levels. The main electrical features are labeled.
Paper III

(2007) along Profiles 1 and 5 are displayed together with slices through the 3-D resistivity model in Figs. 10 and 11.

Along Profile 1 (Figure 10) there is some correlation between the lateral extension of the resistive bodies R_Ia and R Ib. The lower boundary of the resistor associated with the Southern Revsund granite (R_Ia) coincides with the contact between a deeper very reflective and an overlaying less reflective zone. This is also the upper boundary of the deep conductor CI, which is a well resolved feature in the MT model. In the north however, potential field modeling results from Malehmir et al. (2009b) suggest that the granite associated with R_Ib is rather thin (< 1 km). Therefore, this granitic body possibly lies on top of another resistive-type unit (e.g., mafic metavolcanic rocks), which is not resolved by MT. The intermediate conductor C_III falls into a zone of less distinctive reflective properties. The resolution of the model is probably too low to identify the previously defined anticline that holds the Kristineberg mine (feature E in Figure 10).

Along Profile 5 (Figure 11) the 3-D model shows consistent correlation to the previous reflectivity classification that were already seen in the 2-D model from the pilot study (Hübert et al., 2009). The lateral boundaries of resistivity features coincide with changes in reflectivity. In the southern part, the upper boundary of the deep conductor CI coincides with a north dipping package of reflectors. In the central part, the resistors R_III and R_Ib can now be distinguished from each other, which was not possible in the 2-D model. The former is possibly caused by the many mafic dykes within the metasediments in the southern part which also show a stronger reflectivity pattern.

5 Conclusions

The Kristineberg area in the Skellefte district, northern Sweden, has been the subject of an integrated geophysical investigation. We present a 3-D resistivity model of the area that is constructed from 3-D inversion of magnetotelluric data from 42 sites. With the inversion of the full magnetotelluric impedance tensor it is no longer necessary to make simplifying assumptions on the dimensionality of the conductivity structure. This new model supports and improves most of the earlier findings. The extension of the intrusive bodies to the south of the Kristineberg mine are resolved. The presence of a strong crustal conductivity anomaly at depths greater than 3 km is confirmed. The metasediments observed on the bedrock geologic map coincide with a zone of intermediate resistivity in the MT model. Volcanic alteration zones bearing VHMS deposits are associated with the strong conductive anomalies at an intermediate depth of 1.5-2.5 km. The central part of the investigation area is characterized by several shallow strong conductivity anomalies that are most probably caused by the graphite in black shales in the contact between metasediments and metavolcanics.

Even though data quality was varying over the study area due to the presence of infrastructure, we derived a reasonable model, that is supported by the comparison to existing 2-D inversion results along profiles and forward 3-D modeling of vertical magnetic transfer function data. The former 2-D interpretation has been revised and improved, especially the 3-D effects from the shallower conductors that were distorting the 2-D models could be better assessed. Further support comes from the integration of seismic reflection data into the interpretation, that reveals correspondence between zones of reflectivity and the main electrical features along.

6 Acknowledgments

We thank our Vinnova4D partners from Luleå University of Technology and Boliden Mining, who also provided the borehole data. University of Oulu, Finland is thanked for the use of two broadband systems. The authors deeply appreciate the field crews that helped carrying out the measurements in every kind of weather that northern Sweden has to offer: Maxim Smirnov, Miguel Alfonzo Carmona, Tobias Bauer, Pietari Skyytä, Mattias Juhlin, Michael Schieschke, Jochen Kamm, Kristina Juhlin, Chunling Shan and Tobias Lochbühler. This manuscript was improved through the valuable comments of two anonymous reviewers. Weerachai Siripunvaraporn is acknowledged for making his inversion code available.
Figure 10: Section through the 3-D conductivity model along Profile 1 (location see Figure 2), together with the migrated line drawings of seismic reflection sections from Malehmir et al. (2007). Same color scale as Figure 6. The dashed lines indicate interpreted lithological units from the reflection seismic study and potential field modeling. Feature E is the anticipated anticline that comprises the Kristineberg mine.

Figure 11: Section through the 3-D conductivity model along Profile 5 (location see Figure 2), together with migrated line drawings of seismic reflection sections from Malehmir et al. (2007). The dashed lines indicate interpreted lithological units from the reflection seismic study and potential field modeling.
References

