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Abstract

In this report, three systems of polynomials, that are orthogonal sys-
tems for three different but related inner product spaces, are presented.
Three basic operators that are related to the systems are described, and
boundedness of two other operators on a few Hilbert spaces is proven.
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1 Introduction

More than a decade ago, Professor Sten Kaijser happened to discover two re-
markable systems of orthogonal polynomials. The most interesting of the sys-
tems was in fact not a standard system, but it had some other useful properties.
These discoveries led to a dissertation by Tsehaye K. Araaya [4, 5]. In March
this year, Professor Lars Holst [7] presented a new way to calculate the Eu-

ler sum,
∑

1
n2 = π2

6 . His calculations inspired Professor Kaijser to calculate a
third system of polynomials, a system that turned out to fill a gap related to the
previous systems. In this report, we present these three systems of orthogonal
polynomials, and discuss some operators related to them.

The weight function that is used in one of the first two systems is the function
ω1(x) = 1/(2 cosh π

2x), while for the third system we use the self convolution
of this function, that is, ω2 = ω1 ∗ ω1. The function, ω1, has three interesting
properties that make it useful as a weight function. The first is that it is the
density function of a probability measure, and the second is that it is up to a
dilation its own Fourier transform, that is, it is the Fourier transform of the
function 1/ cosh t. The third is that it is closely related to the Poisson kernel
for a strip of width two. The second property makes it possible to interpret its
moments as values at zero of successive derivatives, while the third can be used
for direct computations of many integrals.

This report is organised as follows: In section (2), we present preliminaries
needed to study and understand the work in the subsequent sections. This sec-
tion has four subsections. In the first, some of the notation used throughout the
report is explained. The second reviews those aspects of the theory of Hilbert
spaces which are particularly relevant to our study, while the third reviews dif-
ferent aspects of the theory of orthogonal polynomials of one real variable. In
the fourth subsection, we introduce the spaces that are of interest to our study.
Our first system which we call the σ-system is presented in section (3), while
our second system which we call the τ -system is presented in section (4). As
aforementioned, these two systems were studied in Araaya papers [4, 5], and
here we just take an overview of the results so that this report can be self con-
tained. Also in section (4), we introduce three operators R, J and Q, which are
related to the systems. The third system which we call the ρ-system is presented
section (5), and we study this system in detail since it is a new addition filling a
gap related to the previous systems. This system of orthogonal polynomials is
obtained by applying the Gram-Schmidt procedure to the sequence {xn}∞n=0 on
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the real line with the ω2-weighted L2 inner product. It turns out that the system
has a simple recurrence formula, so that the exponential generating function is
easily computed. Using this the orthogonality is proven. In section (6) we dis-
cuss some useful connections between the systems, in terms of the operators.
Finally in section (7), we present two operators, T = R−1 and S = JR−1, where
J and R are the operators intoduced in section (4). Boundedness of these two
operators on five Hilbert spaces (defined in subsection (2.4)) is proven.

2 Preliminaries

2.1 Some Notations

We use the Kronecker’s delta: δnm = 0 or 1, according as n 6= m, or n = m.
The symbol F is used to denote the field of either real numbers R or complex
numbers C. By Re(z), Im(z), |z| and z̄, we mean the real part, the imaginary
part, the absolute and the conjugate complex value, respectively, of a complex
number z. Closed intervals are denoted by [a, b], open intervals by (a, b) and
half-open intervals by (a, b] or [a, b).

We use S to denote the strip {z ∈ C : −1 ≤ Im(z) ≤ 1}, ∂S for the boundary
of the strip S and P for the Poisson kernel for the strip S.

More notation will be introduced as we go on.

2.2 Elementary Theory of Hilbert Spaces

In this subsection, we review those aspects of the theory of separable Hilbert
spaces which are particularly relevant to our study.

Definition 1. A normed linear space is a pair (V, || · ||) where V is a vector
space over F, and || · || is a function || · || : V → R called a norm on V that
satisfies the following conditions for all x, y ∈ V and α ∈ F:

1. ||x|| ≥ 0 and ||x|| = 0 if and only if x = 0.

2. ||αx|| = |α| ||x||.

3. ||x+ y|| ≤ ||x||+ ||y||.

Definition 2. A bounded linear operator from a normed linear space (V1, ||· ||1)
to a normed linear space (V2, || · ||2) is a function L from V1 to V2 that satisfies
the following for all x, y ∈ V1 and α, β ∈ F:

1. L(αx+ βy) = αL(x) + βL(y).

2. For some M ≥ 0, ||Lx||2 ≤M ||x||1.

The smallest such M is called the norm of L, written ||L||. Thus,

||L|| = sup
||x||1≤1

||Lx||2.
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If in the second condition equality holds with M = 1, then the operator L is
called an isometry and the normed linear spaces (V1, || · ||1) and (V2, || · ||2) are
said to be isometric. Isometric normed linear spaces can be regarded as the
same as far as their normed linear space properties are concerned.

Definition 3. An inner product space is a pair (V, 〈·, ·〉) where V is a vector
space over F, and 〈·, ·〉 is a function 〈·, ·〉 : V × V → F called an inner product
on V that satisfies the following four conditions for all x, y, z ∈ V and α ∈ F:

1. 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 if and only if x = 0.

2. 〈x, y + z〉 = 〈x, y〉+ 〈x, z〉.

3. 〈αx, y〉 = α〈x, y〉.

4. 〈 x, y〉 = 〈y, x〉.

Example 1. Let C[a, b] denote the set of complex-valued continuous functions
on the interval [a, b]. For f, g ∈ C[a, b], define

〈f, g〉 =

∫ b

a

f(x)g(x)dx.

Then (C[a, b], 〈·, ·〉) is an inner product space.

Given any inner product space V , we can define ||x|| =
√
〈x, x〉. This is, in

fact, a norm on V , and to show this, we need what is known as the Schwarz
inequality, that is, |〈x, y〉| ≤ ||x|| ||y|| for any two vectors x, y ∈ V [9, lemma
4.2]. We formally present this result in the following proposition.

Proposition 1. Every inner product space V is a normed linear space with the
norm ||x|| =

√
〈x, x〉.

Proof. We verify only the triangle inequality since the other properties follow
immediately from definition (3). Let x, y ∈ V . Then,

||x+ y||2 = 〈x+ y, x+ y〉 = 〈x, x〉+ 〈x, y〉+ 〈y, x〉+ 〈y, y〉
= ||x||2 + 2 Re〈x, y〉+ ||y||2

≤ ||x||2 + 2 |〈x, y〉|+ ||y||2

≤ ||x||2 + 2 ||x|| ||y||+ ||y||2, by Schwarz inequality

= (||x||+ ||y||)2,

which proves the triangle inequality.

Definition 4. A complete inner product space is called a Hilbert space. (Com-
plete here means that every Cauchy sequence converges.)
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Example 2. Let L2[a, b] be the set of complex-valued measurable functions on

a finite interval [a, b] that satisfy
∫ b
a
|f(x)|2dx <∞. For f, g ∈ L2[a, b] define

〈f, g〉 =

∫ b

a

f(x)g(x)dx.

It can be shown that L2[a, b] equipped with this inner product is complete and
therefore is a Hilbert space.

Definition 5. Let V be an inner product space. Two vectors x, y ∈ V are said
to be orthogonal if 〈x, y〉 = 0. A sequence of vectors {xn}∞n=0 in V is called an
orthogonal system if

〈xn, xm〉 = hnδnm. (1)

The system is called orthonormal if hn = 1.

Definition 6. A sequence of vectors {xn}∞n=0 in a Hilbert space H is complete
if 〈y, xn〉 = 0 for all n ≥ 0 implies that y = 0.

Definition 7. An orthonormal basis is a complete orthonormal system.

The following theorem is standard and can be found in many books, for
example, in Reed and Simon [11].

Proposition 2. Let {xn}∞n=0 be an orthonormal basis in a Hilbert space H.
Then for each y ∈ H,

y =

∞∑
n=0

〈y, xn〉xn and ||y||2 =

∞∑
n=0

|〈y, xn〉|2. (2)

The equality in the first expression means that the sum on the right-hand
side converges, regardless of order, to y.

Proof. See Reed and Simon [11, thm. II.6].

Corollary 1. If {xn}∞n=0 is an orthogonal basis in a Hilbert space H then for
each y ∈ H,

y =

∞∑
n=0

〈y, xn〉
||xn||2

xn and 〈y, z〉 =

∞∑
n=0

〈y, xn〉〈z, xn〉
||xn||2

. (3)

2.3 Elementary Theory of Orthogonal Polynomials

We review different aspects of the theory of orthogonal polynomials of one real
variable. We require that the domain X ⊂ R of polynomials be measurable. X
is most commonly either the infinte interval (−∞,∞), a semi-infinite interval
[a,∞) or a finite interval [a, b]. We also need a weight function described in the
following definition.
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Definition 8. Let X ⊂ R be a finite or infinite interval. A function w is called
a polynomially bounded weight function if it satifies the following conditions:

1. w is everywhere nonnegative, integrable overX, and non-zero over a subset
of X of positive measure, that is,

0 <

∫
X

w(x)dx <∞.

2. For every n ∈ N, ∫
X

xnw(x)dx <∞.

The quantity
∫
X
xnw(x)dx is often called the nth moment of w(x), and is

symbolized by µn.

Now for a given polynomially bounded weight function w, let L2(w) denote
the space of functions f : X → R whose w-weighted squares have finite integral,
that is,

f ∈ L2(w) ⇐⇒
∫
X

f2(x)w(x)dx <∞. (4)

It follows from condition (2) of definition (8) that all polynomials are included
in the space L2(w).

Definition 9. Let {pn}∞n=0 be a system of polynomials in the space L2(w)
described above, where the nth polynomial pn has degree n. Then {pn}∞n=0 is
called an orthogonal system with respect to w if∫

X

pn(x)pm(x)w(x)dx = hnδnm. (5)

The system is called orthonormal if hn = 1.

More generally if µ is a monotonic non-decreasing function (usually called the
distribution function), then we can write equation (5) in terms of the Stieltjes
integral, ∫

X

pn(x)pm(x)dµ(x) = hnδnm. (6)

which is reduced back to (5) in case µ is absolutely continuous, that is, if dµ(x) =
w(x)dx.

Definition 10. If p is a polynomial of degree m and

p(x) = cmx
m + cm−1x

m−1 + · · ·+ c2x
2 + c1x+ c0, (7)

then cm is called the leading coefficient of p. If cm = 1, we say that p is a monic
polynomial.
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A useful property of real orthogonal polynomials is that they obey a three-
term recurrence relation as described in the next proposition [14].

Proposition 3. For a weight function w described as in definition (7), there
exists a unique system of monic orthogonal polynomials {pn}∞n=0. In particular,
we can construct {pn}∞n=0 as follows:

p0(x) = 1, p1(x) = x− a1 with a1 =

∫
X
xw(x)dx∫

X
w(x)dx

and

pn+1(x) = xpn(x)− an+1pn(x)− bn+1pn−1(x), (8)

where

an+1 =

∫
X
xp2

n(x)w(x)dx∫
X
p2
n(x)w(x)dx

and bn+1 =

∫
X
xpn(x)pn−1(x)w(x)dx∫
X
p2
n−1(x)w(x)dx

.

Remark 1. If w is an even measure, then an+1 = 0 since then its integrals with
odd polynomials are all zero.

Proof. We begin by proving the existence of monic orthogonal polynomials. The
first polynomial p0 should be monic and of degree zero, and so,

p0(x) = 1.

The next polynomial p1 should be monic and of degree one. It should therefore
take the form

p1(x) = x− a1,

and this orthogonal to p1 implies that

0 = 〈p1, p0〉 =

∫
X

xw(x)dx− a1

∫
X

w(x)dx.

Since w is nonzero on X, it follows that

a1 =

∫
X
xw(x)dx∫

X
w(x)dx

.

an+1 and bn+1 are found following the same procedure. To prove uniqueness
of the sequence {pn}∞n=0 of monic orthogonal polynomials of degree n, assume
that {qn}∞n=0 is another sequence of monic orthogonal polynomials of degree n.
Then

deg(pn+1 − qn+1) ≤ n,
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and since pn+1 and qn+1 are orthogonal to any polynomial of degree n or less,
we have

〈pn+1, pn+1 − qn+1〉 = 0 and 〈qn+1, pn+1 − qn+1〉 = 0.

But this implies that

〈pn+1 − qn+1, pn+1 − qn+1〉 = 0,

and so, pn+1 − qn+1 ≡ 0 for all n ≥ 0.
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2.4 Spaces of Interest

The following spaces are of particular interest to our study:

L2(ω2), L2(ω1), H2(S,P), L2(R), H2(S). (9)

Other useful spaces are:

A0(S), L2
R(ω2), L2

R(ω1), H2
R(S,P), L2

R(R), H2
R(S). (10)

In the above, and indeed throughout this paper, ω1 denotes the weight func-
tion 1/(2 cosh π

2x) while ω2 denote the self convolution of ω1, that is, ω2 =
ω1 ∗ ω1. In fact, it can be shown that ω2(x) = x/(2 sinh π

2x).
L2(ω1) denotes the Hilbert space of measurable functions on R that satisfy∫∞

−∞ |f(x)|2ω1(x)dx <∞ equipped with the inner product

〈f, g〉 =

∫ ∞
−∞

f(x)g(x)ω1(x)dx =

∫ ∞
−∞

f(x)g(x)
dx

2 cosh π
2x
. (11)

The Hilbert space L2(ω2) is like the space L2(ω1) but with the weight fuction
ω2 in place of ω1.

L2(R) denotes the Hilbert space of measurable functions on R that satisfy∫∞
−∞ |f(x)|2dx <∞ equipped with the inner product

〈f, g〉 =

∫ ∞
−∞

f(x)g(x)dx. (12)

H2(S,P) denotes the Hilbert space of analytic functions on S that satisfy∫
∂S |f(z)|2dP(z) <∞ equipped with the inner product

〈f, g〉 =

∫
∂S
f(z)g(z)dP(z)

=

∫ ∞
−∞

f(x+ i)g(x+ i)

(
ω1(x)

2

)
dx+

∫ ∞
−∞

f(x− i)g(x− i)
(
ω1(x)

2

)
dx

=

∫ ∞
−∞

f(x+ i)g(x+ i) + f(x− i)g(x− i)
2

ω1(x)dx

=

∫ ∞
−∞

f(x+ i)g(x+ i) + f(x− i)g(x− i)
2

dx

2 cosh π
2x
. (13)

The Hilbert space H2(S) is like the space H2(S,P) but without any weight
function.

A0(S) is the space of functions f that are analytic in S, continuous on ∂S
and f(x+ iy)→ 0 as |x| → ∞.

The spaces L2
R(ω2), L2

R(ω1) and L2
R(R) are like the corresponding spaces but

restricted to real-valued functions. For the spaces, H2
R(S,P) and H2

R(S), we talk
of real-valued functions on the real axis.
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3 The τ-System

In this section, we present our first system of orthogonal polynomials which we
call the τ -system. This system was studied in Araaya’s paper [4], and it was
found that it has a simple recurrence relation

τ−1 = 0, τ0 = 1 and τn+1(x) = xτn(x)− n2τn−1(x).

The first few polynomials for this system are shown below.

τ0 = 1

τ1 = x

τ2 = x2 − 1

τ3 = x3 − 5x

τ4 = x4 − 14x2 + 9

...

The weight function for this system is ω1(x) = 1/(2 cosh π
2x), and as such, we

start by looking at two interesting properties of this function that make it useful
for this purpose.

Proposition 4. The function ω1 is a probability density function.

Proof. This follows from the integration,∫ ∞
−∞

ω1(x)dx =

∫ ∞
−∞

dx

2 cosh π
2x

=

[
1

π
arctan(sinh

π

2
x)

]∞
−∞

= 1.

The following property makes it possible to interpret the moments of ω1 as
values at zero of successive derivatives.

Proposition 5. The function ω1 is up to a dilation its own Fourier transform.
In particular, it is a Fourier transform of 1/ cosh t, that is,

ω1(x) =
1

2π

∫ ∞
−∞

e−ixtdt

cosh t

Proof. Using the Fourier inversion theorem, we can write

ω̂1(t) =

∫ ∞
−∞

eixtω1(x)dx =

∫ ∞
−∞

e(it+π
2 )x

eπx + 1
dx

and show that ω̂1(t) = 1/ cosh t. For the complete proof, see similar calculations
in lemma (1).
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We now present the main results for this section. The calculations in proving
these results are crucial for proving the main results for the other two systems.

Theorem 1. Let the system {τn}∞n=0 be given by the recurrence relation

τ−1 = 0, τ0 = 1 and τn+1(x) = xτn(x)− n2τn−1(x). (14)

Then

1. The function τn is a monic polynomial of degree n for n ≥ 0.

2. The exponential generating function1, Gτ (x, s) =
∑∞
n=0

τn(x)
n! sn, is given

by the function

Gτ(x, s) =
ex arctan s

√
1 + s2

.

3. The polynomials { τnn! }
∞
n=0 are an orthonormal basis in the Hilbert space

L2(ω1).

As aforementioned, the calculations for this proof are similar to those for the
other two systems, and since will shall provide a complete proof for the system
of section (5), we omit this proof. Instead, we provide some tools needed to do
this proof and these will also be needed in section (5).

Lemma 1. If Re(α) < π
2 , then∫ ∞
−∞

eαxω1(x)dx =
1

cosα
.

Proof. The complex-valued function ω1(z) = 1/(2 cosh π
2 z) has a simple pole z =

i, and so we consider a rectangular contour with vertices (−R, 0), (R, 0), (R, 2i)
and (−R, 2i), that is, a contour containing the simple pole. Call this contour
C. Then, by the residue theorem, we have∮

C

eαzω1(z)dz = 2πi · Res(i) = 2πi

(
eαz

π sinh π
2 z

∣∣∣∣
z=i

)
= 2eαi. (15)

Now

eαzω1(z) = eαz
1

2 cosh π
2 z

= eαz
2e

π
2 z

2(eπz + 1)
=
e(α+π

2 )z

eπz + 1
,

and so, we can integrate around the contour C as follows:∮
C

eαzω1(z)dz =

∫
I1

+ · · ·+
∫
I4

=

∫ R

−R

e(α+π
2 )x

eπx + 1
dx+ i

∫ 2

0

e(α+π
2 )(R+iy)

eπ(R+iy) + 1
dy

−
∫ R

−R

e(α+π
2 )(x+2i)

eπ(x+2i) + 1
dx− i

∫ 2

0

e(α+π
2 )(−R+iy)

eπ(−R+iy) + 1
dy.

1The exponential generating function of a squence {an} is defined as G(x) =
∑∞

n=0 an
xn

n!
.
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Alone the side I2, we have

|eαzω1(z)| =
∣∣∣∣e(α+π

2 )(R+iy)

eπ(R+iy) + 1

∣∣∣∣ ≤ e(α+π
2 )R

eπR − 1
=
e−

π
2ReαR

1− e−πR

so that by Darboux inequality,∣∣∣∣∫
I2

eαzω1(z)dz

∣∣∣∣ ≤ 2e−
π
2ReαR

1− e−πR
→ 0 as R→∞.

Similarly, the integral alone I4 vanish as R→∞.

Thus, taking R→∞ and combining with (15), we have

2eαi = lim
R→∞

∮
C

eαzω1(z)dz

= lim
R→∞

∫ R

−R

e(α+π
2 )x

eπx + 1
dx− lim

R→∞

∫ R

−R

e(α+π
2 )(x+2i)

eπ(x+2i) + 1
dx

= lim
R→∞

(
1 + ei2α

) ∫ R

−R

e(α+π
2 )x

eπx + 1
dx

=
(
1 + ei2α

) ∫ ∞
−∞

e(α+π
2 )x

eπx + 1
dx

which implies that ∫ ∞
−∞

e(α+π
2 )x

eπx + 1
dx =

2eαi

1 + ei2α

=
1

cosα
.

Lemma 2. The following identity holds:

cos(α+ β) =
1− tanα tanβ

√
1 + tan2 α

√
1 + tan2 β

.

Proof. It is a well known fact that cos2 x + sin2 x = 1. Dividing through by
cos2 x gives 1 + tan2 x = sec2 x. Thus,

1− tanα tanβ
√

1 + tan2 α
√

1 + tan2 β
=

1− tanα tanβ

secα secβ

= cosα cosβ(1− sinα sinβ

cosα cosβ
)

= cosα cosβ − sinα sinβ

= cos(α+ β).
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4 The σ-System and Some Useful Operators

Like the τ -system, this system was studied in Araaya’s paper [4], and it was
found that it has a simple recurrence relation

σ−1 = 0, σ0 = 1 and σn+1(x) = xσn(x)− n(n− 1)σn−1(x).

The first few polynomials for this system are shown below.

σ0 = 1

σ1 = x

σ2 = x2

σ3 = x3 − 2x

σ4 = x4 − 8x2

...

The first two properties of the function ω1(x) = 1/(2 cosh π
2x) were discussed

in section (3). The third useful property is that, it is closely related to the
Poisson kernel for a strip of width two in the manner of the following proposition.

Proposition 6. Let the function f be continuous and harmonic in the strip
S = {z ∈ C : −1 ≤ Im(z) ≤ 1}, and suppose further that |f(z)| < Cea|z| for
some a ∈ [0, π2 ). Then

f(0) =

∫ ∞
−∞

f(x+ i)
dx

4 cosh π
2x

+

∫ ∞
−∞

f(x− i) dx

4 cosh π
2x

=

∫ ∞
−∞

f(x+ i) + f(x− i)
2

dx

2 cosh π
2x

=

∫ ∞
−∞

f(x+ i) + f(x− i)
2

ω1(x)dx.

Proof. This is simply the Poisson integral.

In the preceding proposition, we used the operator,

Rf(x) =
1

2
(f(x+ i) + f(x− i)), (16)

which is densely defined in L2(ω1). For symmetry, we also consider the operator,

Jf(x) =
1

2i
(f(x+ i)− f(x− i)). (17)

It is clear from the definition of these two operators that

(R± iJ)f(x) = f(x± i). (18)
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In the next section, we shall see that multipying the ρ-system by x gives a
relation to this system, and this is the reason to define the third operator,

Qf(x) = xf(x). (19)

The notation for this operator is inspired by analogies with quantum mechanics,
an analogy which seems natural in the light of the following easily verified
relations between the operators.

Proposition 7. The operators R, J and Q satisfy the following relations:

RQ−QR = −J (20)

JQ−QJ = R (21)

RJ − JR = 0 (22)

R2 + J2 = I (23)

where I is the identity operator.

Proof. Use the definition of the operators involved.

We now present the main results for this section which describe an orthogonal
basis for the space H2(S,P) where P is the Poisson measure for 0.

Theorem 2. Let the system {σn}∞n=0 be given by the recurrence relation.

σ−1 = 0, σ0 = 1 and σn+1(x) = xσn(x)− n(n− 1)σn−1(x). (24)

Then

1. The function σn is a monic polynomial of degree n for n ≥ 0.

2. The exponential generating function, Gσ(x, s) =
∑ σn(x)

n! sn, is given by
the function

Gσ(x, s) = ex arctan s.

3. The norm of the polynomial σn
n! is 1 for n = 0 and

√
2 for n ≥ 1.

4. The polynomials {σnn! }
∞
n=0 are an orthogonal basis in the Hilbert space

H2(S,P).

Proof. See similar calculations in the proof of theorem (3) in the next section.
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5 The ρ-System

We study this system in detail since it is a new addition, filling a gap related
to the previous systems. In fact, it is the main motivation behind this thesis.
Unlike the two previous systems, the weight function for this system is ω2 =
ω1 ∗ ω1, the self convolution of ω1(x) = 1/(2 cosh π

2x). By the convolution
theorem and proposition (5) , the Fourier transform ω̂2 of ω2 is given by ω̂2(t) =
ω̂1(t) · ω̂1(t) = 1/ cosh2 t. Abramowitz [1] gives the Maclaurin series expansion

1

cosh2 t
=

( ∞∑
n=0

E2nt
2n

(2n)!

)2

=

(
1− t2

2
+

5t4

24
− 61t6

720
+

1385t8

40320
+ · · ·

)2

= 1− t2 +
2t4

3
− 17t6

45
+ · · · (25)

where En is the nth Euler number2.
Now using the Fourier inversion theorem, ω̂2(t) =

∫∞
−∞ eixtω2(x)dx, we de-

rive the nth derivative of ω̂2 evaluated at zero as follows:

ω̂2(t) =

∫ ∞
−∞

eixtω2(x)dx, ω̂2(0) =

∫ ∞
−∞

ω2(x)dx

ω̂′2(t) =

∫ ∞
−∞

ixeixtω2(x)dx, ω̂′2(0) =

∫ ∞
−∞

ixω2(x)dx

ω̂′′2 (t) =

∫ ∞
−∞

(ix)
2
eixtω2(x)dx, ω̂′′2 (0) =

∫ ∞
−∞

(ix)
2
ω2(x)dx

...
...

ω̂
(n)
2 (t) =

∫ ∞
−∞

(ix)
n
eixtω2(x)dx, ω̂

(n)
2 (0) =

∫ ∞
−∞

(ix)
n
ω2(x)dx

Since ω̂2 is an even function, it is orthogonal to all odd polynomials. Thus all
odd derivatives vanish, and we can rewrite the expression for the nth derivative
of ω̂2 evaluated at zero as∫ ∞

−∞
x2nω2(x)dx = (−i)2n

ω̂
(2n)
2 (0) = (−i)2n

(
d

dt

)2n (
1

cosh2 t

)∣∣∣∣
t=0

, (26)

2The first few Euler numbers are: 1, -1, 5, -61, 1385, -50521 with alternating signs. For
the explicit definition and formula, see [1, p. 804].
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which is then used together with equation (25) to find the moments as follows:

n = 0,

∫ ∞
−∞

ω2(x)dx = (−i)0
ω̂2(0) = 1

n = 1,

∫ ∞
−∞

x2ω2(x)dx = (−i)2
ω̂′′2 (0) = (−i)2

(−2!× 1) = 2

n = 2,

∫ ∞
−∞

x4ω2(x)dx = (−i)4
ω̂

(4)
2 (0) = (−i)4

(
4!× 2

3

)
= 16

n = 3,

∫ ∞
−∞

x6ω2(x)dx = (−i)6
ω̂

(6)
2 (0) = (−i)6

(
−6!× 17

45

)
= 272

...

We can now use proposition (3) to construct a unique system of monic orthogo-
nal polynomials {ρn}∞n=0. Set ρ0(x) = 1 and since this has an even power of x,
it is orthogonal to all odd polynomials and in particular to ρ1(x) = x. To find
the third polynomial, set ρ2(x) = x2 + a and this orthogonal to ρ0 implies that

0 =

∫ ∞
−∞

(x2 + a)ω2(x)dx =

∫ ∞
−∞

x2ω2(x)dx+ a

∫ ∞
−∞

ω2(x)dx = 2 + a.

Thus a = −2. To find the fourth polynomial, set ρ3(x) = x3 + bx and this
orthogonal to ρ1 implies that

0 =

∫ ∞
−∞

(x3 + bx)xω2(x)dx =

∫ ∞
−∞

x4ω2(x)dx+ b

∫ ∞
−∞

x2ω2(x)dx = 16 + 2b.

Thus b = −8. To find the fifth polynomial, set ρ4(x) = x4 + cx2 + d and this
orthogonal to ρ0 implies that

0 =

∫ ∞
−∞

(x4 + cx2 + d)ω2(x)dx

=

∫ ∞
−∞

x4ω2(x)dx+ c

∫ ∞
−∞

x2ω2(x)dx+ d

∫ ∞
−∞

ω2(x)dx

= 16 + 2c+ d. (27)

ρ4 should also be orthogonal to ρ2, and so,

0 =

∫ ∞
−∞

(x4 + cx2 + d)(x2 − 2)ω2(x)dx

=

∫ ∞
−∞

(x6 + cx4 + dx2)ω2(x)dx

=

∫ ∞
−∞

x6ω2(x)dx+ c

∫ ∞
−∞

x4ω2(x)dx+ d

∫ ∞
−∞

x2ω2(x)dx

= 272 + 16c+ 2d

= 272 + 16c+ 2(−16− 2c), by (27)

= 240 + 12c.
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Thus, c = −20 and d = 24. The rest of the ρ-polynomials are obtained following
the same procedure, and we have

ρ0(x) = 1

ρ1(x) = x

ρ2(x) = x2 − 2

ρ3(x) = x3 − 8x

ρ4(x) = x4 − 20x2 + 24

...

We now establish the relationship between these polynomials. Setting ρ−1 = 0,
we note that

ρ1(x) = xρ0(x)− ρ−1(x) 0 = 0× 1

ρ2(x) = xρ1(x)− 2ρ0(x) 2 = 1× 2

ρ3(x) = xρ2(x)− 6ρ1(x) 6 = 2× 3

ρ4(x) = xρ3(x)− 12ρ2(x) 12 = 3× 4

...
...

where the second column shows the pattern of the coefficients of the second
terms on the right hand side of the polynomial equations. This pattern of the
coefficients motivates us to define the system of polynomials {ρn}∞n=0 by the
recurrence relation

ρ−1 = 0, ρ0 = 1, and ρn+1(x) = xρn(x)− n(n+ 1)ρn−1(x),

which we will later use to compute the exponential generating function for prov-
ing orthogonality of our system.

Before proceeding further, we present two lemmas that will be useful in
proving the main results of this section.

Lemma 3. If the function f is integrable on (−∞,∞) and

f̂(x) =

∫ ∞
−∞

f(t)eixtdt ≡ 0,

then f = 0 almost everywhere.

Proof. See Andrews, Askey and Roy [3, thm. 6.5.1].

Lemma 4. If Re(α) < π
2 , then∫ ∞
−∞

eαxω2(x)dx =

(
1

cosα

)2

. (28)
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Proof. Bearing in mind that ω2 = ω1 ∗ ω1, a self convolution, we have∫ ∞
−∞

eαxω2(x)dx =

∫ ∞
−∞

∫ ∞
−∞

eαxω1(x− y)ω1(y)dydx

=

∫ ∞
−∞

∫ ∞
−∞

eα(t+y)ω1(t)ω1(y)dtdy if we let x− y = t

=

∫ ∞
−∞

(∫ ∞
−∞

eαtω1(t)dt

)
eαyω1(y)dy

=

∫ ∞
−∞

eαtω1(t)dt

∫ ∞
−∞

eαyω1(y)dy

=

(∫ ∞
−∞

eαxω1(x)dx

)2

if we let t = y = x

=

(
1

cosα

)2

, by lemma (1) .

Lemma 5. For |x| < 1,

1

(1− x)2
=

∞∑
n=0

(n+ 1)xn.

Proof. Differentiate the geometric series, 1
1−x =

∑∞
n=0 x

n, with respect to x,
that is,

1

(1− x)2
=

∞∑
n=1

nxn−1 =

∞∑
n=0

(n+ 1)xn.

We now have all the necessary definitions and lemmas needed to present and
prove the main results of this section.

Theorem 3. Let the system {ρn}∞n=0 be given by the recurrence relation

ρ−1 = 0, ρ0 = 1 and ρn+1(x) = xρn(x)− n(n+ 1)ρn−1(x). (29)

Then

1. The function ρn is a monic polynomial of degree n for n ≥ 0.

2. The exponential generating function, Gρ(x, s) =
∑∞
n=0

ρn(x)
n! sn, is given

by the function

Gρ(x, s) =
ex arctan s

1 + s2
.

3. The sequence of polynomials {ρnn! }
∞
n=0 is an orthogonal basis in the Hilbert

space L2(ω2).
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Proof. (1) follows immediately from the definition of the recurrence relation.
To prove (2), we multiply the recurrence by sn/n! and sum over n so that

0 =

∞∑
n=0

[ρn+1(x)− xρn(x) + n(n+ 1)ρn−1(x)]
sn

n!

=

∞∑
n=0

ρn+1(x)
sn

n!
− x

∞∑
n=0

ρn(x)
sn

n!
+

∞∑
n=1

n(n+ 1)ρn−1(x)
sn

n!

= G′ρ(x, s)− xGρ(x, s) +

∞∑
n=0

(n+ 1)(n+ 2)ρn(x)
sn+1

(n+ 1)!

= G′ρ(x, s)− xGρ(x, s) + 2s

∞∑
n=0

ρn(x)
sn

n!
+

∞∑
n=1

nρn(x)
sn+1

n!

= G′ρ(x, s)− xGρ(x, s) + 2sGρ(x, s) +

∞∑
n=0

(n+ 1)ρn+1(x)
sn+2

(n+ 1)n!

= G′ρ(x, s)− xGρ(x, s) + 2sGρ(x, s) + s2G′ρ(x, s)

= (1 + s2)G′ρ(x, s) + (2s− x)Gρ(x, s).

Thus,

G′ρ(x, s) +
2s− x
1 + s2

Gρ(x, s) = 0. (30)

This is a first-order linear differential equation where all derivatives are with
respect to s, holding x fixed. The integrating factor is

exp

(∫
2s− x
1 + s2

ds

)
= exp

(∫
2s

1 + s2
ds−

∫
x

1 + s2
ds

)
= exp(ln(1 + s2)− x arctan s))

= (1 + s2)e−x arctan s.

Multiplying both sides of equation (30) by this factor gives

d

ds

(
(1 + s2)e−x arctan sGρ(x, s)

)
= 0

which implies that

Gρ(x, s) = c
ex arctan s

1 + s2
.

Now since Gρ(x, s) =
∑∞
n=0

ρn(x)
n! sn, it implies that Gρ(x, 0) = 1. Thus c=1

and (2) follows.

To prove (3), we first show that∫ ∞
−∞

Gρ(x, s)Gρ(x, t)ω2(x)dx =
1

(1− st̄)2
.
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Now

Gρ(x, s)Gρ(x, t) =
ex arctan s

1 + s2

ex arctan t̄

1 + t̄2
=

1

(1 + s2)(1 + t̄2)
ex(arctan s+arctan t̄).

Set u = 1
(1+s2)(1+t̄2) , α = arctan s, β = arctan t̄ and assume that Re(α+β) < π

2 .

Then we have∫ ∞
−∞

Gρ(x, s)Gρ(x, t)ω2(x)dx = u

∫ ∞
−∞

e(α+β)xω2(x)dx

= u

(
1

cos(α+ β)

)2

, by lemma (4)

= u

(√
1 + tan2 α

√
1 + tan2 β

1− tanα tanβ

)2

, by lemma (2)

= u

(√
1 + s2

√
1 + t̄2

1− st̄

)2

= u · (1 + s2)(1 + t̄2)

(1− st̄)2

=
1

(1− st̄)2
. (31)

Next, by lemma (5) we see that this implies that∫ ∞
−∞

Gρ(x, s)Gρ(x, t)ω2(x)dx =

∞∑
n=0

(n+ 1)(st̄)n. (32)

But using the definition, Gρ(x, s) =
∑∞
n=0

ρn(x)
n! sn, gives∫ ∞

−∞
Gρ(x, s)Gρ(x, t)ω2(x)dx =

∫ ∞
−∞

( ∞∑
n=0

ρn(x)

n!
sn

)( ∞∑
n=0

ρk(x)

k!
t̄k

)
ω2(x)dx

=

∞∑
n=0

∞∑
k=0

snt̄k
∫ ∞
−∞

ρn(x)ρk(x)

n!k!
ω2(x)dx. (33)

It therefore follows from (32) and (33) that

∞∑
n=0

∞∑
k=0

snt̄k
∫ ∞
−∞

ρn(x)ρk(x)

n!k!
ω2(x)dx =

∞∑
n=0

(n+ 1)(st̄)n.

Comparing the coefficients of the powers of s and t̄ proves orthogonality, that
is,

〈ρn(x)

n!
,
ρk(x)

k!
〉 = (n+ 1)δnk (34)
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To show that this system of polynomials {ρnn! }
∞
n=0 is a basis in the Hilbert

space L2(ω2), we need to show that it is complete. But since the span of {ρnn! }
∞
n=0

is the space of all polynomials, it suffices to show density of the system {xn}∞n=0.
Let 〈f, xn〉 = 0 for some f ∈ L2(ω2) and all n ≥ 0. Then∫ ∞

−∞
f(x)eitxω2(x)dx =

∞∑
n=0

(it)n

n!

∫ ∞
−∞

f(x)xnω2(x)dx

= lim
N→∞

N∑
n=0

(it)n

n!

∫ ∞
−∞

f(x)xnω2(x)dx

= lim
N→∞

N∑
n=0

(it)n

n!
· 0

= 0.

By Lemma (3), fω2 = 0 almost everywhere. But ω2 6= 0 and so f = 0 almost
everywhere which by definition (6) implies that {xn}∞n=0 is dense in L2(ω2).
Therefore, the system {ρnn! }

∞
n=0 is complete, and in particular, it is an orthogonal

basis in the Hilbert space L2(ω2).

6 Some Connections Between the Systems

Having presented the three systems of polynomials in the previous sections,
we can now discuss some useful connections between them, in terms of the
operators R, J and Q. To start with, let us write a few terms for each system.
By definition, σ−1 = τ−1 = ρ−1 = 0, σ0 = τ0 = ρ0 = 1, and σn+1(x) =
xσn(x)−n(n−1)σn−1(x), τn+1(x) = xτn(x)−n2τn−1(x) and ρn+1(x) = xρn(x)−
n(n+ 1)ρn−1(x). We thus have

σ τ ρ

σ0 = 1 τ0 = 1 ρ0 = 1

σ1 = x τ1 = x ρ1 = x

σ2 = x2 τ2 = x2 − 1 ρ2 = x2 − 2

σ3 = x3 − 2x τ3 = x3 − 5x ρ3 = x3 − 8x

σ4 = x4 − 8x2 τ4 = x4 − 14x2 + 9 ρ4(x) = x4 − 20x2 + 24

...
...

...

Our three operators are defined by Rf(x) = 1
2 (f(x+i)+f(x−i)), Qf(x) = xf(x)

and Jf(x) = 1
2i (f(x+ i)− f(x− i)). Comparing columns 1 and 3, we see that

xρn = σn+1 which by definition of Q implies that Qρn = σn+1. In what
follows below, we check the operations of R, J and Q on the three systems of
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polynomials. We start with the operator R. On the first column, we have

Rσ0 =
σ0(x+ i) + σ0(x− i)

2
=

1 + 1

2
= 1

Rσ1 =
(x+ i) + (x− i)

2
=

2x

2
= x

Rσ2 =
(x+ i)2 + (x− i)2

2
=

2x2 − 2

2
= x2 − 1

Rσ3 =
(x+ i)3 − 2(x+ i) + (x− i)3 − 2(x− i)

2
= x3 − 5x

...

This indicates that the operation of R on column 1 gives column 2. We can
therefore claim that Rσn = τn which we will prove later. On column 2, we have

Rτ0 = 1

Rτ1 = x

Rτ2 =
(x+ i)2 − 1 + (x− i)2 − 1

2
=

2x2 − 4

2
= x2 − 2

Rτ3 =
(x+ i)3 − 5(x+ i) + (x− i)3 − 5(x− i)

2
= x3 − 8x

...

This indicates that the operation of R on column 2 gives column 3. We can
therefore claim that Rτn = ρn which we will prove later. We now turn to the
operator J . On column 1, we have

Jσ0 =
τ0(x+ i)− τ0(x− i)

2i
=

1− 1

2i
= 0

Jσ1 =
(x+ i)− (x− i)

2i
=

2i

2i
= 1

Jσ2 =
(x+ i)2 − (x− i)2

2i
=

4xi

2i
= 2x

Jσ3 =
(x+ i)3 − 2(x+ i)− (x− i)3 + 2(x− i)

2i
= 3x2 − 3 = 3(x2 − 1)

...

From this, we can claim that Jσn = nτn−1 which will be proved later. On
column 2, we have
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Jτ0 = 0

Jτ1 = 1

Jτ2 =
(x+ i)2 − 1− (x− i)2 + 1

2i
=

4xi

2i
= 2x

Jτ3 =
(x+ i)3 − 5(x+ i)− (x− i)3 + 5(x− i)

2i
= 3x2 − 6 = 3(x2 − 3)

...

From this, we can claim that Jτn = nρn−1 which will be proved later.

We can now state the main results of this section.

Theorem 4. The following connections between the three systems of orthogonal
polynomials {σn}, {τn} and {ρn} hold:

Rσn = τn (35)

Jσn = nτn−1 (36)

Rτn = ρn (37)

Jτn = nρn−1 (38)

Qρn = σn+1 (39)

Proof. We shall prove only (37) and (38) since the proofs for the rest follow the
same procedure. The idea of the proof is that, given (37), we prove by induction
(38), and viceversa.
We start with (37). For n = 0, the statement is true since we have

Rτ0(x) =
τ0(x+ i) + τ0(x− i)

2
=

1 + 1

2
= 1 = ρ0(x).

Now assume that both (37) and (38) hold for all τk, k ≤ n, then

Rτn+1(x) = R[xτn(x)− n2τn−1(x)], by recurrence relation

=
(x+ i)τn(x+ i) + (x− i)τn(x− i)

2
− n2 τn−1(x+ i) + τn−1(x− i)

2

= x
τn(x+ i) + τn(x− i)

2
+ i

τn(x+ i)− τn(x− i)
2

− n2Rτn−1(x)

= xRτn(x)− τn(x+ i)− τn(x− i)
2i

− n2Rτn−1

= xRτn(x)− Jτn(x)− n2Rτn−1

= xRτn(x)− nρn−1(x)− n2Rτn−1, by (38) assumption

= xρn(x)− nρn−1(x)− n2ρn−1(x), by induction assumption

= xρn(x)− n(n+ 1)ρn−1(x)

= ρn+1(x).
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Therefore, since the statement is also true for n+ 1, it follows by induction that
it is true for all integers n ≥ 0.
The proof for (38) follows the same procedure, and as such, we omit it.

We now introduce some notations related to the three systems of polyno-
mials. Denote the polynomials σn

n! ,
τn
n! ,

ρn
n! by σ̃n, τ̃n, ρ̃n respectively. It follows

from Theorems (1), (2) and (3) that the systems {σ̃n}∞n=0, {τ̃n}∞n=0 and {ρ̃n}∞n=0

are orthogonal bases for the Hilbert spaces H2(S,P), L2(ω1) and L2(ω2) respec-
tively. In fact, the system {τ̃n}∞n=0 is orthonormal. In what follows, we look at
some consequences of the relations in Theorem (4).

Corollary 2. The following connections between the three systems of orthogonal
polynomials {σ̃n}, {τ̃n} and {ρ̃n} hold:

Rσ̃n = τ̃n (40)

Jσ̃n = τ̃n−1 (41)

Rτ̃n = ρ̃n (42)

Jτ̃n = ρ̃n−1 (43)

Qρ̃n = (n+ 1)σ̃n+1 (44)

Proof. Divide the equations in Theorem (4) through by n!. For instance, we
have for relation (43),

Jτn = nρn−1

Jτn
n!

=
nρn−1

n!
⇒ Jτ̃n =

ρn−1

(n− 1)!
⇒ Jτ̃n = ρ̃n−1.

Corollary 3. Let the operators K, L, M, A, B and C be defined as follows:
K = RRQ, L = QRR, M = RQR, A = RQJ , B = QJR and C = RJQ. Then
the following relations hold:

Kn(ρ0) = ρn (45)

Ln(σ0) = σn (46)

Mn(τ0) = τn (47)

A(τn) = nτn (48)

B(σn) = nσn (49)

C(ρn) = nρn (50)

Proof. We prove only (45) and (50). The proofs for the rest follow the same
procedure.
For (45), we proceed by induction. For n = 0, the statement is trivially true.

24



Now assume that it is true for some integer n ≥ 0, then

Kn+1(ρ0) = KKn(ρ0)

= Kρn, by induction assumption

= RRQρn

= ρn+1, by Theorem (4).

Therefore, since the statement is also true for n+ 1, it follows by induction that
it is true for all integers n ≥ 0.
For (50), we use the definition of C and the relations in Theorem (4),

C(ρn) = RJQ(ρn)

= RJσn+1

= Rnτn

= nρn.

Corollary 4. The following relations hold:

τ̃n(x± i) = ρ̃n(x)± iρ̃n−1(x) (51)

σ̃n(x± i) = τ̃n(x)± iτ̃n−1(x) (52)

Proof. We prove only (51) since the proof for (52) follows the same procedure.
From corollary (2), ρ̃n = Rτ̃n and ρ̃n−1 = Jτ̃n. Thus,

ρ̃n(x)± iρ̃n−1(x) = Rτ̃n(x)± iJτ̃n(x)

= (R± iJ)τ̃n(x)

= τ̃n(x± i), by relation (18).
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7 Two Bounded Operators

In this section, we study two more operators, namely T = R−1 and S = JR−1,
where J and R are the operators that where defined and presented in section
(4). It is clear from the connections in corollary (2) that

T ρ̃n = τ̃n (53)

T τ̃n = σ̃n (54)

Sτ̃n = τ̃n−1 (55)

Sρ̃n = ρ̃n−1 (56)

Also by relation (18),

Tf(x± i) = (R+ iJ)Tf(x)

= RTf(x) + iJTf(x)

= f(x) + iSf(x). (57)

The integral representations of these two operators, S and J , were developed
and presented in Araaya’s paper [5]. For the operator T , we have

Tf =
1

2 cosh π
2x
∗ f, (58)

and for the operator S, we have

Sf = − 1

2 sinh π
2x
∗ f, (59)

where in both cases ∗ denotes convolution. Using the convolution theorem, the
Fourier transforms for T and S were shown to be

T̂ f(t) = sech tf̂(t) (60)

and

Ŝf(t) = −i tanh tf̂(t) (61)

respectively. We shall also make use of what is known as the Plancherel theorem
which states that ||f̂ || = ||f || for any f ∈ L2(R). See [13, thm. 9.13].

Proposition 8. For the operator T , we have the following:

1. T is linear and bounded from L2(ω2) to L2(ω1).

2. If L2
0(ω1) = {f ∈ L2(ω1) : 〈f, 1〉 = 0} and H2

0 (S,P) = {f ∈ H2(S,P) :
f(0) = 0}, then T/

√
2 is a unitary operator from L2

0(ω1) onto H2
0 (S,P).

Remark 2. Let f ∈ L2(ω1) and bn = 〈f, τ̃n〉. Then the operator U : L2(ω1) →
H2(S,P) defined by Uf = b0 + 1√

2

∑∞
n=1 bnσ̃n is unitary.
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Proof. Since all other properties are clear, we prove only boundedness.

1. Let f ∈ L2(ω2) and an = 〈f, ρ̃n〉. By Theorem (3), the system {ρ̃n}∞n=0 is
an orthogonal basis in L2(ω2) with norm

√
n+ 1, and so, by proposition

(2),

f =

∞∑
n=0

anρ̃n and ||f ||2L2(ω2) =

∞∑
n=0

(n+ 1)|an|2.

By relation (53),

Tf =

∞∑
n=0

anτ̃n.

Since by Theorem (1) the system {τ̃n}∞n=0 is an orthonormal basis in
L2(ω1), we have

||Tf ||2L2(w) =
∞∑
n=0

|an|2

≤
∞∑
n=0

(n+ 1)|an|2

= ||f ||2L2(ω2),

which proves boundedness of T from L2(ω2) to L2(w) with norm 1.

2. Let f ∈ L2
0(ω1) and bn = 〈f, τ̃n〉. Then b0 = 〈f, τ̃0〉 = 〈f, 1〉 = 0, and since

by Theorem (1) the system {τ̃n}∞n=0 is an orthonormal basis in L2(ω1), we
have

f =

∞∑
n=1

bnτ̃n and ||f ||2L2
0(ω1) =

∞∑
n=1

|bn|2.

By relation (54),

Tf =

∞∑
n=1

bnσ̃n.

Since by Theorem (2) the system {σ̃n}∞n=0 is an orthogonal basis inH2(S,P)
with norm 1 for n = 0 and

√
2 for n ≥ 1, we have

|| 1√
2
Tf ||2H2

0 (S,P) =

∞∑
n=1

|bn|2 = ||f ||2L2(ω1).

This proves that T/
√

2 is an isometry.
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Before proceeding further, we present two lemmas that will be useful in
proving the main results of this section. The proof of the next lemma depends on
Cauchy’s theorem [2, thm. 1.4.2] which says that if two different paths connect
the same two points, and a function is holomorphic everywhere in between the
two paths, then the two path integrals of the function will be the same.

Lemma 6. If f ∈ H2(S) then f̂ ∈ L2(R, cosh 2t dt) where f̂ is the Fourier trans-

form of an analytic function f . Furthermore, ||f ||2H2(S) = ||f̂ ||2L2(R,cosh 2t dt).

Proof. Recall from subsection (2.4) that analytic functions in the Hilbert space
H2(S) have the norm

||f ||H2(S) =

∫ ∞
−∞

|f(x+ i)|2 + |f(x− i)|2

2
dx.

For f(x+ i), we have the Fourier transform

1

2π

∫ ∞
−∞

f(x+ i)e−ixtdx =
1

2π

∫ ∞
−∞

f(x+ i)e−i(x+i)tetdx

= et
1

2π

∫ ∞
−∞

f(x)e−ixtdx, by Cauchy’s theorem

= etf̂(t).

Similarly for f(x− i),

1

2π

∫ ∞
−∞

f(x− i)e−ixtdx = e−tf̂(t).

It therefore follows by the Plancherel theorem that

||f ||H2(S) =

∫ ∞
−∞

|f(x+ i)|2 + |f(x− i)|2

2
dx

=
1

2π

∫ ∞
−∞

|etf̂(t)|2 + |e−tf̂(t)|2

2
dt

=
1

2π

∫ ∞
−∞
|f̂(t)|2

(
e2t + e−2t

2

)
dt

=
1

2π

∫ ∞
−∞
|f̂(t)|2 cosh 2t dt

= ||f̂ ||L2(R,cosh 2t dt).

The proof of the next lemma depends on the Hadamard three-lines theorem
[13, thm. 12.8] which for our particular case says that if f ∈ A0(S) and if

M(n) = max |f(x+ in)| then M(0) ≤ (M(−1)M(1))
1
2 .
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Lemma 7. If f ∈ H2(S) then ||f ||0 ≤ (||f ||+1 · ||f ||−1)
1
2 where we have used

the notation ||f ||2n =
∫∞
−∞ |f(x+ in)|2dx.

Proof. Define the convolution F = f ∗ f̃ ∈ A0(S) where f̃(x) = f(−x), that is,

F (z) =

∫ ∞
−∞

f(z − x)f̃(x)dx.

Then

F (0) =

∫ ∞
−∞
|f(−x)|2dx = ||f ||20.

Recall from subsection (2.4) that A0(S) is the space of functions that are analytic
in S, continuous on ∂S and f(x+ iy)→ 0 as |x| → ∞. Thus f(x+ in) attains a
maximum, say, F (n) = maxx∈R |f(x+ in)|. Then by the Hadamard three-lines
theorem [13, thm. 12.8],

F (0) ≤ (F (+1)F (−1))
1
2 ,

and by the Schwarz inequality,

F (+1) ≤ ||f ||+1 · ||f ||0 and F (−1) ≤ ||f ||−1 · ||f ||0.

Therefore,

||f ||20 = F (0) ≤ (F (+1)F (−1))
1
2

≤ (||f ||+1 · ||f ||0 · ||f ||−1 · ||f ||0)
1
2

≤ (||f ||+1 · ||f ||−1)
1
2 ||f ||0

so that

||f ||0 ≤ (||f ||+1 · ||f ||−1)
1
2

Lemma 8. For all x ≥ 0,
√
x2 + 1

2 cosh π
2x
≤ π

2

x

2 sinh π
2x

Proof. This is equivalent to proving the inequality

tanh
π

2
x ≤ π

2

x√
1 + x2

.

For all x ≥ 0, define

f(x) =
π

2

x√
1 + x2

− tanh
π

2
x.
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Then,

f(0) = 0 and f ′(x) =
π

2

(
1

(1 + x2)3/2
− sech2 π

2
x

)
.

We need to show that f ′ > 0 for all x > 0. This is equivalent to proving the
inequality (

1

(1 + x2)3/2
− sech2 π

2
x

)
> 0

cosh2 π

2
x > (1 + x2)3/2

cosh4 π

2
x > (1 + x2)3 (62)

Inequality (62) can be proved using Maclaurin series expansion, that is,

(cosh
πx

2
)4 > (1 +

π2x2

8
)4 > (1 + x2)4 > (1 + x2)3.

We have thus showed that f ′(x) > 0 for all x > 0, and since f(0) = 0, it follows
that for all x ≥ 0,

f(x) ≥ 0
π

2

x√
1 + x2

− tanh
π

2
x ≥ 0

tanh
π

2
x ≤ π

2

x√
1 + x2

√
x2 + 1

2 cosh π
2x
≤ π

2

x

2 sinh π
2x
.

We now have all the necessary definitions and lemmas needed to present and
prove the main results of this section. In fact, they are the final results for this
project thesis, and they will be presented in two separate theorems, one for the
operator T and the other for the operator S.

Theorem 5. The operator S is linear and bounded on the following Hilbert
spaces with norm 1:

1. L2(ω2)

2. L2(ω1)

3. L2(R)

4. H2(S,P)

5. H2(S)
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Proof. Since linearity follows immediately from the fact that S is a convolution,
we shall prove only boundedness.

1. Let ˜̃ρn = ρ̃n√
n+1

, f ∈ L2(ω2) and an = 〈f, ˜̃ρn〉. Since by equation (34)
√
n+ 1 is the norm of the polynomial ρ̃n in the Hilbert space L2(ω2), it

follows from Theorem (3) that { ˜̃ρn}∞n=0 is an orthonormal basis in L2(ω2).
Thus by proposition (2),

f =

∞∑
n=0

an ˜̃ρn and ||f ||2 =

∞∑
n=0

|an|2.

By relation (56),

Sf =

∞∑
n=1

an

(
ρ̃n−1√
n+ 1

)

=

∞∑
n=0

an+1

(
ρ̃n√
n+ 2

)

=

∞∑
n=0

an+1

(√
n+ 1

n+ 2

)(
ρ̃n√
n+ 1

)

=

∞∑
n=0

(√
n+ 1

n+ 2

)
an+1

˜̃ρn.

Thus,

||Sf ||2 =

∞∑
n=0

(
n+ 1

n+ 2

)
|an+1|2 =

∞∑
n=1

(
n

n+ 1

)
|an|2 ≤

∞∑
n=1

|an|2 ≤ ||f ||2,

which proves boundedness of S on L2(ω2) with norm 1.

2. Let f ∈ L2(ω1) and bn = 〈f, τ̃n〉. By Theorem (1), the system {τ̃n}∞n=0 is
an orthonormal basis in L2(ω1) so that by proposition (2),

f =

∞∑
n=0

bnτ̃n and ||f ||2 =

∞∑
n=0

|bn|2.

By relation (55),

Sf =

∞∑
n=1

bnτ̃n−1 =

∞∑
n=0

bn+1τ̃n.

Thus,

||Sf ||2 =

∞∑
n=0

|bn+1|2 =

∞∑
n=1

|bn|2 ≤
∞∑
n=0

|bn|2 = ||f ||2,

which boundedness of S on L2(ω1) with norm 1.
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3. Let f ∈ L2(R). Using the Plancherel theorem, we have

||Sf ||2 = ||Ŝf ||2 =
1

2π

∫ ∞
−∞
|Ŝf(t)|2 dt

=
1

2π

∫ ∞
−∞
| tanh tf̂(t)|2 dt, by (61)

≤ 1

2π

∫ ∞
−∞
|f̂(t)|2 dt, since | tanh t| ≤ 1

= ||f ||2

which proves boundedness of S on L2(R) with norm 1.

4. Let ˜̃σn = 1 if n = 0, and ˜̃σn = σ̃n√
2

for all n ≥ 1. Then by Theorem (2), the

system {˜̃σn}∞n=0 is an orthonormal basis in H2(S,P). Let f ∈ H2(S,P)
and cn = 〈f, ˜̃σn〉. By proposition (2),

f =

∞∑
n=0

cn ˜̃σn and ||f ||2 =

∞∑
n=0

|cn|2.

Since RJ = JR by proposition (7), it follows that S = JR−1 = R−1J .
Thus Sσ̃n = σ̃n−1 by corollary (2) so that

Sf =

∞∑
n=1

cn

(
σ̃n−1√

2

)

=

∞∑
n=0

cn+1

(
σ̃n√

2

)

=
c1√

2
+

∞∑
n=1

cn+1
˜̃σn.

Thus,

||Sf ||2 =
|c1|2

2
+

∞∑
n=1

|cn+1|2 =
|c1|2

2
+

∞∑
n=2

|cn|2 ≤
∞∑
n=1

|cn|2 ≤ ||f ||2,

which proves boundedness of S on H2(S,P) with norm 1.
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5. Let f ∈ H2(S). Then by Lemma (6),

||Sf ||2H2(S) = ||Ŝf ||2L2(R,cosh 2t dt)

=
1

2π

∫ ∞
−∞
|Ŝf(t)|2 cosh 2t dt

=
1

2π

∫ ∞
−∞
| tanh tf̂(t)|2 cosh 2t dt, by (61)

≤ 1

2π

∫ ∞
−∞
|f̂(t)|2 cosh 2t dt, since | tanh t| ≤ 1

= ||f̂ ||2L2(R,cosh 2t dt)

= ||f ||2H2(S),

which proves boundedness of S on H2(S) with norm 1.

Theorem 6. The operator T is linear and bounded on the following Hilbert
spaces:

1. L2(ω2) with norm less than or equal to
√
π.

2. L2(ω1) with norm less than or equal to 2.

3. L2(R) with norm 1.

4. H2(S) with norm 1.

Proof. Since linearity follows immediately from the fact that S is a convolution,
we shall prove only boundedness.

1. We first show that if f ∈ L2
R(ω2) and ψ =

√
ω2, then Tfψ ∈ H2(S). In

particular, we show that

||Tfψ||2H2(S) =

∫ ∞
−∞

|Tf(x+ i)ψ(x+ i)|2 + |Tf(x− i)ψ(x− i)|2

2
dx

is finite. Now,

|ψ(x± i)|2 =

∣∣∣∣ x± i
2 sinh π

2 (x± i)

∣∣∣∣ =

∣∣∣∣ x± i
±i 2 cosh π

2x

∣∣∣∣ =

√
x2 + 1

2 cosh π
2x
, (63)

and by relation (57),

|Tf(x± i)|2 = |f(x) + iSf(x)|2 = |f(x)|2 + |Sf(x)|2. (64)

Thus by (63) and (64),

|Tf(x+ i)ψ(x+ i)|2 = |Tf(x− i)ψ(x− i)|2 (65)

=
(
|f(x)|2 + |Sf(x)|2

) √x2 + 1

2 cosh π
2x
. (66)
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Therefore,

||Tfψ||2H2(S) =

∫ ∞
−∞

|Tf(x+ i)ψ(x+ i)|2 + |Tf(x− i)ψ(x− i)|2

2
dx

=

∫ ∞
−∞
|Tf(x+ i)ψ(x+ i)|2dx, by (65)

=

∫ ∞
−∞

(
|f(x)|2 + |Sf(x)|2

) √x2 + 1

2 cosh π
2x
dx, by (66)

≤ π

2

∫ ∞
−∞

(
|f(x)|2 + |Sf(x)|2

) x

2 sinh π
2x
dx, by lemma (8)

=
π

2

∫ ∞
−∞
|f(x)|2ω2dx+

π

2

∫ ∞
−∞
|Sf(x)|2ω2dx

=
π

2
||f ||2L2

R(ω2) +
π

2
||Sf ||2L2

R(ω2)

≤ π

2
||f ||2L2

R(ω2) +
π

2
||f ||2L2

R(ω2), by Theorem (5) part(1)

= π ||f ||2L2
R(ω2), (67)

which proves that Tfψ ∈ H2(S) for any f ∈ L2
R(ω2).

Next, we show that T is bounded on L2
R(ω2). Let f ∈ L2

R(ω2), then

||Tf ||2L2
R(ω2) =

∫ ∞
−∞
|Tf(x)|2ω2(x)dx

=

∫ ∞
−∞
|Tf(x)

√
ω2(x)|2dx

=

∫ ∞
−∞
|Tf(x)ψ(x)|2dx

≤
(∫ ∞
−∞
|Tf(x+ i)ψ(x+ i)|2dx

) 1
2
(∫ ∞
−∞
|Tf(x− i)ψ(x− i)|2dx

) 1
2

=

∫ ∞
−∞
|Tf(x+ i)ψ(x+ i)|2dx, by (65)

≤ π ||f ||2L2
R(ω2), by (67)

where the first inequality follows by Lemma (7) since Tfψ ∈ H2(S).

We have shown that T is bounded on L2
R(ω2) with norm

√
π. Now since

every analytic function g can be written as g = f + i h for f, h ∈ L2
R(ω2),

it follows that T is bounded on L(ω2) with norm
√
π.

Remark 3. Since T and S map functions that are real on the real line to
functions that also have this property and therefore T (f+ih) = Tf+iTh,
the same bounds hold for complex-valued functions as for real-valued.
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2. We first show that if f ∈ L2
R(ω1) and ϕ = 1/(2 cosh π

4x), then Tfϕ ∈
H2(S). In particular, we show that

||Tfϕ||2H2(S) =

∫ ∞
−∞

|Tf(x+ i)ϕ(x+ i)|2 + |Tf(x− i)ϕ(x− i)|2

2
dx

is finite. Now,∣∣∣2 cosh
π

4
(x± i)

∣∣∣2 =
∣∣∣√2 cosh

π

4
x± i

√
2 sinh

π

4
x
∣∣∣2

=
(√

2 cosh
π

4
x
)2

+
(√

2 sinh
π

4
x
)2

= 2 cosh
π

2
x,

and so,

|ϕ(x± i)|2 =
1

2 cosh π
2x
. (68)

By relation (57),

|Tf(x± i)|2 = |f(x) + iSf(x)|2 = |f(x)|2 + |Sf(x)|2. (69)

Thus by (68) and (69),

|Tf(x+ i)ϕ(x+ i)|2 = |Tf(x− i)ϕ(x− i)|2 (70)

=
(
|f(x)|2 + |Sf(x)|2

) 1

2 cosh π
2x
. (71)

Therefore,

||Tfϕ||2H2(S) =

∫ ∞
−∞

|Tf(x+ i)ϕ(x+ i)|2 + |Tf(x− i)ϕ(x− i)|2

2
dx

=

∫ ∞
−∞
|Tf(x+ i)ϕ(x+ i)|2dx, by (70)

=

∫ ∞
−∞

(
|f(x)|2 + |Sf(x)|2

) dx

2 cosh π
2x
, by (71)

=

∫ ∞
−∞
|f(x)|2ω1dx+

∫ ∞
−∞
|Sf(x)|2ω1dx

= ||f ||2L2
R(ω1) + ||Sf ||2L2

R(ω1)

≤ ||f ||2L2
R(ω1) + ||f ||2L2

R(ω1), by Theorem (5) part(2)

= 2||f ||2L2
R(ω1), (72)

which proves that Tfϕ ∈ H2(S) for any f ∈ L2
R(ω1).
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Next, we show that T is bounded on L2
R(ω1). Let f ∈ L2

R(ω1), then∫ ∞
−∞
|Tf(x)ψ(x)|2dx =

∫ ∞
−∞

|Tf(x)|2(
2 cosh π

4x
)2 dx

=

∫ ∞
−∞

|Tf(x)|2

2
(
cosh π

2x+ 1
)dx

≥
∫ ∞
−∞

|Tf(x)|2

2
(
cosh π

2x+ cosh π
2x
)dx, since cosh

π

2
x ≥ 1

=

∫ ∞
−∞

|Tf(x)|2

4 cosh π
2x
dx

=
1

2

∫ ∞
−∞
|Tf(x)|2ω1(x)dx

so that

||Tf ||2L2
R(ω1) =

∫ ∞
−∞
|Tf(x)|2ω1(x)dx

≤ 2

∫ ∞
−∞
|Tf(x)ϕ(x)|2dx

≤ 2

(∫ ∞
−∞
|Tf(x+ i)ϕ(x+ i)|2dx

) 1
2
(∫ ∞
−∞
|Tf(x− i)ϕ(x− i)|2dx

) 1
2

= 2

∫ ∞
−∞
|Tf(x+ i)ϕ(x+ i)|2dx, by (70)

≤ 4||f ||2L2
R(ω1), by (72)

where the second inequality follows by the Lemma (7) since Tfϕ ∈ H2(S).

We have shown that T is bounded on L2
R(ω1) with norm 2. Now since

every analytic function g can be written as g = f + i h for f, h ∈ L2
R(ω1),

it follows by Remark (3) that T is bounded on L(ω1) with norm 2.

3. Let f ∈ L2(R). Using the Plancherel theorem, we have

||Tf ||2 = ||T̂ f ||2 =
1

2π

∫ ∞
−∞
|T̂ f(t)|2 dt

=
1

2π

∫ ∞
−∞
| sech tf̂(t)|2 dt, by (60)

≤ 1

2π

∫ ∞
−∞
|f̂(t)|2 dt, since | sech t| ≤ 1

= ||f ||2

which proves boundedness of T on L2(R) with norm 1.
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4. Let f ∈ H2(S). Then by Lemma (6),

||Tf ||2H2(S) = ||T̂ f ||2L2(R,cosh 2t dt)

=
1

2π

∫ ∞
−∞
|T̂ f(t)|2 cosh 2t dt

=
1

2π

∫ ∞
−∞
| sech tf̂(t)|2 cosh 2t dt, by (60)

≤ 1

2π

∫ ∞
−∞
|f̂(t)|2 cosh 2t dt, since | sech t| ≤ 1

= ||f̂ ||2L2(R,cosh 2t dt)

= ||f ||2H2(S),

which proves boundedness of T on H2(S) with norm 1.
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