
IT 13 015

Examensarbete 15 hp
Mars 2013

Real-Time Resource Monitoring
for Poly/ML Processes

Magnus Stenqvist

Institutionen för informationsteknologi
Department of Information Technology

Teknisk- naturvetenskaplig fakultet
UTH-enheten

Besöksadress:
Ångströmlaboratoriet
Lägerhyddsvägen 1
Hus 4, Plan 0

Postadress:
Box 536
751 21 Uppsala

Telefon:
018 – 471 30 03

Telefax:
018 – 471 30 00

Hemsida:
http://www.teknat.uu.se/student

Abstract

Real-Time Resource Monitoring for Poly/ML Processes

Magnus Stenqvist

Poly/ML, a run time system of the Standard ML language, has with its latest version 5.5
included a statistics feature which provides information about the running system and
ML programs running in that system. This feature provides information about the
program threads running in the system, memory usages, garbage collection
information and user defined data. The problem is that the statistics information is
only accessible through the use of the language C. No way exist today that reads and
displays this data automatically. It would be very convenient for developers, to have
an easy access to this statistic data, to better evaluate their ML programs running in
the Poly/ML system. This report presents a Java application that collects the statistics
data of Poly/ML and displays it in a graphical environment easy to observe by the user.
This application will help developers develop programs with Poly/ML, by letting them
observe how their programs affect the Poly/ML run time system.

Tryckt av: Reprocentralen ITC
IT 13 015
Examinator: Olle Gällmo
Ämnesgranskare: Justin Pearson
Handledare: Tjark Weber

Contents

1 Introduction 2
1.1 Background . 2
1.2 Monitor programs . 2

1.2.1 System monitor programs 3
1.2.2 Monitoring other applications 4

1.3 Poly/ML and functional programming 7
1.4 Problem description . 8
1.5 The statistic data available in Poly/ML v.5.5 9

2 Design 12
2.1 The software process . 12

2.1.1 Iterative and incremental software development 12
2.1.2 The methods of IID . 13

2.2 Interaction design . 14
2.2.1 Who are the users? . 14

2.3 Requirements . 15
2.3.1 Validation and verification 15
2.3.2 Non functional requirements 15
2.3.3 Functional requirements 15
2.3.4 Tool kits used . 17
2.3.5 A sketch of the design 18
2.3.6 Architectural design and Model View Control 18

3 Implementation 20
3.1 How to get the data to monitor 20

3.1.1 How Poly/ML provides statistic data 20
3.1.2 How the data is provided in Linux 21
3.1.3 How the data is provided in Windows 21

1

3.2 Java and JNI . 21
3.2.1 The usage of JNI in this application 22
3.2.2 Alternatives to JNI . 24
3.2.3 Portability issues . 24

3.3 The architectural design . 24
3.3.1 The JNI and Java communication 24
3.3.2 The class layout . 25
3.3.3 Testing . 27

4 Result 29
4.1 Conclusion . 29
4.2 Discussion . 30

5 Future work 33
5.1 Further portability . 33
5.2 Pure Java? . 33
5.3 Maintenance issues . 34
5.4 Improvements . 34

2

Chapter 1

Introduction

1.1 Background

A monitoring program can be an invaluable tool for every developer to moni-
tor the behavior of programs and their effect on the system. Many of the pro-
gram languages today have support for multi threading and a lot of programs
uses this feature. It would help tremendously to have a monitor program to
observe those threads together with other statistic data.

The idea for this project is to develop a monitoring program that displays
information of Poly/ML [1] specific processes to aid the developer to write
better code and what follows is more robust software. Poly/ML is a compiler
and run-time system for the functional programming language Standard ML
[2]. The data that Poly/ML provides is: number of running threads, size of
the local heap, number of garbage collections etc.

1.2 Monitor programs

The task of a monitor program is to retrieve data from any system and dis-
play it on a computer screen, mostly data that is received over a period of
time and where the data is constantly shifting. Monitor programs provides
a historical presentation of the data and helps the users to get a clearer pic-
ture of how the data is changing over time, often by using some graphical
representation such as graphs to plot the data. For example in an industrial
environment there is CitectSCADA [7] which can be used to monitor indus-
trial applications. There are all kinds of monitor programs depending on

3

the context but the common theme is to help the user interpret important
information and potentially detect any anomalies in the system or improve
the system. Monitor programs can also issue events in the form of warnings
or notifications either locally or remotely, so that the user does not have to
be present at all times. This project focuses on programs that monitors data
that is generated from an application or operating system.

1.2.1 System monitor programs

From a computer scientific view a system monitor program monitors the
resources of an operating system [8] whether it be, the states of the processes
currently in execution, the memory consumption, the network traffic history
or the workload of the CPU. A system monitor program displays, to name
a few things, the state of all processes currently being alive together with
their names and process ids, how much virtual and regular memory they
currently are using and their priorities. The state of a process is always
pending between running or waiting. Mostly a system monitor program is
used to verify the state of a process. In case of any problem e.g. a process
that has occupied to much of the computers memory the process can be killed
through the system monitor program.

The idea with a system monitor program is for the user to get a clearer
view of the operating system, and to some extent manipulating its resources,
for example starting and stopping processes. The user can with the help of
the system monitor program more easily analyze the efficiency of the system
and potentially improve it or/and detect strange behaviors. System monitor
programs can range from text based ones like htop, see fig. 1.1 for the Linux
system, to more graphical ones like Windows Task Manager, see fig. 1.2.

4

Figure 1.1: The system monitor htop for the Linux system

Figure 1.2: The task manager in Windows 7

1.2.2 Monitoring other applications

As previously stated a monitoring program can monitor just about every-
thing. This section will describe monitor programs that monitor other ap-
plications. Basically every application that provides some sort of statistic

5

data can be monitored. It really depends of what type of data there is if it
is going to be useful to the user or not.

An example is JConsole [15] (see fig. 1.3) a fairly simple monitor pro-
gram for Java programs that monitors the Java Virtual Machine. It displays
various information such as, number of threads currently running, number of
classes currently loaded, how much of the heap size available and how much
of it that is currently being used. This information can be used to observe
running Java programs, to detect memory leaks, which classes are used for
an application etc.

A slightly more advanced monitor program also for the JVM is VisualVM
[20] (see fig. 1.4) that in addition to the data mentioned previously has
features such as: how much time has been used for each method in the
program, which class type occupies most memory, and the option to perform
a heap dump. From the heap dump the user can see how many instances
of every class type that exists currently and the user can even examine the
classes instances to observe its data members. With the help of these kind
of monitor programs the programmer can write more efficient Java programs
which uses the possibilities of a multi threaded environment. A monitor
program can be used as an additional tool to the debugger. The monitor
program JConsole uses Java Management Extensions (JMX) which is an
API that provides information about the Java Virtual Machine. JMX is
written in Java.

6

Figure 1.3: JConsole

7

Figure 1.4: Visual VM

1.3 Poly/ML and functional programming

Poly/ML [1] is a compiler and run time system of the Standard ML language.
The user can either type in ML code for evaluation directly in Poly/ML or
load existing ML programs from files. Standard ML [2] is a modern imple-
mentation of the ML programming language, which is a functional program-
ming language popular among compiler writers and in the development of
theorem provers. The compiler is written in Standard ML while the run-
time system is written in C++. Poly/ML supports the 1997 Definition of
Standard ML (ML97) but also supports additional features, for example a
windows programming interface, a symbolic debugger, a C language interface,
and for this project: statistics information of running Poly/ML applications.

Functional programming [3] is a programming paradigm that leans heav-
ily towards functions, where the functions is more similar to that of mathe-
matical notations of functions compared to functions in imperative languages.
In a functional programming language such as ML, functions returns the out-

8

put solely based on the inputs, avoiding state changes from a global scope.
Functions should avoid side effects that is, only the parameters that is passed
to the function should determine the outcome of the function, not any ex-
ternal data which can be the case in an imperative programming language
like C++. Eliminating side effects can make it easier to predict the behav-
ior of a program and having immutable data types will make the programs
more thread safe, since an object once created cannot be altered later. How-
ever Standard ML is not purely functional, it allows for side effects but it
is common for programmers to avoid them. Some features of a functional
programming language includes pattern matching, type inference, immutable
data types and in some cases shorter code compared to imperative program-
ming languages.

1.4 Problem description

In version 5.5 of Poly/ML a new statistic feature has been introduced. During
run time the Poly/ML run time system offers statistic information that can
be retrieved by an outside source. This statistic data includes number of
running threads, size of the local heap, number of garbage collections etc.
This statistic data will help the programmer evaluate their programs and
make them better. For example if there is a high number of threads in a
program, that is waiting for a mutex, this will indicate that code sections
hold by the mutexes is too long and therefore should be reprogrammed.

The problem with this statistic data is that, in its current state, the data
is stored in memory as structures of the language C without any additional
descriptive data. Without inspection of the source code, this data is not
understandable. It is wanted to retrieve and show this data in a more clearer
way and using information about the statistics as it is provided by Poly/MLs
source code comments and documentation.

As a solution to this problem, this report presents a graphical monitor-
ing program that retrieves the statistical data from all the running Poly/ML
processes and displays it in a comprehensible and descriptive way, similar to
the JConsole and JVisualVM programs. This will give the users all the ben-
efits of having a monitor program when programming Poly/ML applications.
The application is written in Java and C++ for Linux and Windows 7 64 bit
and it is available for free as a repository on Bitbucket [6]. Mercurial [5] or
a similar tool can be used to retrieve the sources.

9

To develop a well designed and structured application Iterative and In-
cremental development (IID) [9] has been used for the software development
process. IID divides a project in a sequence of iterations where each itera-
tion consist of the steps: requirement analysis, design, programming and test.
The goal for an iteration is to release a stable and tested partially complete
program. As this project consisted of only one developer the IID proved to be
a good choice because it allowed to start creating a prototype which matched
only a subset of the initial requirements and the prototype was constantly
being refined with the steps described above. The requirement specification
was created together with the student and the supervisor.

The final product is to be verified by the supervisor and the reviewer.
One major application that could benefit through the use of this monitor
program is Isabelle, a generic proof assistant program, written in Poly/ML
and that uses multi threading for efficiency.

1.5 The statistic data available in Poly/ML

v.5.5

• Multi threading information

– Total number of threads

∗ The total number of threads that are currently running inside
of a Poly/ML process. Threads can be created and inter-
rupted by the Poly/ML process.

– Threads running ML code

– Threads waiting for IO

∗ Threads that are in a waiting state, waiting for IO (Input/Output)

– Threads waiting for mutex

∗ A mutex lets only one thread at a time execute a piece of code.
If the number of threads that are waiting for mutexes is high
it is an indication that the critical section, the code between
locking and unlocking the mutex is too long and should be
changed.

– Threads waiting for a condition var

10

∗ Condition variables are used in conjunction with mutexes to
implement long-term waits for some condition to become true.

– Special case - signal handling thread

∗ A special purpose thread that waits for Unix-style signals and
calls a signal handler registered using the Signal.signal func-
tion. There will almost always be one thread in this state
except when it is actually in the signal handler in which case
it will be ”running”. It is really included in the statistics only
to make the numbers add up.

– Number of full garbage collections

∗ Garbage collection is an automatic memory management im-
plementation. Whenever objects in the heap no longer are
used by any process running, the garbage collectors purpose
is to find and delete those objects to free up space in the heap.

– Number of partial garbage collections

∗ Partial (sometimes called ”minor”) GCs are fast collections
which sweep up all the currently live cells created since the
last partial collection and add the cells into a reserved area of
the heap. Each partial collection adds more data to this area
so periodically it is necessary to run a full (”major”) garbage
collection. This is more expensive than a partial collection
but removes any cells that are now no longer accessible.

• Memory statistics

– Total size of the local heap

∗ The heap is a place in memory where all the variables created
or initialized at run time are stored. The heap is local to a
Poly/ML process.

– Space free after last Garbage collection

– Space free after the last full Garbage collection

∗ Indicates the effectiveness of the garbage collection. If the
free space after a full GC is too small this indicates that the
overall heap may need to be increased. Normally this happens
automatically but the user may limit the maximum heap size
by command-line arguments to Poly/ML.

11

– Size of allocation space

– Space available in allocation area

∗ The allocation area is the part of the heap where cells are
allocated initially. As an ML program runs the space available
will decrease until a GC is triggered. The partial GC empties
this area by copying live cells into the longer-term area of the
heap.

• Timer data

– System and user times for the garbage collector as well as non
garbage collections.

• User counters

– User counters are there to allow for an Poly/ML application to
record information along with the real time statistics data. The
programmer could record the number of some objects that has
been created to be able to observe it in the statistic data.

12

Chapter 2

Design

2.1 The software process

2.1.1 Iterative and incremental software development

Iterative and incremental software development [9] (see fig.2.1) is a founda-
tion where several software development methods are built upon, including
Scrum, Extreme Programming, Unified Process and Evo to name a few. IID
and its extensions are called agile methods, where agile means for the devel-
opers to be adaptive to incoming changes in the project during the complete
lifetime of the project.

The common theme of the IID methods is that a projects lifespan is
divided into several iterations in sequence. Each sequence is in itself a small
contained mini project, in which there are several steps similarly to the steps
in the waterfall [9] model. The goal for an iteration is to release a stable and
tested partially complete program which will then be evaluated by the client
together with the developer. This allows for creating a prototype that in the
beginning matches only a subset of the initial requirements and where the
prototype later is constantly refined and extended for every iteration.

The benefit with IID is that errors can be found early in the project due
to the prototype being a full workable part of the finished application and
can therefore be thoroughly tested before continuing with the project. This
technique is called Tracer Bullets [10] that is; get a fully working program
from back end to front end without bothering to specify the complete system.
Get it to work as a small program and work from there. With IID the cost
of errors is at minimal even if these are found late in the project, because the

13

errors are much more likely to fixed in later iterations, as opposed to a water-
fall type of project where the implementation part already is done. Because
of that the IID methods are agile processes and uses adaptive (evolution-
ary) planning. This means that the planning of the project can adapt when
more information about the project accumulates in contrast with predictive
planning (in waterfall models) where all the planning is in the beginning and
cannot change. Further drawbacks of the waterfall model is that often when
the clients sees the product develop they change their minds and/or they
have difficulty in the beginning of the project, stating what they want and
stating all they want. Another drawback is the risk profile of the waterfall
model. The longer the project goes on the higher the risk is to successfully
tackle any problems should they arise. In the light of these drawbacks of the
waterfall model, the agile methods seems all the more appealing.

2.1.2 The methods of IID

Scrum is the most popular method today, with daily team meetings called
sprint meetings and self organizing teams. Scrum promotes autonomy during
iterations, which means that no stake holders (clients) from the outside can
change in the requirements during an iteration. Extreme programming fo-
cus on unit tests, pair programming, code revisions and oral communication.
Unified process focuses on the riskiest requirements and try to get them done
first, so called risk driven development. The thing that these methods has in
common is that they all promote adaptive development, that is, under the
projects lifetime, either adapt to the clients wishes when they arise and/or
adapt to changes from an external source, for example new technologies avail-
able on the market.

This project has used a software development process that closely resem-
bles that of the IID methods. The steps used in an iteration are requirements,
design, programming, testing and evaluation and each iteration is approxi-
mately 1 week. Many ideas from the agile methods have been used including
risk driven development, adaptive development, oral communication, auton-
omy during iterations etc. The benefit of an iterative process for this project
has been weekly evaluation meetings with the supervisor, where a prototype
has been evaluated and tested, with new requirements added or changed.

14

Figure 2.1: Iterative and incremental development

2.2 Interaction design

2.2.1 Who are the users?

The users of this application will be people with a lot of computer experi-
ence, most likely software developers, since they will know how to program
in the ML language and use Poly/ML. This application will be a tool for the
developer to use in his work. The interface will consist of a window environ-
ment, mostly used today for programs on the computer, with commonly used
features such as buttons, toolbars, menus and drawn graphics. As the user is
experienced in computers this will prove to be reasonable. The appropriate
appearance of the interface is also based on what statistics data there is.

It is assumed that the user knows about the Poly/ML language, its multi
threading features and a little more advanced “under the hood“ features of
a programming language for example garbage collection. The user will be
very experienced with the computer for interaction with the software, with
the mouse and keyboard working as input and the screen as output. As this
is a monitor program the major part lies on the output, but there will be
input where the user will store and save log files and manipulate what data
to be displayed.

15

2.3 Requirements

2.3.1 Validation and verification

Validation [11] means checking if the program does the right thing according
to the clients wishes while verification [11] often is used internally by the
programmer to verify that the program works without unexpected behavior.
Validation of the prototype in this project has been checked by the supervisor
after every iteration while the verification part has been performed by the
developer. During the project the design on a high level must hold both for
the customer or end user and also that the design of the program is internally
consistent.

The requirements has grown during this project with new requirements
being added at every iterations evaluation step. There are two types of
requirements, functional requirements and non functional requirements [12].
The functional requirements describes what the application should do and
the non functional describes what constraints there are on application as well
as the software development process.

2.3.2 Non functional requirements

The application must run on the Linux operating system. Porting it to other
operating systems, could be future work. The application must be written in
Java, due to the fact that Java has better and faster tools for creating GUI
graphics. Poly/ML stores the statistic data as compiled C structs to memory.
Because of this the memory layout of the statistic data will be dependent
on the C compiler of Poly/ML, since different compilers handles C structs in
different ways. Since the Poly/ML statistic layout cannot be altered without
modifying its source code the requirement is for Java to read the C structs
in some way.

2.3.3 Functional requirements

• Continually poll data

– The application must constantly read (poll) the available statistic
data for every Poly/ML process that is running. There should be
a list of currently running processes, displayed with their process

16

ids, where the user can click to select which process data to show.
The statistic data should be displayed in graphs, one graph for
each value in the statistic data. With graphs the user can see
how an input behaves during the complete lifetime of a Poly/ML
process.

• Logging data

– When a process is finished it will disappear from the process list, so
a logging facility must be present for the user to store the current
data. This also requires an option to load previously saved log
files.

• Display the most recent data

– The graphs must not only display the statistics data arbitrarily
but also display the most recent data first. The system (current)
time on one of the graphs axis will let the user now when Poly/ML
generated this information. This will make it convenient for the
user to know at what time events happened during program exe-
cution.

• Adequate update frequency

– The statistics data must, as mentioned above, be read and dis-
played in real time during a regular time interval. An interval
of one second is feasible. If the interval is smaller there would
be an unnecessary amount of data time stamps to store for each
statistic value and the log files would be huge and therefore time
consuming to load.

• Flexibility of the sizes of the views components

– The components of the interface must be re sizable when the main
window size changes. It is a common future among desktop ap-
plications and it is widely supported by Java swing which uses
layout managers to do this. This will allow the user to enlarge the
window and the graphs when needed.

• Scrollable graphs

17

– As there could be thousands of values for each graph collected
during a run, they could not all possibly fit in each graph. For
example, if the application has been running for 12 hours and it
retrieves the data every second, that will mean 43200 time stamps
for each graph to display. As the sizes of the graphs are technically
limited to the width of the computer screens some option to scroll
back and forth through the graph data is needed. The monitoring
could go on for a long time, and old data values should not be
deleted just because they cannot fit in the graph.

• Selectable time ranges

– A requirement is to let the user choose different time ranges de-
pending on how much data the application has collected. The user
can zoom in or out on the data when needed.

• Display customization

– To prevent that the screen feels too cluttered with all the graphs,
the user must have an option to customize what data to show.
Some data could be of less importance for the time being, so the
user must have the option to hide that data.

• Keyboard short cuts

– To minimize the number of mouse clicks keyboard short cuts is a
requirement.

The projects requirements should follow principle 11 of the Agile Princi-
ples which states that simplicity is essential, that is, do the simplest thing
that could possibly work [9]. All requirements do not have to be known at
the start of the project, but the earlier they are known the better.

2.3.4 Tool kits used

The Java library Swing [13] will be used for the interface. The Java Swing
library is a platform independent class library to create graphical user inter-
faces (GUI) for a Java program that is recognizable to a large audience. It
supports for example buttons, menus, text fields in a window environment
and the components can easily be extended for customization. The free Java

18

library JFreeChart [18] is a class library that will be used to create and plot
time series graphs. These graph classes comes bundled with features such
as zooming, save graph as image and colors customization. This classes can
easily be extended and customized according to the needs of the application.

2.3.5 A sketch of the design

An important aspect for a monitor program is that it should show as much
information as possible to the user without being too cluttered. As few clicks
as possible is desirable and keyboard short cuts are a must. A well supported
feature in Java Swing is that the layout can be kept consistent even when
the window resizes. See fig. 2.3 for a sketch of the design.

Figure 2.2: A sketch of the design for the monitor application

2.3.6 Architectural design and Model View Control

The architectural design [11] is a follow up to the requirement specification.
While the requirements states what the program should to do, the architec-
tural design describes how it should do it.

19

A model-view-control (MVC)[14] based design will be used for the internal
design of this program. The MVC is used to separate the data (model) from
the user interface (view) with the controller handling the input. The model
consists of all the application data which then can be requested by the view
for representation. For examples this makes it easier to develop different
views for a model, or to change the model without affecting the view. It
is good to handle all the input from the user at one place and that is the
controllers job. The controller receives user input via the view and then
makes appropriate actions based on these inputs, often to update the models
data.

The reason for using MVC is to be able to work on the interface without
bothering with how the data gets there or working on the model knowing
that the interface wont be affected. More about the actual implementation
of the architectural design available in the implementation section.

Figure 2.3: Model View Control

20

Chapter 3

Implementation

3.1 How to get the data to monitor

3.1.1 How Poly/ML provides statistic data

Poly/ML is written in C/C++ and uses a C struct called polystatistics (de-
fined in polystatistics.h) as a container for the statistics data. The struct has
several arrays with integer values, where each element corresponds to a statis-
tics value of some kind. Each running Poly/ML process has a corresponding
struct filled with that process statistic data.

//The memory layout of the statistics data

typedef struct polystatistics {

unsigned long psCounters[N_PS_COUNTERS];

...

...

int psUser[N_PS_USER];

} polystatistics;

This structure is saved either in shared memory or in memory mapped
file in the file system depending on whether the operating system is Linux
or Windows.

21

3.1.2 How the data is provided in Linux

mmap [19] is a POSIX-compliant Unix system function that allocates a part
of the memory to be used by processes to read from and write to. mmap is
similar to malloc except that while malloc allocates a part of the memory at
a random address, mmap uses a file in the file system as an identifier for the
allocated part in the memory. If a process wants to read or write to this part
in memory it can use mmap with the path to the file as one of the arguments.
Other arguments needed with mmap is the size to allocate and some read
and write rules. mmap returns the starting address of the memory and the
process can start read or write to this memory.

Each polystatistics struct is memory mapped, using mmap, to one file per
running Poly/ML process, stored in the Linux $HOME/.polyml directory.
For example a running Poly/ML process with PID 23452 is saved as a file
with the name poly-stats-23452. To read these files the linux functions readdir
and opendir functions can be used to get the names of all files in the directory.
These names are then used with mmap to retrieve the start address of each
files allocated memory. The returned start address from mmap is casted to
struct polystatistics and can then be used by the process by just reading the
structs member values to obtain the statistics data.

3.1.3 How the data is provided in Windows

The windows.h functions OpenFileMapping and MapViewOfFile are used to
read from and write to a part in the page memory of the operating sys-
tem. Each Poly/ML process uses these functions to store its corresponding
polystatistics struct to memory, using its process id as an identifier for the
space in memory. To retrieve the statistic data for each Poly/ML process
the windows function CreateToolhelp32Snapshot is used to get all running
processes on the operating system. Then the processes are traversed, all the
Poly/ML processes are identified and their process ids are stored. With the
process ids the OpenFileMapping and MapViewOfFile can be used to read
the memory spaces allocated for each Poly/ML process.

3.2 Java and JNI

Although it is easy to retrieve the data with C code, how to make the Java
code read that memory to display it in the GUI, when it is stored as a C

22

struct? One unreliable option is to try and read the C struct from Java using
the class DataInputStream or similar. This technique reads from the memory
directly cell by cell. Unfortunately, because of the C standard which does
not enforce padding or aligning members of a struct each struct may end
up different in memory between different compilers. The C compiler may
rearrange the members of the struct and when Java reads the cell in memory
expecting a certain statistic value it may end up getting a totally different
one. Different compilers will also perform padding differently. Padding is
adding extra space in memory between struct members. Even if the memory
can be read satisfactory with Java on one machine, it is not portable. If the
members of the C struct were to be saved to the memory in some order one
at a time without using a struct, and then read with Java this would then
be portable. Another option that let Java read C structs from memory is
for Java to execute native code (in our case C++) to successfully handle the
data structs and then transform the data for Java to read.

Java Native interface [16] is a method that lets the user integrate native
languages from within Java code. This can be useful if you want to run for
example a C module for performance reasons and then get some data from
the C module to your Java program, or maybe there is a huge library of C
files that there is no time to rewrite into Java which which then can be used
by native code instead. In this project C++ code will retrieve the statistics
data that has been stored in a C struct in the memory file, and send the data
back to the Java code.

3.2.1 The usage of JNI in this application

1. In the class ReadStat, the method writedatatofile is declared with the
keyword native and this method is the link between Java and the C
code. Once this method is called the native code will be executed. The
System.loadLibrary statement loads a shared library that contains the
compiled native code.

//Readstat.java

class ReadStat {

....

23

public native void writedatatofile();

try {

System.loadLibrary("ReadStat");

} catch (UnsatisfiedLinkError e) {

System.err.println("Native code library failed to load.\n" + e);

System.exit(1);

}

....

}

2. The command javah ReadStat is used to create a header file, that will
be referenced to in the native code. This header file will automatically
include JNI libraries and the declaration of the writedatatofile method.

//com_control_ReadStat.h

#include <jni.h>

....

//Declaration of the native method

JNIEXPORT void JNICALL Java_com_control_ReadStat_writedatatofile

(JNIEnv *, jobject);

....

3. Then the native method can be defined in the native code as

//writedatatofile.cpp

#include <stdio.h>

#include "com_control_ReadStat.h"

JNIEXPORT void JNICALL Java_com_control_ReadStat_writedatatofile

(JNIEnv *env, jobject obj)

{

// Native C code ready to be executed!

}

24

3.2.2 Alternatives to JNI

JNA [17] is a class library that lets Java programs access native code without
the requirement to generate native headers with the javah command. The
JNA class library uses native functions allowing code to load a library by
name and retrieve a pointer to a function within that library. The developer
uses a Java interface to describe functions and structures in the target native
library. However with JNA for this project, it is still required to compile
shared libraries from the native code to be used by Java. Because of the
little amount of native code required for this project (only one function call)
it makes little difference whether to go for JNI or JNA.

3.2.3 Portability issues

Java code is compiled into byte code which are then interpreted by the Java
Virtual Machine. The benefit with this is that a Java program can run on
any system that supports Java as opposed to C++ where the compiler needs
to compile versions for every system. A benefit with native code is that
it often runs faster. Because the Poly/ML source code is unmodifiable for
this project the requirement of JNI is forced even though this will loose the
platform in dependency.

3.3 The architectural design

3.3.1 The JNI and Java communication

The method writedatatofile returns nothing, instead it retrieves Poly/MLs
statistic data, using the methods described in above sections 3.1.1 and out-
puts it to a plain text file. Once that is done, the Java code can read this file
using common file processing tools. It is the controllers job to execute the
writedatatofile method at regular time intervals, to obtain a new version of
the text file, read the text file with the statistics data and send the data to
the model. The changes in the model is immediately reflected in the view.

In fig. 4.1 the layout of the programs architectural design is shown where
native and Java code is clearly separated as well as model, view and control.
Here the compiled shared library is communicating with the Java source
through the use of JNI. The reason for using a text file is that it is simple,
and there is no need to create JNI specific Java objects in the C++ code to

25

return to the Java side. Instead we rely on purely C++ code on the native
side.

Figure 3.1: Layout of the native and JAVA communication

3.3.2 The class layout

The classes are divided into three groups, controller, view and model accord-
ing to the MVC design paradigm. The MainControl class receives the user
actions and depending on them, updates the view and/or manipulates the

26

model classes. It is also polling statistics data from any running Poly/ML
processes during regular intervals.

The model classes are basically containers for settings of the application
that needs to be stored during run time. The ProcessListModel class stores
which Poly/ML processes that are running and the ProcessList class in the
view shows the processes in the list. The ProcessStat class contains a time
stamp of the statistics data for all Poly/ML processes and is used by the
controller to update the graphs. ProcessDisplay stores which graphs to be
displayed on the screen and ProcessStatLogger logs data to temporary log
files during run time. When user wants to save a log file, the data in the
temporary log files are used.

In the view group the MainWindow class is the window frame, with the
menu bar and title bar. The MainPanel is basically a canvas where the other
two ProcessList and ProcessGraphs classes are drawn on. ProcessGraphs is
a tabbed panel displaying all the graphs.

Figure 3.2: Layout of the most important Java classes

27

Classes Lines of code
ActionContainer 446

ProcessStatLogger 320
Graph 283

ProcessGraphs 256
MainControl 241
MainWindow 144

TabbedGraphPanel 168
ProcessViewFrame 156

MainPanel 142
ProcessDisplay 135

ProcessListModel 134
ReadStat 126
Statistics 105

CustomButton 103
ProcessList 78

GraphPanelGroup 63
ProcessStat 57

Main 23
Total 2980

3.3.3 Testing

During the implementation part testing has usually been performed by us-
ing debuggers and extensive user tests performed by the developer. Due to
this project’s small size, special unit tests where not considered necessary,
although the Extreme Programming method would recommend it. In the
Java code, whenever bugs and errors occurred, the Java debugger jdb was
used to find the cause of the problem. The application had to run for a long
time monitoring sample ML programs and was checked for memory leaks and
potentially faults reading the statistic data. The application was evaluated
when monitoring several running Poly/ML programs that executed threads,
to generate some dummy statistics data to read. The monitor program JVi-
sualVM was used to look for memory leaks and to observe that the right
amount of instances where running.

The native C code had to be tested in isolation due to the lack of de-
bugging facilities for JNI. When native code is executed in Java code and
an error happens, there is no information from the JVM where the error is,

28

just that the error has happened somewhere inside the native code. This
is a serious drawback. Luckily the only communication between Java and
the native code is only one function call so the native code can be tested in
isolation by a C debugger before connecting it with Java. The native code
also writes the statistic data to a text file, which can easily be examined
for correctness. After each iteration user tests have been performed by the
supervisor to evaluate the requirements of the program.

29

Chapter 4

Result

4.1 Conclusion

All of the requirements set up in the requirement specification were met due
to the use of IID. In the evaluation part of every iteration more requirements
were added as old ones were met. This is a part of the adaptive planning in
the agile strategy.

One requirement was that the program should always be reading and
displaying statistic data. The application continually polls any information
available of running Poly/ML processes until the user terminates the pro-
gram. If a Poly/ML process starts it is immediately shown in the applica-
tions process list available to click on. If there are only one process running
that process statistic data is shown, otherwise user can choose to click on
any currently running process in the list to show the most recent statistic
data in the graphs which was a requirement.

The update frequency is every second which was a requirement, however
no option exists to allow the user to edit it. The application has a logging
facility due to the requirement, which lets the user save the data, that has
been observed during the Poly/ML monitors up time, to a log file. The main
view consists of a list of all the current Poly/ML processes that are running
on the system and a tabbed graph pane of the currently selected process’s.
The tabbed pane is divided into four main categories.

An option to set the time range is provided so that more or less data points
can be shown in the graphs. If the user wants to see previously recorded data
that does not fit in the graph there is the option to scroll through the time

30

range of the graph, for example to watch data values from a previous time.
These two options fulfill the time range and scrollable graphs requirements.

In the menu bar there are the menu items File, View and Help. The File
menu provides options to save the currently collected data of a process to a
file which can be opened for later inspection. The View menu lets the user
set various view settings i.e. what data to show, which was a requirement
called display customization. There is support for keyboard short cuts for
easier access to the menu options. The window is resizable to let the user
see more graphs.

Figure 4.1: The final application: a Poly/ML monitor application

4.2 Discussion

The purpose of this project was to find a way to retrieve and display the
statistics data available for the Poly/ML run time system. In its previous
state of Poly/ML no such way existed because the format of the statistic
data was stored in memory as structures of the language C. This project has

31

aimed to solve this problem and the solution is a tool, a monitor program
that grabs this previously unreadable statistics data and transforms it into
graphs with descriptive headers clearly stating the meaning of each data
value. The application tries to monitor the statistic features of the Poly/ML
environment in an easy to use program that resembles many of the monitor
programs that exist today and where some of them are described in section
1.2.

This application will help ML programmers using Poly/ML to evaluate
their programs and write more efficient code. It will be an additional tool
together with Poly/MLs debugger to detect faulty behaviors of programs es-
pecially memory and thread issues. Potentially memory leaks, an ineffective
garbage collection or too many threads sharing some memory leading to an
ineffective program could all be derived from the monitor program. The
programmer must by himself understand and interpret the available statistic
data to be able to make the correct actions. With this tool it will make the
programmers job much easier. As an additional feature Poly/ML provides
the option for the programmer to create his own statistic data which will
add more usage flexibility. For example a programmer can store the count
of some objects that he is created during run time and this will immediately
be displayed in the monitor application.

This project used a software methodology that closely resembled the it-
erative and incremental development method. As IID is a broad field with
various extension methods (Scrum, XP), this suited fine, since this project
was only a 10 week project and using Scrum for instance would be overkill.
The benefits of IID in general was the iterative process and prototyping. For
each of the four weeks during implementation, the application went through
design, implementation, test and evaluation. The idea to create a small
working prototype in the beginning, that constantly was incremented as re-
quirements where added is close to how the agile methods work. After each
iteration (end of week) the application was evaluated with the supervisor to
get the most important and riskiest requirements done first. An example
of a risky requirement was getting the application to read and display one
single statistic value for one Poly/ML process only. Once that was achieved
more functionality was added, such as support for more statistics data and
the handling of multiple running Poly/ML processes.

The technique of JNI was used, because the statistics data provided by
Poly/ML was hard coded in C structures. This led to the drawback of not
using only Java code, which would have been preferable because of Javas

32

write once, run everywhere motto. There are possibilities to read the mem-
bers from a C struct from Java but it proved unreliable, since C compilers
stores the structs differently on different compilers as well as on different
architectures. If these problems are fixed this application would be an even
nicer addition to the Poly/ML distribution.

33

Chapter 5

Future work

5.1 Further portability

Even though this project fulfilled the requirements in the requirements spec-
ification there is always ways to improve the application in the future. Cur-
rently the application has support for the platforms Linux (32 and 64 bit) and
Windows 7 (64 bit) but should also have support for Mac OS X, Windows 8,
Windows Vista and so forth. For the application to work with different archi-
tectures, the native code (C++ library) that Java uses, needs to be compiled
for each of the architectures and shipped together with the Java classes. In
Windows 7 64 bit, for example, a DLL-file need to be compiled for a 64 bit
architecture together with the headers that the DLL-file requires. For the
application to use native code, this is a drawback, as pointed out earlier in
the discussion section, compared to using pure Java which can be run on any
system as long as there is a Java Runtime Environment available.

5.2 Pure Java?

Because of the issues with native code in Java there would be a major im-
provement if the statistic feature was saved in some other way by Poly/ML
other than hard coded C structs. A suggestion for the next version of
Poly/ML could be saving the data to a simple text file. Now Poly/ML
writes to the statistics memory whenever something happens, for example a
new thread is created and this is of course more efficient than opening and
writing to a text file whenever something happens. To be more efficient with

34

a text file there could be a separate process polling the statistic memory and
outputting a simple text file every second or so. A text file would solve the
portability issues regarding the java program. A text file is simple and almost
every programming language has techniques for reading text files. Then this
application could be pure Java without any native code.

5.3 Maintenance issues

As a part of the descriptive information of the Poly/ML statistics data is
hard coded into Java, future changes of the Poly/ML statistics data require
changes in the monitor application source as well. The reason for this is that
the descriptive strings, that describe the data, for each statistics value is
hard coded in Java. If these descriptions could be implemented in Poly/ML
instead, retrieving and showing this data could be more automatic.

5.4 Improvements

The application could benefit from the following future improvements.

• Additional configurable display of process data.

– Drag and drop to sort the graphs in a window.

– Possibility to create new tabs in the tabbed panel and drag graphs
there.

• Have an option to show multiple series in the same graph.

• The application could notify the user when some value goes under or
above a certain threshold. This could occur either remotely through
the means of for example mobile text messages or occur locally on the
computer.

• Currently the statistic data is retrieved every second. An option could
be to let the user choose the polling interval, by selection between a
couple of options. This would also need the graphs time axis to be
updated to a finer resolution than one second.

35

Bibliography

[1] Poly/ML [on-line] Available at http://www.polyml.org/index.html

[Accessed April 25, 2013]

[2] Milner R., Harper R., MacQueen D., Tofte M. The Definition of Standard
ML. The MIT Press, 1997.

[3] Bosworth R. 1995 A practical course in functional programming using
Standard ML. McGraw-Hill Publishing Co, 1995.

[4] Isabelle [on-line] Available at http://isabelle.in.tum.de/index.html
[Accessed April 25, 2013]

[5] Mercurial [on-line] Available at http://mercurial.selenic.com/ [Ac-
cessed April 25, 2013]

[6] Bitbucket [on-line] Available at https://bitbucket.org/ [Accessed
April 25, 2013]

[7] CitectSCADA [on-line] Available at www.schneider-electric.com [Ac-
cessed April 25, 2013]

[8] Nutt G. Operating Systems. Addison-Wesley Professional, 3rd edition,
2003.

[9] Larman C. Agile & Iterative Development. Addison-Wesley Professional,
1st edition, 2004.

[10] Hunt A., Thomas D. Agile & The Pragmatic Programmer - From jour-
neyman to master. Addison-Wesley Professional, 1st edition, 1999.

[11] Dix A., Finlay J., Abowd G. D., Beale R. Human-Computer Interaction.
Prentice Hall, 3rd edition, 2004.

36

http://www.polyml.org/index.html
http://isabelle.in.tum.de/index.html
http://mercurial.selenic.com/
https://bitbucket.org/
www.schneider-electric.com

[12] Preece J. Interaction Design - Beyond human-computer interaction. Wi-
ley, 1st edition, 2002.

[13] Zukowski J. The Definitive Guide to Java Swing. Apress, 3rd edition,
2005.

[14] Model View Controller [on-line] http://en.wikipedia.org/wiki/

Model%E2%80%93view%E2%80%93controller [Accessed April 25, 2013]

[15] JConsole [on-line] http://openjdk.java.net/tools/svc/jconsole/

[Accessed April 25, 2013]

[16] Java Native Interface [on-line] http://docs.oracle.com/javase/6/

docs/technotes/guides/jni/ [Accessed April 25, 2013]

[17] Java Native Access [on-line] http://en.wikipedia.org/wiki/Java_

Native_Access/ [Accessed April 25, 2013]

[18] JFreeChart [on-line] http://www.jfree.org/jfreechart/ [Accessed
April 25, 2013]

[19] mmap [on-line] http://en.wikipedia.org/wiki/Mmap/ [Accessed
April 25, 2013]

[20] Java Visual VM [on-line] http://visualvm.java.net/ [Accessed April
25, 2013]

37

http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
http://openjdk.java.net/tools/svc/jconsole/
http://docs.oracle.com/javase/6/docs/technotes/guides/jni/
http://docs.oracle.com/javase/6/docs/technotes/guides/jni/
http://en.wikipedia.org/wiki/Java_Native_Access/
http://en.wikipedia.org/wiki/Java_Native_Access/
http://www.jfree.org/jfreechart/
http://en.wikipedia.org/wiki/Mmap/
http://visualvm.java.net/

	Introduction
	Background
	Monitor programs
	System monitor programs
	Monitoring other applications

	Poly/ML and functional programming
	Problem description
	The statistic data available in Poly/ML v.5.5

	Design
	The software process
	Iterative and incremental software development
	The methods of IID

	Interaction design
	Who are the users?

	Requirements
	Validation and verification
	Non functional requirements
	Functional requirements
	Tool kits used
	A sketch of the design
	Architectural design and Model View Control

	Implementation
	How to get the data to monitor
	How Poly/ML provides statistic data
	How the data is provided in Linux
	How the data is provided in Windows

	Java and JNI
	The usage of JNI in this application
	Alternatives to JNI
	Portability issues

	The architectural design
	The JNI and Java communication
	The class layout
	Testing

	Result
	Conclusion
	Discussion

	Future work
	Further portability
	Pure Java?
	Maintenance issues
	Improvements

