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ABSTRACT

The end of Dennard scaling is expected to shrink the range
of DVFS in future nodes, limiting the energy savings of this
technique. This paper evaluates how much we can increase
the effectiveness of DVFS by using a software decoupled
access-execute approach. Decoupling the data access from
execution allows us to apply optimal voltage-frequency selec-
tion for each phase and therefore improve energy efficiency
over standard coupled execution.
The underlying insight of our work is that by decoupling

access and execute we can take advantage of the memory-
bound nature of the access phase and the compute-bound
nature of the execute phase to optimize power efficiency,
while maintaining good performance. To demonstrate this
we built a task based parallel execution infrastructure con-
sisting of: (1) a runtime system to orchestrate the execu-
tion, (2) power models to predict optimal voltage-frequency
selection at runtime, (3) a modeling infrastructure based on
hardware measurements to simulate zero-latency, per-core
DVFS, and (4) a hardware measurement infrastructure to
verify our model’s accuracy.
Based on real hardware measurements we project that the

combination of decoupled access-execute and DVFS has the
potential to improve EDP by 25% without hurting perfor-
mance. On memory-bound applications we significantly im-
prove performance due to increased MLP in the access phase
and ILP in the execute phase. Furthermore we demonstrate
that our method can achieve high performance both in pres-
ence or absence of a hardware prefetcher.

Categories and Subject Descriptors

C.0 [Computer Systems Organization]: System archi-
tectures
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1. INTRODUCTION
Power efficiency has become one of the most important

design parameters for hardware, due to limited battery run-
time on mobile devices and energy cost on data-center servers
and supercomputers. Dennard scaling [2], however, can no
longer provide us with constant power density per device,
due to the exponential increase of leakage power at lower
voltages. As a result, the effective voltage range available
for dynamic voltage frequency scaling (DVFS) is expected
to shrink in future technology nodes [8]. This undermines
DVFS, which has been one of our most powerful techniques
to reduce power consumption, due to its quadratic energy
savings for at most linear performance degradation. Since
the effectiveness of DVFS is threatened by the inability to
significantly scale voltage, we must shift our attention to
the non-linear relationship between frequency scaling and
performance1 in order to improve DVFS efficiency.

DVFS techniques try to exploit this non-linear relation-
ship in memory-bound programs to reduce power consump-
tion without affecting their performance [10]. This is possi-
ble because such programs spend much of their time wait-
ing for memory, and are therefore insensitive to frequency
changes. In such cases we can expect an improvement in
power-efficiency metrics such as EDP or ED2P from re-
ducing the frequency. However this is only feasible for pro-
grams which are predominantly memory-bound. In most
programs, although there are considerable opportunities to
scale frequency while waiting for memory, we are unable to
benefit from DVFS because memory operations are inter-
spersed with (or tightly-coupled to) arithmetic computation,
whose performance is tied to frequency.

In such programs, optimal DVFS could be achieved if on
a cache miss we could instantly scale down the frequency
and instantly scale up after the miss is resolved. Unfortu-
nately, the transition latency for modern CPUs is prohibitive
(2000 nsec for the hardware alone), which makes it impossi-
ble to apply DVFS at an instruction granularity. The com-
mon approach today is to apply a global frequency based on
the overall application behavior, which is far from the op-
timal in many cases. A better approach would be to apply

1Power ∝ ACfV 2 where C is the load capacitance, V is the
supply voltage, A is the activity factor and f is the operating
frequency. AC is referred as effective capacitance Ceff . The
relationship between frequency (f) and performance highly
depends on the application memory behavior and can range
from highly correlated (computation-bound) to uncorrelated
(memory-bound). This also creates a non-linear relationship
between power consumption and performance.



Figure 1: Example of coupled execution under different core frequencies (a,b and c) and decoupled execution (d)

DVFS at a finer granularity than the whole program but
coarser than that of a few instructions. If program execu-
tion can be divided into distinct phases with homogeneous
memory behavior, then the optimal frequency for each phase
can be predicted separately [16]. The finer the division, the
more effective the DVFS can be (in practice there is a limit
due to the DVFS transition latency that adds overhead).
Thus in any execution model where memory operations are
tightly coupled to arithmetic computations we can only hope
to exploit a fraction of the potential DVFS benefit.
To attack this problem, we propose a software decou-

pled access-execute (DAE) model [15] in combination with
guided DVFS. We execute programs as a series of tasks,
where each task is split into two fine grain phases: access
(data prefetching) and execute (original computation) where
the execute phase is scheduled for immediate execution af-
ter the access on the same core. The key idea is that de-
coupling data access from computation allows us to make
different voltage-frequency decisions for each phase (access
vs. execute). The access phase prefetches the data, which
transforms most cache misses into hits for the execute phase,
thereby improving performance of the latter. The access
phase spends only a small fraction of its time computing ad-
dresses and most of its time waiting for data from memory.
As a result it is not affected by core frequency, and we can
therefore run it at minimum frequency to save power with-
out hurting performance. In the execute phase most of the
cache misses have been eliminated by the prefetching be-
havior of the access phase. Minimizing stalls on the execute
phase makes highest frequency the best fit in terms of EDP.
Figure 1 demonstrates an execution example of coupled

(CAE) vs decoupled (DAE) execution. Diagrams 1a, 1b
and 1c show coupled execution under different frequencies,
while 1d shows decoupled execution. In any execution model
the main source of power inefficiency are the stalls because
the processor is spending power waiting for memory. These
diagrams show how coupled DVFS methods tries to elimi-
nate stalls and thereby improve power efficiency. Stalls are
created when computation cannot hide long miss penalties.
Reducing the frequency slows computation down making it
overlap more miss penalty and reduce stall length. Figure
1a shows coupled execution at the highest frequency. Al-
though this execution is the fastest available, it is also the

least power-efficient due to the energy wasted running the
processor at full speed while waiting for DRAM.

DVFS can significantly improve efficiency by scaling down
frequency-voltage to save power as shown in Figure 1b. Scal-
ing down frequency will make the execution intervals be-
tween stalls longer but because miss penalty overlaps with
execution the total execution time remains unaffected until
they are fully overlapped. In the case shown in Figure 1c
the execution has been unnecessarily slowed down because
the execution interval becomes longer than the miss penalty.
Additionally, although the stall from the first miss was suc-
cessfully removed the second miss could not be overlapped
by a long computation interval. This demonstrates the in-
ability to choose a global optimal frequency when accesses
and execute are interleaved which is common in nearly all
applications.

Figure 1d demonstrates decoupled execution to solve this
problem. In this case we prefetch data into private caches
during the access phase and therefore avoid most cache and
TLB misses in the execute phase due to this prefetching be-
havior. Decoupling can transform and split an interval of
instructions in two phases: one purely memory-bound (ac-
cess) followed by a purely compute-bound (execute). This
allow us to adjust program behavior to DVFS granularity,
exploiting more efficiently memory slack by reducing the fre-
quency when waiting for memory and benefit from the future
CPU DVFS capabilities.

Obtaining good performance on modern CPUs requires ef-
ficiently parallelized, and scalable, code. For this reason our
work focuses on parallel workloads. An important question
that arises is how to implement a decoupled access-execute
model for parallel programs. For this, we turn to task-based
programming models, which lead to an elegant solution for
implementing DAE. In a task-based programming model,
parallelism is expressed through tasks that can be sched-
uled independently. In our approach a task is defined as
a function and because of this, we can easily replicate and
transform each task into an access and an execute phase.
We do this the simplest way possible: the access phase of
a task is the task without any computation or data stores
(e.g., just address calculation and loads), while the execute
phase is the original unmodified task. Although this leads
to redundant execution of all address calculations and mem-



ory access instructions, it requires minimal programmer or
compiler effort.
The task-based model affords us considerable latitude in

exploring decoupled access-execute. By controlling the input
data size of the tasks we control the granularity of prefetch
and DVFS. Thus, we can amortize the DVFS overhead with
how much data we can prefetch into the cache during the
access phase. We perform our experiments on state-of-the-
art systems using accurate, fine-grain, power measurements
taken directly from the processor power rails and project the
results as if we had instantaneous per-core DVFS. We are
restricted to this approach because state-of-the-art CPUs
do not yet feature on chip voltage regulators [11] to enable
low-latency, per-core DVFS [12]. Our work shows that de-
coupling access from execute can improve the effectiveness of
DVFS and achieve performance comparable to CAE at max
frequency and at the same time maintain optimal EDP.

2. RELATED WORK
The idea of decoupling access from execution was initially

proposed by Smith [15] in 1982. In his approach the exe-
cution units were unaware of address calculation and were
only capable of performing an arithmetic operation on the
next available operands. The use of hardware prefetchers in
modern architectures to hide memory latencies has a similar
effect. Kamruzzaman et. al. [9] presented a technique to par-
allelize the memory accesses of single-threaded applications,
using a decoupled approach with helper threads to specula-
tively prefetch data. The goal was to reduce execution time
compared to the sequential execution with minimal compiler
or programmer effort. This approach suffers from reduced
efficiency compared to parallel execution because they par-
allelize only the memory accesses (up to 60% speedup using
4 cores), at the cost of linear power increase when enabling
cores (up to 4x power consumption).
Similarly Ibrahim et. al. [6] demonstrate the benefit of a

slipstream execution on multiprocessor systems. Keramidas
et. al. [10] presented tools and techniques for efficient DVFS
on coupled execution while Spiliopoulos et. al. [16] further
improve that work and embed it in the Linux kernel, using
performance monitoring unit (PMU) based models to detect
and scale voltage-frequency on application phases. In our
approach, instead of trying to adjust DVFS granularity to
program behavior we modify program behavior to DVFS
granularity.

3. METHODOLOGY
Our experimental setup consists of (1) the runtime system

that handles parallel execution and profiling of workloads us-
ing coupled and decoupled execution, (2) applications with
manually created access phases, (3) a power model to esti-
mate per task-phase power consumption and simulate low-
latency, per-core DVFS, and (4) a hardware infrastructure
to verify the accuracy of the model.
As mentioned in Section 1 our method tries to exploit the

non-linear relationship between frequency scaling and per-
formance of memory bound applications (or phases). A pri-
mary prerequisite of our method is that we can reduce power
consumption by reducing the core frequency without com-
promising the available bandwidth from the main memory
(off-core). Thus, we can achieve optimal power savings with-
out any performance degradation in memory-bound phases

of the application. Figure 2 shows the aggregate bandwidth
delivered from the main memory under different access pat-
terns and CPU frequencies for Intel’s state-of-the-art pro-
cessors with the use of a parallel micro-benchmark we de-
veloped. Figure 2a shows that the aggregate bandwidth
remains unaffected under different core frequencies, which
suggests significant room for EDP improvement for memory
bound phases.

The worst performing pattern in Figure 2 is random, which
uses a random walk with distances mostly larger than a page.
In addition to cache misses it also causes TLB misses and
irregular accesses to memory pages. This pattern hardly
achieves 6GB/s aggregate bandwidth from all cores which is
85% lower than a sequential access pattern that can achieve
up to 11GB/s. The processor though has a peak band-
width limit of 21GB/s shared among all 4 cores. This is
approached by a linear access micro-benchmark using the
prefetcht0 instruction, which achieves up to 80% of the peak
bandwidth. Figure 2b shows the aggregate bandwidth un-
der different number of threads. We observe that bandwidth
scales sub-linearly up to 3 threads

3.1 Task parallel runtime system
The runtime system is responsible for the parallel exe-

cution, synchronization, scheduling, and load balancing of
tasks. For our experiments, the runtime also profiles time
and monitors hardware counter events per task using PAPI
[13]. In a normal execution the runtime selectively collects
statistics using sparse sampling for the IPC and the exe-
cution time of each task phase. This information is then
used by a power model (discussed in section 3.3) that pre-
dicts the optimal execution frequency for each task phase
based on previous execution knowledge of the same task.
The runtime can then apply the predicted frequency using
the cpufreq utilities [3] interface. Although the functional-
ity to DVFS each task phase independently is implemented
we cannot use it because current processors do not feature
per-core DVFS and their DVFS transition latency is too
high. We expect that this limitation will be addressed in
future processors. Our goal is therefore to predict the bene-
fits of applying DVFS to a decoupled program by using real
hardware measurements and model the expected power and
performance of per-core, low-latency DVFS.

In our runtime a task is a C/C++ function that can be
executed asynchronously by any active core in parallel. Each
task can have two phases: execute and (optionally) access,
where each one of them is expressed as a different function.
The runtime stores the function pointer(s) and the argu-
ments of the function(s) internally and schedules the task
for parallel execution. The task is executed as a single unit
by the runtime calling the access phase (if available) and
immediately after that the execute phase on the same core.
The scheduling of the task is a runtime decision that tries to
balance load across all cores. We also support manual bind-
ing of tasks to cores to enable application defined scheduling
policies.

The runtime uses a single (main) thread that issues tasks
to multiple queues that other (worker) threads poll. Each
active thread has a private and a shared queue to store
and schedule task descriptors. Load balancing is enabled by
work stealing of tasks through shared queues, while private
queues enforce local FIFO execution. The runtime supports
two synchronization primitives: barriers for global synchro-
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Figure 2: Measured memory bandwidth for Intel Sandybridge using DDR3 at 1333MHz for: (a) 4 threads at different core
frequencies, (b) different number of threads at highest core frequency. We need at least 3 threads to saturate bandwidth.

nization and point to point for synchronization across tasks.
Synchronization primitives and internal memory allocators
use lock free algorithms to reduce overhead. The runtime
is designed to have very low execution overheads with total
overhead per task of only 400 core cycles on Intel Sandy-
bridge CPU.

3.2 Generating access phase
The access phase serves to prefetch the data for the ex-

ecute phase into the cache. To create the access phase for
a task we remove all stores and arithmetic calculations and
keep only the loads and address calculation required for the
loads. Eliminating stores guarantees that there will be no
side effects from the access phase. To optimize prefetch-
ing we replace load instructions with the builtin prefetcht0
x86 instruction [7] because it does not stall instruction re-
tirement and does not require a destination register. This
explains why prefetcht0 can achieve higher bandwidth over
loads as shown in Figure 2. The access phase can prefetch
both loads and stores into the cache because both are mem-
ory accesses. However only loads can stall the pipeline which
makes them performance critical. Stores are less likely to
create stalls as they are buffered and therefore we don’t
prefetch them.
In our implementation we have to perform the address

calculation once for the access phase and once again for the
execute phase. The impact of this is to execute extra in-
structions compared to the initial coupled execution. In
terms of performance, the duplicate address calculation is
overlapped with the long latencies of prefetch misses thereby
reducing their impact. From an energy perspective increas-
ing the number of instructions executed on the core results
in a direct power increase subject to the linear equations
shown in Figure 3. In practice the IPC of the access phase
is less than 0.5 so it can affect power significantly less than
frequency scaling but still remains a source of inefficiency.
More sophisticated splitting of tasks to access and execute
phases can reduce or even eliminate redundant address cal-
culations and therefore improve our results but it is left for
future work.

3.3 Power Model
The fine-granularity of our approach (tasks range from

a few microseconds up to a millisecond) and the overlap-
ping of access and execute phases on different cores, prevents
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us from directly measuring per-task power consumption on
the hardware. Current power measurement infrastructures
(both integrated on-chip power sensors and external mea-
surement hardware) provide sampling periods on the order
of milliseconds. Furthermore, current hardware does not
provide per-core DVFS, with some machines having all cores
under a single clock domain (Intel) and others with multiple
clock domains but a single voltage domain (AMD). These
hardware restrictions are expected to change with the intro-
duction of on-chip voltage regulators [12] in future genera-
tions to support nano-scale DVFS [11].

To overcome these limitations, we employ an IPC-based
power model to estimate power consumption. This approach
enables us to estimate power consumption of any execution
interval, however short in duration. Our model is built by
measuring per-core dynamic power, and static power for the
whole processor (per-core static plus shared L3 power) using
multiple instances of the same workload running indepen-
dently on different cores. To measure the power consumed
by the processor we use the measurement infrastructure de-
scribed in [17]. We express static power Pstatic as linear
function of f, V for each number of active cores. To mea-
sure the static power we use a micro-benchmark with an
infinite loop and use nanosleep system call to run at an IPC
close to zero, while this minimum activity prevents the core
from entering a deep sleep state.



For the dynamic power (similar to [16]), we assume that
effective capacitance Ceff correlates linearly with the micro-
ops executed per cycle. As shown in Figure 3, we derive a
linear approximation to the effective capacitance by mea-
suring the power and IPC across SPEC2006 [4]. Having f ,
V and Ceff (as a function of IPC) we estimate per-core
dynamic power using Pdynamic = CefffV

2 equation. In a
parallel execution the total processor power is the sum of
the dynamic per-core power plus the total static power of
the processor.
To validate the accuracy of our model we compare the

total power estimate against the measured value for each
of the SPEC2006 benchmark suit (on all frequencies and
number of cores). For the SPEC2006 benchmark suit, the
average error is 3.1% while the maximum error is 9.1%2. For
the applications we use to evaluate DAE, the average and
maximum errors for estimating the total energy is 4.5% and
7% respectively. More accurate performance counter-based
models, such as those proposed by Spiliopoulos et. al. in
[17], could be used to improve accuracy. We have chosen
this model as it provides sufficient accuracy and requires
just a single performance counter event (for the instructions)
which is available in most architectures.

3.4 Putting it all together
The methodology described above for estimating power

consumption is necessary for quantifying the energy bene-
fits of our DAE programming model. Using this approach
we are able to overcome two key limitations of current hard-
ware, and thereby accurately estimate per task-phase en-
ergy. These two limitations are: 1) the inability to measure
per task-phase energy consumption due to its fine granular-
ity and the overlapping of different tasks access and execute
phases on different cores, and, 2) the inability of current
hardware to provide per-core, low-latency DVFS.
State of the art processors feature high overhead for fre-

quency and voltage switching (between 8 and 10 usec3), which
is prohibitive for applications that require fine-grain tasks.
In our workloads the average access-phase duration per task
is between 3 and 16 usec as shown in Table 1. Although our
runtime is able to DVFS each phase of a decoupled access-
execute task as discussed in Section 1, this overhead and the
lack for per-core DVFS support prevents us from using this
at runtime on current hardware.
To overcome the above restrictions and project our model

benefits to future processors we disable per-phase DVFS at
runtime and develop a model (Algorithm 1) to simulate zero-
overhead, per-core DVFS. For that we execute our workloads
both for CAE and DAE at all available frequencies and col-
lect detailed time and IPC statistics as provided by the
runtime. For time statistics we measure Taccess, Texecute

per task and the total execution time of the application.
For the IPC statistics we measure IPCaccess, IPCexecute

respectively. Additionally we measure the number of tasks
executed. Providing both time and IPC to our power model
we can estimate per-phase energy for any voltage-frequency
combination. Using profiling information for performance
and the results of the power model for energy we can accu-
rately estimate the benefit of our technique for future proces-
sors with low-latency, per-core DVFS. We also collect coarse

2The error shown in Figure 3 refers only to dynamic power.
Including static power to estimate total power can improve
accuracy since it is deterministic.

grain power measurements and compare the overall power
estimate of the model against them to verify its accuracy.

Algorithm 1 DAE overall methodology

for all f, V do
- Measure average T imeaccess (AV G(TA))
- Measure average T imeexecute (AV G(TX))
- Measure average IPCaccess (AV G(IPCA))
- Measure average IPCexecute (AV G(IPCX))
- Measure total execution time (Ttotal) and total energy
(Emeasured) and verify model accuracy

end for
Naive policy:(Access=fmin, Execute=fmax)

EA = PowerModel(AV G(IPC
fmin
A ))*AV G(T fmin

A )

EX = PowerModel(AVG(IPC
fmax

X ))*AV G(T fmax

X )
OptEDP policy:

EA = PowerModel(AV G(IPC
fopt
A ))*AV G(T

fopt
A )

EX = PowerModel(AVG(IPC
fopt
X ))*AV G(T

fopt
X )

The goal of the decoupled access-execute model is to pro-
vide optimal EDP efficiency through DVFS with minimal
performance degradation. For that we implement two DVFS
policies: (1) naive, where the access phase always runs at the
lowest frequency and the execute phase always runs at the
highest frequency, and (2) optEDP in which the runtime
intelligently adjusts the frequency of each phase based on
IPC and power model to obtain the best EDP. We expect
that the naive approach will keep total execution time very
close to the execution time of coupled execution at highest
frequency because the access phase performance is not af-
fected by DVFS and the execute phase runs at the highest
frequency. The EDP improvement for this policy is limited
to the energy we can save by running the access phase at
lower frequency. In memory-bound applications with irreg-
ular memory access patterns, the total execution time can
be reduced over coupled execution due to the accuracy of
software prefetching and the increased MLP4 in the access
phase, which leads to an additional EDP improvement.

In the optEDP policy the runtime tries to intelligently
DVFS each phase based on the power model, thus total
performance may be reduced because the execute phase is
allowed to run slower in order to improve overall EDP. Al-
though in the general case stores can not stall the execution
and the address calculation runs on such a low IPC that is
not affected by core frequency, there are some rare cases in
which the address calculation is very complex and a slightly
higher (than the lowest) frequency could improve EDP, or
stores have very irregular access pattern followed by TLB
misses and therefore a slightly lower (than the highest) fre-
quency could also improve EDP. As a baseline for our ex-
periments we use the original coupled execution at highest
frequency.

3The DVFS transition latency is 8 usec on AMD (Bulldozer)
using powernow-k8 driver and 10 usec for Intel (Sandybridge
and Nehalem) using acpi-cpufreq driver
4The use of prefetch{t0-t2} x86 instructions over normal
loads can increase effective bandwidth as explained in sec-
tion 3.2 and shown in Figure 2



Table 1: Application characteristics and task configuration.
%TA: Average fraction of the application’s execution time spent in
the access phase and TA(usec): Average duration of the access phase.

Application % TA TA(usec) Task Size(KB) Access Pattern
Cholesky 5.6 3.09 16 - 48 Tiled
LU 3.3 2.94 16 - 48 Tiled
FFT 10.5 15.89 16 - 128 Butterfly
LBM 51.0 7.94 38 Stream Collide
CG 43.0 3.38 32 Indirection
LibQ 56.9 2.94 8 - 16 Regular
Cigar 66.2 5.88 32 Indirection

4. EVALUATION

4.1 Evaluation framework
For the evaluation framework we ported and optimized us-

ing SSE three SPLASH2 [18] kernels: FFT, LU and Cholesky,
two SPEC CPU2006 [5] applications: 470. lbm and 462. lib-
quantum, CG from the NAS parallel benchmarks [14] and
CIGAR [1]. This set of benchmarks covers a wide range
of memory access patterns and behaviors, from compute-
bound (LU, Cholesky and FFT) to memory-bound (CIGAR
and libquantum). CG and LBM have an intermediate be-
haviour. Table 1 lists the behavior and configuration used
for the evaluation of the applications. Although there is a
large variation in the duration of the execute phase across
different applications (e.g., 87 usec for Cholesky and 4.5 usec
for CG), for the access phase the duration is mostly affected
by the data size and only slightly by the access pattern.

4.2 Performance/Energy Evaluation
Increasing parallelism in any class of applications can make

the application more memory-bound as it increases the rate
of requests to DRAM resulting in longer stalls per request
due to memory bandwidth saturation. This limits program
scalability. Our technique relieves the execute phase from
these stalls by prefetching data in the access phase. Since
in the access phase we use prefetch vs. load instructions, for
memory-bound applications we measure an average speedup
of 6.9% and 8.4%, for 2 and 4 threads respectively. The im-
provement in total execution time directly leads to a reduc-
tion in EDP. Additionally, decoupled execution gives us the
opportunity to lower the core frequency in the access phase
in order to further improve power efficiency.
Figure 4 demonstrates the benefit of decoupling using CG

as an example. In this figure we show time (left graph)
and energy (right graph) as a function of frequency and
core count. In each graph we show on the left half cou-
pled access-execute (CAE) at various frequencies (grouped
into a cluster) and core counts (3 clusters using 1,2 and 4
cores) and on the right half decoupled access-execute (DAE)
in a similar manner. The difference between CAE and DAE
is the following: while the whole program in CAE runs at a
specific frequency fk, for DAE this holds only for its execute
phase while the access phase runs at a constant minimum
frequency fmin. This gives rise to the following interesting
properties:
Time (figure 4 left): At fmin, CAE and DAE exhibit

almost same total time. As we scale frequency higher, time
in CAE and the execute phase of DAE shrinks. But time in
the access phase of DAE remains constant, since the access

phase is always executed at fmin. Yet, the total time of DAE
closely tracks (or even improves on) the total CAE time.
This is because memory accesses are inelastic to processor
frequency scaling regardless of whether they are tightly cou-
pled and embedded within execution or decoupled and sep-
arated from it. In other words, waiting for memory in CAE
and DAE costs the same and is not affected by scaling the
frequency. As a result, scaling frequency in the access phase
only marginally affects its time.

Energy (figure 4 right): Energy in CAE is propor-
tional to TfkV

2, for its whole execution, resulting in a steep
energy increase when fk increases. However, a significant
part of DAE execution, the access phase, has a constant en-
ergy, because it runs at constant frequency (fmin), costing
significantly less than the corresponding CAE part that is
interspersed throughout CAE execution. For DAE the total
energy is given by E

fmin
A +E

fk
X and it can be modelled with

the methodology described in Algorithm 1. If we were to
scale frequency in the DAE access phase in sync with the
execute phase we would observe the same steep increase in
energy as in the CAE case. It is this difference in the energy
increase, and the fact that access phase time is unaffected
by frequency, that gives the decoupled-access execute model
its advantage.

4.2.1 Understanding Performance

The result of DAE is to eliminate cache misses from the
execute phase, thereby improving its ILP and allowing it
to run with significantly reduced stall time in the pipeline.
This makes the highest frequency the more efficient selection
in terms of EDP for this phase. On the other hand, the
access phase is memory-bound which makes it performance
intensive to core DVFS, and therefore the lowest frequency
(or one close to that depending on the complexity of address
calculations) can be the optimal selection. Ideally the total
execution time for the naive DAE policy would be very close
to the original at max frequency.

Figure 5 verifies this assumption by showing the perfor-
mance degradation caused by DVFS on a coupled execution
and the benefit of decoupling access from execute using both
naive and optEDP policies. Figure 5a shows the results with
hardware prefetcher enabled while figure 5b shows the im-
pact of turning off the hardware prefetcher on Intel’s Sandy-
bridge processors. Normalization is performed using the ex-
ecution time of each application at highest frequency with
the hardware prefetcher enabled as baseline. In Figure 5a we
observe that the naive DAE without a hardware prefetcher
performs similarly, and in the cases of memory-bound appli-
cations significantly better, than a coupled execution at the
highest frequency.

The optEDP policy chooses the frequency that will achieve
the optimal EDP for each phase based on a brute force
search. The performance of this policy depends highly on
the application. It performs better when there are complex
address calculations in the access phase so that the opti-
mal EDP for that phase is achieved at a frequency slightly
higher than the minimum frequency. It performs worse than
naive when the optimal EDP for the execute phase is at a
frequency lower than the maximum. This happens in appli-
cations where writes are highly coupled to the execute phase
and able to stall the execution.

When disabling the HW prefetcher we observe that cou-
pled execution suffers from significant performance degra-
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Figure 5: Execution runtime of CAE and DAE for Intel Sandybridge using 4 threads. Baseline is coupled execution (CAE)
at maximum frequency with the hardware prefetcher enabled.

dation. An exception to this is cigar where the hardware
prefetcher cannot detect its irregular pattern and therefore
consumes bandwidth fetching unnecessary data which re-
duces performance. DAE performance on the other hand is
less susceptible to misbehavior of the hardware prefetcher
because the access phase accurately prefetches the data.
With the exception of cigar, all other applications perform
better when DAE is applied on a machine with hardware
prefetcher, mostly because the access phase of DAE can
provide hints to the hardware prefetcher and can therefore
improve its accuracy.

4.2.2 Understanding Stalls

The key idea of decoupling is to move the memory slack
from computation (execute phase) to a separate phase (ac-
cess) that we can run at lower frequency. Memory slack
is defined as the time that execution units are stalled due
to off-chip misses. To evaluate how effectively we decouple
real applications we need to measure slack in the initial pro-
gram. For that we need to be able to measure stall cycles in
the pipeline due to LLC misses. Unfortunately there is no
such hardware counter. Another approach is to use a miss
penalty approximation on all cache levels but it is rather
inaccurate due to speculative, out-of-order execution. To
overcome these limitations we use a combination of avail-

able hardware counter events, including stall cycles and hit
ratio at each level of the cache.

Figure 6 shows the percentage of stall cycles in the dis-
patch unit for CAE and the two phases of DAE. These re-
sults can (a) characterize how memory-bound each applica-
tion is and (b) how much of the stall time from coupled exe-
cution can be moved to the access phase in decoupled execu-
tion. Using Figure 6 we can characterize Cholesky, LU and
FFT as compute-bound because they spend most of their
execution time in coupled execution keeping the pipeline ac-
tive while the rest can be characterized as memory-bound.
We observe that for the compute-bound applications DAE
eliminates only a small amount of the stall existing in the
coupled execution. This is because these applications are
optimized using SSE which creates pipeline stalls that are
not associated with memory accesses.

For memory-bound applications we observe (a) small over-
all speedup of DAE over CAE and (b) significant amount of
stall time moved from CAE to DAE access phase which is
the reason for the energy savings achieved. This supports
our initial hypothesis that decoupling accesses and schedul-
ing them ahead of the computation can significantly reduce
stalls. The percentage of time spent on address calculation
(active(A)) is relatively larger for memory-bound applica-
tions. This can be either because the task duration on these
applications is significantly smaller than in compute-bound
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Figure 6: Percent pipeline stalls for CAE (left bar) and DAE (right bar) on Intel Sandybridge with 4 threads
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Figure 7: Hit ratio and IPC improvement of decoupled over coupled execution models with hardware prefetcher enabled.

applications (LibQ) or because the access pattern is more ir-
regular (cigar, CG). The key observation for memory-bound
applications is that the overall speedup derives from the re-
duction of the non-stall time of execute phase while the total
stall time including address calculation on the access phase
in DAE is higher compared to the total stall time in CAE.
Figure 6b shows the benefit of DAE without a hardware
prefetcher. In this case we observe that the total stall time
of DAE vs. CAE is reduced on every application, explaining
the performance improvement shown in Figure 5b.

4.2.3 Understanding cache behavior

The accurate software prefetching of the access phase im-
proves cache behavior of the execute phase for DAE ap-
plications. Figure 7a shows the impact on hit rate from
decoupling for each application. Decoupling eliminates off-
chip traffic during the execute phase in all applications. In
memory-bound applications it also manages to reduce off-
core traffic by better utilizing private caches. Therefore for
LibQ, LBM, CG and cigar we observe that a significant pro-
portion of L2 misses have been eliminated. Performance
improvements come primarily from the reduction of LLC
misses because their penalties cannot be hidden by out-of
order execution.

4.2.4 Improving ILP

In the previous section we have shown that DAE signif-
icantly improves the cache hit ratio of memory bound ap-

plications and eliminates most of the LLC misses from the
execute phase. This reduces stall time and increases the IPC
of this phase as shown in Figure 7b. For compute-bound ap-
plications such as LU, Cholesky, and FFT, we observe only
a slight increase in IPC followed by a small performance
improvement. For memory-bound applications, where we
eliminate more LLC misses and reduce unnecessary off-chip
traffic, we observe an IPC improvement ranging from 100%
to 500%. This explains the performance gain of the execute
active time, shown in Figure 6.

4.2.5 Improving MLP

The two previous sections explain the performance benefit
of the execute phase. For the memory bound applications,
the prefetch nature of the access phase can also improve
memory-level parallelism (MLP). This is because in coupled
execution, issuing of loads is limited by the size of the re-
order buffer and the number of independent loads present in
the reorder buffer. In decoupled execution, it is the prefetch-
ing queues (which are significantly larger than the reorder
buffer) that limit MLP. Moreover, in DAE execution func-
tion units are fully available for performing address calcula-
tions, which also contributes to the increase of MLP.

Increased MLP contributes towards the increase of band-
width utilization (as shown in Figure 9). Figure 2a shows
that there is a potential of 30% higher bandwidth by using
prefetch instructions over loads. To measure the bandwidth
demands of our workloads we use performance counters and
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Figure 8: EDP of CAE and DAE for Intel Sandybridge using 4 threads, normalized to CAE at maximum frequency
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measure off-chip requests. Figure 9 shows the total traffic
generated in each phase of each task on both CAE and DAE
executions. “Demand”is the traffic generated by LLC misses
and software prefetches while“total” includes the traffic gen-
erated also by the hardware prefetcher. Each triplet of bars
corresponds to an application. The leftmost bar refers to
coupled execution while the other two refer to access “(A)”
and execute “(X)” phases of DAE respectively. The increase
in traffic indicates that the access phase of DAE operates at
a much higher MLP compared to CAE.

4.2.6 Understanding Power Efficiency

Our method improves EDP by improving both execution
time (due to ILP improvement in the execute phase and
MLP in the access phase) and power due to DVFS in the
access phase. Figure 8 shows the EDP benefit of decou-
pled over coupled execution. In compute-bound applica-
tions there is limited opportunity for EDP improvement in
the range of 10% but both coupled and decoupled execu-
tions manage to deliver improvements. The advantage of
DAE is that it delivers this EDP benefit without any per-
formance degradation. For the memory-bound applications
DAE goes further and improves EDP by more than 50% in
some cases. On CG and Cigar there is major advantage of
DAE over CAE of 15%, mostly due to the performance gain.
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Figure 10: Simulation of future DVFS transition latency
using 4 threads for the average of memory bound vs compute
bound applications

On libquantum both CAE and DAE perform similarly while
on LBM, CAE delivers better EDP than DAE. The reason
is that decoupling helps only with the loads whereas LBM
is constrained by stores that are coupled with computation
in the execute phase which is amenable to DVFS. Thus, the
optEDP DAE policy in Figure 8a improves EDP and ap-
proaches the optimal CAE. A comparison of Figure 8a with
Figure 8b shows a significant contribution of the hardware
prefetcher to the EDP improvement of almost 15% in cou-
pled execution. Our method does not rely on the presence
of a hardware prefetcher and does not conflict with it, there-
fore we observe that in both cases we obtain an average EDP
improvement of 25%.

5. TOWARDS FUTURE PROCESSORS
As we explained in Ssection 3.4 our runtime is able to

DVFS each phase but the benefit is limited, mostly because
of the inability of per core DVFS on current processors. To
overcome this limitation we modelled zero overhead, per-
core DVFS. For that we use detailed time profiling measured
by our runtime on all possible core frequencies hardware
provides. We measure the number of tasks executed per
core and the average duration of each phase (access and
execute). Additionally we measure the overhead that the
runtime itself creates for scheduling and any possible idle
time created by application imbalances.



Having the number of tasks and the duration of each phase
allows us to simulate any DVFS transition overhead by sim-
ply adding that overhead as shown in Figure 10. For the
average of both memory and compute-bound applications
we observe that we lose EDP benefit when DVFS tran-
sition latency overhead is larger than 500 nsec. Memory-
bound applications are more promising for EDP benefit over
compute-bound that are also less affected by DVFS tran-
sition overhead. The reason is that the execute phase of
compute-bound applications is significantly larger than the
access phase with the DVFS overhead. Figure 10 also shows
the best (cigar) and worst (cholesky) applications behavior.
For the best application we observe that we lose the EDP
benefit of decoupled DVFS close to 1 usec which is double
than the average, while for the worst application we have
very limited potential for EDP improvement but also small
impact of DVFS transition latency.

6. CONCLUSIONS
In this work we explored the potential of DVFS for decou-

pled access/execute applications in a task-based parallel en-
vironment. For applications with irregular memory accesses
decoupling outperforms coupled execution both in terms of
performance and power efficiency. For the computation-
bound and moderately memory-bound applications, DAE
can achieve equal EDP improvements to coupled execution
at optimal frequency but without the trade-off of reduced
performance. Using models to predict optimal EDP per task
phase at runtime we can adjust the application performance
and EDP dynamically. We have shown that by decoupling
access from execute, a machine with low latency per-core
DVFS could achieve on average 25% EDP reduction with-
out sacrificing performance.
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