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Abstract
Grönbladh, A. 2013. Growth Hormone and Anabolic Androgenic Steroids: Effects on
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Growth hormone (GH) stimulates growth and metabolism but also displays profound effects on
the central nervous system (CNS). GH affects neurogenesis and neuroprotection, and has been
shown to counteract drug-induced apoptosis in the brain. Anabolic androgenic steroids (AAS),
mainly abused for their anabolic and performance-enhancing properties, can cause several
adverse effects, such as cardiovascular complications, sterility, depression, and aggression. GH
and AAS are both believed to interact with several signaling systems in the CNS. The aim of this
thesis was to further investigate the impact of GH and AAS on neurochemistry and cognitive
functions. Recombinant human GH (rhGH) and the steroid nandrolone decanoate (ND) were
administered, separately and in combination with each other, to male rats.

The results demonstrated that administration of GH improved spatial memory, assessed
in a water maze test. Furthermore, GH induced alterations of the GABAB receptor mRNA
expression, density, and functionality in the brain, for example in regions associated with
cognition. GH also altered the mu opioid peptide (MOP) receptor, but not the delta opioid
peptide (DOP) receptor functionality in the brain. Thus, some of the GH effects on cognition
may involve effects on the GABAB receptors and MOP receptors. ND, on the contrary, seemed
to induce impairments of memory and also altered the GABAB receptor mRNA expression in
the brain. Furthermore, ND lowered the IGF-1 plasma concentrations and attenuated the IGF-1,
IGF-2, and GHR mRNA expression in the pituitary. In addition, significant effects of GH and
ND were found on plasma steroid concentrations, organ weight, as well as body weight.

In conclusion, this thesis contributes with further knowledge on the cognitive and
neurochemical consequences of GH and ND use. The findings regarding ND are worrying
considering the common use of AAS among adolescents. GH improves memory functions and
affects signaling systems in the brain associated with cognition, hence the hypothesis that GH
can reverse drug-induced impairments is further strengthened.
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Introduction 

Growth hormone  
Growth hormone (GH) is an important growth-promoting factor that has 
been used to treat patients with GH deficiency (GHD) for many years. In the 
late 1980s and early 1990s, reports describing effects of GH on functions of 
the central nervous system (CNS) emerged and these effects are today well 
recognized, although not fully elucidated (Nyberg, 2000). GH is also known 
for its use in sports as a performance enhancing substance (Baumann, 2012).  

GH was first isolated from bovine pituitaries by Li and Evans in 1944 (Li 
and Evans, 1944) and from human pituitaries in 1956 (Li and Papkoff, 
1956). A few years later, a simplified method for purification of GH from 
the human pituitary was developed by researchers in Sweden (Roos et al., 
1963). Administration of GH to growth-deficient children was reported al-
ready in the late 1950s (Raben, 1957). During this period of time, the only 
available GH was extracted from human pituitaries. The treatment was ex-
pensive and only children with severe growth deficiency were treated during 
this period. In the 1980s, Creutzfeldt-Jakob’s disease was linked to the use 
of pituitary GH (Buchanan et al., 1991) and this led to a cessation of therapy 
with pituitary-derived GH. Luckily, during the early 1980s the cloning of 
GH cDNA was described and the first recombinant human GH (rhGH) was 
produced (Martial et al., 1979, Roskam and Rougeon, 1979). GH was now 
available in larger quantities and an increased number of clinical applica-
tions were introduced. 

The somatotrophic system 
GH, also known as somatotropin, is a polypeptide hormone mainly produced 
in somatotrophic cells in the anterior pituitary and released into the circula-
tory system. The predominant form of human GH consists of 191 amino 
acids and has a molecular weight of 22 kDa. Other molecular forms, for 
example a 20 kDa variant, also exist but these forms have all demonstrated a 
lower affinity for the GH receptor (GHR). GH induces the production of 
insulin-like growth factor 1 (IGF-1), a key mediator of GHs actions. Other 
members of the somatotrophic system, also mentioned as the GH/IGF-1 
axis, include the insulin-like growth factor 2 (IGF-2), IGF receptors, GH 
binding proteins (GHBP), IGF-1 binding proteins (IGFBP), somatostatin, 
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and GH releasing hormone (GHRH). Downstream, but also connected to the 
GH/IGF-1 system, are ghrelin and the GH secretagogue (GHS) receptor.  

The secretion of GH from the pituitary is primarily regulated by two hy-
pothalamic peptides, the stimulating GHRH and the inhibiting somatostatin 
(Figure 1). Mammalian GH is secreted in pulses, with GH peaks occurring 
every 3-4 h in rats (Tannenbaum and Martin, 1976) and the interplay be-
tween GHRH and somatostatin is suggested to control this pulsatile secre-
tion (Tannenbaum and Ling, 1984, Plotsky and Vale, 1985). However, the 
secretion of GH also involves several other factors regulating the release at 
different levels. GH controls its own secretion by a short feedback loop act-
ing on GHRH and somatostatin, or possibly directly on the somatotrophs in 
the pituitary (Asa et al., 2000). In addition, IGF-1 inhibits the secretion of 
GH, possibly through stimulation of somatostatin release (Bermann et al., 
1994, Jaffe et al., 1998).  

 
Figure 1. Simplified sketch of the regulation of the somatotrophic axis. The hypo-
thalamic protein GHRH stimulates the GH release from the pituitary, whereas soma-
totstatin inhibits the GH release. GH stimulates the release of IGF-1 from the liver 
and both GH and IGF-1 are involved in the negative feedback inhibition on GHRH 
and GH. Both GH and IGF-1 has a wide range of functions in peripheral organs as 
well as in the brain. In addition, local production and autocrine/paracrine effects also 
exist.  

Several other factors are involved in the regulation of GH, for example the 
family of suppressors of cytokine signaling (SOCS) and the cytokine-
inducible SH2 protein (CIS) play a role in the feedback inhibition of GH. 
GH increases SOCS and CIS gene expression and these proteins can then act 
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as inhibitors of GH signaling (Adams et al., 1998, Hansen et al., 1999, 
Kasagi et al., 2004). Furthermore, proteins such as ghrelin and synthetic 
GHS can stimulate GH secretion through the GHS receptors (Kojima et al., 
1999). Neurotransmitters, for example dopamine, norepinephrine, and gam-
ma aminobutyric acid (GABA) are also thought to affect GH release 
(Giustina and Veldhuis, 1998). In addition, GH secretion patterns are differ-
ent between men and women suggesting an important role for gonadal ster-
oids in the regulation of GH release (Jaffe et al., 1998). It is for example 
suggested that estrogen and androgens that can be aromatized into estrogens, 
stimulate GH release (Veldhuis et al., 1997). Not only gender, but also age is 
an important factor of GH regulation with high GH secretion during puberty 
followed by a significant age-related decline of GH and IGF-1 levels 
(Sonntag et al., 1980, Ho et al., 1987, Giustina and Veldhuis, 1998). Fasting, 
sleep, and exercise are also known to affect GH release (Tannenbaum et al., 
1979, Ho et al., 1988, Holl et al., 1991, Giustina and Veldhuis, 1998, Jaffe et 
al., 1998).   

Insulin-like growth factor 1 
IGF-1 was first described in 1957 as a “sulfation factor” but was the follow-
ing decade renamed as somatomedin, highlighting its function as a mediator 
of GH actions (Daughaday et al., 1972). The name “insulin-like” was later 
introduced due to IGF-1s ability to stimulate uptake of glucose and because 
of the structural similarities to pro-insulin (Rinderknecht and Humbel, 
1978). IGF-1 is a large peptide, consisting of 70 amino acids (7.5 kDa). This 
peptide is mainly produced in the liver, but local production and autocrine as 
well as paracrine effects of IGF-1 have also been demonstrated (D'Ercole et 
al., 1984, Sun et al., 2005, Donahue et al., 2006). The IGF-1 receptor (IGF-
IR) is present in many tissues, including the brain (Werther et al., 1989, 
Bondy et al., 1990, Bondy et al., 1992). Endogenous IGF-1 also appears in a 
truncated form, the des(1-3)IGF-1, lacking the aminoterminal tripeptide, and 
as the N-terminal tripeptide glycine-proline-glutamate (GPE), both which 
seem to have effects in the CNS (Sara et al., 1993, Sizonenko et al., 2001).  

GH signaling 
The GHR belongs to the cytokine receptor superfamily (Cosman et al., 
1990) and is a membrane receptor expressed in several tissues and organs, 
including the CNS (Tiong and Herington, 1991, Lobie et al., 1993). When 
GH binds to the GHR a homodimerization of two receptors is induced, 
forming a GHR-GH-GHR complex believed to be crucial for signaling 
(Cunningham et al., 1991, de Vos et al., 1992). The homodimerization acti-
vates tyrosine kinases, predominantly the Janus family of tyrosine kinase 2 
(JAK2), by inducing a cross-phosphorylation of the JAKs. The activation of 
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JAK2 then mediates a phosphorylation of the intracellular domain of GHR 
and the recruitment of several other signaling molecules including mitogen-
activated protein kinase (MAPK), protein kinase C (PKC), phosphoinosi-
tide-3 (PI-3) kinase, and signal transducer and activator of transcription 
(STAT) (Moutoussamy et al., 1998, Lanning and Carter-Su, 2006). In par-
ticular STAT proteins are considered to be important for GHs regulation of 
gene transcription (Herrington et al., 2000) and STAT binding sites have for 
example been found on the IGF-1 gene (Chia et al., 2006). GHBP are solu-
ble forms of the GHR, lacking the transmembrane and intracellular domains. 
These binding proteins are involved in the regulation of GH and has been 
reported to inhibit GH actions by reducing the amount of free GH during the 
secretion peaks, but also prolongs the half-life of circulating GH (Lim et al., 
1990). 

GH actions in the body 
As an endocrine hormone GH has a wide range of actions on peripheral or-
gans and tissues, promoting protein synthesis and cell proliferation. GH 
stimulates longitudinal growth and lipolysis, as well as affects carbohydrate 
and protein metabolism in humans (Isaksson et al., 1987, Moller and 
Jorgensen, 2009). GH treatment to adult patients with GHD results in altera-
tions of body composition, fat distribution, and bone metabolism (Bengtsson 
et al., 1993). GHD has been suggested to increase the risk of cardiovascular 
diseases (Rosen and Bengtsson, 1990) and studies have reported that GH 
administration to GHD patients reduces cardiovascular risk factors (Amato 
et al., 1993, Elbornsson et al., 2013).  

GH and the brain 
Psychological symptoms in GHD patients include tiredness, lack of energy, 
lack of concentration, and memory difficulties (Bengtsson et al., 1993) and 
at present it is known that GH has numerous functions in the brain. In 
mammals, GH is expressed throughout the CNS, for example in the hypo-
thalamus and hippocampus, in addition to the pituitary expression (Hojvat et 
al., 1982, Nyberg, 2000, Donahue et al., 2006). The GHR is also widely 
distributed in the brain, and expression has for example been found in the 
hippocampus, dentate gyrus, hypothalamus, thalamus, choroid plexus, 
amygdala, and frontal cortex of rats (Lobie et al., 1993). Corresponding GH 
binding sites are also present in the human brain (Lai et al., 1991).  

GH has been demonstrated to affect neurogenesis, the generation of new 
neurons, in the brain. Neurogenesis is today believed to occur mainly in two 
sites of the mammalian brain, in the dentate gyrus of the hippocampus 
(Kuhn et al., 1996, Roy et al., 2000) and in the subventricular zone (Doetsch 
et al., 1999, Johansson et al., 1999). Administration of rhGH was shown to 
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stimulate neurogenesis as well as gliogenesis in primary cell cultures from 
fetal rat brain (Ajo et al., 2003). Similarly, bovine GH (bGH) increased neu-
rogenesis in the dentate gyrus of both hypophysectomized and intact female 
rats (Åberg et al., 2009, Åberg et al., 2010). IGF-1 has also been reported to 
promote hippocampal neurogenesis in adult hypophysectomized rats (Åberg 
et al., 2000) as well as in mice overexpressing IGF-1 (O'Kusky et al., 2000).  

In addition to the effects on cell genesis, GH also has neuroprotective ef-
fects in the brain. Neuroprotection involves strategies of protection against 
neuronal damage, a function important in many CNS-related injuries and 
diseases, such as ischemic stroke. Administration of rhGH induced neuro-
protective effects in old rats (Azcoitia et al., 2005) although only moderate 
neuroprotection were seen in rhGH-treated neonatal rats (Gustafson et al., 
1999). Another study using recombinant rat GH detected neuroprotective 
effects of GH after hypoxia-induced CNS-injury (Scheepens et al., 2001). 
Many studies in this area have focused on the effects of IGF-1 on neuropro-
tection, and it was shown that circulating IGF-1 mediates exercise-induced 
neuroprotection in both mice and rats (Heck et al., 1999, Carro et al., 2001, 
Brywe et al., 2005). A study in male rats demonstrated activation of IGF-1 
signaling pathways in relation to neuroprotective processes (Frago et al., 
2002), indicating an IGF-1 mediated role of GH effects in this context. 
However, IGF-1-independent GH actions in relation to neuroprotection have 
also been suggested (Scheepens et al., 2001). GH has in addition been shown 
to counteract opioid-induced apoptosis in cells derived from mouse hippo-
campus and to reduce the increase of the pro-apoptotic protein caspase-3, 
caused by the opioid administration (Svensson et al., 2008). Administration 
of rhGH to rats increased the anti-apoptotic protein Bcl-2 and induced inac-
tivation of the pro-apoptotic protein Bad (Frago et al., 2002), further demon-
strating a role of GH in inhibition of apoptosis. GH and IGF-1 also affect 
angiogenesis and cerebral blood flow (Gillespie et al., 1997, Sonntag et al., 
1997) and can increase glucose uptake in neurons and astrocytes, actions of 
major importance for cerebral function (Masters et al., 1991, Cheng et al., 
2000).  

There have been numerous reports of GH effects on several neurotrans-
mitter systems in the brain, for example, dopamine and noradrenaline in the 
median eminence was reduced after rat GH administration (Andersson et al., 
1983). Effects on the dopamine system have also been observed in transgen-
ic mice overexpressing bGH, as well as in GHD patients where GH treat-
ment decreased the dopamine metabolite homovanillic acid (Johansson et 
al., 1995, Söderpalm et al., 1999). In addition, GH-induced alterations of the 
serotonergic, gabaergic, glutaminergic, and the opioid systems have been 
reported (Söderpalm et al., 1999, Le Greves et al., 2002, Persson et al., 2003, 
Le Greves et al., 2006, Walser et al., 2011).  

It is evident that GH is present and has effects in the CNS, however, the 
exact mechanism for how GH crosses the blood-brain barrier (BBB) is un-
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known. GH has been found in cerebrospinal fluid (CSF) after peripheral GH 
administration (Johansson et al., 1995) and a correlation of administered GH 
with levels in CSF and increased IGF-1 levels in CSF after GH administra-
tion have also been reported in humans (Burman et al., 1996). In addition, 
transport across the BBB has been shown for even larger proteins (e.g. inter-
leukins, TNF-alpha, and other cytokines) (Banks et al., 1989, Pan and 
Kastin, 1999), and there are several theories on how the passage of GH 
across the BBB could be mediated. It has been suggested that GH can reach 
the brain through the choroid plexus by a receptor-mediated mechanism via 
the CSF (Coculescu, 1999). It was also reported that GH might passively 
diffuse into the CNS (Pan et al., 2005). IGF-1 crosses the BBB via a satura-
ble transport system, and has been demonstrated to be present in the brain 20 
min after an intravenous injection (Pan and Kastin, 2000).  

Anabolic androgenic steroids 
Anabolic androgenic steroids (AAS) are a family of compounds, which in-
cludes the endogenous male steroid hormone testosterone as well as many 
closely related synthetic androgens. In 1927, testosterone was isolated from 
bovine testicles and reported to be able to, in several species, restore male 
characteristics after castration (Koch, 1937). Human testosterone was isolat-
ed in 1935 and in the same year testosterone was chemically synthetized for 
the first time (Hoberman and Yesalis, 1995). Many have tried to develop 
AAS that have high anabolic (enhanced muscle building) and no androgenic 
(development of male sex characteristics) effects, however up to today all 
AAS have both anabolic and androgenic effects. AAS have since the 1950s 
been used as performance enhancing drugs in sports (Hoberman and Yesalis, 
1995). They were banned in the 1970s, but doping scandals are still common 
in sports around the world. AAS have also been used in the clinic to treat 
conditions such as male hypogonadism as well as anemia. Positive effects in 
wasting conditions, for example in patients with human immunodeficiency 
virus (HIV), as well as in patients with severe burns, have been demonstrat-
ed (Shahidi, 2001).  

The illicit use of AAS have during the last decades spread to adolescents 
and young adults of the general population, and is no longer limited to elite 
sports communities. Among the general population, AAS have been reported 
to be used to boost self-esteem, become bold, to look leaner and more mus-
cular, or become intoxicated (Kindlundh et al., 1999). A general lifetime 
prevalence at 1-5 % of AAS use in males has been proposed for Western 
countries, but an even higher prevalence has been seen in certain subpopula-
tions (Kanayama et al., 2010, Pope et al., 2012). In Sweden, the AAS use 
among young adults was reported to be around 3 % for males (Kindlundh et 
al., 1998, Nilsson et al., 2001). It has been suggested that an increased focus 
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on muscularity and male body image in Western culture, where even chil-
dren’s toys look more and more muscular, could be a reason for the in-
creased AAS use (Pope et al., 1999, Kanayama et al., 2010). Furthermore, 
there are also reports on a syndrome, thought to be common among AAS 
users, called “reverse anorexia nervosa”, where individuals believe they look 
small and weak although they are very muscular (Kanayama et al., 2010). 
AAS abuse is in addition associated with violence and criminality (Pope and 
Katz, 1994, Skårberg et al., 2010).  

AAS users usually administer the steroids in cycles lasting for 6-18 
weeks, with two to three cycles per year, and the doses are often gradually 
increased and then decreased during a cycle, sometimes referred to as “pyr-
amiding” (Pope and Katz, 1994, Kanayama et al., 2009). In addition, several 
steroids are often administered together, called “stacking” (Pope and Katz, 
1994). Concomitant use of AAS and pharmaceuticals, such as aromatase 
inhibitors, human chorionic gonadotropin (HCG), and tamoxifen, is com-
mon and several of these pharmaceuticals are used to alleviate AAS side 
effects (Evans, 2004, Skårberg et al., 2009). Use of other drugs of abuse, for 
example alcohol and opioids, as well as GH is also observed among AAS 
users (Skårberg et al., 2009, Kanayama et al., 2010).  

During recent decades, studies documenting AAS dependence have 
emerged. Interestingly, it has been reported that approximately 30 % of AAS 
users develop dependence with a chronic AAS use despite adverse effects 
(Kanayama et al., 2009). These worrying data are also supported by studies 
in experimental animal models, where male mice and rats show conditioned 
place preference for testosterone (Alexander et al., 1994, Arnedo et al., 
2000). Furthermore, rewarding properties of AAS have also been demon-
strated in hamsters, where both males and females self-administered testos-
terone to the point of death (Peters and Wood, 2005).  

Steroid biosynthesis 
Testosterone is the primary male gonadal hormone, mainly synthesized in 
the Leydig cells of the testis in males and in the ovaries in females. In addi-
tion, testosterone production also occurs in the adrenal gland (Williams and 
Larsen, 2003, Kicman, 2008). In males, testosterone is secreted from the 
testis acting as a circulation hormone and can be converted to the more ac-
tive metabolite dihydrotestosterone (DHT) by the enzyme 5α-reductase, or 
aromatized to estradiol by aromatase (CYP19) (Williams and Larsen, 2003). 
The hypothalamic hormone gonadotropin-releasing hormone (GnRH) stimu-
lates the secretion of follicle stimulating hormone (FSH) and luteinizing 
hormone (LH) from gonadotrophic cells in the pituitary. LH stimulates tes-
tosterone production in the Leydig cells of the testis, whereas FSH stimu-
lates the Sertoli cells and is involved in spermatogenesis. In the same way as 
the above-mentioned regulation of GH, testosterone production is inhibited 
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by a feedback system, where increased androgen levels inhibit GnRH and 
LH/FSH secretion from the hypothalamus and pituitary respectively. These 
components are often referred to as one system, the hypothalamic-pituitary-
gonadal (HPG) axis. The HPG-feedback system is affected by excessive 
levels of AAS, leading to decreased concentrations of endogenous steroids 
(Alen et al., 1987, Daly et al., 2003).  

Cholesterol is the main precursor for steroidogenesis and a series of enzy-
matic steps converts cholesterol into the other steroid hormones (Figure 2).  

 
Figure 2. Steroid biosynthesis. 1, cholesterol side chain cleavage enzyme (CYP11A) 
2, Cytochrome P450 17α-hydroxylase, 17, 20 lyase (CYP17A1) 3, 3β-
hydroxysteroid dehydrogenase 1 (3β-HSD1), 4, 21α-hydroxylase (CYP21) 5, 11β-
hydroxylase 1 (CYP11B1) 6, 11β-hydroxysteroid dehydrogenase 2 (11β-HSD2) 7, 
11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) 8, 17β-hydroxysteroid dehydro-
genase 3 (17β-HSD3) 9, 5α-reductase 10, aromatase (CYP19) 11, 17β-
hydroxysteroid dehydrogenase 1 (17β-HSD1) 12, 17β-hydroxysteroid dehydrogen-
ase 2 (17β-HSD2). Δ5 refers to the most common pathway in humans, whereas the 
Δ4 pathway, involving progesterone, 17-hydroxyprogesterone, and androstenedione 
is considered to be more common in rodents.  
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The steroid biosynthesis is initiated by the transport of cholesterol to the 
inner membrane of the mitochondria, conducted by the steroidogenic acute 
regulatory protein (StAR), and this is the rate-limiting step of the steroid 
biosynthesis (Lin et al., 1995). Steroid biosynthesis occurs mainly in the 
adrenal gland, gonads, and the placenta, but biosynthesis can also occur in 
the CNS and heart (Payne and Hales, 2004). The adrenocorticotropic hor-
mone (ACTH), secreted from the pituitary, stimulates adrenal secretion of 
glucocorticoids such as corticosterone and cortisol, and to some extent also 
androgens such as DHEA and androstenedione (Handa et al., 1994, Williams 
and Larsen, 2003). ACTH itself is regulated by the hypothalamic hormone 
corticotrophin releasing hormone (CRH), and the interactions of these hor-
mones and the adrenal gland is known as the hypothalamic-pituitary-adrenal 
(HPA) axis (Handa et al., 1994, Williams and Larsen, 2003).  

One of the most commonly used AAS is nandrolone (19-nortestosterone), 
a steroid synthesized already in 1950 (Birch 1950). Nandrolone has a struc-
ture similar to testosterone, as can bee seen in Figure 3. Nandrolone is usual-
ly esterified with decanoic acid before administration, thus creating nandro-
lone decanoate (ND), a prodrug more suitable for intramuscular injections. 
ND is a long-acting steroid and has a half-life of approximately 6 days, 
demonstrated both in rats and humans (van der Vies, 1985, Minto et al., 
1997).  

 
Figure 3. Chemical structure of testosterone, nandrolone, and nandrolone decanoate. 

AAS signaling 
AAS are relatively small molecules, which passively can diffuse into cells. 
The androgen receptor is an intracellular receptor and a member of the nu-
clear receptor superfamily (Mangelsdorf et al., 1995). Androgen receptors 
are widely distributed in the CNS, and have for example been detected in the 
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Nandrolone decanoate

Nandrolone 



 20 

hypothalamus, amygdala, and hippocampus (Simerly et al., 1990). When the 
steroid binds to the receptor, conformational changes lead to activation of 
the receptor, and the receptor complex is translocated to the nucleus. In the 
nucleus, the androgen receptor interacts with response elements in the DNA 
(Evans, 1988, Perissi and Rosenfeld, 2005). This affects transcription and 
activation of co-regulators enhancing or suppressing transcription of specific 
genes, thus affecting cell function, growth, and differentiation (Mangelsdorf 
et al., 1995, Perissi and Rosenfeld, 2005).  

In addition to inducing genomic effects, AAS also seem to have more 
rapid, non-genomic effects, and effects that may be independent of the an-
drogen receptor. For example, a membrane-bound androgen receptor has 
been suggested to exist, with potential of mediating non-genomic effects 
(Foradori et al., 2008). AAS have also been demonstrated to directly modu-
late the function of GABAA receptors (Bitran et al., 1993, Yang et al., 2005). 
In addition, AAS have been demonstrated to affect neurosteroid action at the 
sigma-1 receptor (Elfverson et al., 2011).  

AAS actions 
Use of AAS can cause several physiological and psychological effects, and 
may result in various adverse events especially among users who administer 
very high doses of AAS. Male users of AAS have reported side effects such 
as testicular atrophy, striae, gynecomastia, and acne (Pope and Katz, 1994, 
Parkinson and Evans, 2006). Some of these effects, e.g. testicular atrophy, 
may be related to the feedback inhibition of LH and FSH induced by the 
excessive AAS concentrations, leading to decreased production of endoge-
nous testosterone (Mosler et al., 2012). Gynecomastia is related to the con-
version of AAS to estrogens, thereby increasing the estrogen levels in the 
body. In order to avoid or reduce these effects, it is not unusual for AAS 
users to also take aromatase inhibitors (Parkinson and Evans, 2006). In 
women, masculinization including deepening of the voice, acne, and in-
creased facial hair growth has been demonstrated after AAS use (Gruber and 
Pope, 2000). AAS also affect several peripheral organs, for example, studies 
have demonstrated adverse cardiovascular effects after AAS use (Kanayama 
et al., 2010) and it has been demonstrated that AAS use leads to cardiac 
hypertrophy (Far et al., 2012). Many AAS are suggested to cause liver dam-
age, especially the 17α-alkylated steroids, but also ND has been reported to 
be liver toxic (Vieira et al., 2008).  

Apart from these physiological effects, several studies have demonstrated 
psychological side effects such as irritability, anxiety, and aggression in 
association with AAS use in humans (Su et al., 1993, Pope and Katz, 1994, 
Kanayama et al., 2010). AAS use and withdrawal have also been associated 
with depression in humans (Pope and Katz, 1994, Kanayama et al., 2010). 
Furthermore, similar behaviors have been observed in animal studies 
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(Johansson et al., 2000b, Clark and Henderson, 2003, Steensland et al., 
2005). Many of these behaviors can involve effects on various transmitter 
systems in the brain. AAS have for example been demonstrated to affect the 
serotonergic (Kindlundh et al., 2003), dopaminergic (Kindlundh et al., 2001, 
Kindlundh et al., 2002, Kindlundh et al., 2004), and the glutaminergic sys-
tem (Le Greves et al., 1997, Rossbach et al., 2007). Furthermore, alterations 
within a number of neuroeptidergic systems, such as the endogenous opioid 
system and the tachykinin system have been associated with AAS (Hallberg, 
2011). However, the exact impact of AAS on these systems is not yet eluci-
dated and could involve both genomic and non-genomic effects.  

AAS and GH 
It is known that GH and IGF-1 affect biosynthesis of gonadal steroids 
(Veldhuis et al., 1997, Hull and Harvey, 2002) and that gonadal steroids 
may, to some extent, modulate GH secretion (Jansson et al., 1984, 
Weissberger and Ho, 1993) and GH actions (Meinhardt and Ho, 2006). GH 
may also affect reproductive functions at hypothalamic, pituitary, and gon-
adal sites (Bartke, 2000, Hull and Harvey, 2000, 2002). GH is suggested to 
be involved in spermatogenesis and testosterone synthesis, and GHR expres-
sion has been found in the testis (Kanzaki and Morris, 1999). Some studies 
indicate that GH may affect different steps in the steroid biosynthesis, for 
example, GH has been shown to increase mRNA expression of the enzymes 
StAR and 3βHSD in rat Leydig cells (Kanzaki and Morris, 1999). GH-
treatment in GHD male rats was reported to increase testosterone response 
when stimulated with human chorionic gonadotropin (hCG) (Balducci et al., 
1993, Kanzaki and Morris, 1999). However, studies have also demonstrated 
that testosterone is unaffected by GH administration (Juul et al., 1998, 
Blackman et al., 2002) thus the exact role of GH on testosterone secretion is 
unknown. In GHR knockout mice, LH-stimulated release of testosterone was 
attenuated, although the plasma concentrations of testosterone were normal 
(Chandrashekar et al., 1999).  

It is very common among AAS users to combine the steroids with intake 
of GH (Skårberg et al., 2009). The impact of AAS on secretion of GH and 
IGF-1 is however not fully clarified. Administration of testosterone to both 
hypogonadal men and normal middle-aged men increased the GH and IGF-1 
concentrations in serum (Weissberger and Ho, 1993, Bondanelli et al., 2003, 
Veldhuis et al., 2005). On the contrary, long-term AAS use in humans has 
been reported to decrease the IGF-1 concentration in plasma (Bonetti et al., 
2008). Testosterone administration also inhibited IGF-1 plasma concentra-
tions and decreased GH release in dogs (Rigamonti et al., 2006). 
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Cognition 
Cognition involves the ability to process information, including perception, 
learning, memory, judgment, and problem solving, thus cognition is the 
ability to attend, identify, and act on stimuli.  

Learning and memory 
Learning can be described as the process of acquiring new information and 
the memory process can be divided into consolidation, storage, and retrieval 
of learned information. Memory is divided into different phases: immediate 
memory, working memory, and long-term memory, and involves many 
components comprising several brain areas. Among these regions is the hip-
pocampus, especially important for declarative and spatial memory. Studies 
both in animals as well as in humans have demonstrated that lesions of the 
hippocampus and related brain areas, such as the amygdala and entorhinal 
cortex, may induce learning and memory impairments (Scoville and Milner, 
1957, Squire, 1992, Squire and Wixted, 2011). The frontal cortex, including 
the cingulate cortex, is also important in memory functions (Smith and 
Jonides, 1999).  

The mechanism underlying the formation of new memories is believed to 
be a process called long-term potentiation (LTP), although the exact mecha-
nism for learning and memory is still unknown. LTP is a process of activity-
dependent plasticity resulting in enhanced synaptic transmission, and has 
been shown to involve activation of NMDA and AMPA receptors (Bliss and 
Collingridge, 1993, Bliss and Cooke, 2011). Several other systems in the 
brain are also implicated in plasticity and memory, for example the GABA 
system (Davies et al., 1991, Ramsey et al., 2004).  

GH and cognition 
Research during the past decades has revealed a potential role of GH in the 
promotion of cognition (Nyberg and Hallberg, 2013). Clinical studies have 
suggested that GH may be able to improve cognitive functions, such as 
learning and memory, in patients with GHD (Bengtsson et al., 1993, Burman 
and Deijen, 1998, Deijen et al., 1998, Arwert et al., 2005). For example, GH 
administration to elderly GHD patients is associated with improvements of 
cognition (Sathiavageeswaran et al., 2007). A meta-analysis performed on 
13 studies on patients with different types of GHD demonstrated cognitive 
impairments in the patients, and that GH treatment could attenuate these 
impairments (Falleti et al., 2006). However, it seems like both etiology and 
age of onset of the GHD may influence the severity of cognitive impair-
ments. Excessive concentrations of GH and IGF-1, which occurs in acro-
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megaly, have also been reported to be associated with impairment of certain 
cognitive functions (Brummelman et al., 2012, Sievers et al., 2012).  

 Furthermore, animal studies have also demonstrated that GH plays an 
important role in cognition. Administration of rhGH to hypophysectomized 
rats induced an improved performance in a water maze test (Le Greves et al., 
2006, Kwak et al., 2009). rhGH also improved the cognitive function in 
hypophysectomized rats tested in a radial arm maze (Le Grevès et al., 2011). 
In animal models using GH-deficient dwarf rats, spatial learning and 
memory deficits were seen (Nieves-Martinez et al., 2010, Li et al., 2011a) 
and in diabetic mice, learning impairments were negatively correlated with 
mRNA expression of the GHR in the frontal cortex (Enhamre et al., 2012). 
In addition, several studies have shown that IGF-1 as well as IGF-2 are in-
volved in cognition (Markowska et al., 1998, Trejo et al., 2008, Chen et al., 
2011). A study examining the effects of rhGH administration on hypoxia-
induced cognitive impairments in rats, found that GH could attenuate these 
deficits. These effects were explained with increased mRNA expression of 
hippocampal IGF-1 and reduced hippocampal injury (Li et al., 2011b). In 
many of these studies, older subjects have been utilized due to the age-
related decline of GH and IGF-1, and there have been reports linking age-
related impairments of cognitive functions with the age-related decrease of 
GHR and IGF-IR receptor densities (Lai et al., 1993, Sonntag et al., 1999). 
Furthermore, the reduction of IGF-1 in elderly humans has been associated 
with cognitive impairments (Aleman et al., 1999, Dik et al., 2003). Although 
several studies have investigated the impact of GH and IGF-1 on cognition, 
further research is needed in order to elucidate the mechanisms. 

AAS and cognition 
The effects of AAS on learning and memory are not fully clarified, although 
a few studies have associated AAS with impaired cognitive functions such 
as forgetfulness and confusion (Su et al., 1993). A recent study also demon-
strated impairments of visual-spatial memory in long-term AAS users, but 
no effect on response speed or verbal memory were seen (Kanayama et al., 
2013). In rats, administration of ND during two weeks was reported to im-
pair spatial memory in certain parameters of a water maze test (Magnusson 
et al., 2009) and ND administration also impaired social memory in rats 
(Kouvelas et al., 2008). Furthermore, 17α-methyltestosterone, methandros-
tenolone, and testosterone cypionate did not impair spatial memory tested in 
a radial arm maze task (Smith et al., 1996) and a 12-week long treatment of 
a cocktail of three steroids (testosterone cypionate, bolderone undecylenate 
and ND) did not affect spatial learning or memory in a water maze test 
(Clark et al., 1995). On the contrary, another study demonstrated that admin-
istration of testosterone alone, or in combination with GH, improved long-
term memory in young rats (Schneider-Rivas et al., 2007).  
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GABAB receptors 
Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter 
in the CNS and is involved in many physiological and psychological func-
tions. GABA binds to the ionotropic GABAA and GABAC receptors, and to 
the metabotropic GABAB receptor. The G-protein coupled GABAB receptor 
was discovered in 1980 (Bowery et al., 1980) and is widely distributed in the 
brain. It was later determined that the functional GABAB receptor consists of 
two subunits, GABAB1 and GABAB2, forming a heterodimer (Jones et al., 
1998, Kaupmann et al., 1998, White et al., 1998). In addition, the GABAB1 
receptor subunit consists of at least nine transcript variants, where GABAB1a 
and GABAB1b are believed to be the two main transcripts (Bettler et al., 
2004).  

The GABAB receptors are located on neurons both presynaptically and 
postsynaptically (Bowery et al., 1987) and functions as modulators of excit-
ability, for example inhibiting the release of neurotransmitters (Bettler et al., 
2004). GABAB receptors are involved in cognitive processes, and GABAB 
antagonists have in animal experiments been reported to reverse age-related 
impairments of learning and memory functions (Lasarge et al., 2009) as well 
as improve spatial memory (Helm et al., 2005). However, studies have 
demonstrated impairments of cognitive functions in GABAB deficient mice 
(Schuler et al., 2001), thus the role of GABAB receptors in cognition is not 
fully clarified. 

GABAB receptors are expressed in the pituitary and have been suggested 
to play a role in regulation of pituitary hormone secretion (Anderson and 
Mitchell, 1986). When it comes to GH, GABAB receptors may be involved 
in regulation of GH release (Gamel-Didelon et al., 2002). Furthermore, acti-
vation of GABAB receptors has been shown to protect neurons from apopto-
sis via a transactivation of the IGF-IR (Tu et al., 2010). The gabaergic sys-
tem has also been implicated in several AAS-mediated effects, as mentioned 
above, and studies have for example demonstrated an involvement of AAS 
in GABAA receptor transmission in the brain (McIntyre et al., 2002, Yang et 
al., 2005).  

Opioid receptors 
The classical endogenous opioid system includes three main receptor types, 
the mu opioid (MOP) receptor, the delta opioid (DOP) receptor, and the 
kappa opioid (KOP) receptor. All of them were cloned in 1993 and all of 
them were found to belong to the G-protein coupled receptor family 
(Kieffer, 1995, Kieffer and Evans, 2009). The existence of opioid binding 
sites was originally reported in 1973 from three independent laboratories 
(Pert and Snyder, 1973, Simon et al., 1973, Terenius, 1973). Endogenous 
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ligands for these receptors were discovered a few years later and include 
enkephalins, β-endorphin and dynorphins (Knapp et al., 1995, Akil et al., 
1998). The opioid receptors are distributed throughout the CNS and a high 
density of MOP receptor binding sites are found in regions such as the cor-
tex, hippocampus, caudate putamen, nucleus accumbens, and amygdala. 
High densities of the DOP receptor are for example found in caudate puta-
men and amygdala, and KOP receptor binding sites are found throughout the 
brain but with a lower density (Mansour et al., 1988). The endogenous opi-
oid system is well known for its function in pain modulation, in the brain 
reward system, and for involvement in actions such as eating, drinking, and 
sexual behavior, but is also involved in processes such as stress, learning and 
memory, and endocrine modulation (Bartolome and Kuhn, 1983, Spain and 
Newsom, 1991, Drolet et al., 2001, Przewlocki and Przewlocka, 2001, Le 
Merrer et al., 2009, Vuong et al., 2010).  

A link between GH and the endogenous opioid system has been suggest-
ed. In immune cells, administration of morphine affected mRNA levels of 
GHR, as well as GH binding (Henrohn et al., 1997). In rat hypothalamus, 
administration with morphine, a MOP receptor agonist, decreased GH-
binding in the hypothalamus and the choroid plexus in the acute phase of 
treatment (Zhai et al., 1995). Furthermore, in the hippocampus and spinal 
cord, morphine decreased GHR and GHBP gene expression in male rats 
(Thörnwall-Le Greves et al., 2001). GH has also been demonstrated to affect 
DOP receptors in the rat brain (Persson et al., 2003, Persson et al., 2005). 
Acute administration of opiates has been shown to increase GH secretion 
(Bartolome and Kuhn, 1983, Vuong et al., 2010). However, some individu-
als also seem to develop GH deficiency after chronic opioid treatment (Abs 
et al., 2000). In addition, opioids inhibited neurogenesis in hippocampus and 
caused impairments of cognition (Spain and Newsom, 1991, Eisch et al., 
2000). Another connection between these systems was demonstrated in a 
study where administration of rhGH was able to prevent and to reverse opi-
oid-induced apoptosis in hippocampal cells (Svensson et al., 2008). This 
indicates a role for GH in counteracting drug-induced impairments in the 
brain. 
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Aims 

The general aim of this thesis was to study the impact of GH and the steroid 
ND on cognitive functions and neurochemistry in rats. A special focus was 
devoted to the GH/IGF-1 system as well as the GABAB and opioid receptor 
expression in regions of the brain associated with learning and memory. 

The specific aims were; 
 

• To study the effects of rhGH and ND on learning and memory, 
plasma IGF-1 concentrations, as well as the impact on body 
weight in male rats. 
 

• To study the effects of rhGH and ND on the mRNA expression of 
IGF-1, IGF-2, and GHR as well as of GABAB receptor subunits in 
the rat brain. 
 

• To study the effects of rhGH on GABAB receptor density and 
functionality in the rat brain. 

 
• To study the effects of rhGH on mu and delta opioid receptor 

functionality in the rat brain. 
 

• To study the effects of rhGH and ND on steroid plasma concen-
trations in male rats, and to evaluate the impact of GH and AAS 
on the weight of certain peripheral organs. 
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Methods 

Animals and drug treatment 
Male Wistar rats from Taconic, Ejeby, Denmark (paper I, II, and V) and 
Sprague Dawley rats from Scanbur, Sollentuna, Sweden (paper III and IV) 
were used in the experiments included in this thesis. After arrival to the ani-
mal facility, the rats were allowed to adapt to the new environment for ap-
proximately one week (paper III and IV) or two weeks (paper I, II, and V). 
The rats were group-housed in Makrolon type IV cages (59 x 38 x 20 cm) 
with free access to water and food pellets. All rats were kept in air-
conditioned and humidity (50-60 %) controlled rooms, with a temperature of 
22-24°C. The rats in paper III and IV were kept at a normal 12 h light/dark 
cycle, whereas the rats in paper I, II, and V were kept on a reversed 12 h 
light/dark cycle, with lights off at 7 a.m. The rats in paper I, II, and V, 
weighed 316 ± 3 g at the start of the experiment, and the rats in paper III and 
IV weighed 317 ± 3 g. The weights of the rats were monitored throughout 
the experiments. 

The rats in paper I, II, and V were divided into four groups (ND, GH, 
ND+GH, and controls) and given subcutaneous (s.c.) injections with 15 
mg/kg ND or arachis oil every third day during three weeks (days 1-21 of 
the experiment). The rats were then given 1.0 IU/kg recombinant human GH 
(rhGH) or saline (s.c.) for the following ten days (days 22-32) of the experi-
ment. The rats in paper III and IV were subjected to s.c. injections of rhGH, 
twice daily for seven days, at a dose of 0.07 IU/kg or 0.7 IU/kg rhGH, and 
the controls were given saline.  

The aim of the ND dose-regime in this thesis was to mimic one cycle of 
AAS abuse in humans. In order to mimic heavy AAS abuse where doses up 
to 50-100 fold of the therapeutic dose have been reported (Pope and Katz, 
1994, Parkinson and Evans, 2006) 15 mg/kg ND was administered every 
third day for three weeks. This supraphysiologic treatment corresponds to 
approximately 40 times the dose used in the clinic. The rhGH doses were 
based on previous studies demonstrating effects on CNS and cognition (Le 
Greves et al., 2006, Li et al., 2011b). 

All animal procedures were performed under protocol approved by the 
Uppsala Animal Ethical Committee and followed the guidelines of the Swe-
dish Animal Welfare Agency.  
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Water maze 
The water maze (WM) is a commonly used behavioral test performed to 
study spatial learning and memory in animals (Morris, 1984). The test con-
sisted of a circular pool (160 cm in diameter) filled with water, and for the 
analysis divided into four quadrants (paper I). The pool was placed in a be-
havioral testing room with visual cues to help the rats to navigate (Figure 4). 
The ability of the rats to learn the location of a hidden platform, submerged 
1.5 cm beneath the water surface, was tested during five training days. The 
rats were started facing the pool wall and were allowed to swim for a maxi-
mum of 90 s. If the rat did not find the platform during this time, the exper-
imenter gently guided it there. The rats were allowed to stay on the platform 
for 30 s before the next trial started. All rats were given five consecutive 
training days, with four trials each day. Behaviors such as latency to plat-
form location, latency to first visit in target quadrant, swim distance, swim 
speed, and thigmotaxis were analyzed.  

Three days after the last training day, the platform was removed and a 
probe trial was performed as a single trial where the rats were allowed to 
swim for 90 s. In addition to the above-mentioned behaviors, the number of 
target zone crossings, number of visits and duration in different quadrants 
were analyzed in the probe trial, as well as the number of target zone cross-
ings during the first 30 s of the probe trial. Data was recorded and analyzed 
using the computerized tracking system Viewer (Biobserve, Bonn, Germa-
ny). 

 
Figure 4. The water maze setup with a hidden platform in one of the four quadrants.  

Tissue and blood collection 
For the analyses in paper I and II, the rats were decapitated, the brains re-
moved and dissected using a rat brain matrix (Activational Systems, Warren, 
MI, USA). The anterior pituitary, hypothalamus, frontal cortex, caudate 
putamen, nucleus accumbens, hippocampus, and amygdala were collected 
according to the rat brain atlas of Paxinos and Watson (Paxinos and Watson, 
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1998). The tissues were rapidly frozen on dry ice and stored at -80°C. In 
study I and V trunk blood was collected during decapitation in tubes con-
taining ice-cold saline and 0.1 % EDTA. The blood samples were centri-
fuged during 10 min at 3000 r.p.m. at 4°C, plasma was removed and stored 
at –80°C. In study V the heart, liver, testis and thymus were removed and 
weighed. 

For the studies in paper III and IV rats were sacrificed by decapitation. 
Whole brains removed and rapidly frozen in isopentane (-35 ± 5°C) for ap-
proximately 30 s, and then stored at -80°C until further processing.  

RNA isolation and cDNA synthesis 
RNA was isolated from dissected brain tissues of the anterior pituitary, hy-
pothalamus, frontal cortex, hippocampus, nucleus accumbens, caudate pu-
tamen, and amygdala using Qiagen’s RNeasy lipid tissue kit (Qiagen, Sol-
lentuna, Sweden). The frozen tissue was quickly homogenized in 1000 µl 
Qiazol tissue lyzer (Qiagen) and 200 µl chloroform was added to each sam-
ple. The samples were then centrifuged at 4°C, 12000g, during 15 min, and a 
1:1 volume of 70 % ethanol was added to each sample. Mini spin columns 
were used to elute the RNA, and a NanoDrop® ND-1000 Spectrophotometer 
(NanoDrop Technologies, Inc., Wilmington, DE, USA) was used to quantify 
the RNA concentration. Analysis of the RNA quality was performed with an 
Xperion™ System for RNA analysis (Bio-Rad instruments, Sundbyberg, 
Sweden). Samples with an RNA quality indicator (RQI) between 7 and 10 
and displaying clear 18S and 28S ribosomal RNA were used for further 
analysis. The cDNA synthesis was performed using a High capacity cDNA 
reverse transcription archive kit (Applied Biosystems, Foster City, CA, 
USA). The reaction was performed with 250 ng RNA, MultiScribe reverse 
transcriptase 50 U/µl, RT buffer, dNTP mixture, RT random primers, and 
RNase-free water, in a total volume of 100 µl. Control reactions without 
reverse transcriptase were also included.  

Quantitative polymerase chain reaction  
In Paper I and II, quantitative polymerase chain reaction (qPCR) was used to 
analyze the mRNA expression of two GABAB receptor subunits Gabbr1 and 
Gabbr2, as well as Igf1, Igf2, and Ghr. The Primer-BLAST tool (NCBI) was 
used for the primer design, and primers were validated in silico using the 
RTprimerDB primer evaluation. The primer sequences for Igf1 and Igf2 
were based on previous studies (Chen et al., 2011, Garbayo et al., 2011). The 
primer sequences used in this thesis are presented in Table 1. The reactions 
were performed in 96-wells plates with 2 µl cDNA (5 ng) and 23 µl iQ 
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SYBR green master mix (Bio-rad), 20 µM forward primer, 20 µM reverse 
primer and RNase-free water. Each assay included samples, internal con-
trols, and negative controls in duplicates, and a melt curve was included in 
each run to assure specific amplification. The reactions were performed us-
ing a CFX Real-time PCR detection system (Bio-Rad) with the following 
protocol: 95°C for 3 min following 40 cycles of 95°C for 15 s, 60°C for 20 
s, and 72°C for 40 s. The software LinRegPCR version 12.17 was used to 
calculate a mean of the PCR efficiency for each primer set (Ruijter et al., 
2009). The Cq-values were obtained from the CFX Manager Software 2.1 
(Bio-Rad) and calculation of the normalized expression levels was per-
formed using qBASEplus, version 2.0 (Biogazelle, Zwijnaarde, Belgium). 
The stability of a set of reference gene candidates were evaluated with 
GeNorm, part of qBASEplus, and three genes were selected, Actb, Rpl19, 
and Arbp, for normalization of the data. 

Table 1. The primer sequences used in the qPCR analyses. 1) The Igf1 primer se-
quences (targeting several transcripts) were based on a previous study by (Garbayo 
et al., 2011). 2) The Igf2 primer sequences (targeting several transcripts) were 
based on a study by (Chen et al., 2011).  

Gene 
name 

Primer sequences Accession number 

Actb F: CGTCCACCCGCGAGTACAACCT NM_031144 
 R: ATCCATGGCGAACTGGTGGCG  

 
Rpl19 F: GCGTCTGCAGCCATGAGTATGCTT NM_031103 
 R: ATCGAGCCCGGGAATGGACAGT  

 
Arbp F: GGGCAATCCCTGACGCACCG NM_022402 
 R: AGCTGCACATCGCTCAGGATTTCA  
   
Gabbr1 F: CAGCAAGTGTGACCCAGGGCAA NM_031028 
 R: ATCCGGGCAGCCTCAGCTACAA  
Gabbr2 F: TGGTGCAGCTTTCCTTCGCCG NM_031802 
 R: ACCGCGTTGTCTGACGGCAC  
   
Igf11 F: GCTGAAGCCGTTCATTTAGC NM_001082477,  
 R: GAGGAGGCCAAATTCAACAA NM_001082478 
  NM_001082479, NM_178866 
Igf22 F: CCCAGCGAGACTCTGTGCGGA NM_001190163,  
 R: GGAAGTACGGCCTGAGAGGTA NM_001190162, NM_031511 
   
Ghr F: GAAATAGTGCAACCTGATCCGCCCA NM_017094 
 R: GCGGTGGCTGCCAACTCACT  
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Enzyme-linked immunosorbent assay  
The IGF-1 plasma concentrations were studied in paper I using enzyme-
linked immunosorbent assay (ELISA), a method using antibody detection to 
quantify proteins for example in plasma samples. The plasma IGF-1 concen-
trations were quantified using a commercial ELISA kit (mouse/rat IGF-1 
REF E25, Mediagnost, Reutligen, Germany) according to the manufacturers 
instructions. Briefly, the thawed rat plasma was diluted in the sample buffer 
(1:500) and analyzed using a microplate reader POLARstar OPTIMA (BMG 
Labtech GmbH, Ortenberg, Germany). The samples were analyzed in dupli-
cates and the experiment was performed at room temperature.  

Receptor autoradiography 
Receptor autoradiography was performed to study the GABAB receptor den-
sity in rat brain. In autoradiography, the localization and density of a radio-
labeled ligand bound to a specific receptor in a tissue is determined (for a 
representative autoradiogram, see Figure 5).  

 
Figure 5. Representative autoradiograms of controls, demonstrating total binding to 
the GABAB receptor. For abbreviations see paper III. 

In paper III, coronal brain sections from bregma +3.2, +1.6, -2.56, and -5.8, 
according to the rat brain atlas of Paxinos and Watson, were incubated with 
a GABAB receptor specific ligand, CGP54262. Briefly, coronal brain sec-
tions, 12 µm, were cut in a cryostat at -20°C and collected on gelatin-coated 
glass slides. The slides were pre-incubated in 50 mM Tris-HCl (pH 7.4) 
containing 2.5 mM CaCl2 for 15 min at 4°C. Total binding was detected 
using incubation during 60 min at 4°C in the same buffer, but with the addi-
tion of 2 nM of [3H]-CGP54262. Unspecific binding was assessed using 
incubation with the addition of 100 µM (R)-baclofen of adjacent slides. Af-
ter washing 3 x 30 s with cold 50 mM Tris-HCl (pH 7.4) the slides were 
dried overnight. The sections were exposed to [3H]-sensitive phosphor imag-
ing screens, BAS-TR 2040 (Science Imaging Scandinavia AB, Nacka, Swe-
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den) together with [3H]-microscales during two weeks and then developed 
using a Fuji BAS 2500 phosphor imager scanner (Fuji Medical Systems). 
The receptor density was analyzed using the software Image J (National 
Institutes of Health, Bethesda, MD, USA) and converted to fmol/mg. Specif-
ic binding was calculated by subtracting nonspecific binding from total bind-
ing. 

GTPγS autoradiography 
GTPγS autoradiography is a method developed to study the functionality of 
G-protein coupled receptors. Activation of the receptor by a specific agonist 
induces conformational changes, which leads to an interaction with G-
proteins and radiolabeled [35S]GTPγS, the amount of the incorporated 
[35S]GTPγS can then be detected and the functionality determined.  

GABAB receptor as well as mu and delta opioid receptor stimulated 
[35S]GTPγS autoradiography were performed to study the functionality of 
these receptors (paper III and IV). The assays were performed according to 
Sim et al (Sim et al., 1995) although slightly modified. Brain sections, from 
bregma +3.2, +1.6, -2.56, and -5.8, 20 µm thick, were thaw-mounted on 
gelatin-coated glass slides and equilibrated in an assay buffer containing 50 
mM Tris-HCl (pH 7.4), 4 mM MgCl2, 0.3 mM EGTA, and 100 mM NaCl 
during 10 min. Pre-incubation was performed at room temperature for 15 
min in assay buffer containing 2 mM GDP and 10 mU/ml adenosine deami-
nase (ADA). To study the agonist-stimulated functionality of these recep-
tors, the slides were incubated for 2 h at room temperature with selective 
agonists, 100 µM (R)-baclofen for GABAB receptors, 10 µM Tyr-D-Ala-
Gly-NMe-Phe-Gly-ol (DAMGO) for MOP receptors, and 10 µM [D-Pen2-D-
Pen5]-enkephalin (DPDPE) for the DOP receptors, in assay buffer contain-
ing 10 mU/ml ADA, 2 mM GDP, and 0.04 nM [35S]GTPγS. Specific bind-
ing of each receptor was determined by incubating adjacent slides with an 
antagonist, 100 µM CGP35348 for GABAB receptors, and 1 µM naloxone 
for MOP and DOP receptors. Nonspecific binding was assessed by adding 
10 µM unlabeled GTPγS, and basal levels were determined with incubation 
in absence of agonist. Following the incubation, the slides were washed for 2 
x 2 min in cold Tris-HCl (pH 7.4), rinsed for 30 s in cold H2O and dried 
overnight. The sections were exposed for three to ten days to Kodak BioMax 
MR-1 films, and images from the films were digitalized using an Epson 
Perfection 4870 photo scanner. Image J, version 1.42q (National Institutes of 
Health, Bethesda, MD, USA) was used to analyze and quantify the results.  
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Liquid chromatography tandem mass spectrometry  
Liquid chromatography tandem mass spectrometry (LC-MS/MS) was per-
formed to measure steroid concentrations in rat plasma after administration 
of AAS and GH (paper V). Briefly, pregnenolone, 17-hydroxypregnenolone, 
17-hydroxyprogesterone, 11-deoxycortisol, cortisone, cortisol, corti-
costerone, DHEA, androstenedione, testosterone, progesterone, estrone, and 
estradiol were extracted from plasma samples. All steroids were analyzed in 
positive ion mode using an electrospray ion source on a triple quadruple 
mass spectrometer (API5500, AB Sciex, Foster City, CA, USA). The HPLC 
system consisted of series 1260 HPLC pumps (Agilent Technologies) and an 
HTC PAL autosampler (LEAP Technologies, NC, USA) equipped with a 
fast wash station. Two mass transitions were monitored for each steroid and 
its internal standard. Quantitative data analysis was performed using Ana-
lyst™ 1.5.2 software. Limit of quantification was 0.05 ng/ml for pregne-
nolone, 17-hydroxyprogesterone, and 11-deoxycortisol, 0.25 ng/ml for 17-
hydroxypregnenolone, 1 ng/ml for progesterone, cortisol, and cortisone, 0.5 
ng/ml for corticosterone, 0.1 ng/ml for testosterone and androstenedione, 
0.05 ng/ml for DHEA, and 1 pg/ml for estrone and estradiol.  

Statistical analyses 
Statistical analyses were performed using the software Prism, version 5.0d 
and 6.0b (Graphpad Software, Inc. La Jolla, USA), and IBM SPSS Statistics 
20. The Shapiro Wilk normality test was used to test the normality of the 
data distribution. Results from the mRNA expression analysis, organ weight 
measurements, receptor and GTPγS autoradiography, and ELISA results 
were analyzed using one-way ANOVA and Tukey’s multiple comparisons 
test where appropriate. Data from the WM training days and weight meas-
urements over time were analyzed with two-way ANOVA for repeated 
measures for comparisons over time, and Bonferroni’s multiple comparisons 
test. Plasma concentrations of steroids and behavioral data from the WM 
probe test were analyzed using the non-parametric Kruskal-Wallis test and 
Dunn’s post hoc test since the data followed a non-Gaussian distribution. 
Data obtained from the WM probe test were in addition analyzed using a 
univariate ANOVA, with the mean rank (i.e. an average of the rank-
transformed variables) as dependent variable and treatment as fixed factor. 
For the purpose of statistical analysis regarding plasma steroids for which 
some concentrations were below the detection limit, the values were set to 
the concentration corresponding to the respective limit of quantification of 
the methods. p-values less than 0.05 were considered significant. 
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Results and discussion 

Learning and memory  
The impact of ND and rhGH administration on spatial learning and memory 
was investigated using the WM test. The results from the training sessions 
demonstrated that all groups learned to locate the platform. However, no 
significant differences between the treatment groups was observed, neither 
ND nor rhGH seemed to affect spatial learning in this experiment (Figure 6). 
Neither were any differences regarding swim speed, swim distance, or thig-
motaxis (percentage of time spent swimming within 15 cm of the walls) 
observed. 

 
Figure 6. Performance in the water maze during the five days of training trials after 
administration of rhGH and ND. A) Latency in seconds (s) to platform. B) The 
latency to first entry in the target quadrant (s). Values are presented as mean ± 
S.E.M. Two-way ANOVA for repeated measurements was used for statistical analy-
sis, n = 11-12/group. 

In the rhGH-treated rats, an overall improved spatial memory was demon-
strated in the 90-seconds probe trial, which was performed 72 h after the last 
training session (Figure 7). The rats administered with rhGH had a signifi-
cantly decreased latency to the target zone, the former location of the plat-
form, strongly suggesting improved memory in these rats. The rhGH-treated 
rats did also have more target zone crossings (TZC) than the ND-treated rats. 
During the first 30 seconds of the probe trial, the rhGH-treated rats had sig-
nificantly more TZC than the controls. 

Thus, our results demonstrated that GH has a positive impact on spatial 
memory. However, the results demonstrated that under these experimental 
conditions neither rhGH nor ND affect spatial learning. It has previously 
been shown that administration of rhGH to hypophysectomized rats im-
proves memory in a WM test, as well as in a radial arm maze (Le Greves et 
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al., 2006, Le Grevès et al., 2011). Several studies have also demonstrated 
that GH therapy to GHD patients improves cognitive functions (Burman and 
Deijen, 1998, Deijen et al., 1998, Falleti et al., 2006, Sathiavageeswaran et 
al., 2007). Consequently, most studies that demonstrate positive effects of 
GH have utilized GHD models (patients or rodents). IGF-1 has also been 
reported to be involved in cognition (Markowska et al., 1998, Gong et al., 
2012), thus both GH and IGF-1 may be mediators of the memory enhancing 
effects.  

 
Figure 7. The effects of ND and rhGH on performance in the WM probe trial. A) 
Latency in s to first visit in the target zone, i.e. the former location of the platform 
B) Target zone crossings during the 90 s probe trial C) Target zone crossings during 
the first 30 s of the probe trial. Kruskal wallis and Dunn’s post hoc test were used 
for statistical analysis. Values are expressed as median, maximum, and minimum, n 
= 11-12/group. * p < 0.05 

The exact mechanisms underlying the positive effects of GH on cognitive 
functions are not known, but could involve mechanisms facilitating long-
term potentiation (LTP). Both GH and IGF-1 induce alterations of NMDA 
receptor subunit composition in rat hippocampus, the primary brain region 
associated with facilitation of LTP (Le Greves et al., 2005, Le Greves et al., 
2006). Apart from the important glutamatergic system, other transmitter 
systems, such as the gabaergic and opioid systems, could also play a role in 
mediating these effects. In addition, other processes important for brain 
functioning affected by GH, such as neurogenesis, vascular density, and 
energy metabolism in the brain could be involved. It has in fact been sug-
gested that adult neurogenesis in the hippocampus is involved in memory 
formation (Gould et al., 1999). Furthermore, GH has been shown to both 
counteract and prevent morphine-induced apoptosis in cells (Svensson et al., 
2008). Thus, the ability of GH to improve cognitive functions together with 
the knowledge of GH being able to reverse drug-induced apoptosis strength-
ens the hypothesis that GH may have the ability to counter-act drug-induced 
cognitive impairments.  

Regarding the effects of ND on spatial learning and memory, no major 
impairments were seen. But the ND-treated rats had fewer TZC than the 
rhGH-treated rats, an observation indicating an impaired memory of the 
platform location. The impact of AAS on learning and memory is not fully 
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understood. Improvements, impairments as well as no effects have been 
reported in animal studies (Vazquez-Pereyra et al., 1995, Smith et al., 1996, 
Magnusson et al., 2009). However, Kanayama et al., recently demonstrated 
that long-term use of AAS was associated with impaired visual-spatial 
memory (Kanayama et al., 2013), some studies have even observed a posi-
tive effect of AAS on cognition. In fact, one study demonstrated that admin-
istration of testosterone to young rats, alone or in combination with GH, 
improved memory in a passive avoidance task (Schneider-Rivas et al., 
2007). It should be noted that the different experimental settings, using vari-
ous steroids, doses, rat strains, as well as different learning and memory tests 
makes comparisons complex. Specific AAS have been demonstrated to have 
different behavioral effects. For example, ND has been reported to increase 
aggressive behavior (Johansson et al., 2000b), whereas stanozolol, a 17α-
alkylated steroid, on the contrary was found to inhibit aggression compared 
to controls (Martinez-Sanchis et al., 1996, Breuer et al., 2001). Furthermore, 
the choice of pro-drug may play a role. For instance, esters of nandrolone, i.e 
nandrolone decanoate and nandrolone phenylpropiate are found to display 
different pharmacodynamic and pharmacokinetic profiles (Minto et al., 
1997). Strain differences regarding sensitivity towards AAS in a test measur-
ing aggressive behavior have previously been demonstrated between Spra-
gue Dawley and Wistar rat strains (Johansson et al., 2000b, Steensland et al., 
2005). Interestingly, behavioral differences within Wistar rats from different 
suppliers have also been reported (Palm et al., 2011).  

IGF-1, IGF-2, and GHR mRNA expression  
Both GH and AAS are believed to affect different signaling systems related 
to cognition. Thus, to further examine the interactions and actions of AAS 
and GH, the effects of ND and rhGH administration on the mRNA expres-
sion of three genes of the GH/IGF-1 system; Igf1, Igf2, and Ghr, were inves-
tigated in several regions of the rat brain. In the hippocampus, IGF-1 mRNA 
expression was elevated in the rhGH-treated rats compared to ND-treated 
rats, but in the frontal cortex no alterations were seen. Furthermore, no alter-
ations of IGF-1 or GHR gene expression were seen in the hippocampus or 
frontal cortex (Figure 8). The impact of ND and rhGH on the mRNA ex-
pression in the amygdala, caudate putamen, and nucleus accumbens did not 
reveal any alterations (see paper II).  
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Figure 8. The mRNA expression of IGF-1, IGF-2, and GHR in the hippocampus 
and frontal cortex, after administration of ND and rhGH.  One-way ANOVA and 
Tukey’s multiple comparisons test was used for statistical analysis. Values are pre-
sented as mean ± S.E.M. ** p < 0.01, n = 11-12/group 

GH was previously demonstrated to increase the IGF-1 mRNA expression in 
the hippocampus, hypothalamus, and cerebellum, but not in the cortex of 
intact adult Wistar rats (Frago et al., 2002). Furthermore, rhGH administra-
tion increased IGF-1 mRNA expression in the hippocampus of pituitary-
intact rats in a hypoxia-model (Li et al., 2011b). The rats in the hypoxia 
model did in addition have cognitive impairments, assessed in a WM test, 
which to some extent was attenuated by the rhGH-treatment (Li et al., 
2011b). Our results provide further support of that administration of GH has 
an impact on hippocampus functions. Since the hippocampus is a brain area 
strongly associated with learning and memory, the up-regulation of the IGF-
1 gene transcript could be associated with the improved behavior in the WM 
test induced by the rhGH administration.  

The ND administration induced a reduction of the IGF-1, IGF-2, and 
GHR mRNA expression in the pituitary, indicating an overall inhibiting 
effect on the GH/IGF-1 system at the pituitary level (Figure 9). ND adminis-
tered, both on its own, as well as together with rhGH, reduced the mRNA 
expression of all three genes. Few have studied the effects of ND on gene 
expression in the pituitary but, in alignment with our results, a previous 
study demonstrated a down-regulation of several other gene transcripts in 
the pituitary in association with ND-administration (Alsiö et al., 2009). 
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Figure 9. The mRNA expression of IGF-1, IGF-2, and GHR in the pituitary and the 
hypothalamus in rats treated with ND or rhGH. One-way ANOVA followed by 
Tukey’s multiple comparisons test was used for statistical analysis. Values are pre-
sented as mean ± S.E.M, n = 11-12/group. * p < 0.05, ** p < 0.01, *** p < 0.001. 

GABAB receptors 
The GABAB receptors have been implicated in cognitive functions, such as 
learning and memory, and in study II the impact of ND and rhGH on the 
GABAB1 (Gabbr1) and GABAB2 (Gabbr2) receptor subunit mRNA expres-
sion in the pituitary, hypothalamus, amygdala, caudate putamen, and nucleus 
accumbens were investigated. In the hypothalamus, rhGH increased the 
GABAB1 receptor subunit mRNA expression, but did not affect the GABAB2 
receptor subunit. ND did not alter the GABAB receptor subunit expression in 
the hypothalamus. When rhGH and ND was combined, elevated mRNA 
levels of the GABAB2 receptor subunit were found in the pituitary, but ad-
ministration of rhGH alone did not affect the mRNA expression of GABAB1 
and GABAB2 (Figure 10). 

In the pituitary, both the GABAB1 and the GABAB2 receptor subunit 
mRNA expression were altered by the ND administration, the GABAB1 re-
ceptor subunit mRNA expression was reduced, whereas the GABAB2 recep-
tor subunit expression was elevated. Functional GABAB receptors are com-
posed by heterodimers of two receptor subunits, GABAB1 and GABAB2 
(Jones et al., 1998, Kaupmann et al., 1998, White et al., 1998). It is believed 
that the GABAB1 receptor subunit is responsible for ligand binding, while the 
GABAB2 receptor subunit mediates the binding and activation of G-proteins 
(Robbins et al., 2001). Thus, the different effects seen on the GABAB recep-
tor subunits from the ND administration suggests that ND may be able to 
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change the receptor functionality by altering the subunit composition. 
GABAB receptor antagonists have been demonstrated to improve cognitive 
functions (Helm et al., 2005, Lasarge et al., 2009), and GABAB antagonists 
have even been proposed as a novel opportunity to treat cognitive impair-
ments in humans (Froestl et al., 2004). Therefore, an ND-induced alteration 
of the GABAB receptor functionality could be involved in certain effects of 
ND on cognition.  

 
Figure 10. The effects of ND and rhGH on GABAB1 and GABAB2 receptor gene 
expression in rats. One-way ANOVA was used for statistical analysis followed by 
Tukey’s multiple comparisons test, n = 11-12/group. * p < 0.05, ** p < 0.01, *** p 
< 0.001. 

The study in paper III was conducted to examine whether seven days of 
rhGH administration, injected twice daily, affected the GABAB receptor 
density and functionality in the rat brain. The receptor autoradiography re-
sults demonstrated alterations of the GABAB receptor density in brain re-
gions such as the cingulate cortex, motor cortex, and caudate putamen 
(Figure 11). The GABAB receptor density in the caudate putamen was in-
creased in the group treated with the lower GH dose, but the higher dose 
showed no effect. This could reflect a bell-shaped dose response curve. This 
phenomenon has previously been associated with GH administration (Fuh et 
al., 1992, Ilondo et al., 1994, Mustafa et al., 1997) and recently in associa-
tion with GH actions on cell proliferation and differentiation (Lyuh et al., 
2007, Åberg et al., 2009). 
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Figure 11. The effect of 0.07 IU/kg and 0.7 IU/kg rhGH on GABAB receptor densi-
ty in the rat brain. One-way ANOVA followed by Tukey’s multiple comparisons 
test was used for statistical analysis, n = 7-8/group.  Data are presented as mean ± 
S.E.M. * < p = 0.05.  

The rhGH treatment altered the GABAB receptor functionality in several 
brain regions, such as the central and basolateral amygdala, where decreased 
receptor functionality was detected (Table 2). 

Table 2. Basal and baclofen-stimulated GTPγS-binding autoradiography (nCi/g), in 
rats treated with 0.07 IU/kg or 0.7 IU/kg rhGH. * p < 0.05 compared to baclofen-
stimulated control binding, statistical analysis was performed using a one-way 
ANOVA followed by Tukey’s multiple comparisons test. Values are expressed as 
mean ± S.E.M., n =7-8/group. CeM; central amygdaloid nucleus, BLA; basolateral 
amygdaloid nucleus 

Brain 
region 

Basal 
Controls 

Baclofen 
Controls 

Basal 
0.07 IU/kg 

Baclofen 
0.07 IU/kg 

Basal 
0.7 IU/kg 

Baclofen 
0.7 IU/kg 

CeM 115.0±7.9 268.6±17.3 172.3±15.2 197.2±18.4* 150.8±7.8 203.3±6.9* 
 

BLA 139.8±9.5 242.2±12.4 115.6±6.1 194.6±6.1* 166.2±11.9 213.3±14.4 

When comparing the results from the autoradiography with the previous 
effects on mRNA expression, both similarities and contradictions were ob-
served. The GABAB receptor autoradiography results did not demonstrate 
any altered density in the hypothalamus, in alignment with the mRNA ex-
pression results. Contrary to the alteration seen in caudate putamen in the 
autoradiography experiments, the GABAB receptor subunit mRNA expres-
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sion in the caudate putamen, was not altered by rhGH (see paper II). How-
ever, there are several differences between these two experiments. Two dif-
ferent treatment regimes were used, 0.07 IU/kg and 0.7 IU/kg rhGH were 
given twice daily for seven days in the autoradiography study, whereas in 
the mRNA expression experiment 1.0 IU/kg was administered once daily for 
ten days. In addition, mRNA expression levels do not necessarily reflect the 
protein levels, thus discrepancies between these methods are not unlikely. In 
fact, a previous study investigating effects of baclofen administration on 
GABAB receptor subunits observed increased protein levels, but no altera-
tions of the mRNA expression, which suggested that non-genomic effects 
could be involved in the GABAB receptor protein regulation (Sands et al., 
2003). It should also be noted that the primers used in the mRNA expression 
experiment were designed to distinguish between the GABAB1 and the 
GABAB2 receptor subunits, whereas the autoradiography could not. 

Alterations of the GABAB receptor density and functionality were detect-
ed in brain areas related to cognitive functions, for example the cingulate 
cortex and amygdala, although no alterations were seen in the hippocampus 
or dentate gyrus. In agreement with these results was an earlier study 
demonstrating that administration of bGH to hypophysectomized rats altered 
the mRNA expression of the GABAB1 receptor subunit in the cerebral cortex 
but not in the hippocampus (Walser et al., 2011). Interestingly, it was recent-
ly demonstrated that treatment with a GHRH-analogue to healthy adults and 
patients with mild cognitive impairments increased the GABA levels in sev-
eral brain regions as well as had beneficial effects on cognition (Baker et al., 
2012, Friedman et al., 2013). Thus, certain actions of GH in the brain, for 
example on cognitive functions, may include effects on the GABA system. 
In fact, GABAB receptors have been reported to be involved in the regula-
tion of LTP, the mechanism considered to be the basis for learning and 
memory (Davies et al., 1991).  

These results demonstrated that both ND and rhGH actions in the brain 
can involve the GABAB receptors, and that GH induced alterations in areas 
related to cognition.  

Delta and mu opioid receptor functionality  
The impact of administration of 0.07 IU/kg and 0.7 IU/kg rhGH for seven 
days on DOP and MOP receptor functionality in male rat brain was investi-
gated using agonist-stimulated [35S]-GTPγS. The results demonstrate that 
GH affects the MOP receptor functionality in several brain areas, for exam-
ple amygdala and thalamus (Figure 12). Interestingly, the amygdala and 
thalamus have previously been associated with cognitive functions such as 
declarative and spatial learning and memory (Aggleton et al., 1996, Cahill 
and McGaugh, 1998, Warburton et al., 2001). 
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Figure 12. The effect of 0.07 IU/kg and 0.7 IU/kg rhGH on DAMGO-stimulated 
[35S]-GTPγS binding. One-way ANOVA and Tukey’s multiple comparisons test 
was used for statistical analysis, n = 7-8/group  * p < 0.05, **p < 0.01, *** p < 
0.001.  

The functionality of the DOP receptors was not affected by the rhGH admin-
istration. In congruence with our results, a recent study overexpressing bGH 
locally in the mouse CNS did not show an impact on the DOP receptor 
mRNA expression either (Walser et al., 2012). Other studies using hy-
pophysectomized female rats have however observed alterations in brain 
levels of DOP receptors after treatment with bGH (Persson et al., 2003, 
Persson et al., 2005). Thus, the impact of GH on DOP receptors may be 
enhanced in hypophysectomized rats but not in pituitary-intact rats. Alto-
gether, these results suggest that GHs effects on memory could involve in-
teractions with the MOP receptors, but not DOP receptors. However, the 
mechanism underlying this interaction needs to be further elucidated. 

IGF-1 concentrations in plasma  
The IGF-1 plasma concentration was measured in the rats treated with ND 
and rhGH (paper I). The results demonstrate that ND administration cause a 
reduction of plasma levels of IGF-1 (Figure 13). GH did however not affect 
the IGF-1 plasma concentration, although when combining ND with rhGH 
the rats displayed a higher mean value (1410 ± 141 ng/ml) than the ND-
treated rats (1196 ± 105 ng/ml).  
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Figure 13. The effects of GH and ND on IGF-1 plasma concentrations. Data are 
expressed as mean ± S.E.M.  One-way ANOVA and Tukey’s multiple comparisons 
test was used for statistical analysis, n= 11-12/group * p < 0.05, ** p < 0.01, *** p < 
0.001. 

IGF-1 is closely connected to GH and several studies report increased IGF-1 
plasma concentrations after rhGH treatment. In the majority of these studies 
GH has been administered to GHD animals, for example to hypophysecto-
mized rats (Bielohuby et al., 2011, Le Grevès et al., 2011). Elevated IGF-1 
plasma levels have also been reported in acromegaly patients, although the 
relationship between high GH concentrations and IGF-1 plasma levels is not 
always correlated within these groups (Neggers et al., 2012). Fewer studies 
have reported the effect of GH on IGF-1 plasma concentrations in intact 
animals. A recent study using intact Wistar rats and mice of different strains 
did not find elevated IGF-1 plasma concentrations after rhGH administra-
tion, and suggested that IGF-1 secretion into plasma cannot be enhanced any 
further in intact animals because it is already maximized (Bielohuby et al., 
2011). This is further supported by the fact that the IGF-1 plasma concentra-
tions in 21-day old intact Wistar rats were unaffected by bGH administration 
(Scheepens et al., 1999). Thus, our results are in agreement with other stud-
ies using intact animals. Apart from the hypotheses suggested by Bielohuby 
et al., another possibility to our observations could be that administration of 
GH to intact rats may stimulate the negative feedback regulation of pituitary 
GH secretion, resulting in a less pronounced elevation of IGF-1 plasma con-
centrations.  

The ND-induced reduction of IGF-1 plasma concentrations confirmed the 
link that exists between AAS and the GH/IGF-1 system. Long-term AAS 
use has previously been reported to decrease IGF-1 plasma concentrations 
(Bonetti et al., 2008). On the contrary, in hypogonadal patients with low GH 
and IGF-1 concentrations, administration of testosterone enanthate increased 
the plasma concentrations of both GH and IGF-1 (Bondanelli et al., 2003). 
Another study on healthy men also demonstrated elevated IGF-1 plasma 
concentrations after six weeks of testosterone enanthate administration, but 
interestingly not after ND administration (Hobbs et al., 1993). In men with 
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suppressed endogenous testosterone secretion, administration of high doses 
of testosterone during 16 weeks increased plasma IGF-1 concentrations, 
whereas treatment with lower doses of testosterone did not (Bhasin et al., 
2001). These previous studies have used different treatment regimes and it 
seems likely that the dose, treatment length, and the choice of steroid, have 
an impact on the effects of AAS on IGF-1 plasma concentrations. In particu-
lar, the results by Hobbs et al., where testosterone enanthate and ND gener-
ated different IGF-1 responses, point at important differences between ster-
oids. The results from this thesis demonstrated that administration of 15 
mg/kg ND to intact rats decrease the IGF-1 plasma concentrations. The IGF-
1 mRNA expression in the pituitary was also reduced by the ND-treatment 
(as mentioned above), demonstrating ND-induced inhibition of both local 
IGF-1 production in the brain and the IGF-1 production in the liver.   

Plasma steroid concentrations  
In paper V the effects of ND and rhGH on plasma concentrations of endoge-
nous steroids were examined. Thirteen steroids were investigated, and seven 
of these were detected and quantified (testosterone, androstenedione, estra-
diol, pregnenolone, corticosterone, 17-hydroxyprogesterone, and DHEA) 
(Figure 14). As expected, ND induced a major reduction of the plasma tes-
tosterone concentrations, probably by activating the negative feedback loop 
of the HPG-axis and by decreasing the LH levels (Alen et al., 1987, Daly et 
al., 2003) thus inhibiting testosterone production in the testis. ND also di-
minished the plasma concentrations of androstenedione, the precursor of 
testosterone, an observation that also may be explained by a feedback inhibi-
tion of the HPG-axis. The results did not demonstrate any alterations of the 
17-hydroxyprogesterone concentrations, indicating a possible down-
regulation of the CYP17 lyase activity converting 17-hydroxyprogesterone 
to androstenedione. In this case, accumulation of 17-hydroxyprogesterone 
should theoretically have been detected. 

There are several enzymes that play an important role in the steroidogen-
esis. For instance, ND has been demonstrated to increase the activity of 
CYP19, an enzyme converting testosterone and androstenedione to estradiol 
and estrone, respectively (Takahashi et al., 2007, Takahashi et al., 2008). 
However, ND can also in itself be a substrate for CYP19, and thereby in-
crease the estrone concentrations. Thus, the observed elevation of estrone 
levels most probably originates from the conversion of ND to estrone. In-
deed, previous studies have demonstrated aromatization of nandrolone to 
estrone, and ND administration to male patients also increased estrone con-
centrations (Engel et al., 1958, Dimick et al., 1961, Bijlsma et al., 1982), 
although, ND is not aromatized in the same extent as testosterone (Ryan, 
1959).  
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Figure 14. The effects of ND and rhGH on testosterone, androstenedione, estrone, 
pregnenolone, 17-hydroxyprogesterone, corticosterone, and DHEA concentrations 
in plasma. Kruskal Wallis and Dunn’s post hoc test was used for statistical analysis. 
Data are presented as median, minimum, and maximum values, n = 11-12/group. * p 
< 0.05, ** p < 0.01, *** p < 0.001. 

Although it has previously been demonstrated that GH affects testicular 
steroidogenesis and that GHR expression is demonstrated in rat Leydig cells 
(Kanzaki and Morris, 1999), our results did not observe any GH-mediated 
effects on the testosterone plasma concentrations. These results are con-
sistent with studies on healthy aged men and GHD patients (Juul et al., 1998, 
Blackman et al., 2002).  

The corticosterone concentrations were highly elevated in a few of the 
rhGH-treated animals (five out of twelve rats). Earlier studies have also 
demonstrated increased plasma concentrations of corticosterone after GH 
administration. The mechanism by which GH affects corticosterone is sug-
gested to involve a stimulation of ACTH secretion via the hypothalamus 
(Cecim et al., 1991, Bohlooly et al., 2001). Furthermore, GH administration 
increased the levels of 17-hydroxyprogesterone, and a similar increase has 
also previously been observed in GHD patients undergoing GH treatment 
(Carani et al., 1999). Interestingly, the 3β-HSD enzyme, involved in the 
conversion of 17-hydroxypregnenolone to 17-hydroxyprogesterone, was 
increased by GH treatment in rat Leydig cells (Kanzaki and Morris, 1999). 
Other steroids such as cortisone and cortisol were not detected in the rat 
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plasma. These results were expected since the main glucocorticoid in rats is 
corticosterone, and rats only have very low levels of cortisol and cortisone 
(Handa et al., 1994, Katagiri et al., 1998).  

Weight measurements  

Administration of ND for three weeks and subsequent administration of 
rhGH for ten days had a significant impact on weight gain (percent of initial 
body weight) in male rats (paper I). From day 18 and onward of the experi-
ment, ND induced a reduction of the body weight gain. After 21 days, the 
ND administration was discontinued and the rhGH treatment initiated. After 
six, as well as nine days into the rhGH treatment (days 28 and 31 of the ex-
periment), the rats receiving rhGH gained significantly more weight than the 
other groups (Figure 15A). The ND-pretreated rats receiving rhGH gained 
significantly more weight than the ND-pretreated rats at this time, demon-
strating a profound impact of rhGH on body weight gain. Seven days of 
treatment with 0.07 IU/kg and 0.7 IU/kg rhGH did however not have a sig-
nificant effect on the body weight (Figure 15B).  

 
Figure 15. A) The effect of ND and rhGH administration on weight gain, expressed 
as percentage of initial body weight, n = 11-12/group. B) The effect of rhGH on 
body weight gain, expressed as percentage of initial body weight, n = 7-8/group. 
Values are expressed as mean ± S.E.M. Two-way ANOVA for repeated measure-
ments and Bonferroni’s post hoc test where appropriate was used for statistical anal-
ysis. * p < 0.05 compared to controls, # p < 0.05 compared to the ND-treated group. 

The mechanism underlying GHs effects on body weight is unclear, although 
GH has previously been shown to increase food-intake in intact rats (Azain 
et al., 1995). On the contrary, treatment with ND has been shown to attenu-
ate body weight gain in rats (Johansson et al., 2000a, Lindblom et al., 2003). 
Interestingly, Lindblom et al. demonstrated a reduced food intake in the rats 
administered with ND (Lindblom et al., 2003). In our study, the effect on 
weight gain was observed ten days after the last ND injection, demonstrating 
that AAS can induce long-term effects. Indeed, ND has a long half-life of 
approximately six days and has been reported to be present in plasma up to 



 47 

16 days after a single injection (van der Vies, 1985, Minto et al., 1997, 
Kurling et al., 2008). Thus, the rats were expected to have high plasma con-
centrations of ND also on the last day of the experiment.  

Both GH and ND are known to target several peripheral organs, for ex-
ample, GHR expression in rats has been found in liver and heart as well as in 
immune, reproductive and gastrointestinal tissues (Tiong and Herington, 
1991). In paper V, the impact of rhGH and ND administration on the weight 
of the heart, liver, thymus, and testis was investigated (Figure 16).  

 
Figure 16. Effects of ND and GH on weights of peripheral organs, in mg tissue per 
100 g body weight. One-way ANOVA and Tukey’s multiple comparisons test was 
used for statistical analysis. Data are expressed as mean ± S.E.M. * p< 0.05, ** p < 
0.01, *** p < 0.001, n = 11-12/group 

The heart weight was unaffected by the treatments, whereas the liver weight 
was decreased in the rats receiving both ND and rhGH. A significant impact 
of both ND and rhGH on the thymus gland was demonstrated, where the ND 
administration induced a major reduction of the thymus.  

The ND-induced decrease of the thymus gland was in alignment with 
previous studies (Johansson et al., 2000a, Lindblom et al., 2003). This re-
duction could be regarded as an indicator of the effectiveness of the ND 
administration, and it has been hypothesized that AAS produces thymolytic 
actions by stimulating the thymic epithelial cells to secrete molecular entities 
that may induce a regression of the thymus gland (Kumar et al., 1995). The 
administration of rhGH had an opposite effect and induced an increase of the 
thymus gland. GH is known to affect the thymus gland and an increased 
thymus size was for example demonstrated in AIDS patients receiving GH 
treatment (Napolitano et al., 2008).  
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Treatment with ND had an unexpected impact on the testis weight. 
Whereas long-term AAS use previously has been demonstrated to induce 
testicular atrophy both in humans and rats (Noorafshan et al., 2005, Bonetti 
et al., 2008), our study demonstrated an increased testis size. The testis size 
has previously also been unaffected in studies using a two-week ND treat-
ment (Lindblom et al., 2003), indicating that the effects of AAS on testicular 
atrophy may require a long-term treatment. Notably, a mixed intake of dif-
ferent AAS, both oral and injectable steroids, is very common among AAS 
abusers (Pope and Katz, 1994, Parkinson and Evans, 2006). Since high dos-
es of two to three different steroids often are used, it is difficult to predict the 
exact outcome of one particular AAS. As mentioned above, different ster-
oids may even have opposing effects, thus the effects of specific AAS needs 
to be further clarified in order to fully understand the mechanisms underly-
ing the physiological and behavioral effects observed.  

To summarize, the results demonstrated a major impact of GH and AAS 
on peripheral functions such as body weight gain and organ weight, and in 
addition, rhGH was able to counteract the ND-induced decrease on body 
weight gain.  
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Conclusions 

The results presented in this thesis demonstrate a significant impact of rhGH 
on spatial memory. In addition, rhGH affects both GABAB receptors as well 
as MOP receptors, and alterations were seen in brain areas that are related to 
cognition. It was also demonstrated that administration of a supraphysiologic 
dose of ND (15 mg/kg) every third day during three weeks had a significant 
impact on both peripheral functions and signaling systems in the CNS. Fur-
thermore, a link between GH and AAS was confirmed, ND reduced the IGF-
1 plasma concentrations and IGF-1 mRNA expression in the brain. The main 
outcomes from the studies included in this thesis are:  

 
• Administration of rhGH (1.0 IU/kg) once daily during ten days im-

proved spatial memory in rats, assessed in a water maze probe test, 
whereas administration of ND seemed to impair spatial memory. 
Both compounds also had a significant effect on the body weight 
gain, and rhGH was able to reverse the ND-induced decrease in 
body weight gain. 
 

• Administration of ND reduced the IGF-1 plasma concentrations, and 
ND reduced the mRNA expression of IGF-1, IGF-2, and GHR in the 
pituitary. On the contrary, rhGH increased the IGF-1 mRNA expres-
sion in the hippocampus. Both ND and rhGH altered the GABAB re-
ceptor subunit mRNA expression in certain regions of the brain.  
 

• Administration of rhGH (0.07 IU/kg, 0.7 IU/kg) twice daily for sev-
en days altered the density and functionality of the GABAB recep-
tors in the male rat brain. Several of the affected brain regions, such 
as cingulate cortex and amygdala, are areas known to be involved in 
cognitive functions. 

 
• Administration of rhGH (0.07 IU/kg, 0.7 IU/kg) twice daily for sev-

en days altered the functionality of the MOP receptors, but the DOP 
receptors were not affected. Thus, GH actions in certain brain areas 
could involve direct or indirect effects on the MOP receptors, but 
not the DOP receptors. 
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• Both ND and rhGH induced alterations of the endogenous steroid 
concentrations, however, no significant effect was seen from the 
combined administration of both ND and rhGH. ND caused a major 
reduction of the thymus gland, whereas rhGH induced an increase of 
weight of this gland. 

Both GH and AAS administration, besides the well-known growth stimulat-
ing and anabolic effects of these two substances, have a major impact on the 
CNS in rats, and this thesis contributes to the understanding of the conse-
quences of GH and AAS use. The results cannot readily be extrapolated to 
humans, but the findings regarding AAS are worrying considering the use of 
AAS in the society, in particular among adolescents. The data presented in 
this thesis support the hypothesis that GH can reverse drug-induced impair-
ments in the brain. 
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Populärvetenskaplig sammanfattning 

Tillväxthormon (förkortat GH, från eng. growth hormone) är ett kroppseget 
hormon med stor betydelse för längdtillväxt och metabolism. Under de sen-
aste årtiondena har man upptäckt att GH, förutom att ha effekter på organ 
ute i kroppen, även har viktiga funktioner i hjärnan och i det centrala nervsy-
stemet. GH är också ett läkemedel som ges till personer med brist på detta 
hormon. Man har kunnat visa att GH-behandling till dessa patienter ger ett 
ökat välbefinnande, motverkar trötthet, förändrar kroppssammansättningen 
samt att GH kan förbättra inlärning och minne. GH binder till en specifik 
receptor som kallas för GH-receptorn som finns både i hjärnan och ute i 
kroppen. Många av GHs effekter antas vara förmedlade av en signalmolekyl 
som heter insulin-lik tillväxtfaktor 1 (IGF-1) samt även av en liknande 
signalmolekyl som benämns IGF-2.  

Anabola androgena steroider (AAS) hör till en grupp substanser som är 
nära besläktade med det manliga könshormonet testosteron. AAS är mest 
kända som dopningsmedel som då används för sina muskeluppbyggande och 
prestationshöjande egenskaper. Användandet av AAS har idag dock spridit 
sig utanför elitidrottens värld och används mer och mer av vanliga ungdomar 
något som är mycket oroande. AAS har en rad olika negativa effekter i 
kroppen och i hjärnan och har till exempel kopplats samman med hjärtpå-
verkan, leverpåverkan, aggression, och depression. 

Både GH och AAS samverkar med flera olika signalsystem i hjärnan och 
påverkar till exempel GABA, som verkar som en bromsande signalmolekyl, 
och med opioida systemet som bland annat är involverad i smärta och i hjär-
nans belöningssystem. Båda dessa signalsystem tros även vara inblandade i 
inlärnings- och minnesfunktioner.  

Syftet med denna avhandling var att undersöka hur GH och AAS 
(nandrolondekanoat) påverkar olika signalsystem i hjärnan samt substanser-
nas effekter på kognitiva funktioner, med fokus på inlärning och minne. 
Studierna är utförda på vuxna hanråttor. 

Resultaten visade att GH kunde förbättra minnet medan AAS enligt vissa 
parametrar verkade försämra minnet. Resultaten visade även att GH påver-
kade både GABA-systemet och det opioida systemet i olika delar av hjärnan. 
Skillnader sågs i vissa hjärnregioner som är involverade i kognitiva funkt-
ioner och det kan betyda att GHs effekter på beteenden som inlärning och 
minne kan ha ett samband med förändringar i dessa signalsystem. Ett tydligt 
samband mellan GH och AAS sågs i och med att AAS minskade IGF-1-
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nivåerna i kroppen och i hjärnan. AAS hade även en påverkan på GABA-
systemet. Förutom dessa effekter i hjärnan hade både AAS och GH effekter 
ute i kroppen, som till exempel en förändrad produktion av kroppsegna ste-
roider och en påverkan på kroppsvikten. 

Sammanfattningsvis bidrar resultaten från denna avhandling med ny kun-
skap beträffande GH och AAS effekter i hjärnan samt kring deras påverkan 
på minnes-relaterat beteende. Dessa resultat funna i råtta kan inte rakt av 
översättas till människa, men förväntas ge en bild av vilka konsekvenser 
som ett intag av GH och AAS kan ge upphov till. Framförallt är AAS effek-
ter i hjärnan oroande med tanke på det ökande användandet av AAS bland 
befolkningen och särskilt hos ungdomar. De effekter som sågs av GH stödjer 
hypotesen att GH möjligtvis kan motverka droginducerade skador hos män-
niskor. 
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